
J. Fluid Mech. (2019), vol. 875, pp. 1175–1203. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.535

1175

Image-based modelling of the skin-friction
coefficient in compressible boundary-layer

transition

Wenjie Zheng1, Shanxin Ruan1, Yue Yang1,2,†, Lin He3 and Shiyi Chen1,2,4

1State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University,
Beijing 100871, China

2CAPT and BIC-ESAT, Peking University, Beijing 100871, China
3College of Aerospace Science and Engineering, National University of Defense Technology,

Changsha 410073, China
4Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology

of China, Shenzhen 518055, China

(Received 2 April 2019; revised 27 June 2019; accepted 27 June 2019;
first published online 26 July 2019)

We develop a model of the skin-friction coefficient based on scalar images in
the compressible, spatially evolving boundary-layer transition. The images are
extracted from a passive scalar field by a sliding window filter on the streamwise
and wall-normal plane. The multi-scale and multi-directional geometric analysis is
applied to characterize the averaged inclination angle of spatially evolving filtered
component fields at different scales ranging from a boundary-layer thickness to several
viscous length scales. In general, the averaged inclination angles increase along the
streamwise direction, and the variation of the angles for large-scale structures is
smaller than that for small-scale structures. Inspired by the coincidence of the
increasing averaged inclination angle and the rise of the skin-friction coefficient, we
propose a simple image-based model of the skin-friction coefficient. The model blends
empirical formulae of the skin-friction coefficient in laminar and fully developed
turbulent regions using the normalized averaged inclination angle of scalar structures
at intermediate and small scales. The model prediction calculated from scalar images
is validated by the results from the direct numerical simulation at two Mach numbers,
2.25 and 6, and the relative error can be less than 15 %.

Key words: boundary layer structure, compressible boundary layers, turbulent transition

1. Introduction
The prediction of the skin-friction coefficient cf in compressible boundary layers

is critically important for the design of high-speed vehicles and propulsion systems.
The boundary-layer transition has a strong influence on aerodynamic drag and heating,
because much higher friction and heating can be generated on the surface of aerospace
vehicles in turbulent flows than those in laminar flows. Despite considerable efforts

† Email address for correspondence: yyg@pku.edu.cn

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-9969-7431
mailto:yyg@pku.edu.cn
https://doi.org/10.1017/jfm.2019.535


1176 W. Zheng, S. Ruan, Y. Yang, L. He and S. Chen

in theoretical, experimental and numerical studies, the reliable prediction of the skin-
friction coefficient in compressible boundary layers is still very challenging (Zhong &
Wang 2012).

The theoretical study of the empirical formula of cf in compressible boundary
layers, in general, is restricted to the laminar or fully developed turbulent state. The
empirical formulae of cf for compressible laminar and turbulent boundary layers are
transformed from their counterparts in incompressible boundary layers (van Driest
1952, 1956; Spalding & Chi 1964; White & Christoph 1972). However, there is a lack
of theoretical models for cf for the laminar–turbulent transition stage. The existing
approximate models for predicting transition, such as the eN-method and parabolized
stability equations (Herbert 1997), rely on empirical input or specific initial and inlet
boundary conditions.

For the experimental study, it is extremely difficult to accurately measure cf in
compressible boundary layers using direct or indirect methods. The direct methods
employ a movable element, such as a piezoelectric element (Holden 1972; Goyne,
Stalker & Paull 2003), to measure the skin-friction force acting on the surface.
Nonetheless, the viscous forces compared with other forces are too small to be
accurately measured in practice (Schetz 2010). The indirect methods generally
measure skin-friction related quantities, and then calculate the skin friction from
some analogy or data correlation. For example, cf can be indirectly determined from
the mean velocity profile in a turbulent boundary layer. Since the near-wall velocity
measurements from hot-wire anemometry (Hutchins & Choi 2002; Tay, Khoo &
Chew 2012) and particle image velocimetry (PIV) (He et al. 2011a; Zhu et al. 2013)
are still challenging in high-speed boundary layers, various extrapolation methods
from different parts of the mean velocity profile measured in experiments have been
proposed (see table 1 in Rodriguez-Lopez, Bruce & Buxton 2015). Therefore, no
universal method for the measurement of the local skin friction exists, and in each
case a proper selection of the appropriate instrumentation has to be made from
available direct and indirect methods (Hakkinen 2004).

For the numerical simulation of compressible boundary-layer transition, direct
numerical simulation (DNS) is useful for understanding the transition mechanism
and evaluating transition-prediction models (Zhong & Wang 2012), but it is
computationally expensive, so it is restricted to low and moderate Reynolds numbers.
The large-eddy simulation (LES) significantly reduces the computational cost by
filtering small-scale motions and modelling the effect of subgrid-scale motion
on large-scale motion, but its accuracy in the transition prediction is influenced
by the resolution of the grids or the wall treatment (Ducros, Comte & Lesieur
1996). The method of Reynolds-averaged Navier–Stokes (RANS) equations with low
computational cost usually requires a priori information of the transition point, so it
has not been a complete predictive tool (see Walters & Cokljat 2008; Wang & Fu
2009; Durbin 2018). Moreover, the progress of the transition can be characterized by
an intermittency factor (Emmons 1951; Dhawan & Narasimha 1958), and it has been
used in the transition models for both RANS (e.g. Suzen & Huang 2000; Menter,
Langtry & Völker 2006) and LES (e.g. Zhao et al. 2014).

The rapidly increasing cf in the transitional stage appears to coincide with the
emergence of coherent structures (Fukagata, Iwamoto & Kasagi 2002; Sayadi et al.
2014; Zhao et al. 2018). The structures can be visualized by experimental imaging
methods employing dye (Falco 1977; Head & Bandyopadhyay 1981), hydrogen
bubbles (Kline et al. 1967; Lee & Wu 2008) and small droplets (Smith & Smits 1995).
Furthermore, the recently developed nanoparticle-based planar laser scattering (NPLS)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.535


Image-based modelling of skin friction in boundary-layer transition 1177

y

x

cf

Laminar region Transition region Turbulent region

FIGURE 1. (Colour online) Evolutionary geometry of vortical or scalar structures, sketched
by the ellipses with different scales and inclination angles, in the boundary-layer transition,
along with the rise of the skin-friction coefficient cf .

can visualize clear coherent structures in supersonic boundary-layer transition (He
et al. 2011b; Wang, Wang & Zhao 2016; Wang et al. 2019). Similar to the passive
scalar used in the experimental imaging, the Lagrangian scalar field, as an ideal
passive tracer field with vanishing diffusivity, is applied to study structural evolution
in isotropic turbulence (Yang, Pullin & Bermejo-Moreno 2010), Taylor–Green and
Kida–Pelz flows (Yang & Pullin 2010), the K-type transition in channel flows (Zhao,
Yang & Chen 2016), fully developed channel flows (Yang & Pullin 2011) and the
transition in a weakly compressible boundary layer (Zheng, Yang & Chen 2016). The
Lagrangian field is governed by a pure scalar advection equation and has no smallest
scale, so it can reveal rich geometries of flow structures.

The visualization of scalar-like structures (e.g. Smith & Smits 1995; He et al.
2011b) illustrates that the coherent, inclined structures emerge in the transitional
stage and rapidly break down into multi-scale structures with different inclination
angles, and the multi-scale geometry of the structures reaches a statistically stationary
state in the fully developed turbulent state (Zheng et al. 2016). For example, the
inclination angle of the signature hairpin-like structures is close to 45◦ (e.g. Head &
Bandyopadhyay 1981; Spina, Donovan & Smits 1991; Adrian 2007; Yang & Pullin
2011). The evolutionary geometry of coherent structures with different scales and
inclination angles in the laminar–turbulent transition is sketched in figure 1, along
with the rise of cf . The superposition of hierarchies of attached and inclined vortical
structures is also suggested by the models (e.g. Perry & Chong 1982; Marusic &
Monty 2019) based on the attached eddy hypothesis (Townsend 1976).

