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SUMMARY

Sensor based robotic systems are an important emerging
technology. When robots are working in unknown or
partially known environments, they need range sensors
that will measure the Cartesian coordinates of surfaces of
objects in their environment. Like any sensor, range
sensors must be calibrated. The range sensors can be
calibrated by comparing a measured surface shape to a
known surface shape. The most simple surface is a plane
and many physical objects have planar surfaces. Thus, an
important problem in the calibration of range sensors is
to find the best (least squares) fit of a plane to a set of
3D points.

We have formulated a constrained optimization
problem to determine the least squares fit of a
hyperplane to uncertain data. The first order necessary
conditions require the solution of an eigenvalue problem.
We have shown that the solution satisfies the second
order conditions (the Hessian matrix is positive definite).
Thus, our solution satisfies the sufficient conditions for a
local minimum. We have performed numerical experi-
ments that demonstrate that our solution is superior to
alternative methods.
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1. INTRODUCTION
Despite twenty years of research, many assembly tasks
are currently impossible to automate. Several automobile
manufacturers have identified robotic part assembly as
an emerging technology and are organizing a basic
research program to develop next generation robotic
technologies for assembly. They would like to develop
robotic technologies with human-like dexterity and
perception that could work in confined environments (for
example, under the dash of a car). Their list of desired
technologies includes: real-time three dimensional (3D)
perception, real-time force and tactile feedback for use
in automated assembly, design of a family of advanced
hands, dual arm robotic assembly, and dexterous
manipulators.

The primary motivation for 3D vision is to make the
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robotic assembly more flexible. If sensors are not used,
all parts and the robots must be precisely located. If
either parts or robot are out of alignment, both the parts
and the robot can be damaged. Furthermore, placing
parts in precise fixtures is expensive. Sensors allow the
assembly to be performed with parts in uncertain
locations and provide an imbedded inspection of the
process.

A laser range camera is an excellent 3D vision sensor.
The camera defines the Cartesian coordinates of surfaces
of objects in an environment by scanning a laser beam
over a scene and determines the distance (r) by the time
required for the beam to reach an object and return. The
beam is directed back and forth (¢) and up and down
(6) by two rotating mirrors. Thus, the data measured by
the camera has the form (r, ¢, 8). The geometry of the
camera can be used to map the measured data to
Cartesian coordinates (x, y, z).

Like any sensor, laser range cameras must be
calibrated. Since the geometry of the camera may not be
known precisely, the cameras can be calibrated by
comparing the calculated surface shapes to the known
surface shapes. The most simple surface is a plane and
many physical objects have planar surfaces. Thus, an
important problem in the calibration of range cameras is
to find the best (least squares) fit of a plane to a set of
3D points.

For many least squares problems, the uncertainty is in
one of the wvariables [for example, y=f(x) or
z =f(x, y)]. However, for this problem, the uncertainty
is in the geometric transformation from measured data to
Cartesian coordinates and all three of the calculated
variables are uncertain.

We are all familiar with the linear regression problem
of determining the least squares fit of data to a straight
line (y =a+bx). Two linear equations (the normal
equations) are solved to determine the parameters (a and
b). For the general case with M basis functions, the M
parameters are determined by solving the M normal
equations. The book by Lawson' provides a good
introduction to the methods for solving least squares
problems.

When both x and y are uncertain, a line is determined
by the three parameters (a + bx +cy =0). To minimize
the sum of the squares of the errors, the three
parameters satisfy a system of three homogeneous
equations [Ds =0 where s' = (a, b, ¢)]. For the general
case of a hyperplane in an N dimensional space, the
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parameters satisfy a system of N +1 homogeneous
equations. The homogeneous equations will have a zero
solution unless the matrix D is singular.

In a recent paper,” we estimated an approximate
solution of the homogeneous equations by adding a small
perturbation to make the matrix D singular and by
solving the resultant eigenvalue problem [Ds = ys]. The
approximate solution was compared to the set of
solutions obtained by neglecting one of the homogeneous
equations at a time. Pratt® estimates the solution of the
homogeneous equations by neglecting the last row of the
Cholesky decomposition of the matrix D. Nievergelt* has
followed a different path to derive the same algorithm
that we shall develop in this paper.

In the next section, we will formulate a constrained
optimization problem to determine the least squares fit
of a hyperplane to uncertain data. The first order
necessary conditions require the solution of an
eigenvalue problem. We will show that the solution
satisfies the second order conditions (the Hessian matrix
is positive definite). Thus, our solution satisfies the
sufficient conditions for a local minimum. In the third
section, we will discuss the results of numerical
experiments that demonstrate that our solution is
superior to both our previous method and to Pratt’s
method.

2. LEAST SQUARES ESTIMATION OF A
HYPERPLANE

Our motivation was to fit a plane to three dimensional
range data. We will generalize our problem from three
dimensions to N dimensions. We assume that we receive
noisy measurements of points (p) in an N dimensional
space:

) XN)- (1)

The data will be a set of points (p;), where j ranges from
1 to M:

p=(x1,x2,...

