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SUBCOMPLETE FORCING, TREES, AND GENERIC ABSOLUTENESS

GUNTER FUCHS AND KAETHEMINDEN

Abstract. We investigate properties of trees of height �1 and their preservation under subcomplete
forcing. We show that subcomplete forcing cannot add a new branch to an�1-tree. We introduce fragments
of subcompleteness which are preserved by subcomplete forcing, and use these in order to show that certain
strong forms of rigidity of Suslin trees are preserved by subcomplete forcing. Finally, we explore under
what circumstances subcomplete forcing preserves Aronszajn trees of height and width �1. We show that
this is the case if CH fails, and if CH holds, then this is the case iff the bounded subcomplete forcing axiom
holds. Finally, we explore the relationships between bounded forcing axioms, preservation of Aronszajn
trees of height and width �1 and generic absoluteness of Σ

1
1-statements over first order structures of size

�1, also for other canonical classes of forcing.

§1. Introduction. Much of the work in this article is motivated by prior work
of the first author which shows that the countably closed maximality principle
(MP<�1-closed(H�2 )) implies countably closed-genericΣ

1
2(H�1 )-absoluteness, defined

in Section 4, see [3]. The point here is that countably closed-generic Σ11(�1)-
absoluteness is provable in ZFC. In [14], the maximality principle for subcomplete
forcing was considered, and the question arose whether it has the same consequence.
Analogously to the situation with countably closed forcing, the underlying question
is whether subcomplete generic Σ11(�1)-absoluteness is provable in ZFC. Subcom-
plete forcing was introduced by Jensen. Jensen showed that subcomplete forcing
cannot add real numbers, yet may change cofinalities to be countable, and that
it can be iterated with revised countable support. Moreover, all countably closed
forcing notions are subcomplete. What makes forcing principles for subcomplete
forcing particularly intriguing is that they tend to be compatible with CH, while
otherwise having consequences similar to the analogous principles associated with
other, more familiar forcing classes, such as proper, semiproper, or stationary set
preserving forcing, that imply the failure of CH. There is a close relationship between
these generic absoluteness properties and the preservation of certain types of Aron-
szajn trees, and this led us to investigate properties of trees of height �1 and their
preservation under subcomplete forcing. The main question we had in mind, stated
in [14, Question 3.1.6], was whether subcomplete forcing can add a branch to an
(�1,≤�1)-Aronszajn tree, that is, a tree of height and width �1 that does not have
a cofinal branch.
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The work on properties of �1-trees and their preservation under subcomplete
forcing, in particular on strong forms of rigidity, led us to consider weak forms of
subcompleteness which themselves are preserved by subcomplete forcing. In Sec-
tion 2, we recall the definition of subcompleteness, originally introduced by Jensen,
investigate the relevant fragments of subcompleteness we call minimal subcomplete-
ness and prove the preservation facts we need. In Section 3, we show that Suslin trees
are preserved under minimally subcomplete forcing, and that such forcing cannot
add new branches to �1-trees. We then show that certain strong forms of rigidity
of Suslin trees, introduced in [7], are preserved by subcomplete forcing. Finally, in
Section 4, we establish the relationships between the preservation of wide Aronszajn
trees, forms of generic absoluteness and the bounded subcomplete forcing axiom,
BSCFA, of course building on Bagaria’s work [1] on bounded forcing axioms and
principles of generic absoluteness. The main results in this section are as follows.

Theorem 4.21. Assuming CH, the following are equivalent.

(1) Subcomplete generic Σ11(�1)-absoluteness.
(2) BSCFA.
(3) Subcomplete forcing preserves (�1,≤�1)-Aronszajn trees.
The corresponding equivalence holds for any other natural class of forcing notions
(see Definition 4.9) that don’t add reals. The second main result is Theorem 4.22,
which settles our original question, whether subcomplete forcing can add a branch
to an (�1,≤�1)-Aronszajn tree:
Theorem 4.22. Splitting in two cases, we have the following:

(1) If CH fails, then subcomplete forcing preserves (�1,≤�1)-Aronszajn trees.
(2) If CH holds, then subcomplete forcing preserves (�1,≤�1)-Aronszajn trees iff

BSCFA holds.

We have a complete analysis for other forcing classes as well.

Theorem 4.23. Let Γ be the class of proper, semiproper, stationary set preserving,
ccc or subcomplete forcing notions. Consider the following properties.

(1) BFAΓ.
(2) Γ-generic Σ11(�1)-absoluteness.
(3) Forcing notions in Γ preserve (�1,≤�1)-Aronszajn trees.
Then (1)⇐⇒ (2) =⇒ (3), but (3) does not imply (1)/(2).
Of course, subcomplete forcing is the only one of these forcing classes whose
bounded forcing axiom is consistent with CH, and it is in the presence of CH that
the unusual situation arises that these conditions are equivalent for this class.

§2. Fragments of subcompleteness and their preservation. We begin by recalling
the concept of subcompleteness of a partial order, as introduced by Jensen (see [11]).
IfM and N are models of the same first order language, then we writeM ≺ N to
express thatM is an elementary submodel of N , and we write � : M ≺ N to say
that � is an elementary embedding fromM to N . If X is a subset of the domain of
N , then we writeX ≺ N to express that the reductN |X ofN toX is an elementary
submodel ofN . In the following, ZFC− stands for the axioms of Zermelo–Fraenkel

https://doi.org/10.1017/jsl.2018.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.23


1284 GUNTER FUCHS AND KAETHEMINDEN

Set Theory without the axiom of Powerset, with the axiom of Collection instead
of Repacement. Collection is the scheme consisting of all sentences of the form
∀�w∀u∃v∀x ∈ u(∃y ϕ(x, y, �w) −→ ∃y ∈ v ϕ(x, y, �w)).

Definition 2.1. A transitive set N (usually a model of ZFC−) is full if there is
an ordinal � such that L�(N) |= ZFC− and N is regular in L�(N), meaning that if
x ∈ N , f ∈ L�(N) and f : x −→ N , then range(f) ∈ N .

Definition 2.2. For a poset P, write �(P) to denote the minimal cardinality of a
dense subset of P.

Definition 2.3. Let N = LA� = 〈L�[A],∈, A ∩L�[A]〉 be a ZFC− model where �
is a cardinal and A is a set. Let � be an ordinal and let X ∪ {�} ⊆ N . Then CN� (X )
is the smallest Y ≺ N such that X ∪ � ⊆ Y .

Definition 2.4. A forcing P is subcomplete if there is a cardinal 	 > � = �(P)
which verifies the subcompleteness of P, which means that P ∈ H	 , and for any
ZFC− model N = LA� with 	 < � and H	 ⊆ N , any � : N ≺ N such that N
is countable and full and such that P, 	 ∈ range(�), for any s ∈ range(�), with
�(s, 	,P) = s, 	,P,1 and anyG ⊆ P which is P-generic overN , the following holds.
There is a condition p ∈ P such that whenever G ⊆ P is P-generic over V with
p ∈ G , there is in V[G ] a � ′ such that
(1) � ′ : N ≺ N ,
(2) � ′(s, 	,P) = s, 	,P,
(3) (� ′) “G ⊆ G ,
(4) CN� (range(�

′)) = CN� (range(�)).

The three main properties of subcomplete forcing are that they don’t add reals,
that they preserve stationary subsets of �1, and that they can be iterated (with
revised countable support). We now isolate key parts of what it means that a forcing
is subcomplete, which are in a sense responsible for these preservation properties.
The remaining parts are crucial for the iterability of the resulting forcing class.
We call the stripped down version of the definition of subcompleteness minimal
subcompleteness.

Definition 2.5. If X is a set such that the restriction of ∈ to X orders X
extensionally, then let �X : NX −→ X be the inverse of the Mostowski collapse of
X , where NX is transitive.
Let N be a transitive model of ZFC−, and let P ∈ X ≺ N , where X is countable.
Let P = �−1X (P). Then X elevates to N

P if for all c ∈ NX , the following holds.
Whenever G is generic over NX for P, there is a condition p ∈ P such that if G
is P-generic over V and p ∈ G , then in V[G ], there is an elementary embedding
� ′ : NX ≺ N such that � ′“G ⊆ G and � ′(c) = �X (c).
1We are employing a notational short form here, as we shall do in throughout the article, by writing

�(x0, x1, . . . , xn−1) = y0, y1, . . . , yn−1 to express that �(xi ) = yi for i < n, or equivalently, that
�(〈x0, . . . , xn−1〉) = 〈y0, . . . , yn−1〉.
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A forcing notionP isminimally subcomplete if for all sets a,H , there is a transitive
model of ZFC− of the form N = LA� with a ∈ N andH ⊆ N such that

ZN,P,a = {�1 ∩X | a ∈ X and X elevates to NP}
contains a club subset of �1.

Let us first show that this is indeed a weakening of subcompleteness.