On the other hand, the study of coherent structures is also criticized owing to
the lack of quantitative results (see Robinson 1991), so that it is hard to develop
predictive models from the findings on structures. In order to quantify the evolutionary,
multi-scale and multi-directional geometry of flow structures in transitional flows,
Zheng et al. (2016) developed a diagnostic tool characterizing evolving scalar fields
at different scales and evolutional stages during the transition. The diagnostic tool
incorporates the tracking of the Lagrangian scalar field (Yang et al. 2010), the
multi-scale and multi-directional geometric analysis (Yang & Pullin 2011) based on
the mirror-extended curvelet transform (Candes et al. 2006) and a sliding window for
extracting scalar fields at different locations in the transition.

In the present study, we develop a simple model of the skin-friction coefficient
cf based on the multi-scale and multi-directional analysis of two-dimensional scalar

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.535


1178 W. Zheng, S. Ruan, Y. Yang, L. He and S. Chen

images in compressible boundary-layer transition, considering that the scalar images
are relatively easy to obtain in experiments by imaging techniques. We also aim to
partially bridge the gap between the qualitative study of coherent structures and the
predictive tool in applications of supersonic and hypersonic boundary layers.

We begin from § 2 as an overview of numerical implementations for the DNS of
compressible boundary layers, Lagrangian scalar tracking and multi-scale diagnostic
methodology. Section 3 presents the application of the diagnostic method for
investigating the evolutionary inclination angles in the transition, and § 4 proposes
and validates the model of cf based on the statistics of structural inclination angles on
the streamwise and wall-normal plane at different scales. We draw some conclusions
in § 5.

2. Simulation overview
2.1. DNS

The DNS of the spatially evolving flat-plate boundary layer is performed by solving
the three-dimensional compressible Navier–Stokes (N–S) equations

∂U
∂t
+
∂Fj

∂xj
−
∂Vj

∂xj
= 0, (2.1)

with

U=


ρ

ρu1

ρu2

ρu3

E

 , Fj =


ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(E+ p)uj

 , Vj =



0
σ1j

σ2j

σ3j

σjkuk + κ
∂T
∂xj


. (2.2)

Here, the Einstein summation is used, and the subscript j = 1, 2, 3 denotes the
index in three-dimensional Cartesian coordinates. The coordinates x1, x2 and x3 are
equivalent to x, y and z, respectively. The velocity components are denoted by uj in
the jth coordinate direction, or u, v and w in the x, y and z directions, respectively;
ρ is the density, p the static pressure, δij the Kronecker delta function, κ the thermal
conductivity and T the temperature. The N–S equations (2.1) are non-dimensionalized
with the free-stream quantities ρ∞, T∞, U∞ and µ∞. The length and time scales are
non-dimensionalized by the reference length L= 1 inch and time L/U∞, respectively.

It is noted that the subscript ‘∞’ denotes the free-stream properties, and ‘w’
denotes the quantities on the wall. The free-stream Mach number is Ma∞ ≡ U∞/c∞
where c∞ is the free-stream sound speed. The free-stream Reynolds number is
Re∞ ≡ ρ∞U∞L/µ∞, and the wall temperature Tw is normalized by the free-stream
temperature T∞ = 169.4 K.

In the perfect gas assumption, the total energy is

E= ρcvT + 1
2ρuiui, (2.3)

where cv is the specific heat at constant volume. For a compressible Newtonian flow,
the viscous stress is

σij =µ

(
∂ui

∂xj
+
∂uj

∂xi

)
−

2
3
µ
∂uk

∂xk
δij, (2.4)

where the dynamic viscosity µ is assumed to obey Sutherland’s law.
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FIGURE 2. (Colour online) A schematic diagram of the computational domain with
boundary conditions. The inclined structure is sketched by the dashed line with the
inclination angle α.

As shown in figure 2, the computational domain is bounded by an inlet boundary
and a non-reflecting outlet boundary in the streamwise x-direction, a wall boundary
and a non-reflecting upper boundary in the wall-normal y-direction and two periodic
boundaries in the spanwise z-direction. The inlet boundary is given by a laminar
compressible boundary-layer similarity solution. The wall temperature is prescribed
by an approximate adiabatic (or recovery) temperature

Tw = 1+ r
γ − 1

2
Ma2
∞
, (2.5)

so that the wall can be considered as quasi-isothermal (see Duan, Beekman & Martin
2010). Here, γ = 1.4 denotes the ratio of specific heats at constant pressure and
volume, and r = Pr1/3 denotes the flat-plate turbulent recovery factor (see White
2006) with the Prandtl number Pr= 0.72.

In order to trigger the laminar–turbulent transition, a region of blowing and suction
at xa 6 x 6 xb is imposed. The wall-normal disturbing velocity is generated as (see
Pirozzoli, Grasso & Gatski 2004; Gao et al. 2005)

vbs(x, z, t)= Af (x)g(z)h(t), xa 6 x 6 xb. (2.6)

Here, A is the amplitude of disturbance, and the functions are

f (x)= 4 sinΘ(1− cosΘ)/
√

27,
Θ = 2π(x− xa)/(xa − xb),

}
(2.7)

g(z)=
lmax∑
l=1

Zl sin[2πl(z/Lz + φl)],

lmax∑
l=1

Zl = 1, Zl = 1.25Zl+1,

 (2.8)

h(t)=
mmax∑
m=1

Tm sin[2π(mβt+ φm)],

mmax∑
m=1

Tm = 1, Tm = 1.25Tm+1,

 (2.9)
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Ma∞ Re∞ Tw A β Lx × Ly × Lz Nx ×Ny ×Nz 1x+ ×1y+w ×1z+

2.25 6.35× 105 1.90 0.02 0.2 12.00× 0.6× 0.2 4800× 200× 320 11.18× 0.89× 5.59
6 1.69× 106 6.98 0.2 0.5 12.00× 0.6× 0.2 4800× 200× 320 4.56× 0.36× 2.28
6 1.69× 106 6.98 0.2 0.5 12.00× 0.6× 0.2 3200× 200× 240 5.80× 0.37× 3.09
6 1.69× 106 6.98 0.2 0.5 13.57× 0.6× 0.2 2400× 150× 160 8.67× 0.35× 4.33

TABLE 1. DNS parameters.

DNS case Ma∞ Reθ 1x+ 1y+w 1z+

Present study 2.25 4230 11.18 0.89 5.59
Pirozzoli et al. (2004) 2.25 4250 14.50 1.05 6.56
Wang & Lu (2012) 2 1370 4.62 0.90 4.62
Zhang et al. (2014) 2.25 3922 13.23 0.90 6.15

Present study 6 7237 5.80 0.37 3.09
Franko & Lele (2013) 6 2652 4.43 0.32 2.97
Zhang et al. (2014) 6 5919 5.63 0.45 2.81
Zhang, Duan & Choudhari (2017) 5.86 2121 6.42 0.46 3.72

TABLE 2. Parameters and grid resolutions in recent DNS of compressible boundary layers.

where Lz is the size of the computational domain in the spanwise direction, β is the
base frequency of disturbance, φl and φm are random numbers ranging from 0 to 1
and lmax = 10 and mmax = 5 are maximum numbers of disturbing modes. In general,
the transition is delayed by decreasing A, and the transitional region is extended and
the overshoot of cf at the end of transition is diminished by decreasing β.

