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 SUMMARY
 Sensor based robotic systems are an important emerging
 technology .  When robots are working in unknown or
 partially known environments ,  they need range sensors
 that will measure the Cartesian coordinates of surfaces of
 objects in their environment .  Like any sensor ,  range
 sensors must be calibrated .  The range sensors can be
 calibrated by comparing a measured surface shape to a
 known surface shape .  The most simple surface is a plane
 and many physical objects have planar surfaces .  Thus ,  an
 important problem in the calibration of range sensors is
 to find the best (least squares) fit of a plane to a set of
 3D points .

 We have formulated a constrained optimization
 problem to determine the least squares fit of a
 hyperplane to uncertain data .  The first order necessary
 conditions require the solution of an eigenvalue problem .
 We have shown that the solution satisfies the second
 order conditions (the Hessian matrix is positive definite) .
 Thus ,  our solution satisfies the suf ficient conditions for a
 local minimum .  We have performed numerical experi-
 ments that demonstrate that our solution is superior to
 alternative methods .

 KEYWORDS :  Hyperplane ;  Least squares fit ;  Sensors ;  Robotic
 systems .

 1 .  INTRODUCTION
 Despite twenty years of research ,  many assembly tasks
 are currently impossible to automate .  Several automobile
 manufacturers have identified robotic part assembly as
 an emerging technology and are organizing a basic
 research program to develop next generation robotic
 technologies for assembly .  They would like to develop
 robotic technologies with human-like dexterity and
 perception that could work in confined environments (for
 example ,  under the dash of a car) .  Their list of desired
 technologies includes :  real-time three dimensional (3D)
 perception ,  real-time force and tactile feedback for use
 in automated assembly ,  design of a family of advanced
 hands ,  dual arm robotic assembly ,  and dexterous
 manipulators .

 The primary motivation for 3D vision is to make the

 *  Research sponsored by the Engineering Research Program ,
 Of fice of Basic Energy Sciences ,  Oak Ridge National
 Laboratory managed by Lockheed Martin Energy Research
 Corp .  for the U . S .  Department of Energy under contract
 number DE-AC05-96OR22464 .

 robotic assembly more flexible .  If sensors are not used ,
 all parts and the robots must be precisely located .  If
 either parts or robot are out of alignment ,  both the parts
 and the robot can be damaged .  Furthermore ,  placing
 parts in precise fixtures is expensive .  Sensors allow the
 assembly to be performed with parts in uncertain
 locations and provide an imbedded inspection of the
 process .

 A laser range camera is an excellent 3D vision sensor .
 The camera defines the Cartesian coordinates of surfaces
 of objects in an environment by scanning a laser beam
 over a scene and determines the distance ( r ) by the time
 required for the beam to reach an object and return .  The
 beam is directed back and forth ( f  ) and up and down
 ( θ  )   by two rotating mirrors .  Thus ,  the data measured by
 the camera has the form ( r ,  f  ,  θ  ) .  The geometry of the
 camera can be used to map the measured data to
 Cartesian coordinates ( x ,  y ,  z ) .

 Like any sensor ,  laser range cameras must be
 calibrated .  Since the geometry of the camera may not be
 known precisely ,  the cameras can be calibrated by
 comparing the calculated surface shapes to the known
 surface shapes .  The most simple surface is a plane and
 many physical objects have planar surfaces .  Thus ,  an
 important problem in the calibration of range cameras is
 to find the best (least squares) fit of a plane to a set of
 3D points .

 For many least squares problems ,  the uncertainty is in
 one of the variables [for example ,   y  5  f  ( x ) or
 z  5  f  ( x ,  y )] .  However ,  for this problem ,  the uncertainty
 is in the geometric transformation from measured data to
 Cartesian coordinates and all three of the calculated
 variables are uncertain .

 We are all familiar with the linear regression problem
 of determining the least squares fit of data to a straight
 line (  y  5  a  1  bx ) .  Two linear equations (the normal
 equations) are solved to determine the parameters ( a  and
 b ) .  For the general case with  M  basis functions ,  the  M
 parameters are determined by solving the  M  normal
 equations .  The book by Lawson 1  provides a good
 introduction to the methods for solving least squares
 problems .

 When both  x  and  y  are uncertain ,  a line is determined
 by the three parameters ( a  1  bx  1  cy  5  0) .  To minimize
 the sum of the squares of the errors ,  the three
 parameters satisfy a system of three homogeneous
 equations [ Ds  5  0 where  s T  5  ( a ,  b ,  c )] .  For the general
 case of a hyperplane in an  N  dimensional space ,  the
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 parameters satisfy a system of  N  1  1 homogeneous
 equations .  The homogeneous equations will have a zero
 solution unless the matrix  D  is singular .