Observation 2.6. If P is subcomplete, then P is minimally subcomplete.
Proof. Let 	 verify the subcompleteness of P. Given sets a andH , let � > 	 and
A ⊆ � be such that, letting N = L�[A], we have thatH ∪ {a,H	} ⊆ N . Let 
 = �+
and � = �++. Let N ′ = L
[A]. We claim that ZN ′ ,P,a contains a club. Let

Z = {�1 ∩ Y | a ∈ Y ≺ L� [A], Y countable}.
Then clearly, Z contains a club. Moreover, if �1 ∩ Y ∈ Z, where Y ≺ L� [A] and
Y is countable, then, letting A = (�Y )−1(A), � = (�Y )−1(�) and 
 = (�Y )−1(
), it
follows that NY is of the form L� [A], where A ⊆ �, so A is a bounded subset of 
,
which is regular, and also the largest cardinal in NY . Letting N = L
[A], it follows
that N is full, as witnessed by NY (note that NY has the same bounded subsets of

 as N , and it is a model of ZFC−). Let � = �Y �N , X = range(�) = Y ∩ L
[A].
Then, since P is subcomplete, X elevates to N ′P. Since �1 ∩X = �1 ∩Y , it follows
that ZN ′ ,P,a contains a club, as claimed. �
Next, let’s check that minimal subcompleteness, while weaker than subcomplete-
ness, is still strong enough to preserve the properties mentioned before.

Fact 2.7. Let P be a minimally subcomplete forcing, and let G ⊆ P be P-generic
over V.
(1) P(�)V = P(�)V[G ].
(2) If S is stationary in �1, then this remains true in V[G ].
Proof. For (1), the proof is exactly the sameaswith subcomplete forcing.Assume
the contrary, and suppose toward a contradiction that there is a name ṙ ∈ V P for
a subset of � and a condition q forcing that ṙ is new. Let a = 〈q, ṙ〉. By minimal
subcompleteness, there is N with H	 ⊆ N for some large enough 	 so that ZN,P,a
contains a club. So there is α = �1 ∩ X ∈ ZN,P,a , where X ≺ N is countable,
where X elevates to NP. Let G be a generic filter for �−1X (P) = P over NX , such
that �−1X (q) = q ∈ G . So we have a condition p ∈ P, where, letting G be P-generic
over V containing p, there is an elementary embedding � ′ : NX −→ N such that
� ′“G ⊆ G , � ′(q) = q and � ′(ṙ) = ṙ. Thus q ∈ G as well, so we have that r = ṙG is
new. But this is a contradiction as r = � ′“r = �X “r = r ∈ V , where r = �−1X (r).
For (2), assume the contrary. Let S ⊆ �1 stationary, and suppose towards a
contradiction that there is a Ċ ∈ V P such that for some q ∈ P,

q � “Ċ ⊆ �̌1 is club ∧ Š ∩ Ċ = ∅.”
Let a = 〈q, Ċ , S〉, and, by minimal subcompleteness, let N be such that ZN,P,a
contains a club, where H	 ⊆ N , for some 	 which is sufficiently large to conclude
that the fact displayed above holds in N . Let α ∈ S ∩ ZN,P,a, and let X witness
this. That is, a ∈ X ≺ N , α = �1 ∩ X , and X elevates to NP. Let a = �−1X (a),
P = �−1X (P), and let c = 〈a,P〉.
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Since �X : NX ≺ N is elementary, a is of the form 〈q, Ċ , S〉, where �X (q) = q,
�X (Ċ ) = Ċ , �X (S) = S, and in NX , q forces with respect to P that Ċ ⊆ α̌ is club.
Let G be P-generic over NX with q ∈ G . Since X elevates to NP, there is a
condition p ∈ P such that if we let G be P-generic over V with p ∈ G , then there is
in V[G ] an elementary embedding � ′ : NX ≺ N with � ′(c) = �X (c) and � ′“G ⊆ G .
So � ′ lifts to an embedding �∗ : NX [G ] ≺ N [G ] in V [G ]. Let C = Ċ

G
, C = Ċ G .

Since q = � ′(q) ∈ G , we have that C ⊆ �1 is club in V[G ] and S ∩C = ∅ in N [G ].
However, α = �NX1 , so q ∈ G implies that C is club in α. Since �∗ � α = id, it
follows that C ∩ α = C ∩ α, and so, α < �V1 is a limit point of C , so α ∈ C ∩ S, a
contradiction. �
Itwas shown in [14] that the subcompleteness of a forcingP is very fragile: there are
subcomplete forcing notions that are destroyed by countably closed forcing—note
that Jensen pointed out that every countably closed forcing is subcomplete. The
same negative result remains true of minimal subcompleteness. In the following
proposition, N denotes Namba forcing, which Jensen proved to be subcomplete,
assuming CH (see [11] and [12]).

Proposition 2.8 ([14]). Forcing with Coll (�1, �2)× N collapses �1.

Thus, after forcingwith Coll (�1, �2), the groundmodel version ofNamba forcing
collapses �1, hence adds a real, and is thus not even minimally subcomplete any
longer (see Fact 2.7). However, the minimal fragment of subcompleteness survives
countably distributive forcing of size at most �1, as we shall show presently.

Lemma 2.9. Let P be subcomplete. Then after countably distributive forcing of size
at most �1, P is minimally subcomplete.

Proof. Let Q be countably distributive, and let |Q| ≤ �1. LetH ⊆ Q be generic.
Let’s assume that the conditions in Q are countable ordinals so that H ⊆ �1. To
show that P is minimally subcomplete in V [H ], let a = ȧH and 	 be given, and let
� be large enough so that, in V[H ], we have a ∈ L�[A′]. In V[H ], we have to find a
transitive N |= ZFC− with H	 ⊆ N , such that the set ZN,P,a contains a club subset
of �1.
In V, since P is subcomplete, we can pick a regular cardinal � and an A ⊆ � such
that, letting 
 = �+ and � = �++, we have that H	 ⊆ L�[A], and whenever Y is
countable, P ∈ Y andY ≺ L� [A], it follows thatX = Y ∩L
[A] elevates toL
[A]P,
because in this situation,NX is full, as in the proof of Observation 2.6.
In V[H ], let A′ = A ⊕H = {≺α, 
� | α ∈ A ∧ 
 ∈ H}, where ≺α, 
� is the
Gödel code of 〈α, 
〉. Note that L�[A′] = L�[A,H ] = L�[A][H ]. We claim that in
V[H ], whenever Y ′ ≺ L� [A′] is countable, with P, A,A′,Q,H ∈ Y ′, it follows that
X ′ = Y ′ ∩L
[A′] elevates to L
[A′]P.
To see this, fix such Y ′ and X ′, and let �, 
,A,A

′
,Q,H be such that

�Y ′(�, 
,A,A
′
,Q,H ) = �, 
,A,A′,Q,H.

Then NY ′ = L� [A
′
], for some countable ordinal �, and by elementarity of �Y ′ , it

follows that inNY ′ it is the case thatH isQ-generic overL
[A]. Let � = �Y ′ �L
[A].
So � = �X , where X = X ′ ∩ L
[A], and � : L
[A] ≺ L
[A] is elementary.
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In V[H ], let G be P-generic over L
[A
′
], and let c ∈ NX ′ be given. There is then

a ċ ∈ L
[A] such that c = ċH . Let Y = Y ′ ∩ L�[A], X = X ′ ∩ L
[A]. Since Q is
countably distributive, it follows that G,X,Y ∈ V, and G is P-generic over L
[A].
Since X = Y ∩ L
[A], it follows that X elevates (in V) to L
[A]P, as NX is full.
Hence, there is a condition p ∈ P that verifies this (with respect to ċ). Thus, let G
be P-generic over V[H ] with p ∈ G . Then in V[G ], there is a � ′ : L
[A] ≺ L
[A]
with � ′“G ⊆ G and � ′(ċ) = �X (ċ). So � ′ lifts to �∗ : L
[A][G ] ≺ L
[A][G ].
SinceH ∈ L
[A′

] andG isP-generic overL
[A
′
], it follows by the product lemma

that H is Q-generic over L
[A][G ], and since �∗ doesn’t move elements of H , as

H ⊆ �L
[A]1 = �L
[A][G]1 , it follows that �∗ lifts to

�∗∗ : L
[A][G ][H ] ≺ L
[A][G ][H ].
Noting that

L
[A][G ][H ] = L
[A][H ][G ] = L
[A
′
][G ]

and
L
[A][G ][H ] = L
[A][H ][G ] = L
[A′][G ]

we see that �∗∗�L
[A
′
] witnesses thatX ′ elevates toL
[A′]P in V[H ], since �∗∗(c) =

�∗((ċ)H ) = � ′(ċH ) = � ′(ċ)H = �X (ċ)H = �X ′ (c). This last equality holds because
�X = �X ′ � L
[A], since X is transitive in X ′, in the sense that if d ∈ X and
e ∈ d ∩ X ′, then e ∈ X . It follows that �X ′ is the lift of �X to L
[A

′
], and hence

that �X (ċ)H = �X ′ (c).
Thus,HV[G ]	 ⊆ L
[A′] and ZL
[A′],P,a contains a club, because in V[H ],

{Y ′ ∩ �1 | Y ′ ≺ L� [A′] is countable and a,P, A,A′,Q,H ∈ Y ′}
contains a club. �
Remark 2.10. Slight variations of the proof of the previous lemma show the
following.

(1) Minimal subcompleteness is preserved by countably distributive proper (that
is, strongly proper) forcing of size �1. In a sense, the modified proof is
somewhat easier than the original one.

(2) The following slightly strengthened version of minimal subcompleteness of
a forcing P, which is still weaker than subcompleteness, is preserved by
countably distributive forcing of size �1: for any set a, there is a � and an
A ⊆ �, such that, letting 
 = �+ and � = �++, we have that a,P ∈ L
[A],
and for every countable Y ≺ L� [A], Y ∩ L
[A] elevates to L
[A]P.