The DNS is implemented using the OpenCFD code (Li, Fu & Ma 2010), which
has been widely used and validated in compressible transitional and turbulent flows
(see Li et al. 2010; Zhang et al. 2014; Zheng et al. 2016). The N–S equations (2.1)
are integrated in time by using the third-order total-variation-diminishing-type Runge–
Kutta method. The convection terms ∂Fj/∂xj are approximated by a seventh-order
weighted essentially non-oscillatory scheme (Jiang & Shu 1996), and the viscous terms
∂Vj/∂xj are approximated by an eighth-order central finite-difference scheme.

In the present DNS, two Mach numbers are considered, and the parameters are
listed in table 1. The computational domain with size Lx×Ly×Lz is discretized using
grid points Nx×Ny×Nz with grid spacing 1x×1y×1z. The superscript ‘+’ denotes
a quantity normalized by a wall unit (Robinson 1991), i.e. the viscous length scale
δν ≡µw/(ρwuτ ) or the friction velocity uτ ≡

√
τw/ρw with the wall shear stress τw in

the fully developed turbulent region. Moreover, the real-gas effect is not considered
as in previous low-enthalpy DNS studies (e.g. Pirozzoli et al. 2004; Duan, Beekman
& Martin 2011; Zhang et al. 2014).

Table 2 summarizes the Mach number, Reynolds number Reθ ≡ Re∞θ based on
the momentum thickness θ and grid resolution in wall units in recent DNS of
compressible transitional and turbulent boundary layers. The grid resolution of the
present study is comparable to those in recent DNS studies.

The computational domain is partitioned into four zones in the streamwise direction
to reduce the computational cost. The range and number of grid points in the
streamwise direction of each computational zone are listed in table 3. A coarse grid
is used in the first laminar zone, containing the region of blowing and suction from
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Ma∞ Laminar Transition Turbulent Sponge

2.25 [0, 2], 750 [2, 5.5], 1872 [5.5, 8], 2000 [8, 12], 178
6 [0, 2.5], 500 [2.5, 5.5], 1015 [5.5, 8], 1600 [8, 12], 85

TABLE 3. The range and number of grid points in the streamwise direction for four
computational zones in DNS.

xa = 0.5 to xb = 1.0 and a small fraction of the transition region. A fine grid is used
in the third turbulent zone, where the flow has reached the fully developed turbulent
state. A stretched grid is applied to the second transition zone to smoothly transform
the coarse grid to the fine grid. A gradually coarser grid is used in the fourth sponge
zone to minimize the numerical error generated by the outlet boundary condition. In
the wall-normal direction, exponentially stretched grid points

yj = Ly
tanh[b(( j− 1)/(Ny − 1)− 1)]

tanh b
+ Ly, j= 1, 2, . . . ,Ny, (2.10)

with b= 2.93, are applied to capture small-scale structures near the wall. A uniform
grid is applied in the spanwise direction.

The present DNS results are validated by theoretical and existing numerical results
in figure 3. The mean flow statistics in the fully developed turbulent region from
DNS in figure 3(a) agree well with the DNS results in Pirozzoli et al. (2004).
Figure 3(b) shows that the van Driest transforms of the normalized mean velocity
profiles satisfy the theoretical fits in the viscous sublayer and the logarithm law
region. Figure 4(a) shows that the skin-friction coefficient cf ≡ τw/(

1
2ρ∞U2

∞
) along

the streamwise direction from DNS agrees well with the empirical formulae of
cf in the laminar and fully developed turbulent regions. Here, the formula for the
compressible laminar skin friction is

cfL(x)=
0.664√

Re∗x
, (2.11)

with Re∗x = ρ
∗U∞x/µ∗ (see Anderson 2010) at the reference temperature

T∗ = 1+ 0.032Ma2
∞
+ 0.58(Tw − 1). (2.12)

The formula for the compressible turbulent skin friction is

cfT(x)=
0.455

S2

[
ln

(
0.06

S
Rex

1
µw

√
1

Tw

)]−2

, (2.13)

with Rex ≡ Re∞x, S=
√

Tw − 1/ sin−1 A and A= (r((γ − 1)/2)Ma2
∞
(1/Tw))

1/2, which
is accurate over the practical range of Reθ , Ma∞ and Tw (see White 2006).

The rapid increase of cf signals the transition, and this appears to coincide with
the generation of three-dimensional vortices and the breakdown of large-scale coherent
structures. The transitional regions are roughly at 26 x 6 4 and 36 x 6 5 for Ma∞=
2.25 and Ma∞ = 6, respectively.
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T

2.0
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5

0
101 103100 102

y+

Ma∞ = 2.25, u+
Ma∞ = 2.25, u+

√d

Ma∞ = 6, u+
√d

Ma∞ = 6, u+

ln y+/0.41 + 5.5
y+

(a) (b)

FIGURE 3. (Colour online) Validation of the present DNS result. (a) Mean profiles in
the fully developed turbulent region at Ma∞ = 2.25 in the present DNS (lines) and in
the DNS (symbols) by Pirozzoli et al. (2004). The overbar denotes the Reynolds average
over the spanwise direction. (b) Normalized mean velocity profiles ū+ (symbols) and their
van Driest transforms ūvd =

∫ ū+

0 (ρ̄/ρ̄w)
1/2 dū+ (solid and dashed lines) with theoretical fits

ūvd = y+ in the viscous sublayer and ūvd = ln y+/0.41+ 5.5 in the logarithm law region.

3

2

1

Ma∞ = 2.25
Ma∞ = 6
cfL
cfT

cf

0 2 4 6 8
x

0 2

2400 ÷ 150 ÷ 160
3200 ÷ 200 ÷ 240
4800 ÷ 200 ÷ 320

4 6 8
x

1.5

1.0

0.5

(÷ 10-3) (÷ 10-3)(a) (b)

FIGURE 4. (Colour online) The skin-friction coefficient along the streamwise direction.
Note the spatial coordinate is normalized by the reference length L = 1 inch in DNS.
(a) Comparison of DNS results and empirical formulae (2.11) and (2.13) at two Mach
numbers. (b) Convergence of cf with three grid resolutions listed in table 1 at Ma∞ = 6.

The grid convergence of the skin friction for Ma∞ = 6 is assessed using three
different grid resolutions in figure 4(b). Since cf is converged for the moderate and
fine grids, the moderate grids are used in the following study. Furthermore, we find
that the tails of the two-point correlations of the velocity components in the spanwise
direction are sufficiently small at lateral boundaries (not shown), which ensures that
Lz is large enough so that the imposed periodic boundary condition does not affect
flow statistics (Pirozzoli et al. 2004).

2.2. Lagrangian scalar field
The three-dimensional Lagrangian scalar field φ(x, t) is an ideal passive tracer field,
and isosurfaces of φ are material surfaces in the temporal evolution. The scalar field
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Image-based modelling of skin friction in boundary-layer transition 1183

is governed by the pure convection equation

∂φ

∂t
+ u · ∇φ = 0. (2.14)

Although φ is similar to the temperature or species concentration, it has no diffusivity
so that it has no smallest scale in the evolution at long times. Thus it can display
a rich geometry of flow structures at very fine scales, and excludes the subjective
selection of the diffusivity value.