 In a recent paper , 2  we estimated an approximate
 solution of the homogeneous equations by adding a small
 perturbation to make the matrix  D  singular and by
 solving the resultant eigenvalue problem [ Ds  5  g  s ] .  The
 approximate solution was compared to the set of
 solutions obtained by neglecting one of the homogeneous
 equations at a time .  Pratt 3  estimates the solution of the
 homogeneous equations by neglecting the last row of the
 Cholesky decomposition of the matrix  D .  Nievergelt 4  has
 followed a dif ferent path to derive the same algorithm
 that we shall develop in this paper .

 In the next section ,  we will formulate a constrained
 optimization problem to determine the least squares fit
 of a hyperplane to uncertain data .  The first order
 necessary conditions require the solution of an
 eigenvalue problem .  We will show that the solution
 satisfies the second order conditions (the Hessian matrix
 is positive definite) .  Thus ,  our solution satisfies the
 suf ficient conditions for a local minimum .  In the third
 section ,  we will discuss the results of numerical
 experiments that demonstrate that our solution is
 superior to both our previous method and to Pratt’s
 method .

 2 .  LEAST SQUARES ESTIMATION OF A
 HYPERPLANE
 Our motivation was to fit a plane to three dimensional
 range data .  We will generalize our problem from three
 dimensions to  N  dimensions .  We assume that we receive
 noisy measurements of points ( p ) in an  N  dimensional
 space :

 p  5  ( x 1  ,  x 2  ,  .  .  .  ,  x N ) .  (1)

 The data will be a set of points ( p j ) ,  where  j  ranges from
 1 to M :

 p j  5  ( x 1 j  ,  x 2 j  ,  .  .  .  ,  x N j ) .  (2)

 A hyperplane is defined by the following equation :

 d  1  O N
 i 5 1

 a i x i  5  0  (3)

 If the parameter vector  a  is a unit vector ,   d  is the
 perpendicular distance from the origin to the plane .  We
 will require that the parameter vector  a  be a unit vector :

 O N
 i 5 1

 ( a i )
 2  5  1  (4)

 Since the data will not lie on the hyperplane ,  we can
 define an error ( e j ) for each point :

 e j  5  d  1  O N
 i 5 1

 a i x i j  (5)

 We will choose the parameters (the  N  vector  a  and the
 scalar  d ) to minimize the weighted sum of the squares of
 the errors subject to the constraint that  a  is a unit vector .

 We use a Lagrange multiplier ( l ) for the constraint and
 define the Lagrangian function ( L ) by :

 L  5  O M
 j 5 1

 w j ( e j )
 2  1  l F 1  2  O N

 i 5 1
 ( a i )

 2 G  (6)

 where the weights ( w j ) are nonnegative and sum to 1 .
 Using equation (5) ,   L  may be written :

 L  5  d 2  1  2 d  O N
 i 5 1

 a i B i  1  O N
 i 5 1

 O N
 k 5 1

 a i a k A i k

 1  l F 1  2  O N
 i 5 1

 ( a i )
 2 G  (7)

 where :

 A i k  5  O M
 j 5 1

 w j x i j x k j  (8)

 B i  5  O M
 j 5 1

 w j x i j  (9)

 The  A  matrix is symmetric ( A i j  5  A k i ) .
 The first order necessary conditions for the parameters

 that minimize  L  is that the partial derivatives of  L  with
 respect to each parameter are zero :

 d  1  O N
 i 5 1

 a i B i  5  0  (10)

 dB k  1  O N
 i 5 1

 a i A i k  2  l a k  5  0 ,  for  k  5  1  to  N .  (11)

 Nievergelt [4] shows that the hyperplane must pass
 through the centroid of the data .  Equation (10) requires
 that the vector  B  be a point on the hyperplane ,  while
 equation (9) defines the vector  B  to be the centroid of
 the data .  Thus ,  equation (10) supports Nievergelt’s
 conclusion .

 We can use equation (10) to eliminate the parameter  d
 from equation (11) :

 2 O N
 i 5 1

 a i B i B k  1  O N
 i 5 1

 a i A i k  2  l a k  5  0 ,  for  k  5  1  to  N .

 (12)

 Thus ,  the first order necessary conditions for the
 parameters that minimize  L  [equation (12)] require the
 solution of an eigenvalue problem :

 ( G  2  l I ) a  5  0  (13)

 where the matrix  G  is defined by :

 G i k  5  A i k  2  B i B k  (14)

 In reference 2 ,  we did not include the constraint in the
 Lagrangian function ( L ) .  When the Lagrange multiplier
 ( l )   is zero ,  first order necessary conditions for the
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 parameters that minimize  L  [equations (10) and (11)] are
 a set of  N  1  1 homogeneous equations :

 Ds  5  0  (15)

 where the column vector  s  is defined by :

 s  5 F d

 a
 G  (16)

 and  D  is a real symmetric matrix :

 D  5 F  1
 B T

 B
 A
 G  (17)

 Equation (15) will have a zero solution unless the
 matrix  D  is singular and in general the matrix  D  will not
 be singular .  In reference 2 ,  we estimated an approximate
 solution of equation (15) by adding a small perturbation
 to make the matrix  D  singular and by solving the
 resultant eigenvalue problem :

 Ds  5  g  s  (18)

 The solution of equation (18) that corresponds to the
 eigenvalue [ g  ] with the smallest magnitude is our best
 approximate solution to equation (15) .