To formulate a corollary to the previous lemma, recall that, given a cardinal 
,
Jensen introduced a version of subcompleteness called subcompleteness above 
,
which requires the elevated embedding to coincide with the originally given embed-
ding up to the preimage of 
. There is a natural version of minimal subcompleteness
above 
, which we make precise presently.

Definition 2.11. Let 
 be a cardinal,N a transitive model of ZFC−, P a forcing
notion and X ≺ N countable with 
,P ∈ X . Then X elevates to NP above 
 if
for every G which is generic over NX for �−1X (P), and for every c ∈ NX , there is a
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condition p ∈ P such that wheneverG is generic over V for P, then in V[G ], there is
an elementary � ′ : NX ≺ N with (� ′)“G ⊆ G , � ′(c) = �X (c) and � ′ � 
 = �X � 
,
where 
 = �−1X (
).
A forcing notionP isminimally subcomplete if for all sets a,H , there is a transitive
model of ZFC− of the formN = LA� with a ∈ N andH ⊆ N such that

ZN,P,a = {�1 ∩ X | a ∈ X and X elevates to NP above 
}
contains a club subset of �1.

The proof of Lemma 2.9 then shows the following.

Corollary 2.12. Let P be subcomplete above 
. Then after countably distributive
forcing of size at most 
, P is minimally subcomplete above 
.

§3. Minimal subcompleteness and the preservation of properties of �1-trees.
Countably closed forcing does not add cofinal branches through �1-trees, so it is
natural to wonder whether other subcomplete forcing cannot do this either. Indeed,
we see below that this is true ofminimally subcomplete forcing as well. The proof for
subcomplete forcing is given in [14]. Let’s begin by establishing some terminology
on trees.

Definition 3.1. A tree is a partial orderT = 〈|T |, <T 〉 in which the predecessors
of anymember of |T | are well-ordered by<T and there is a unique minimal element
called the root.

• The members of |T | are called the nodes of T , and we will tend to conflate the
tree T with its underlying set |T |.

• The height of a node t ∈ T is the order type of the set of its predecessors under
the restriction of the tree order. We write Tα for the αth level of T , the set of
nodes having heightα. The height of a treeT , height(T ), is the strict supremum
of the heights of its nodes.

• We write T � α for the subtree of T of nodes having height less than α. An
�1-tree is a normal tree of height �1 where all levels are countable. A tree of
height�1 is normal if every node has (at least) two immediate successors, nodes
on limit levels are uniquely determined by their sets of predecessors, and every
node has successors on all higher levels up to �1.

• We write Tt to denote the subtree of T consisting of the nodes s ∈ T with
s ≥T t. For nodes t ∈ T , by succT (t) we mean the set of immediate successors
s ≥T t in the tree.

• A branch b in T is a linearly ordered, downward closed subset of T , and the
length of the branch is its order type. For α less than the length of b, we write
b(α) for the node in b that has height α. We write [T ] for the set of cofinal
branches of T , that is, those branches containing nodes on every nonempty
level of T . If t ∈ T is a node, then we write bt to mean the “branch” below t:
bt = {s ∈ T | s <T t}.

• An �1-tree is an Aronszajn tree if it has no cofinal branches. Two nodes t and
s in T are compatible, written s ‖ t, if there is r ∈ T such that r ≥T t and
r ≥T s . This is the same as demanding that either s <T t, s >T t, or s = t, or,
in other words, that s and t are comparable. Otherwise, they are incompatible,
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written s ⊥ t. An antichain in a tree is a set of pairwise incompatible elements.
A Suslin tree is an �1-tree with no uncountable antichain. When forcing with a
tree, we reverse the order so that stronger conditions are higher up in the tree.
Consequently, Suslin trees are ccc as notions of forcing. A Kurepa tree is an
�1-tree with at least �2-many cofinal branches.

Lemma 3.2. Let T be an�1-tree. If P is minimally subcomplete andG is P-generic
then [T ] = [T ]V [G ].

Proof. Assume not. Let ḃ be a name for a new cofinal branch through T ⊆ H�1 ;
let p ∈ P be a condition forcing that ḃ is a new cofinal branch through Ť . Let N be
a transitive model of ZFC− with P, ḃ, p ∈ N andH	 ⊆ N , such that Z = ZN,P,〈ḃ,p〉
contains a club, where 	 is large enough to ensure that inside N , p forces that ḃ is a
new cofinal branch through Ť . Let α ∈ Z, and let X witness this. Let α = �1 ∩X ,
N = NX and � = �X . As usual, let p,P, ḃ = �−1(p,P, ḃ).
By elementarity, we have that p forces ḃ to be a new cofinal branch overN . As we
construct a generic G for P overN , we will use the countability ofN to diagonalize
against all “branches” as seen on level α of the tree T in N , thereby obtaining a
contradiction.
Toward this end, enumerate the dense sets 〈Dn | n < �〉 of P that belong to
N . Also denote the sequence of downward closures of nodes on level α of T , the
“branches” through T � α that extend to have nodes of higher height in T , as
〈bn | n < �〉. Now define a sequence of conditions of the form pn for n < � that
decide values of ḃ in T differently from bn. Ensure along the way that for all n,

• pn+1 ∈ Dn and
• pn+1 ≤ pn.
The construction (in V ) may go as follows:
Let p0 := p ∈ N . For each n < �, note that there must be two conditions
p0n+1 ⊥ p1n+1, both extending pn, that decide the value of the branch ḃ to differ on
some value. This always has to be possible since these conditions always extend p,
that forces ḃ to be new. Say p1n+1 � x̌n ∈ ḃ and p0n+1 � x̌n /∈ ḃ. Let pn+1 be a
condition in Dn extending p1n+1 if xn /∈ bn, or a condition in Dn extending p0n+1
otherwise.

Let G be the generic filter generated by the 〈pn | n < �〉, let ḃ
G

= b. Since
P is minimally subcomplete, there is a condition q ∈ P such that whenever G is
P-generic with q ∈ G , by minimal subcompleteness we have � ′ ∈ V [G ] such that
• � ′ : N ≺ N ,
• � ′(	,P, T , p, ḃ) = 	,P, T, p, ḃ,
• � ′“G ⊆ G .
So below q there is a lift �∗ : N [G ] ≺ N [G ] extending � ′ with �∗(b) = � ′(ḃ)G =
ḃG = b, and �∗(T ) = � ′(T ) = T . The point is that since p ∈ G , we have
N [G ] |= p ∈ G , so b is a branch through T .
Furthermore, α is the critical point of the embedding �∗. So below α the tree
T , and thus the branch b, is fixed. In particular, in N [G ], b � α = b. However, b
was constructed so as to not be equal to any of the bns, so it cannot be extended to
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become a branch through T , since it can’t have a node on the αth level. This is a
contradiction. �
So in particular, minimally subcomplete forcing preserves Aronszajn trees. The
following theorem shows that after forcing with a minimally subcomplete forc-
ing, not only are there no new cofinal branches added to a Suslin tree T , but no
uncountable antichains either. The proof is exactly the same as is given by Jensen
[10, Chapter 3 p. 10]. When forcing with a Suslin tree T , we reverse the tree order so
that if s ≥T t, then s extends t. We will use the well-known fact that if T ∈W ⊆ V,
whereW is an inner model of V, T is Suslin inW , and b ∈ V is a cofinal branch in
T , then b is T -generic overW .2

Lemma 3.3. Minimally subcomplete forcing preserves Suslin trees.

Proof. Let T be a Suslin tree. Let P be minimally subcomplete. Suppose toward
a contradiction that p ∈ P forces that Ȧ is a maximal antichain of size �1 in T . Let
N be a transitive model of ZFC− with p,P, Ȧ ∈ N , and with H	 ⊆ N , where 	 is
large enough that N is sufficiently correct about what p forces with respect to P,
such that ZN,P,〈p,P,Ȧ〉 �= ∅. Let X ≺ N with p,P, Ȧ ∈ X such that X elevates to NP.
Let � = �X , N = NX .
Lettingα = �N1 , we have thatT = T �α as usual. LetM be a countable, transitive

ZFC− model with both N,T � (α + 1) ∈ M . Let G ⊆ P be generic over M with
p ∈ G . Hence G is also generic over N . We will be considering various different
partial branches in T which are cofinal (and thus generic) over the Suslin tree T .
These will all be visible inM , which sees one level more of T thanN does, and thus
has all of the partial branches considered.
We can now work below a condition in G ⊆ P generic to obtain a � ′ ∈ V [G ]
such that

• � ′ : N ≺ N ,
• � ′(	,P, T , p, Ȧ) = 	,P, T, p, Ȧ,
• � ′“G ⊆ G .