The backward-particle-tracking method (Yang et al. 2010; Yang & Pullin 2011),
which is numerically stable and has no numerical dissipation, is used to solve (2.14).
In this method, trajectories of fluid particles are calculated by solving the kinematic
equation

∂X(x0, t0|t)
∂t

=V(x0, t0|t)= u(X(x0, t0|t), t), (2.15)

where X(x0, t0|t) is the location at time t of a fluid particle which was located at x0
at the initial time t0, V(x0, t0|t) is the Lagrangian velocity of the fluid particle and
u(X(x0, t0|t), t) is its local Eulerian velocity.

The initial Lagrangian field is uniquely determined as φ(x0, t0) = y based on the
criteria of the best approximation of vortex sheets and geometric invariance of φ in the
laminar state (Zhao et al. 2016). The isosurfaces of φ(x0, t0) are streamwise–spanwise
planes at different distances from the wall at the initial time. Near the inlet, the
amplitudes of initial disturbances are very small compared to the mean flow, so that
the material sheets are almost invariant. As the disturbances develop with increasing
x, the material surfaces are stretched and folded in the streamwise and wall-normal
plane. Subsequently, some parts of the material surfaces can be rolled up into complex
shapes with three-dimensional geometric characteristics in the evolution (Zhao et al.
2016).

In the numerical implementation of the backward-particle-tracking method, φ at a
given time t is calculated as follows (Zheng et al. 2016).

(i) The full Eulerian velocity field on the grid Nx × Ny × Nz within a time period
from t0 to t> t0 is solved by DNS and then stored to disk.

(ii) As sketched in figure 2, at the given time t, particles are placed at uniform grid
points of Np

x × Np
y in a subdomain of interest in a number of x–y planes for further

geometric analysis. The time period 1T ≡ t− t0 for the backward-particle tracking in
the implementation is set to be 1T = 1 following the selection argument in Zheng
et al. (2016). Numerical experiments demonstrate that the statistical results for φ are
not sensitive to the value of 1T > 1.

(iii) The particles are released and their trajectories are calculated backward in time
within 1T or until they arrive at x0 = 0.2 where the initial material surfaces are
considered as planar sheets. A three-dimensional, fourth-order Lagrangian interpolation
scheme is used to obtain the fluid velocity at the location of each particle. An explicit,
second-order Adams–Bashforth scheme is applied for the time integration, and time
steps 1t = 0.0025 for Ma∞ = 2.25 and 1t = 0.005 for Ma∞ = 6 are selected by the
criterion 1t 6 δν/uτ for capturing the finest resolved scales in the velocity field.

(iv) After the backward tracking, we obtain initial locations x0 of the particles and
the flow map

Ft0
t (X) :X(x0, t0|t) 7→ x0, t > t0. (2.16)

Then the Lagrangian field φ(x, t) at any given time t is obtained as

φ(x, t)= φ(Ft0
t (X), t0). (2.17)
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FIGURE 5. (Colour online) The profile of the sliding window function for extracting φf
from the entire φ.

2.3. Geometric diagnostic methodology
A systematic diagnostic tool has been developed to quantify the multi-scale geometry
of flow structures in the transition of boundary layers (see Zheng et al. 2016). It is
also a general signal processing method for characterizing preferential orientations in
the scalar pattern of images from DNS (see § 3) and experiments (see appendix A).

First, a sliding window filter is used to extract the spatially evolving scalar
structures and capture their major deformation in the compact frames at different
streamwise locations. The filter is defined as

f (x)= exp
[
−n
(

x− xc

lw

)n]
, (2.18)

where xc is the position of the window centre, lw is a characteristic width of the
window and n is a positive even integer. Figure 5 illustrates the profile of the filter.
From (2.18), the window width l≡ 2(x− xc) of the filter for a given f is

l= 2 lw exp
[

ln(− ln f /n)
n

]
. (2.19)

The two-dimensional scalar field for further analysis is extracted in a compact region
with the cutoff window width l = lc given f = 0.0001 at the boundaries. The major
features of the extracted scalar field with a large scalar gradient ∇φ are captured in
the subdomain with the effective window width l= le for f >0.9. As shown in figure 5,
we choose n= 16 to smooth the transition of f from f = 0 to 1 with lc/lw= 1.93 and
le/lw = 1.46.

Setting le= 1 and given xc, the extracted Lagrangian scalar field φf (x, t) is obtained
as

φf (x, t)= φ(x, t)f + φ(x0, t0)(1− f ). (2.20)
The extracted Lagrangian field in the sliding window has a smooth transition from
an evolving scalar φ(x, t) to the initial scalar φ(x0, t0) at lateral boundaries of the
window, and the effect of this artificial transition on the further directional analysis
is negligible. Thus the periodic boundary condition of φf in the x-direction and the
mirror extension of φf in the y-direction can facilitate the fast Fourier transform of φf
in further analysis without the numerical artefact due to possible discontinuities at the
boundaries (Zheng et al. 2016).
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FIGURE 6. (Colour online) Schematic plots of (a) the inclined structure with characteristic
angle and scale in physical space and (b) frequency window functions Uj(r, θ) supported
on circular wedges in Fourier space with the region highlighted by the red circle for the
characteristic angle and scale.

The multi-scale and multi-directional geometric analysis (Yang & Pullin 2011) is
applied to characterize the evolutionary geometry of φf on a series of streamwise and
wall-normal (x–y) planes. This provides quantitative statistics on the inclination angle
of scalar structures in the images at different scales and streamwise locations during
the transition.

The mechanism of the multi-scale and multi-directional geometric analysis is briefly
explained here, and more details and illustrative examples can be found in Yang &
Pullin (2011). As sketched in figure 6(a), if a two-dimensional scalar field or image
ϕ(x) ∈R2 has a characteristic scale and a preferential orientation, then the geometric
features are quantified from its Fourier transform ϕ̂(k)=F{ϕ(x)} as follows.

A filtered ϕ(x) at scale j and along direction l can be obtained by the inverse
Fourier transform of ϕ̂(k) filtered by the frequency window function Uj(r, θ) =
2−3j/4W(2−jr)V(tl(θ)) in polar coordinates r =

√
k2

1 + k2
2 and θ = arctan(k2/k1) with

j ∈N. Here, the radial window function W(r) and the angular window function V(tl)

are defined by explicit functions (Yang & Pullin 2011).
As illustrated in figure 6(b), each frequency window function in Fourier space is

supported on the region of a circular wedge in the range of wavenumbers 2j−1 6
r 6 2j+1 with j= 0, 1, . . . , je. This implies that the corresponding spatial structure in
physical space is a needle-shaped element or a curvelet (Candes et al. 2006) with the
characteristic length 2−j/2 and width 2−j. Here, je = log2[min(k1,max, k2,max)/2] denotes
the maximum number of scales, where k1,max and k2,max denote maximum resolved
wavenumbers in the discrete Fourier transform of ϕ(x).

The multi-scale decomposition of ϕ(x) gives the filtered component field ϕj(x) =
F−1
{ϕ̂(k)W(2−jr)} with a characteristic length scale Lj= 2−j from the inverse Fourier

transform, where the band-pass filter W(r) is compact in Fourier space. In the
boundary-layer transition, the normalized characteristic length scales of structures in
the multi-scale decomposition are listed in table 4. Subsequently, Lj > 0.5δ will be
referred to as ‘large scale’, Lj 6 50δν as ‘small scale’ and in between as ‘intermediate
scale’.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.535


1186 W. Zheng, S. Ruan, Y. Yang, L. He and S. Chen

Ma∞ Length Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Scale 9

2.25 Lj/δ 5.08 2.54 1.27 0.636 0.318 0.159 0.0795 0.0397 0.0199
2.25 Lj/δν 4472 2236 1118 559 279 140 70 35.0 17.5
6 Lj/δ 4.81 2.41 1.20 0.60 0.301 0.150 0.075 0.0376 0.0188
6 Lj/δν 1857 928 464 232 116 58.0 29.0 14.5 7.25

TABLE 4. Characteristic length scales Lj normalized by the boundary-layer thickness δ
and viscous length scale δν at x= 7.