 Both our previous method and our current method
 require the solution of eigenvalue problems .  However ,
 the justification for the two methods are quite dif ferent .
 The first order necessary conditions for the parameters
 that minimize the constrained Lagrangian function
 require the solution of the first eigenvalue problem
 [equation (13)] .  The first order necessary conditions for
 the parameters that minimize the unconstrained Lagran-
 gian function require the solution of a set of  N  1  1
 homogeneous equations .  The approximate solution of
 the set of homogeneous equations requires the solution
 of the second eigenvalue problem [equation (18)] .

 We conclude this section by showing that our current
 method satisfies the necessary conditions for a local
 minimum .  The second partial derivative matrix of the
 Lagrangian function is called the Hessian matrix .
 Suf ficient conditions for a local minimum are that the
 Hessian matrix is positive definite :

 Q  5  O N
 i 5 0

 O N
 j 5 0

 y  i y  j H i j  .  0  (19)

 where  v  is an arbitrary vector (with a positive magnitude)
 and the Hessian matrix is defined by :

 H i j  5
  2 L

  s i   s j
 (20)

 where  s 0  5  d  and  s i  5  a i   for  i  5  1 to  N .
 For our Lagrangian function [equation (7)] ,  the

 Hessian matrix is given by :

 H 0 0  5  2  (21)

 H 0 i  5  2 B i  (22)

 H i j  5  2( A i j  2  l d i j )  (23)

 where  d i j   is the Kronecker delta (the elements of the
 identity matrix) .

 The quadratic form for the Hessian matrix ( Q ) is given
 by

 Q  5  2 H ( y  0 )
 2  1  2 y  0  O N

 i 5 1
 y  i B i  1  O N

 i 5 1
 O N
 j 5 1

 y  i y  j A i j  2  l  O N
 i 5 1

 ( y  i )
 2 J
 (24)

 We can modify the third term in equation (24) by using
 equation (14) ,  the definition of the  G  matrix :

 v T Av  5  v T ( G  1  BB T ) v  5  v T Gv  1  ( B T v ) 2  (25)

 To transform the quadratic form for the  G  matrix ,  we
 will make a coordinate transformation .  Let the  c  n   be the
 eigenvectors for the  G  matrix :

 G c  n  5  l n c  n  (26)

 Since  G  is a real symmetrical matrix ,  we can construct a
 set of eigenvectors that are an orthonormal basis for the
 space of  N  vectors .  Let the columns of the matrix  T  be
 the eigenvectors for the  G  matrix :

 T  5  [ c  1  c  2  ?  ?  ?  c  N ]  (27)

 T  is an orthogonal matrix .  We will make a coordinate
 transformation from the  v  vector to a new vector ( r ) :

 v  5  Tr  (28)

 Using our new coordinates ,  the quadratic form for the  G
 matrix becomes :

 v T Gv  5  r T T T GTr  (29)

 Since the columns of the matrix  T  are the eigenvectors
 for the  G  matrix :

 GT  5  TE  (30)
 where :

 E  5  diag  [ l 1  ,  l 2  ,  l N ]  (31)

 Since  T  is an orthogonal matrix ,  the right side of
 equation (29) becomes :

 v T Gv  5  r T Er  5  O N
 i 5 1

 l i ( r i )
 2  (32)

 An orthogonal transformation preserves length :

 O N
 i 5 1

 ( y  i )
 2  5  v T v  5  r T T T Tr  5  r T r  5  O N

 i 5 1
 ( r i )

 2  (33)

 Our goal is to show that the Hessian matrix is positive
 definite .  We have modified several terms on the right
 side of equation (24) .  Using equations (25) ,  (32) and
 (33) ,  equation (24) becomes :

 Q  5  2 H ( y  0  1  B T v ) 2  1  O N
 i 5 1

 ( l i  2  l )( r i )
 2 J  (34)

 The parameter  l   in equation (34) is one of the
 eigenvalues of  G  [see equation (13)] .  If  l   is the smallest
 of the eigenvalues ,  the second term in equation (34) will
 be nonnegative .  The Hessian matrix is positive definite
 except for the following special case :  assume  y  0  5  0 and
 l 1   is the smallest of the eigenvalues .  Choose the  r  vector
 with  r 1  5  1 and the other  r i  5  0 .  Then the second term in
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 equation (34) will be zero .  The  v  vector is determined by
 equation (28) .  The first term will be positive unless  B  and
 v  are orthogonal ( B T v  5  0) .