As usual we have a lift �∗ : N [G ] ≺ N [G ]. Letting A = ȦG and ȦG = A we have
that �∗(A) = A. Let 〈bt | t ∈ Tα〉 be the collection of partial branches below the
nodes of level α of the tree T .
Every node in T above level α has to have a predecessor in level α. For each
t ∈ Tα ,G is P-generic overN [bt ] since it is contained inM , andG is P-generic over
M . By the product lemma, each bt is T -generic over N [G ]. Since A is maximal,
bt ∩ A �= ∅. Thus A is sealed in T = T � α, meaning it has no elements above level
α. But since A ⊆ A andA is maximal, this means thatA is countable, so T remains
Suslin as desired. �
2The reason is that if D ⊆ T is a dense open set in the inner model,D ∈ W , then the set of minimal

nodes in D is a maximal antichain in T , which is countable inW as T is Suslin there. Letting α < �W1
be the supremum of the levels of these minimal nodes in D, it follows that the set T � ((α + 1), �1) of
nodes in T of height greater than α is contained in D (since any such node t has an s ∈ D with s ≤ t;
indeed, if this were not the case, then since D is dense, there would be an s ′ ≥ t with s ′ ∈ D, and if we
chose s ′ minimally with this property, it would follow that s ′ > t, but the level of s ′ has to be less than
the level of t). Thus, b is generic, because it is cofinal in T .
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The following rigidity properties were introduced in [7], where it was shown,
among other things, that Suslin trees exhibiting these properties can be constructed,
assuming the ♦ principle holds.
Definition 3.4. A normal �1-tree T has the unique branch property (is UBP) so
long as

� �T “Ť has exactly one new cofinal branch.”
That is, after forcing with the tree, T has exactly one cofinal branch that was not
in the ground model. We say that T has the n-foldUBP so long as forcing with Tn

adds exactly n branches.
A Suslin tree is Suslin off the generic branch so long as after forcing with T to add
a generic branch b, for any node t not in b, the tree Tt remains Suslin. Let n be a
natural number. A Suslin treeT is n-fold Suslin off the generic branch so long as after
forcing with the tree n times, or forcing with Tn that adds n branches b1, . . . , bn, Tp
remains Suslin for any p not on any bi .

Combining the results from Sections 2 and 3, we can conclude that these strong
rigidity properties of Suslin trees are preserved by subcomplete forcing.

Theorem 3.5. The following properties of an �1-tree T are preserved by
subcomplete forcing:

(1) T is Aronszajn,
(2) T is not Kurepa,
(3) T is Suslin,
(4) T is Suslin andUBP,
(5) T is Suslin off the generic branch,
(6) T is n-fold Suslin off the generic branch ( for n ≥ 2),
(7) T is (n − 1)-fold Suslin off the generic branch and n-foldUBP ( for n ≥ 2).
Proof. Items (1) and (2) are immediate corollaries of Lemma 3.2. Item (3) is
Lemma 3.3. In fact, these properties are even preserved by minimally subcomplete
forcing.
For the remaining proofs, let P be a subcomplete forcing, and let G be generic for

P over V.

Proof of (4). First we show upward absoluteness. Let T be a Suslin tree with the
UBP. We have already seen that T is still Suslin in V[G ]. To see that it is still UBP,
let b be T -generic over V[G ]. In V [b], b is the unique cofinal branch through T ,
and we have that P is still minimally subcomplete by Lemma 2.12. Since minimally
subcomplete forcing doesn’t add branches to �1-trees by Lemma 3.2, b is still the
unique cofinal branch of T in V [b][G ] = V [G ][b]. So T still has the UBP in V [G ].
For downward absoluteness, suppose T has the UBP in V [G ] but does not have
the UBP in V . Let p ∈ G force that T has the UBP. Let b be a generic branch for
T over V such that in V [b] the tree T has at least two branches. LetG ′ be P-generic
over V[b] with p ∈ G ′. Then T has at least two branches in V[b][G ′] = V[G ′][b],
so T is not UBP in V[G ′], contradicting that p ∈ G ′. �
Proof of (5). For upward absoluteness, let T be Suslin off the generic branch,
and let b be a generic branch for T over V[G ]. T is still Suslin in V [G ] by 3. In
V [b], we have that P is still minimally subcomplete by Lemma 2.9. We have that for
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any node t not in b, the tree Tt remains Suslin in V [b][G ] = V [G ][b] since after
minimally subcomplete forcing Tt remains Suslin by Lemma 3.3. So T remains
Suslin off the generic branch after forcing with P.
For downward absoluteness, suppose T is Suslin off the generic branch in V [G ]
but not in V . Let p ∈ G force that T is Suslin off the generic branch. Let b be
a V-generic branch through T such that in V [b] the tree T is not Suslin off the
generic branch. So there is t ∈ T off of b such that Tt is not Suslin in V[b]. Let G ′

be P-generic over V[b] with p ∈ G ′. Then, in V [b][G ′] = V[G ′][b], Tt is not Suslin
so that T is not Suslin off the generic branch in V[G ′], contradicting that p ∈ G ′. �
Proof of (6). For upward absoluteness, let T be n-fold Suslin off the generic
branch. Let b1 × b2 × · · · × bn be Tn-generic over V[G ]. Since T is n-fold Suslin
off the generic branch, it follows that Tn is countably distributive, so again we
know that P is still minimally subcomplete in V[b1, b2, . . . , bn] by Lemma 2.9. In
V [b1, . . . , bn][G ] = V [G ][b1, . . . , bn], for any node t not in one of the generic
branches b1, . . . , bn, we have that Tt is Suslin by Lemma 3.3. So T remains n-fold
Suslin off the generic branch after forcing with P. Downward absoluteness works
as in (5). �
Proof of (7). For upward absoluteness, suppose that T is (n − 1)-fold Suslin
off the generic branch and n-fold UBP for some n ≥ 1. Let b1 × b2 × · · · × bn
be Tn-generic over V[G ]. Since T is (n − 1)-fold Suslin off the generic branch, it
follows that Tn is countably distributive, so again we know that P is still minimally
subcomplete in V[b1, b2, . . . , bn] by Lemma 2.9. Again we have V [b1, . . . , bn][G ] =
V [G ][b1, . . . , bn] where b1, . . . , bn are the unique cofinal branches through T , since
P does not add branches to Tn over V [b1, . . . , bn]. So T has the n-fold UBP in
V [G ]. We have already seen in 6. that T stays (n − 1)-fold Suslin off the generic
branch in V[G ].
Downward absoluteness is again the same as in (4). �

�
§4. Generic absoluteness and the preservation of wide Aronszajn trees. In Lemma
3.2, we showed that subcomplete forcing cannot add a new branch to an �1-tree,
and in particular, that it preserves Aronszajn trees. In the present section, we will
explore slightly stronger preservation properties. Let us introduce versions ofκ-trees
in which the requirement that the levels have size less than κ is relaxed.

Definition 4.1. Let κ and � be cardinals. We shall say that T is a (κ,≤�)-tree if
T is a tree of height κ with levels of size less than or equal to �. We shall refer to the
size restriction on the levels in the tree in the second coordinate as the tree’s width
so that a (κ,≤�)-tree has width ≤ �.
An (κ,≤�)-Aronszajn tree is a (κ,≤�)-tree with no cofinal branch.
It is easy to see that in general, countably closed forcing can’t add a branch to
any (�1,≤κ)-Aronszajn tree, for any κ. The guiding question for the work in the
present section, as stated in [14], is as follows.
Question 4.2. Can subcomplete forcing add cofinal branches to an (�1,≤�1)-
Aronszajn tree?
In the remainder of the present section,wewill answer this question fully.Let’s first
make the simple observation that even countably closed forcingmay add branches to
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a tree of height�1 andwidth≤2� (but such a tree cannever be (�1,≤2�)-Aronszajn,
by our earlier remarks).

Observation 4.3. Subcomplete (or even countably closed ) forcing may add a
cofinal branch to an (�1,≤2�)-tree.
Proof. The point here is that the poset Add (�1, 1) is subcomplete since it is
countably closed, but it may be viewed as a tree of height �1 that has levels of
size up to 2� . Of course this tree is not (�1,≤2�)-Aronszajn; every cofinal branch
through the tree corresponds to a subset of �1, of which there are already more
than �1-many in the ground model. �
The next theorem shows that this observation is optimal, that is, it cannot be
extended to (�1, <2�)-trees.

Theorem 4.4. Subcomplete forcing cannot add branches to (�1, <2�)-trees.
Proof. Assume the contrary. Let P be a subcomplete forcing such that there are
an (�1, <2�)-tree T , a P-name ḃ and a condition p forcing that ḃ is a new branch
of Ť . Let 	 verify the subcompleteness of P and let’s place ourselves in the standard
setup:

• P ∈ H	 ⊆ N = L�[A] |= ZFC− where � > 	 and A ⊆ �,
• � : N ∼= X � N where X is countable and N is full,
• �(	,P, T , p, ḃ) = 	,P, T, p, ḃ.
Let α = �N1 , the critical point of the embedding �. By elementarity, we have that

p forces ḃ to be a new branch over N . We will construct continuum-many generics
Gr for P over N , indexed by reals, each of which will interpret ḃ differently. This
will give rise to continuum-many nodes on the level α of T , a contradiction.
Toward this end, enumerate the dense sets 〈Dn | n < �〉 of P that belong to N
so that p ∈ D0. We construct a binary trees P = 〈px | x ∈ 2<�〉 of conditions in P
and a binary tree of branches B = 〈bx | x ∈ 2<�〉 in T , such that, letting |x| be the
length of x, we have the following:

• px ∈ D|x|,
• x ⊆ y =⇒ py ≤ px ≤ p,
• px � bx ⊆ ḃ,
• bx�〈0〉 and bx�〈1〉 are incompatible (meaning neither is contained in the other).
We construct px and bx by recursion on |x|. To get started, let p∅ be an extension
of p in D0, and let b∅ = ∅.
Now suppose px and bx have been defined. Let p

′
x ≤ px be in Dn+1. There are

conditions px�〈0〉, px�〈1〉 extending p
′
x , and incompatible branches bx�〈0〉, bx�〈1〉

in T such that

px�〈0〉 � b̌x�〈0〉 ⊆ ḃ and px�〈1〉 � b̌x�〈1〉 ⊆ ḃ.