The orientation information of each filtered component field of ϕ(x) is characterized
by the normalized angular spectrum

Φj(1θ)=

∫
ϕ̂(k)Uj(r, θ) dk∫

Uj(r, θ) dk
, −

π

2
61θ 6

π

2
, (2.21)

where 1θ =πl′2−dj/2e/2, −2dj/2e 6 l′ 6 2dj/2e is the discrete deviation angle away from
the x-axis in the physical space for scale j. As illustrated in figure 2, we define the
inclination angle α between an inclined structure projected onto the streamwise and
wall-normal (x–y) plane and the x-direction. The averaged inclination angle away from
x-axis at each scale j is calculated by

〈α(Lj)〉 =

l′max∑
l′=0

Φj(1θ)1θ

l′max∑
l′=0

Φj(1θ)

, (2.22)

with l′max = 2dj/2e.

3. Scalar images on the streamwise and wall-normal plane
In the spatially developed boundary layer, the Lagrangian scalar field φ is calculated

on x–y planes in the subdomain of interest within Lx1 6 x 6 Lx2 and Ly1 6 y 6 Ly2,
with Lx1= 0.5, Lx2= 6.5, Ly1= 0 and Ly2= 0.3 in the implementation. This subdomain
encloses the transitional region and parts of laminar and turbulent regions. The
numbers of grid points Np

x × Np
y of φ in the subdomain are 38 400 × 1600 and

25 600 × 1600 for Ma∞ = 2.25 and Ma∞ = 6, respectively. These numbers are large
enough to fully resolve the smallest scales of O(δν) for scalar structures.

In figure 7, instantaneous Lagrangian fields on the x–y plane in the transition
process at two Mach numbers provide an overview of the structural evolution. They
both display that inclined scalar structures are emerged in the transitional stage,
which is similar to the experimental visualization using NPLS in He et al. (2011b)
and Wang et al. (2016) (also see figure 15 in appendix A) and the visualization of φ
in the DNS of the natural transition of a compressible boundary layer in Zheng et al.
(2016). We remark that the Lagrangian scalar can keep the scalar gradient sharp
without diffusion to exhibit much finer structures than the experimental visualizations
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FIGURE 7. (Colour online) Instantaneous Lagrangian scalar fields on the x–y plane in the
transitional region at (a) Ma∞ = 2.25 and (b) Ma∞ = 6.

Ma∞ Lx1 Lx2 Ly1 Ly2 Np
x ×Np

y

2.25 0.5 6.5 0 0.3 38 400× 1600
6 0.5 6.5 0 0.3 25 600× 1600

TABLE 5. The size and number of grid points of subdomains of interest for the
Lagrangian scalar field φ.

using dye and hydrogen bubbles (e.g. Falco 1977; Head & Bandyopadhyay 1981;
Lee & Wu 2008).

We apply the sliding window filter to extract the filtered component fields φf (xc)
at a sequence of window centres xc with the marching interval 1xc = 0.1 and the
fixed effective window width le = 1.0 from the entire Lagrangian field φ at a given
time. We remark that the statistical geometry from the filtered component fields with
a smaller effective window width, e.g. le= 0.5, are quantitatively very similar to those
with le = 1.0.

The evolution of the filtered component field at each scale can be obtained using
the scale decomposition of φf (x, t) on the x–y plane at different xc. Figure 8 illustrates
the multi-scale decomposition of a typical φf on the x–y plane. The original field
is extracted by the sliding window filter with the effective window width le in the
transitional region at 3 6 x 6 4 for Ma∞ = 6. The characteristic length scale for each
scale index j is quantified in table 4.

The averaged inclination angle 〈α(x, Lj)〉 of scalar structures in a sliding window
is calculated from φf at each characteristic length scale Lj using the multi-directional
decomposition (Yang & Pullin 2011) and averaged over 10 x–y planes at equispaced
spanwise locations. We find that the filtered component fields at various scales show
different preferential orientations as the observation in Zheng et al. (2016). In general,
〈α〉 at the same x= xc increases with the decreasing length scale Lj in figure 9. The
quantified 〈α〉 in figure 9(b) is sketched by dashed lines in figure 8. We remark that
some weak Gibbs ringing artefacts (see Mishra et al. 2014), the ripple-like patterns
around the major near-wall structures, are generated in filtered component fields in
figure 8(b–e), but they are almost parallel to the real structures, so they have very
minor effects on 〈α〉.

Figure 9 plots the spatial evolution of 〈α(x, Lj)〉 for filtered component fields
from intermediate to small scales at two Mach numbers. In general, 〈α〉 for
small-scale structures are larger than those for intermediate structures in the evolution.
Additionally, 〈α〉 for large scales j= 1∼ 4 is very close to zero and has little variation
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FIGURE 8. (Colour online) Scale decomposition of the Lagrangian scalar field on the x–y
plane in a transitional boundary layer at Ma∞=6 and xc=3.5. Averaged inclination angles
are sketched in dashed lines. (a) Original field, (b) filtered component field at scale 6 with
Lj/δ = 0.15, (c) scale 7 with Lj/δ = 0.075, (d) scale 8 with Lj/δ = 0.0376, (e) scale 9
with Lj/δ = 0.0188.

(not shown). In figure 9, 〈α〉 grows very slowly before x= 2.5 for Ma∞ = 2.25 and
x= 2 for Ma∞= 6, and the difference for various scales is smaller than 5 ◦. According
to figure 4, these two x-positions are close to the location where the rapid growth
of cf begins for each Mach number in figure 4, indicating the beginning of the
transition.

The increasing trend of 〈α(x, Lj)〉 for the intermediate-scale structures with Lj =

O(100δν) is slower than those of the small-scale structures with the length scale Lj 6
50δν . The averaged inclination angles grow from 0◦ to 38◦–40◦ and grow from 5◦ to
34◦ for small-scale scalar structures at Ma∞= 2.25 and at Ma∞= 6, respectively. The
growth rates of 〈α〉 of the small-scale structures are very close for each Mach number.
The increasing 〈α〉 is illustrated by the spatial evolution of filtered component fields
with Lj = 35δν for Ma∞ = 2.25 in figure 10, where various x= xc are selected from
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FIGURE 9. (Colour online) Evolution of the averaged inclination angle (degrees) in
different filtered component fields at (a) Ma∞ = 2.25 and (b) Ma∞ = 6.

the laminar state to the turbulent state, and 〈α〉 at scale 8 in figure 9(a) is marked
by dashed lines in figure 10. In figure 10(a), the small-scale structures with small
〈α〉 appear in the laminar region. Then the small-scale structures are lifted in the
transitional region in figure 10(b–d), and finally converged in the turbulent region in
figure 10(e).

4. Image-based modelling of the skin-friction coefficient
4.1. Model equation

It is inspiring that the rapid growth of the averaged inclination angle in scalar images
coincides with the increasing trend of the skin-friction coefficient in the boundary-
layer transition. Next, we seek a quantitative connection between 〈α(x,Lj)〉 and cf (x).