-y XNj)- 2)

A hyperplane is defined by the following equation:

p; = (xyj, Xz, - -

N
d+2a,~x,»=0 (3)

i=1

If the parameter vector a is a unit vector, d is the
perpendicular distance from the origin to the plane. We
will require that the parameter vector a be a unit vector:

; (%‘)2 =1 4)

Since the data will not lie on the hyperplane, we can
define an error (e;) for each point:

N
e,« = d + Zl aix,«j (5)

We will choose the parameters (the N vector a and the
scalar d) to minimize the weighted sum of the squares of
the errors subject to the constraint that a is a unit vector.
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We use a Lagrange multiplier (A) for the constraint and
define the Lagrangian function (L) by:

L =§ ey +A|1- % (@] (6)

where the weights (w;) are nonnegative and sum to 1.
Using equation (5), L may be written:

N N N
L=d>+2d > a,B;+ >, > aa,Ay

i=1 i=1 k=1
N
1= @y ™
i=1
where:
M
Ay = 2 WiXiiX (8)
j=1
M
Bi = 2:1 ijij (9)
=

The A matrix is symmetric (A; = Ay).

The first order necessary conditions for the parameters
that minimize L is that the partial derivatives of L with
respect to each parameter are zero:

N
d+> aB;=0 (10)

i=1

N
dBi + D, @Ay — Aa, =0, fork=1toN. (11)

i=1

Nievergelt [4] shows that the hyperplane must pass
through the centroid of the data. Equation (10) requires
that the vector B be a point on the hyperplane, while
equation (9) defines the vector B to be the centroid of
the data. Thus, equation (10) supports Nievergelt’s
conclusion.

We can use equation (10) to eliminate the parameter d
from equation (11):

N N
—> ;BB + D, a;Ay — Aa, =0, fork=1to N.

i=1 i=1

(12)

Thus, the first order necessary conditions for the
parameters that minimize L [equation (12)] require the
solution of an eigenvalue problem:

(G—=ADa=0 (13)

where the matrix G is defined by:
Gy = Ay — BBy (14)
In reference 2, we did not include the constraint in the

Lagrangian function (L). When the Lagrange multiplier
(A) is zero, first order necessary conditions for the
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parameters that minimize L [equations (10) and (11)] are
a set of N +1 homogeneous equations:

Ds=0 (15)
where the column vector s is defined by:
d
s= [ ] (16)
a
and D is a real symmetric matrix:
1 B
p-[! P Y
BT A ( )

Equation (15) will have a zero solution unless the
matrix D is singular and in general the matrix D will not
be singular. In reference 2, we estimated an approximate
solution of equation (15) by adding a small perturbation
to make the matrix D singular and by solving the
resultant eigenvalue problem:

Ds= s (18)

The solution of equation (18) that corresponds to the
eigenvalue [y] with the smallest magnitude is our best
approximate solution to equation (15).

Both our previous method and our current method
require the solution of eigenvalue problems. However,
the justification for the two methods are quite different.
The first order necessary conditions for the parameters
that minimize the constrained Lagrangian function
require the solution of the first eigenvalue problem
[equation (13)]. The first order necessary conditions for
the parameters that minimize the unconstrained Lagran-
gian function require the solution of a set of N+1
homogeneous equations. The approximate solution of
the set of homogeneous equations requires the solution
of the second eigenvalue problem [equation (18)].

We conclude this section by showing that our current
method satisfies the necessary conditions for a local
minimum. The second partial derivative matrix of the
Lagrangian function is called the Hessian matrix.
Sufficient conditions for a local minimum are that the
Hessian matrix is positive definite:

N N
0= E E viv;H; >0 (19)
i=0j=0

where v is an arbitrary vector (with a positive magnitude)
and the Hessian matrix is defined by:

9L

v le« asj

(20)

where s, =d and s5; = a, for i =1 to N.
For our Lagrangian function [equation (7)], the
Hessian matrix is given by:

HOO = 2 (21)
H()i = ZBI (22)
H; =2(A; — A5;) (23)

where §; is the Kronecker delta (the elements of the
identity matrix).
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The quadratic form for the Hessian matrix (Q) is given
by

0= 2{(”0)2 + 2v, ﬁ v;B; + i i Vv Ay — A % (Ui)z}
i=1 i=1j=1 i=1
] (24)

We can modify the third term in equation (24) by using
equation (14), the definition of the G matrix:

vIAv =v'(G + BB")v = v'Gv + (B"v)? (25)

To transform the quadratic form for the G matrix, we
will make a coordinate transformation. Let the i, be the
eigenvectors for the G matrix:

G = A, (26)

Since G is a real symmetrical matrix, we can construct a
set of eigenvectors that are an orthonormal basis for the
space of N vectors. Let the columns of the matrix T be
the eigenvectors for the G matrix:

T=[y1 ¢ - ¢n] (27)