This is because otherwise, p′x would decide ḃ, thus forcing that it is not a new
branch.
So we have our binary trees P and B as desired. Any real r : � −→ 2 induces the
N -generic filter Gr = {q ∈ P | ∃n < � pr�n ≤P

q} and the branch br =
⋃
n<� br�n

in T . Clearly, (ḃ)Gr = br .
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Since P is subcomplete, for each r there are a condition qr ∈ P and a P-name �̇r
such that whenever G is P-generic with qr ∈ G and �r = �̇Gr , we have
• �r : N ≺ N ,
• �r(	,P, T , p, ḃ) = 	,P, T, p, ḃ,
• �r“Gr ⊆ G .
Let �∗r : N [Gr ] ≺ N [G ] extend �r with �∗r (Gr) = G .
Note that the size of T is at most continuum. Letting f : P(�) −→ T be
the <L[A]-least surjection, and letting f = �−1(f), it follows that �r(f) = �(f),
and this implies that �r � T = � � T , because �r(f(y)) = f(y) = �(f(y)), for
y ∈ P(�) ∩N . In particular, we have that �“br = �∗r “br ⊆ �∗r (br) = ḃG .
It is then clear that br has to be a cofinal branch through T , because otherwise it
would follow that br = �r“br ∈ V, while p forces that ḃ is not in V̌, and p ∈ G .
Thus, for every r : � −→ 2, �∗r (br) is a cofinal branch through T , and hence, we
may choose q′r ≤ qr such that for some tr on level α of T , q′r forces with respect to P
that ťr ∈ ḃ. It follows then for r �= s that tr �= ts , because �“br = {u ∈ T | u <T tr},
�“bs = {u ∈ T | u < ts}, and �“br and �“bs are incompatible. Thus, since
each tr is on level α of T , that level has size at least continuum, contrary to our
assumption. �
Note that the previous theorem shows in particular that the failure of CH implies
a negative answer to Question 4.2: in this case, subcomplete forcing preserves (�1,≤
�1)-Aronszajn trees. Let us investigate further the possibility that a subcomplete
forcing notion may add a branch to an (�1,≤κ)-Aronszajn tree.
Definition 4.5. Let κ > �1 be regular, and let A ⊆ κ ∩ cof(�) be stationary.
We write PA to denote the forcing designed to shoot a cofinal, normal (that is,
increasing and continuous) sequence of order type �1 through A. The conditions
of PA consist of normal functions of the form p : � + 1 → A, where � < �1, and
extension is defined in the usual way, by p ≤ q if and only if q ⊆ p.
Jensen showed that PA is subcomplete, see [11]. If (κ ∩ cof(�)) \ A is stationary
in κ, then PA is not countably closed. A PA-generic filterG gives rise to the function
∪G : �1 → A which is normal and cofinal in κ. The forcing PA is used to show that
the subcomplete forcing axiom SCFA implies Friedman’s Principle, which states that
for every regular cardinal κ > �1 and every stationary set A ⊆ κ ∩ cof(�), there is
a normal function f : �1 → A, that is, A contains a closed set of order type �1.
Proposition 4.6. Suppose that Friedman’s Principle fails for �2. Then sub-
complete forcing may add a cofinal branch to an (�1,≤�2 · 2�)-Aronszajn tree.
Proof. LetA ⊆ cof(�)∩�2 witness the failure of Friedman’s Principle. Consider
the forcing poset PA as a tree. It has size �1 · ��2 = ��2 , since each condition is a
function from some countable ordinal to �2.
Considering PA as a tree, it has height �1. To see this, we will adapt Friedman’s
proof from [2]. Let’s say that � < �2 is α-approachable, for a countable limit
ordinal α, if for every � < �, there is a set c ⊆ (A ∩ �) \ �, club in �, of order
type at least α. We show by induction on countable limit ordinals α that the set of
α-approachable ordinals � ∈ A is unbounded in �2 (this is more than sufficient to
show that the height of PA is �1.) For X ⊆ �2, let’s write X ′ for the set of limit
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points of X that are less than �2. Then the case α = � is clear, since every member
of A ∩ A′ is �-approachable. If α is a successor limit ordinal, say α = α + �, then
let D = {
 ∈ A | 
 is α-approachable}. Then every � ∈ D′ ∩ A is α-approachable,
because given � < �, we can pick an increasing sequence 〈�n | n < �〉 in D, cofinal
in � (as � ∈ A and A consists of ordinals of countable cofinality) with � < �0. Pick
c ⊆ (A ∩ �0) \ � of order type at least α. Clearly then, c ∪ {�n | n < �} is club
in (A ∩ �) \ � and has order type at least α + �. If α is a limit of limit ordinals,
then one can argue similarly: for α < α, let Dα = {
 ∈ A | 
 is α-approachable},
and letD = A∩⋂

α<α,α limitD
′
α . Then every � ∈ D′ ∩A is α-approachable, because

given � < �, we can pick an increasing sequence 〈�n | n < �〉 cofinal in � such that
each �n ∈ D (hence also in A) and � < �0. We can also pick a strictly increasing
sequence 〈�n | n < �〉 cofinal in α, since α < �1. Then for any n > 0, we can
choose cn ⊆ A∩ �n \ �n−1 of order type �n . Letting c =

⋃
0<n<� cn ∪{�n}, it follows

then that c ⊆ (A ∩ �) \ � is club in �, and otp(c) > �n, for every n < � so that
otp(c) ≥ α, as wished.
Furthermore, each level of the tree PA has size less than or equal to��2 = �2 ·2�.
Moreover, since Friedman’s Principle fails for �2, it has no cofinal branches and
is thus an (�1,≤�2 · 2�)-Aronszajn tree, yet forcing with it will add a cofinal
branch. �
So, if CH fails, then no subcomplete forcing can add a branch to an (�1, <2�)-
tree, but it is consistent that a subcomplete forcing may add a branch to an
(�1, 2�)-Aronszajn tree. Thus, let us now focus on the preservation of (�1,≤�1)-
Aronszajn trees by subcomplete forcing, assuming CH. It turns out that there is a
close connection to generic absoluteness considerations.

Definition 4.7. Let n be a natural number, let P be a notion of forcing, and let κ
be a cardinal. Then P-genericΣ1n(κ)-absoluteness is the statement that for anymodel
M = 〈M, �A〉 of size κ for a countable first order language and every Σ1n-sentence ϕ
over the language ofM , the following holds:

(M |= ϕ)V ⇐⇒ 1P �P (M |= ϕ).
Note that we don’t distinguish between the first and second order satisfaction
symbol.
For a forcing class Γ, Γ-genericΣ1n(κ)-absoluteness is the statement thatP-generic
Σ1n(κ)-absoluteness holds for every P ∈ Γ. The classes of interest to us are the classes
of ccc, proper, semiproper, stationary set preserving or subcomplete forcing notions.

We will mostly be interested in Σ11(κ)-absoluteness. Note that by upward abso-
luteness, Σ11(κ)-absoluteness for a forcing notion P can be equivalently expressed
by saying that for M as in the above definition and a Σ11-formula ϕ, if M |= ϕ
holds in every forcing extension by P, thenM |= ϕ holds in V. It is a ZFC fact that
countably closed Σ11(�1)-absoluteness holds, and more generally,<κ-closed Σ

1
1(κ)-

absoluteness holds, for regular κ, see [3]. Much is known about the case κ = �. For
example, by Shoenfield absoluteness, P-generic Σ12(�)-generic absoluteness holds
for any forcing notion P. The following observation sheds light on the cases where
κ = �2 and κ = 2� .
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Observation 4.8. We have the following absoluteness statements.

(1) If CH fails, then Add (�1, 1)-generic Σ11(�2)-absoluteness fails.
(2) Col(�1, �2)-generic Σ11(�2)-absoluteness fails.
(3) If P is a forcing that adds a real, then P-generic Σ11(2

�)-absoluteness fails.

Proof. For (1), if CH fails, we can takeM to be an elementary submodel ofH�1
of size �2, containing �2 many distinct reals. If G is generic forAdd (�1, 1) over V,
then in V[G ],M satisfies the Σ11 statement that there is a function F with domain
�1 that lists all the reals ofM , but it is false in V.
For (2), we can takeM to be the structure �2, equipped with an ordinal pairing
function and a constant symbol for �1. Then if G is Col(�1, �2)-generic over V, in
V[G ], the structureM satisfies the Σ11 sentence expressing that there is a surjection
F from �1 onto the universe ofM . This is not true in V.
For (3), if P adds a real, then the Σ11-formula “there is an X ⊆ � such that for all
x, x �= X” holds, from the point of view of VP, in the structure 〈HV�1 ,∈〉, but not
from the point of view of V. �
Recall that countably closed forcing notions are subcomplete. It thus follows that
for the class of subcomplete posets, the remaining interesting case is when κ = �1,
which we will focus on here. Moreover we will mostly work with the following
stronger concept of generic absoluteness.