From the inclination-angle statistics of the filtered component fields on the x–y
plane at different scales, we propose a simple image-based model of the skin-friction
coefficient by blending cfL in (2.11) and cfT in (2.13) as

cf ,model(x)= (1− γα) cfL(xL)+ γα cfT(xT), (4.1)

with

γα(x)=

(
〈α(x,Lj)〉 − 〈α(x,Lj)〉|Lx1 6 x 6 xL

〈α(x,Lj)〉|xT 6 x 6 Lx2 − 〈α(x,Lj)〉|Lx1 6 x 6 xL

)ξ

. (4.2)

Here the subscript ‘L’ denotes the quantities in the laminar region, and ‘T’
the quantities in the fully developed turbulent region; xL and xT denote the
reference locations of laminar and fully developed turbulent regions, respectively;
〈α〉|Lx1 6 x 6 xL and 〈α〉|xT 6 x 6 Lx2 denote conditional averages of 〈α〉 over laminar
and turbulent regions, respectively, for normalizing 〈α〉 in (4.2).

Figure 9 shows that the averaged inclination angle is close to 0◦ at x = xL in
the laminar state, then it increases sharply in the transitional region and finally it
converges to a statistically steady value around x= xT in the fully developed turbulent
state. The reference locations xL and xT are searched from the rightmost and leftmost
of profiles of 〈α(x,Lj)〉 by criteria

〈α(xL,Lj)〉 = (〈α(x,Lj)〉max − 〈α(x,Lj)〉min)× 1 %+ 〈α(x,Lj)〉min, (4.3)
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FIGURE 10. Evolution of the filtered component fields at scale 8 with Lj/δ= 0.0397 on
the x–y plane in the transitional region at Ma∞ = 2.25. Averaged inclination angles are
sketched in dashed lines. (a) xc = 2.5, (b) xc = 3, (c) xc = 3.5, (d) xc = 4, (e) xc = 4.5.

and

〈α(xT,Lj)〉 = (〈α(x,Lj)〉max − 〈α(x,Lj)〉min)× 99 %+ 〈α(x,Lj)〉min, (4.4)

respectively. Here, 〈α〉min and 〈α〉max are the minimum and maximum of 〈α(x, Lj)〉,
respectively, in the subdomain of interest for φ.

The modelled cf is bounded by the empirical formulae (2.11) for cfL and (2.13) for
cfT in (4.1), and the transition from cfL to cfT depends on γα generally ranging from
0 to 1. The imaged-based model is reminiscent of the intermittency-based model of
Dhawan & Narasimha (1958), and γα in terms of the normalized averaged inclination
angle in (4.1) can be considered as an ‘intermittency factor’ to characterize the
emergence of coherent structures or the ‘turbulent spot’. The exponent in (4.2) is
generally related to the steepness of the transition from cfL to cfT , and it is set to be
ξ = 1 unless a variable ξ is explicitly specified. In appendix B, we demonstrate that
the optimal ξ = ξ(Lj) is scale dependent.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.535


Image-based modelling of skin friction in boundary-layer transition 1191

0.1 0.2

Ó r
 (%

)

0.3

Ma∞ = 2.25
Ma∞ = 6

50

40

30

20

10

0

50

40

30

20

10

0 50 100 150 200
lj/∂ lj/∂˜

(a) (b)

FIGURE 11. (Colour online) The relative error of cf ,model calculated from the model (4.1)
based on 〈α(x,Lj)〉 at various scales in terms of (a) Lj/δν and (b) Lj/δ.

4.2. Model validation
The model (4.1) of cf based on averaged inclination angles at different length scales
is assessed by the relative error

εr =

∫
L
|cf ,model − cf ,DNS| dx/L∫

L
cf ,DNS dx/L

× 100 %, (4.5)

with the integral length L = Lx2 − Lx1. The relative errors for DNS at two Ma∞
are shown in figure 11. In general, the discrepancy between the model prediction
cf ,model and the DNS result cf ,DNS decreases with decreasing the characteristic length
scale in the scalar image; we achieve overall good predictions of cf with εr < 15 %
at intermediate and small scales as 0.1δ or Lj < 100δν . Therefore, we suggest
using cf ,model at Lj 6 O(0.1δ) for the model prediction from experimental images of
boundary-layer transition (see appendix A).

As discussed in appendix B, the model prediction can be further improved by using
scale-dependent ξ = ξ(Lj) instead of ξ = 1 in (4.2). Moreover, the intermittency factor
in (4.1) and (4.2) can be modelled by the form suggested by Dhawan & Narasimha
(1958), which is discussed in appendix C.

Based on the error analysis, for example, we use the values of 〈α〉 at the length
scale Lj≈ 0.08δ in the model equation (4.1). As shown in figure 12, the trend of the
increasing averaged inclination angle is qualitatively similar to the rise of cf , and the
modelled cf in equation (4.1) agrees well with DNS results for both Mach numbers.
This implies that it is possible to quantify cf , which is hard to measure in high-Ma
boundary-layer transition, from two-dimensional scalar images that are relatively easy
to obtain from experimental visualization. In addition, the slight overshoot of cf at the
end of the transitional region in DNS is not observed in most of the profiles of 〈α〉
in figure 9, resulting in the under-prediction of cf from (4.1).

For the further application of the image-based model in experiments, the scalar field
for experimental visualization generally has a finite diffusivity instead of the vanishing
diffusivity in the Lagrangian field in the present DNS, so the real scalar field has a
finite smallest scale δφ . Since the effect of the diffusivity on the scalar field is similar
to filtering, the discrepancy assessment of the Lagrangian field in figure 11 can be
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FIGURE 12. (Colour online) Comparison of the skin-friction coefficients from DNS and
the model (4.1) with Lj≈ 0.08δ or O(10)δν , along with the averaged inclination angle of
scalar structures. (a) Ma∞ = 2.25, (b) Ma∞ = 6.
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FIGURE 13. (Colour online) Diagram of the geometry of material surfaces and typical
vortex lines near the surfaces, along with the rise of cf . Solid lines denote vortex lines,
and solid vectors nφ denote the normal of material surfaces.

still useful for Lj > δφ if the image-based model is applied to other scalar images
from experiments. In appendix A, we demonstrate that the image-based modelling of
cf is applicable to experimental images in compressible boundary-layer transition.

4.3. Inclined structures and drag production
The relatively accurate prediction of cf in the image-based model indicates that
the generation of inclined small-scale flow structures is closely related to the drag
production. As sketched in figure 13, one possible reason is that the lifts of material
surfaces during the transition, which are good surrogates of vortex surfaces consisting
of vortex lines, can generate strong inclined shear layers (see Zhao et al. 2016, 2018)
to increase cf .

Assume the flow field is filled with wall-parallel material surfaces in the laminar
state with all the surface normal nφ ≡∇φ/|∇φ| pointing to the wall-normal direction.
In the transitional region, the near-wall material surfaces are lifted due to the growing
streamwise vorticity. This elevation event is quantified by the wall-normal Lagrangian
displacement

1Y(x0, t0|t)= Y(x0, t0|t)− y(x0, t0), (4.6)
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FIGURE 14. (Colour online) The contour of the Lagrangian wall-normal displacement 1Y
and contour lines for the strong shear layers on the x–y plane in the transitional region
at Ma∞ = 6.

where Y is the wall-normal location of a fluid particle on a material surface. The
displacement 1Y quantifies the scalar transport in the wall-normal direction within
a time interval of interest, and Zhao et al. (2016) define the Lagrangian events
‘elevation’ with 1Y > 0 and ‘descent’ with 1Y < 0. The contour of 1Y and the
contour lines of high shear ∂u/∂y in the transitional region are shown in figure 14.
In general, the inclined high shear layers cover the region with 1Y > 0, which is
similar to the observation in an incompressible temporal transitional channel flow
in Zhao et al. (2016), because the strong shear layer can be generated between
the elevated low-speed fluid and the surrounding high-speed fluid. Furthermore, the
region with 1Y > 0, which also corresponds to the inclined scalar structure with
nφ , deviates from the wall-normal direction as sketched in figure 13, which can be
characterized as a finite 〈α〉 in the multi-directional analysis. Thus the inclined high
shear layers accelerate the momentum transport and produce the large Reynolds shear
stress (see Zhao et al. 2016), which can increase cf implied by the relation between
the Reynolds shear stress and cf (see Fukagata et al. 2002; Gomez, Flutet & Sagaut
2009).