T is an orthogonal matrix. We will make a coordinate
transformation from the v vector to a new vector (r):

v="Tr (28)

Using our new coordinates, the quadratic form for the G
matrix becomes:

vIGv =r"T"GTr (29)

Since the columns of the matrix T are the eigenvectors
for the G matrix:

GT=TE (30)
where:
E = diag [A1, A5, AN] (31)

Since T is an orthogonal matrix, the right side of
equation (29) becomes:

N
vIGv =r"Er= > \,(r,) (32)
i=1
An orthogonal transformation preserves length:
N N
D )P =viv=r"T"Tr=r"r = > (r,)? (33)
i=1 i=1

Our goal is to show that the Hessian matrix is positive
definite. We have modified several terms on the right
side of equation (24). Using equations (25), (32) and
(33), equation (24) becomes:

0 =2+ BV + X - N0r) (G4

The parameter A in equation (34) is one of the
eigenvalues of G [see equation (13)]. If A is the smallest
of the eigenvalues, the second term in equation (34) will
be nonnegative. The Hessian matrix is positive definite
except for the following special case: assume v, =0 and
A, is the smallest of the eigenvalues. Choose the r vector
with 7, =1 and the other », = 0. Then the second term in
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equation (34) will be zero. The v vector is determined by
equation (28). The first term will be positive unless B and
v are orthogonal (B"v = 0).

For our previous method, the solution of equation (18)
that corresponds to the eigenvalue with the smallest
magnitude is our best approximate solution to equation
(15). For our current method, we chose the smallest of
the eigenvalues. Thus, A can be negative and may not
have the smallest magnitude.

3. NUMERICAL EXPERIMENTS

We have developed a method for obtaining the least
squares fit of a hyperplane to uncertain data. In this
section, we will apply our method to synthetic data sets
in three dimensions. We will compare the results for our
eigenvalue method with three other methods: our
previous method, Pratt’s method, and a partial
information approach [neglecting one equation at a time
in equation (15)]. The partial information approach
produces four different solutions for the unknown
parameters, rather than a single solution. For each
method, we can calculated an error measure [the error is
the square root of the first term on the right side of
equation (6)]. We will find that our method produces the
smallest errors.

We consider a plane in three dimensional space with
parameters: a = (0.57735, 0.57735, 0.57735) and d = —1.
To create a synthetic data set, we calculate 81 data points
with random errors that are proportional to a parameter
(o). Given the data set and the weights (w; =1/81), we
can calculate the B vector and the A matrix and solve the
eigenvalue problem. The error measure is displayed in
Table I for five values of o for the four methods (New,
Old, Pratt, and Partial information). In the last section,
we proved that our new method should have the
minimum error. In Table I, our new method always has
the lowest error, followed by: the old method, the Pratt
method, and the partial information method. As the data
errors increase (o becomes larger), the errors for our
new method become substantially less than the errors for
the other methods (when there are no errors in the data,
all four of the methods have zero errors).

The parameters a and d calculated by our new method
are displayed in Table II for five values of 0. As o
increases, the magnitude of the parameter d increases.

Table I. The error measure for synthetic data set for
four methods

Method o=01 =02 oc=04 =038
New 0.034953  0.070039 0.140247 0.279550
Old 0.034966 0.070148 0.141092 0.285753
Pratt 0.034968 0.070182 0.141465 0.287659

P1 0.035002 0.070398 0.142629 0.293255
P2 0.035030 0.070597 0.143843 0.297911
P3 0.035031 0.070608 0.143947 0.298470
P4 0.034983  0.070259 0.141706 0.287899
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Table II. The least squares estimates of parameters a
and d for five synthetic data sets

o a, a, as d
0.0 0.57735 0.57735 0.57735 —1.00000
0.1 0.57704 0.57576 0.57924 —1.05197
0.2 0.57733  0.57513  0.57958 —1.10130
0.4 0.57906  0.57591 0.57708 —1.19361
0.8 0.58441 0.58196 0.56550 —1.36040

There is not a trend in the direction parameters (a,);
sometimes they are greater than the true values and
sometimes they are less.

4. CONCLUSIONS

Sensor based robotic systems are an important emerging
technology. When robots are working in unknown or
partially known environments, they need range sensors
that will measure the Cartesian coordinates of surfaces of
objects in their environment. Like any sensor, range
sensors must be calibrated. The range sensors can be
calibrated by comparing a measured surface shape to a
known surface shape. The most simple surface is a plane
and many physical objects have planar surfaces. Thus, an
important problem in the calibration of range sensors is
to find the best (least squares) fit of a plane to a set of
3D points.

We have developed a method for obtaining the least
squares fit of a hyperplane to uncertain data. The first
order necessary conditions require the solution of an
eigenvalue problem. We have shown that the solution
satisfies the second order conditions (the Hessian matrix
is positive definite). Thus, our solution satisfies the
sufficient conditions for a local minimum. We have
performed numerical experiments that demonstrate that
our solution is superior to alternative methods.
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