Definition 4.9. Let P be a poset and κ a cardinal. Then strong P-generic Σ11(κ)-
absoluteness is the principle asserting that for any model M = 〈M, �A〉 of size κ
for a countable first order language and any Σ11-sentence ϕ over that language,
whenever G ⊆ P is generic over V, thenM |= ϕ iff (M |= ϕ)V[G ]. Similarly, if Γ is
a forcing class, then strong Γ-generic Σ11(κ)-absoluteness says that strong P-generic
Σ11(κ)-absoluteness holds for every P ∈ Γ.
If P andQ are notions of forcing, then we say that P andQ are forcing equivalent
if they produce the same forcing extensions, that is, for every P-generic G , there is
a Q-genericH such that V[G ] = V[H ] and vice versa.
Let us also introduce the notation P≤p for the restriction of the ordering of P to
the set of conditions q ≤ p. Call a forcing class Γ natural if whenever P ∈ Γ and
p ∈ P, then P≤p is forcing equivalent to some Q ∈ Γ.
In other words, using Σ11-upward absoluteness, for a model M as above and
a Σ11 sentence over the language of M , strong P-generic Σ

1
1(κ)-absoluteness says

that for any P-generic G , if (M |= ϕ)V[G ] holds, then M |= ϕ holds. Regular
P-generic Σ11(κ)-absoluteness, on the other hand, says that if for every P-generic
G , (M |= ϕ)V[G ] holds, thenM |= ϕ holds. To clarify the difference, let’s consider
the class Γ of all forcing notions P such that P is ccc and P has an atom. Then
Γ-generic Σ11(κ)-absoluteness always holds, because for P ∈ Γ andM , ϕ as before,
if (M |= ϕ)V[G ] holds for every P-generic G, then it holds for some G that contains
an atom, in which case V[G ] = V, and thus, M |= ϕ. On the other hand, strong
Γ-generic Σ11(�1)-absoluteness implies that every Aronszajn tree is special, because
for an Aronszajn tree T , we can consider the lottery sum of a ccc forcing notion
specializing T and a trivial forcing, consisting of one atom. That forcing notion
is in Γ. Let G be generic for the nontrivial part of the forcing. If we let M be an
elementary submodel of H�1 of size �1, equipped with T as a predicate, then the
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existence of a function specializing T can be expressed as a Σ11 sentence over M ,
and it holds in V[G ], hence in V, which means that T is special in V.
It is easy to see that the notion of forcing equivalence introduced in the previous
definition is first order expressible. Clearly, if P and Q are forcing equivalent, then
(strong) P-generic Σ11(κ)-absoluteness is equivalent to (strong) Q-generic Σ

1
1(κ)-

absoluteness. The following is essentially a reformulation of [8, Corollary 3.11].
Fact 4.10. The class of subcomplete forcing notions is natural.
Proof. If P is subcomplete and p ∈ P, then by [8, Corollary 3.11], P≤p is �(P)-
subcomplete (in the sense of [6]). This means that P≤p is essentially subcomplete
in the sense of [6, Definition 2.2], and [6, Observation 2.4] then implies that P≤p is
forcing equivalent to a subcomplete forcing notion. �
Let us make a simple observation relating strong absoluteness to the previously
introduced version of absoluteness.
Observation 4.11. Let κ be a cardinal, let P be a forcing notion, and let Γ be a
forcing class.
(1) Strong P-generic Σ11(κ)-absoluteness is equivalent to saying that {P≤p | p ∈

P}-generic Σ11(κ)-absoluteness holds.
(2) If Γ is natural, then strong Γ-generic Σ11(κ)-absoluteness is equivalent to Γ-
generic Σ11(κ)-absoluteness.

(3) If Γ is either the class of all c.c.c., proper, semiproper, countably closed,
stationary set preserving or subcomplete forcing notions, then Γ is natu-
ral, and hence strong Γ-generic Σ11(κ)-absoluteness is equivalent to Γ-generic
Σ11(κ)-absoluteness.

Proof. For (1), assume that strong P-generic Σ11(κ)-absoluteness holds, letM be
a κ-sized model of a countable first order language, let ϕ be a Σ11-sentence of in that
language, and let p ∈ P be a condition. Assume that 1P≤p forces (with respect to
P≤p) thatM |= ϕ. If G � p is P-generic, then in V[G ], it is the case thatM |= ϕ.
Thus, by strong P-generic Σ11(κ)-absoluteness, it is true in V that M |= ϕ. This
shows that {P≤p | p ∈ P}-generic Σ11(κ)-absoluteness holds.
For the converse, assume that {P≤p | p ∈ P}-generic Σ11(κ)-absoluteness holds,
let M and ϕ be as before, let G be P-generic over V, and assume that in V[G ],
it is the case that M |= ϕ. There is then a condition p ∈ G which forces that
M |= ϕ. But then it follows that 1P≤p forces thatM |= ϕ. Hence, by P≤p-generic
Σ11(κ)-absoluteness, it follows thatM |= ϕ holds in V.
Now (2) and (3) follow immediately from (1), using Fact 4.10 and the remark
preceding it. �
All of this could be done for Γ-generic Σ1n-absoluteness as well, of course, but
we will not need this generality here. We obtain the following characterization of
P-generic Σ11(�1)-absoluteness under CH.
Lemma 4.12. Assume CH. Let P be a forcing notion. Then the following are
equivalent.
(1) P preserves (�1,≤�1)-Aronszajn trees and does not add reals.
(2) Strong P-generic Σ11(�1)-absoluteness holds.
Proof. The direction (2) =⇒ (1) is clear: if strongP-genericΣ11(�1)-absoluteness
holds, then it cannot be that a real is added by some P-genericG , because otherwise,
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by CH, one could use a predicate A ⊆ �1 which lists all reals, and the Σ11-statement
“there is a subset a of � which is not listed in A” would hold in V[G ], but not in V.
Similarly, let T be an (�1,≤�1)-Aronszajn tree. It cannot be that Ť has a cofinal
branch in V[G ], because if so, that statement would have to hold in V as well—the
nodes of T can be assumed to be countable ordinals, and the tree ordering can be
used as a binary predicate to express this.
Let’s prove (1) =⇒ (2). Upward absoluteness between V and V P clearly holds
for Σ11-statements. To show downward absoluteness, let �A be a finite list of finitary
predicates on �1, �A ∈ V .
Let �( �A) be the following statement:

∃X (�1, �A,X ) |= ϕ,
where ϕ is a first order sentence in the language of set theory with predicate symbols
for �A and X . Assume that �( �A) is true in V [G ], where G is P-generic. Let Ẋ be a

P-name such that 1P forces that Ẋ is a witness that �(
�̌A) holds.

In V, let T be the tree consisting of nodes of the form (α, x) such that x ⊆ α,
α < �1 and (α, �A � α, x) |= ϕ(a), where �A � α is the list whose elements are of the
form Ai ∩ αmi , mi being the arity of Ai . The tree ordering ≤ is defined by setting

(α, x) ≤ (
, y) ⇐⇒ (α, �A � α, x) ≺ (
, �A � 
, y).
Notice that T has cardinality �1 in V, by CH.
Now, by a standard Löwenheim–Skolem style argument, applied in V[G ], the set

C =
{
α < �1 | (α, �A � α, Ẋ G ∩ α) ≺ (�1, �A, Ẋ G)

}

is club in �1. Thus the set
{
(α, Ẋ G ∩ α) | α ∈ C} defines a cofinal branch through

T in V [G ], since for all countable α, we have Ẋ G ∩ α ∈ V as P doesn’t add reals.
SinceP preserves (�1,≤�1)-Aronszajn trees, it follows thatT is not an (�1,≤�1)-
Aronszajn tree in V. Hence, T has a cofinal branch in V , call it b. Let

X ′ =
⋃

{x | ∃α < �1 (α, x) ∈ b} .

Since (�1, �A,X ′) is the union of an elementary chain of models satisfying ϕ, this
model must also satisfy ϕ in V , and thus �( �A) holds in V as witnessed by X ′. �
There is a natural version of the second order absoluteness properties introduced
where one talks about a certain canonical structure M , defined by a formula to
be re-interpreted in V[G ]. For example, let us define strong P-generic Σ11(H�1 )-
absoluteness to mean

(〈H�1 , �A〉 |= ϕ)V ⇐⇒ (〈HV[G ]�1 ,
�A〉 |= ϕ)

whenever G is generic for P, �A is a finite list of finitary predicates and ϕ is a
Σ11-sentence. Furthermore, strong Γ-generic Σ

1
1(H�1 )-absoluteness means that this

holds for every P ∈ Γ.
It turns out that strong Γ-generic Σ11(H�1 )-absoluteness is equivalent to strong
Γ-generic Σ11(κ)-absoluteness, where κ = 2

�. Here, and in the following, we
will indicate second order quantification by upper case variables. To see the
claimed equivalence, first suppose strong Γ-generic Σ11(H�1 )-absoluteness holds.
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It follows that H�1 = H
V[G ]
�1 whenever G is generic for some P ∈ Γ. Clearly,

H�1 ⊆ HV[G ]�1 . But if we had H
V
�1

� H�1
V[G ], then we could take A = HV�1 , and

in V[G ] it would be true that 〈HV[G ]�1 , A〉 |= ∃x ¬Ȧ(x), but clearly this is not
true in V. So it follows that Γ-generic Σ11(κ)-absoluteness also holds, because
HV�1 has size κ and doesn’t change by forcing in Γ, because if any structure〈M,A1, . . . , An〉 of size κ is given, using a bijection between M and H�1 , one
can instead consider the structure 〈H�1 ,∈, B1, . . . , Bn〉, where Bi is the predi-
cate Ai , moved by the bijection in the obvious way. Since we have absoluteness
for the latter structure, we get the desired absoluteness for the former structure
as well.
To see the converse, assume that strong Γ-generic Σ11(κ)-absoluteness holds. We
claim that it follows that H�1 = H

V[G ]
�1 whenever G is generic for some P ∈ Γ.