 For our previous method ,  the solution of equation (18)
 that corresponds to the eigenvalue with the smallest
 magnitude is our best approximate solution to equation
 (15) .  For our current method ,  we chose the smallest of
 the eigenvalues .  Thus ,   l   can be negative and may not
 have the smallest magnitude .

 3 .  NUMERICAL EXPERIMENTS
 We have developed a method for obtaining the least
 squares fit of a hyperplane to uncertain data .  In this
 section ,  we will apply our method to synthetic data sets
 in three dimensions .  We will compare the results for our
 eigenvalue method with three other methods :  our
 previous method ,  Pratt’s method ,  and a partial
 information approach [neglecting one equation at a time
 in equation (15)] .  The partial information approach
 produces four dif ferent solutions for the unknown
 parameters ,  rather than a single solution .  For each
 method ,  we can calculated an error measure [the error is
 the square root of the first term on the right side of
 equation (6)] .  We will find that our method produces the
 smallest errors .

 We consider a plane in three dimensional space with
 parameters :   a  5  (0 . 57735 ,  0 . 57735 ,  0 . 57735) and  d  5  2 1 .
 To create a synthetic data set ,  we calculate 81 data points
 with random errors that are proportional to a parameter
 ( s  ) .  Given the data set and the weights ( w j  5  1 / 81) ,  we
 can calculate the B vector and the A matrix and solve the
 eigenvalue problem .  The error measure is displayed in
 Table I for five values of  s   for the four methods (New ,
 Old ,  Pratt ,  and Partial information) .  In the last section ,
 we proved that our new method should have the
 minimum error .  In Table I ,  our new method always has
 the lowest error ,  followed by :  the old method ,  the Pratt
 method ,  and the partial information method .  As the data
 errors increase ( s   becomes larger) ,  the errors for our
 new method become substantially less than the errors for
 the other methods (when there are no errors in the data ,
 all four of the methods have zero errors) .

 The parameters  a  and  d  calculated by our new method
 are displayed in Table II for five values of  s .  As  s
 increases ,  the magnitude of the parameter  d  increases .

 Table I .  The error measure for synthetic data set for
 four methods

 Method  s  5  0 . 1  s  5  0 . 2  s  5  0 . 4  s  5  0 . 8

 New
 Old

 Pratt
 P1
 P2
 P3
 P4

 0 . 034953
 0 . 034966
 0 . 034968
 0 . 035002
 0 . 035030
 0 . 035031
 0 . 034983

 0 . 070039
 0 . 070148
 0 . 070182
 0 . 070398
 0 . 070597
 0 . 070608
 0 . 070259

 0 . 140247
 0 . 141092
 0 . 141465
 0 . 142629
 0 . 143843
 0 . 143947
 0 . 141706

 0 . 279550
 0 . 285753
 0 . 287659
 0 . 293255
 0 . 297911
 0 . 298470
 0 . 287899

 Table II .  The least squares estimates of parameters  a
 and  d  for five synthetic data sets

 s  a 1  a 2  a 3  d

 0 . 0
 0 . 1
 0 . 2
 0 . 4
 0 . 8

 0 . 57735
 0 . 57704
 0 . 57733
 0 . 57906
 0 . 58441

 0 . 57735
 0 . 57576
 0 . 57513
 0 . 57591
 0 . 58196

 0 . 57735
 0 . 57924
 0 . 57958
 0 . 57708
 0 . 56550

 2 1 . 00000
 2 1 . 05197
 2 1 . 10130
 2 1 . 19361
 2 1 . 36040

 There is not a trend in the direction parameters ( a i ) ;
 sometimes they are greater than the true values and
 sometimes they are less .

 4 .  CONCLUSIONS
 Sensor based robotic systems are an important emerging
 technology .  When robots are working in unknown or
 partially known environments ,  they need range sensors
 that will measure the Cartesian coordinates of surfaces of
 objects in their environment .  Like any sensor ,  range
 sensors must be calibrated .  The range sensors can be
 calibrated by comparing a measured surface shape to a
 known surface shape .  The most simple surface is a plane
 and many physical objects have planar surfaces .  Thus ,  an
 important problem in the calibration of range sensors is
 to find the best (least squares) fit of a plane to a set of
 3D points .

 We have developed a method for obtaining the least
 squares fit of a hyperplane to uncertain data .  The first
 order necessary conditions require the solution of an
 eigenvalue problem .  We have shown that the solution
 satisfies the second order conditions (the Hessian matrix
 is positive definite) .  Thus ,  our solution satisfies the
 suf ficient conditions for a local minimum .  We have
 performed numerical experiments that demonstrate that
 our solution is superior to alternative methods .
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