5. Conclusions

We develop a model of the skin-friction coefficient cf based on the inclination-angle
statistics of small-scale scalar structures in the images on streamwise and wall-normal
planes. The DNS of spatially evolving flat-plate compressible boundary layers is
performed at Ma∞ = 2.25 and 6, and then the backward-particle-tracking method is
applied to evolve the Lagrangian scalar field in the Eulerian velocity field from DNS.
The multi-scale and multi-directional geometric analysis with the sliding window filter
is then applied to characterize the averaged inclination angle of spatially evolving
scalar structures at a range of scales from a boundary-layer thickness to several
viscous length scales.

The averaged inclination angle increases along the streamwise direction, and the
trend is qualitatively similar to the rise of cf . In the laminar region, the averaged
inclination angle is almost 0◦, then it increases sharply in the transitional region and
finally it converges to a statistically steady value in the fully developed turbulent
region.
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The imaged-based model blends the empirical formulae of cf in the laminar and
fully developed turbulent regions using the increasing normalized averaged inclination
angle of scalar structures at intermediate and small scales, where the averaged
inclination angle can be considered as an intermittency factor in the streamwise
direction. The modelled cf calculated from flow boundary conditions and the scalar
images containing the transitional region agree well with DNS results for both Mach
numbers 2.25 and 6. The minimum relative error of the model, which is less than
15 %, is achieved from small-scale scalar structures at the length scale Lj < 100δν
or 0.1δ. We remark that the current model is free from empirical model parameters,
and we also show the potential for further improvement on the model accuracy in
appendices B and C by introducing an ad hoc model parameter. Furthermore, we
demonstrate the applicability of the imaged-based model of cf to experimental images
in appendix A.

The good performance of the image-based model implies that it is possible to
convert the qualitative knowledge of coherent structures into a predictive model of
the physical quantities concerned in engineering applications. The present modelling
strategy of blending the empirical formulae of cf at the two extreme states is a
simple stretch transform of the averaged inclination angle, and more sophisticated,
machine-learning based algorithms (see Duraisamy, Iaccarino & Xiao 2019) could be
applied to a larger database of scalar images for training better models.

A natural line of extension of this work is to extend the image-based model to
experimental imaging in flat-plate boundary-layer transition with various free-stream
turbulence levels or to other transitional wall flows, e.g. boundary-layer transition on
a concave or convex wall (e.g. Wang et al. 2016, 2019). The image-based model
could be extended to predict other important flow properties such as the heat transfer
and turbulent noise, which are related to the coherent structures, after appropriate
adaption or modification. In addition, the model could facilitate the data assimilation
with experimental and computational results to improve flow predictions.
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Appendix A. Modelling of cf from experimental images
In this section, we demonstrate the applicability of the image-based modelling

of cf for the experiment of a flat-plate supersonic boundary-layer transition. The
modelling procedure, including the extraction of sliding window filter, multi-scale,
multi-directional analysis and the modelling equation of cf , is the same as that for
DNS. We remark that compared with the Lagrangian scalar in DNS, the experimental
images of scalar structures suffer from background noise and an insufficient resolution
of the smallest flow and scalar scales.

The experiment was performed in the KD-03 supersonic wind tunnel with the low
free-stream turbulence level 0.4 % at the National University of Defense Technology
by He et al. (2011b), and the NPLS experimental system is sketched in figure 15. In
the test section of 120× 100 mm2, a horizontal flat plate was placed 30 mm above
the floor. Experimental parameters are given in table 6, where T0, P0, Ts and Ps denote
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FIGURE 15. (Colour online) A sketch of the NPLS experimental system for visualizing
flow structures in the flat-plate boundary-layer transition.

Ma∞ T0 (K) P0 (kPa) Ts (K) Ps (Pa) ρ (kg m−3) µ (N s m−2) U∞ (m s−1) Reθ

3 300 101.0 107 2750 0.089 7.43× 10−6 622.5 5100

TABLE 6. Parameters in the experiment of the flat-plate boundary-layer transition in
He et al. (2011b).

the total temperature, total pressure, static temperature and static pressure, respectively.
Experimental images were obtained in streamwise–wall-normal (x–y) planes. The laser
sheet is normal to the wall along the centrelines of the plate, and a charge-coupled
device (CCD) camera was set normal to the laser sheet.

The flow structures during the transition in the images were visualized using the
NPLS technique based on Rayleigh scattering (see Tian et al. 2009). The images
of tracer nanoparticles illuminated by a pulse planar laser were recorded by the
CCD camera with a resolution 2000 × 2000 pixels and 4096 grey scale grades.
A Q-switched Nd:YAG laser was used as the light source. The pulse energy output
to the test section is 350 mJ for a pulse width of 6 ns and wavelength of 532 nm.
The laser beam is oriented by an articulated arm and focused as a uniform sheet by
a cylindrical lens. Ten NPLS images were sampled at different times. The sampling
time interval 0.2 s is much larger than a flow-through time, the ratio of the flat-plate
length to U∞ in the experiment, so they can be considered as independent samples
for further statistical study. The resolution of each original image is 1856 × 211
pixels within the region of x ∈ [10, 32] cm and y ∈ [0, 2.5] cm, where the origin
of coordinates is at the intersection of the leading edge and plate centreline. In
the implementation, the region remote from wall and without coherent structures
at y > 0.5 cm is removed in the images for preventing the interference of image
background noises on the multi-scale diagnostics.

A typical NPLS image on the x–y plane is shown in figure 16. The grey scale of the
NPLS image is normalized from 0 to 1 and it is proportional to the particle number-
density field and to the local density in the laminar region (see Tian et al. 2009),
so the transition from dark (low grey scale) to light along the y-direction represents
the variation of ρ from low to high. In the upstream region, the laminar boundary
layer grows linearly, and wave-like structures appear further downstream and the flow
becomes unstable. In the downstream region, the breakdown of large-scale structures’
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FIGURE 16. The grey scale of a NPLS image of the flat-plate supersonic turbulent
boundary-layer flow at Ma∞ = 3.

Length Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Scale 9

Lj/δ 1.0 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039
Lj/δν 2008.4 1004.2 502.09 251.04 125.52 62.76 31.38 15.69 7.85

TABLE 7. Characteristic length scales Lj = 2−j cm normalized by the boundary-layer
thickness δ = 0.5 cm or the viscous length scale δν = 2.49 µm.

signals the transition from laminar to turbulent flow. The flow-following ability of the
nanoparticles in NPLS has been validated in various experiments of supersonic flows
(e.g. Tian et al. 2009; He et al. 2011b; Wang et al. 2016). Therefore, the grey scale
in the NPLS image for visualizing flow structures is very similar to the Lagrangian
scalar in figure 7 from DNS. Here we use the same symbol φ to denote the grey scale
of images as a NPLS scalar field.