Suppose otherwise. Then H�1 � H
V[G ]
�1 for some G generic for some P ∈ Γ, which

means that V[G ] has a new real. But then, in V[G ], the second order formula
∃X ⊆ � ∀x x �= X , holds in the structure 〈HV�1 ,∈〉, while this is not true in V.
Thus, it follows that strong Γ-generic Σ11(H�1 )-absoluteness holds.

Remark 4.13. In Lemma 4.12, strong Σ11(�1)-absoluteness can be replaced
with strong Σ11(H�1 )-absoluteness, since under CH, H�1 has size �1. On the other
hand, if CH fails, then Add (�1, 1)-generic Σ11(H�1 )-absoluteness fails, even though
Add (�1, 1), being countably closed, preserves Aronszajn trees of any width. This
is because Add (�1, 1) forces CH, and this can be expressed as a Σ11(H�1 ) statement
true in VAdd (�1,1) but false in V.

We will now explore a fruitful connection between subcomplete generic Σ11(�1)-
absoluteness and the bounded subcomplete forcing axiom.
The bounded forcing axiom was originally introduced in [9] in the context of
proper forcing. The bounded forcing axiom for a poset P says that if B is the com-
plete Boolean algebra of P, then for any collection of up to �1 many maximal
antichains in B, each having size at most �1, there is a filter in B that meets each
antichain. The bounded forcing axiom for a forcing class Γ says that each P ∈ Γ
satisfies the bounded forcing axiom for P. We write BSCFA for the bounded forcing
axiom for the class of subcomplete forcing. The following is a version of a char-
acterization of the bounded forcing axiom, due to Bagaria, tailored to the present
context.

Theorem 4.14 ([1, Theorem 5]). Let P be a forcing notion. Then the following are
equivalent:

(1) The bounded forcing axiom holds for P.
(2) P-generic Σ1(H�2 )-absoluteness holds, meaning: if ϕ(�x) is a Σ1-formula in the
language of set theory and �a ∈ H�2 , then ϕ(�a) iff �P ϕ(�a).

Note that if ϕ(�x) is a Σ1 formula and �a ∈ H�2 , then ϕ(�a) holds iff ϕH�2 (�a)
holds. Thus, P-generic Σ1-absoluteness can be expressed equivalently by saying that
〈H�2 ,∈〉 |= ϕ(�a) iff wheneverG is P-generic, we have that 〈HV[G ]�2 ,∈〉 |= ϕ(�a). This
way of expressing it is more in line with our formulation of the other concepts of
generic absoluteness.
A very useful way of reformulating this theorem is as follows.
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Theorem 4.15. Let P be a forcing notion. Then the following are equivalent:

(1) The strong bounded forcing axiom holds forP, meaning that the bounded forcing
axiom holds for {P≤p | p ∈ P}.

(2) Strong P-generic Σ1(H�2 )-absoluteness holds: if G is P-generic over V, then

〈H�2 ,∈〉 ≺Σ1 〈H�2 ,∈〉V[G ].
Of course, in the previous theorem, H�2 is reinterpreted in V[G ] on the right
hand side of (2). Thus, (2) of Theorem 4.15 can be taken as a characterization of
the bounded forcing axiom for a natural forcing class Γ.
We will show next that property (2) is equivalent to P-generic (or strong

P-generic in the case of Theorem 4.15) Σ11(�1)-absoluteness. For this, we will need
an observation that is probably a folklore fact, but since it is important in the present
context, we will provide a proof. We will work with the following natural way of
coding elements ofH�2 .

Definition 4.16. A code is a pair 〈R,α〉, where R ⊂ �1 × �1, α < �1 and
〈�1, R〉 is extensional and well-founded.
If 〈R,α〉 is a code, then let UR, �R be the unique objects (given by Mostowski’s
isomorphism theorem) such thatUR is transitive and �R : 〈UR,∈ �UR〉 −→ 〈�1, R〉
is an isomorphism. The set coded by 〈R,α〉 is

cR,α = �−1R (α).

Clearly, every member of H�2 has a code, and only members of H�2 have codes.
Using codes, Σ1 statements over 〈H�2 ,∈〉 can essentially be translated into Σ11 state-
ments over �1, if one equips �1 with a predicate E so that 〈�1, E〉 satisfies a
rudimentary fragment of set theory. We find it convenient to work with L�1 here.

Observation 4.17. Let ϕ(v0, . . . , vn−1) be a Σ1-formula. Then there is a Σ11-
formula ϕc with free variables X0, x0, . . . , Xn−1, xn−1 (upper case variables being
second order and lower case ones being first order) such that the following holds. Let
a0, . . . , an−1 ∈ H�2 , and let 〈R0, α0〉, . . . , 〈Rn−1, αn−1〉 be codes, such that ai is coded
by 〈Ri , αi〉, for i < n. Then

〈H�2 ,∈〉 |= ϕ(a0, . . . , an−1) ⇐⇒ 〈L�1 ,∈〉 |= ϕc(R0, α0, . . . , Rn−1, αn−1).
Proof. The construction of ϕc proceeds by induction on ϕ. We will assume that
ϕ is presented in such a way that the only subformulas of ϕ that are negated are
atomic. Any formula can be written in this form.
If ϕ is of the form v0 = v1, then ϕc(X0, x0, X1, x1) is defined in such a way that
it expresses: there is an injective function F : �1 −→ �1 with F (x0) = x1, such
that whenever 
0X0
1 . . . X0
mX0x0, thenF (
0)X1F (
1) . . . X1F (
m)R1x1 and vice
versa. Expressing the existence of such a function requires a second order existential
quantification. Hence, the resulting formula ϕc(X0, x0, X1, x1) can be written as a
Σ11 formula.
If ϕ is of the form v0 ∈ v1, then ϕc(X0, x0, X1, x1) is defined to express: there
is a 
 < �1 such that 
X1x1, and such that the sentence of the form (v0 = v1)c

holds of X0, x0, X1, 
 (reducing to the previous case). The second order existential
quantification occurring in (v0 = v1)c can be pushed in front of the first order
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quantification (“there exists a 
 < �1”), in this case simply because both are
existential quantifications.
If ϕ is of the form ¬(v0 = v1), then ϕc(X0, x0, X1, x1) is defined to express: there
are U0, U1, F such that U0 is closed under X0-predecessors, U1 is closed under X1-
predecessors and F : 〈U0, X0 ∩U 20 〉 −→ 〈U1, X1 ∩U 21 〉 is a maximal isomorphism,
meaning that F cannot be expanded beyondU0, and it is not the case that x0 ∈ U0,
x1 ∈ U1 and F (x0) = x1.
If ϕ is of the form ¬(v0 ∈ v1), then this can be expressed equivalently by ∀v ∈
v1¬(v0 = v). We already know how to translate ¬(v0 = v), and we can then use the
definition in the case of bounded quantification below.
The inductive steps corresponding to the logical connectives∧ and∨ can be dealt
with in the obvious way, setting (ϕ ∧ �)c = ϕc ∧ �c and (ϕ ∨ �)c = ϕc ∨�c .
Let’s look at the case that ϕ is of the form ∀u ∈ w �(u,w, v0, . . . , vn−1). Define
the formula ϕc(Y, y,X0, x0, . . . , Xn−1, xn−1) to express: for all 
Yy, the formula
�(u,w, v0, . . . , vn−1)c is true of Y, 
,Y, y,X0, x0, . . . , Xn−1, xn−1. The resulting for-
mula has a universal first order quantification over a Σ11 formula. Since�1-sequences
of subsets of�1 can be coded by single subsets of�1, the second order quantification
can be pulled out in front of the first order quantifier, resulting in a Σ11 formula.
The case of existential bounded quantification is easier, so we omit it here.
Thus, we have described how to translate Σ0-formulas. The remaining case is
that ϕ is of the form ∃u �(u, v0, . . . , vn−1), where �(u, v0, . . . , vn−1) is a Σ0-
formula. In this case, the translated formula ϕc(X0, x0, . . . , Xn−1, xn−1) expresses
that there are an S (this is second order) and an α such that 〈S,α〉 is a code and
such that �c(S,α,X0, x0, . . . , Xn−1, xn−1) holds. Expressing that 〈S,α〉 is a code
amounts to saying that it is extensional, which is first order expressible, and that it
is well-founded. In order to do this, we use an additional existential second order
quantification, saying that there is an F ⊆ �1 × �1 × �1 such that, if we set
f� = {〈�, �〉 | 〈�, �, �〉 ∈ F }, then f� : 〈�, S ∩ (� × �)〉 −→ 〈�1, <〉 is an order pre-
serving function, for every � < �1. This can be expressed in a first order way, using
the predicates S and F inside L�1 , and it follows that S is well-founded, because
any decreasing �-sequence in S would be bounded by some � < �1, contradicting
thatf� is order preserving. And if S is well-founded, then so is every initial segment
〈�, S ∩ (� × �)〉, hence there is an f� as described. �
Note that the proof of the previous observation contained a concrete translation
procedure ϕ �→ ϕc which ZFC-provably has the properties described, that is, the
same translation procedure works in any ZFC-model. Note also that we could have
used any other model of (a fairly weak fragment of) ZFC− that contains�1 in place
of L�1 . We will use this uniformity of the translation procedure in the following
proof.

Observation 4.18. Let P be a notion of forcing that preserves �1. Then the
following are equivalent:

(1) P-generic Σ1(H�2 )-absoluteness holds.
(2) P-generic Σ11(�1)-absoluteness holds.
Proof. The implication (1) =⇒ (2) is easy to see, because P(�1) ⊆ H�2 , so
a second order existential quantification over �1 can be expressed as a first order
existential quantification over the elements ofH�2 which are subsets of �1.
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For the direction (2) =⇒ (1), let �a = a0, . . . , an−1 be a list of parameters in H�2 ,
ϕ(�x) a Σ1-formula, and suppose that

〈HV[G ]�2 ,∈〉 |= ϕ(�a)
whenever G is P-generic over V. In V, let 〈R0, α0〉, . . . , 〈Rn−1, αn−1〉 be codes for
a0, . . . , an−1, respectively, and let ϕc be the Σ11 translation of ϕ given by Observation
4.17. Since the same codes work in V[G ], the translation procedure is uniform, we
can conclude that

(L�1 |= ϕc(R0, α0, . . . , Rn−1, αn−1))V[G ].
Clearly, ϕc can be replaced by a Σ11-sentence ϕ̃

c in the language with
predicate/constant symbols Ċ0, ċ0, . . . , Ċn−1, ċn−1 for the codes so that we get

(〈L�1 ,∈, R0, α0, . . . , Rn−1, αn−1〉 |= ϕ̃c)V[G ].
Since this model is in V, and it has size �1 there, noting that this holds for every
P-generic G , it follows from Σ11(�1)-absoluteness that

〈L�1 ,∈, R0, α0, . . . , Rn−1, αn−1〉 |= ϕ̃c

holds in V, that is,

〈L�1 ,∈〉 |= ϕc(R0, α0, . . . , Rn−1, αn−1)
holds in V, which means that, undoing the translation, which is uniform, we get
that

〈H�2 ,∈〉 |= ϕ(�a)
as desired. �
The same proof shows the equivalence of the strong forms of these generic
absoluteness conditions. Note that either condition (1) or (2) of the following
observation implies that P preserves �1.

Observation 4.19. LetP be a notion of forcing.Then the following are equivalent:
(1) Whenever G is generic for P over V, we have that

〈H�2 ,∈〉 ≺Σ1 〈H�2 ,∈〉V[G ].
(2) Strong P-generic Σ11(�1)-absoluteness holds.
In general, we have the following simple observation.

Observation 4.20. Let Γ be a natural forcing class, and consider the following
statements.
(1) BFAΓ.
(2) Γ-generic Σ11(�1)-absoluteness.
(3) Forcings in Γ preserve (�1,≤�1)-Aronszajn trees.
Then (1)⇐⇒ (2) =⇒ (3).
Proof. (1) ⇐⇒ (2) follows from Observations 4.11.2, 4.19 and Theorem 4.15.
The implication (2) =⇒ (3) follows because if T were an (�1,≤�1)-Aronszajn tree
that acquires a cofinal branch in V[G ], where G is P-generic for some P ∈ Γ, then
the existence of such a branch would be a Σ11(T ) statement true in V[G ] but false in
V, contradicting (2). �
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So, writing BSCFA for the bounded subcomplete forcing axiom, we arrive at
the following equivalences, using the fact that the class of subcomplete forcing
notions is natural (see Observation 4.11), as well as Theorem 4.15, Lemma 4.12 and
Observation 4.18.

Theorem 4.21. Assuming CH, the following are equivalent.

(1) BSCFA.
(2) Subcomplete generic Σ11(�1)-absoluteness.
(3) Subcomplete forcing preserves (�1,≤�1)-Aronszajn trees.
Actually, (1) and (2) are equivalent, regardless of whetherCH holds or not, and (1)/ (2)
always implies (3), but for the converse, we need CH, since the failure of CH implies
(3) (by Theorem 4.4), but not (1)/ (2).

Obviously, this theorem generalizes to any natural class Γ of forcing notions that
don’t add reals.
Let us make some remarks on the consistency strength of BSCFA and its relation-
ship to CH. It was shown in [4] that the consistency strength ofBSCFA is a reflecting
cardinal. Moreover, looking at the construction there, one sees that the consistency
strengths of BSCFA and of BSCFA + CH are the same. Namely, if BSCFA holds,
then κ = �2 is reflecting in L, and one can perform a subcomplete (in the sense
of L) forcing over L to reach a model L[g] where �2 = κ and BSCFA holds. Since
the forcing is subcomplete in L, it does not add reals, and hence preserves CH. In
a sense, in the context of BSCFA, it is natural to assume CH, since it holds in the
“natural”models, and sinceCH is implied by natural strengthenings ofBSCFA, such
as the resurrection axiom or the maximality principle for subcomplete forcing, see
[5,14].
However, BSCFA does not imply CH, and in fact, the first author, in joint work
with Corey Switzer, observed that the consistency strength ofBSCFA+¬CH is equal
to that of BSCFA, that is, the existence of a reflecting cardinal. Thus, assuming
¬CH, condition (3) in the previous theorem holds, while the consistency strength
of the equivalent conditions (1) and (2) is a reflecting cardinal, showing that the
implication cannot be reversed.
This puts us in a position to answer Question 4.2, asking whether subcomplete
forcingmay add a cofinal branch to an (�1,≤�1)-Aronszajn tree, completely. Recall
Theorem 4.4, which gives us part (1) of the following theorem.

Theorem 4.22. Splitting in two cases, we have the following:

(1) If CH fails, then subcomplete forcing preserves (�1,≤�1)-Aronszajn trees.
(2) If CH holds, then subcomplete forcing preserves (�1,≤�1)-Aronszajn trees iff

BSCFA holds.

It is now interesting to explore the relationships between bounded forcing
axioms, the forms of generic Σ11-absoluteness introduced above, and the property
of (�1,≤�1)-Aronszajn tree preservation for other canonical classes of forcing.
Already we have given some limitations on Γ-generic Σ11(κ)-absoluteness. By (2) of
Observation 4.8, if Γ is the class of proper, semiproper or stationary set preserv-
ing, subcomplete, or countably closed forcings, then Γ-generic Σ11(�2)-absoluteness
fails.

https://doi.org/10.1017/jsl.2018.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.23


1304 GUNTER FUCHS AND KAETHEMINDEN

Theorem 4.23. Let Γ be the class of proper, semiproper, stationary set preserving,
ccc or subcomplete forcing notions. Consider the following properties.

(1) BFAΓ.
(2) Γ-generic Σ11(�1)-absoluteness.
(3) Forcing notions in Γ preserve (�1,≤�1)-Aronszajn trees.
Then (1)⇐⇒ (2) =⇒ (3), but (3) does not imply (1)/ (2).
Proof. ByObservation 4.20, we know that (1)⇐⇒ (2) =⇒ (3) holds. Let’s show
that (3) does not imply (2).
In the case of subcomplete forcing, we have already seen that (3) follows from

¬CH, while (1)/(2) have consistency strength a reflecting cardinal.
For the case of ccc forcing, recall that is known that CH is consistent with the
statement that every Aronszajn tree is special, see [13]. But if every Aronszajn tree is
special, then c.c.c. forcing cannot add a cofinal branch to any (�1,≤κ)-Aronszajn
tree T , no matter how wide it is: assume P were a c.c.c. forcing that did. Let ḃ be
a P-name for a cofinal branch through T , and let p ∈ P force this. Let X be the
set of members x of T such that some q ≤ p forces that x̌ ∈ ḃ. Then X is closed
under T -predecessors, because if x ≤ y ∈ X and q ≤ p forces that y̌ ∈ ḃ, then
q also forces that x̌ ∈ ḃ. Also, the set X has nodes at arbitrarily large heights less
than �1, since p forces that ḃ is a cofinal branch. Moreover, for any α < �1, X has
at most countably many nodes at level α of T , because for any such node, there is
a condition below p that forces that node is in ḃ, and these conditions have to be
pairwise incompatible so that the claim follows from the fact that P is c.c.c. This
shows that the restriction T of T to X is an �1-tree, hence an Aronszajn tree, and
hence special. Now we have a contradiction, since P≤p adds a branch to T . This
is impossible, since P preserves �1. But now, in any model of CH in which every
Aronszajn tree is special, (3) is satisfied, while (1) and (2) fail, since (1)/(2) imply
the failure of CH.
To cover the remaining cases, we will show that if Γ is a natural forcing class
containing all proper forcing notions, then the assertion that forcing notions in Γ
preserve (�1,≤�1)-Aronszajn trees does not imply BFAΓ. To see this, recall that it
follows from MA�1 that every (�1,≤�1)-Aronszajn tree is special, and hence that
every such tree is preserved by every �1-preserving forcing. But the consistency
strength ofMA�1 is the same as that of ZFC, while the consistency strength of BFAΓ
is at least a reflecting cardinal. �

Recall that under CH, the versions of the three conditions listed in the previous
theorem for subcomplete forcing are equivalent. The proof showed that this is not
the case for c.c.c. forcing (for (3) is consistent with CH, in this case, while (1) is
not). Subcomplete forcing is the only class considered here whose bounded forcing
axiom is consistent with CH, and it is in the context of CH that we have this unusual
equivalence between the three conditions.
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