For each NPLS image, we apply the sliding window filter to extract the instanta-
neous filtered component fields φf (x, t) at a sequence of window centres x = xc
with the marching interval 1xc = 1.5 cm and the fixed cutoff window width lc = 3
cm from the entire NPLS field φ. Then φf (x, t) is decomposed into various scales.
Figure 17 depicts the multi-scale decomposition of a typical φf at x ∈ [22, 25] cm
in the transitional region. We observe that the averaged inclination angle increases
with the decreasing length scale, consistent with the observation in figure 8 from
DNS. The normalized characteristic scales for each scale index j are quantified in
table 7, where the characteristic length scale in the NPLS image is Lj = 2−j cm, the
boundary-layer thickness is estimated as δ = 0.5 cm in the turbulent region and the
viscous length scale δν = 2.49 µm is calculated from the averaged cfT in (2.13) over
the turbulent region.

The averaged inclination angle 〈α(x, Lj)〉 of the NPLS scalar field in a sliding
window is calculated from φf at each Lj using the multi-directional decomposition and
averaged over 10 sample images. In figure 18(a), 〈α(x, Lj)〉 generally grows with x
and with the decreasing Lj at the same x= xc, which is consistent with the observation
in figure 17 and the results in figure 9 from DNS. In addition, 〈α〉 for large scales
j = 1 and 2 are very close to zero and have little variation (not shown). For very
small-scale structures, as shown in figures 17(d), the NPLS image is contaminated by
the background noise, as the grain-like structures remote from the wall. Note if an
image is very noisy, e.g. as a delta-correlated scalar field, 〈α〉 calculated from (2.22)
in the multi-directional decomposition is approximately 45◦. Therefore, 〈α〉 for small
scales j= 7∼ 9 gradually approaches to 45◦ owing to the background image noise.
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FIGURE 17. (Colour online) Scale decomposition of the NPLS scalar field on the x–y
plane in a transitional boundary layer at Ma∞= 3 and xc= 23.5 cm. Averaged inclination
angles are sketched by dashed lines. (a) Original field, (b) filtered component field at scale
4 with Lj/δ = 0.125, (c) scale 5 with Lj/δ = 0.0625, (d) scale 6 with Lj/δ = 0.0313.
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FIGURE 18. (Colour online) Modelling of cf based on experimental images of the
boundary-layer transition at Ma∞ = 3. (a) Evolution of the averaged inclination angle
(degrees) for various filtered component fields. (b) The skin-friction coefficients calculated
from the model (4.1) based on 〈α(x,Lj)〉 at different scales.

Based on 〈α(x,Lj)〉 calculated from experimental images at intermediate scales, we
apply the model (4.1) to estimate the skin-friction coefficient, where cfL and cfT are
calculated from (2.11) and (2.13), respectively, with the parameters listed in table 6.
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FIGURE 19. (Colour online) The relative error of cf ,model calculated from the model (4.1)
based on 〈α(x,Lj)〉 at different scales with ξ = ξ(Lj).

In figure 18(b), the modelled cf satisfies the empirical formulae in laminar and fully
developed turbulent regions, and provides reasonable and consistent estimations in
the transitional region roughly from 20 to 25 cm. As mentioned in the introduction,
the accurate measurement of cf in the experiment of supersonic wall flows is very
challenging, so we can only validate that the modelled cf at least qualitatively
captures the transition from cfL to cfT based on the characteristic orientation statistics
at intermediate and small scales in experimental images.

Moreover, Zheng et al. (2016) showed that the evolution of the averaged sweep
angle defined on x–z planes decays almost monotonically along the streamwise
direction in compressible boundary-layer transition. Thus the modelled intermittency
factor (4.2) can be extended to depending on the averaged sweep angle, so that the
experimental images on wall-parallel planes can also be used in the modelling of cf .

Appendix B. Optimal ξ in the modelled intermittency factor
In the model (4.1) of cf , the normalized averaged inclination angle of the filtered

component fields can be considered as a surrogate of the intermittency factor in
Dhawan & Narasimha (1958), but its profile depends on the filtering scale in figure 9,
particularly at large scales. In order to mitigate the scale dependence and achieve
more accurate prediction of cf , the optimal scale-dependent exponent ξ = ξ(Lj) in
(4.2), instead of the default value ξ = 1, is considered and calculated by a searching
algorithm that minimizes εr by varying ξ(Lj) for each scale. We find that ξ(Lj)
generally decays with Lj in figure 20. By comparing figures 11 and 19, the relative
errors for the scale-dependent ξ(Lj), which are less than 10 % with Lj < 0.1δ or
Lj < 50δν , are much smaller than those for ξ = 1.

The skin-friction coefficients calculated from the image-based model (4.1) with
the optimal ξ(Lj) at different scales are compared to cf from DNS in figure 21. In
general, the predicted profiles of cf based on the optimal ξ(Lj) collapse with small
discrepancies for intermediate and small scales.

However, ξ(Lj) is determined by DNS results and varies with different Mach
numbers in figure 20. Thus although this ad hoc model parameter can further
improve the model prediction of (4.1), it is challenging to directly apply without
a priori information of ξ(Lj) for other flows. We expect to investigate whether there
exists a universal form of ξ(Lj) in future work.
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FIGURE 20. (Colour online) The optimal scale-dependent exponent ξ(Lj) at
different scales.
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FIGURE 21. (Colour online) Comparison of the skin-friction coefficients from DNS and
the model (4.1) with ξ(Lj) at different scales. (a) Ma∞ = 2.25, (b) Ma∞ = 6.

Appendix C. Image-based modelling of cf with the intermittency factor of
Dhawan and Narasimha

In this section, we provide another option to estimate the intermittency factor in
the image-based model of cf . Dhawan & Narasimha (1958) suggested a half-Gaussian
shape for the intermittency factor. Based on the profile of the averaged inclination
angle in scalar images, the intermittency factor in the function shape suggested by
Dhawan & Narasimha (1958) can be determined by

γDN =

1− exp
[
−
(x− xL)

2

l2
tr

]
, x > xL,

0, x< xL.

(C 1)

Here, ltr = (xT − xL)/σtr is a measure of the extent of the transitional region, where
xL and xT are calculated by (4.3) and (4.4), respectively, and an empirical model
parameter σtr controls the width of transition in γDN .

Based on γDN , the image-based model of cf becomes

cf ,model(x)= (1− γDN) cfL(xL)+ γDN cfT(xT). (C 2)
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FIGURE 22. (Colour online) The relative error of cf ,model calculated from the model (C 2)
with various σtr based on 〈α(x,Lj)〉 at different scales.
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FIGURE 23. (Colour online) Comparison of the skin-friction coefficients from DNS
and the image-based model (C 2) with σtr = 2.5 at different scales. (a) Ma∞ = 2.25,
(b) Ma∞ = 6.

Compared with γα implied in figure 9, γDN increases monotonically along x and
is shown to be universal in terms of the normalized streamwise coordinate in the
transitional region (see Dhawan & Narasimha 1958). The relative errors from the
estimation of (C 2) with various σtr= 2, 2.5 and 3 for DNS at two Ma∞ are shown in
figure 22, and the comparison between DNS and the model (C 2) with σtr = 2.5 and
various scales is shown in figure 23. We observe that the discrepancies are generally
small and most of them are less than 15 %. For 〈α(x,Lj)〉 at large scales, estimations
of cf with γDN are even better than those with γα in figure 11. On the other hand,
the weakness of (C 2) is that it involves an ad hoc model parameter σtr. The optimal
value of σtr appears to be around 2 and 3 from our modelling tests.
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