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In the present study the mechanisms of evolution of propeller tip and hub
vortices in the transitional region and the far field are investigated experimentally.
The experiments involved detailed time-resolved visualizations and velocimetry
measurements and were aimed at examining the effect of the spiral-to-spiral distance
on the mechanisms of wake evolution and instability transition. In this regard, three
propellers having the same blade geometry but different number of blades were
considered. The study outlined dependence of the wake instability on the spiral-
to-spiral distance and, in particular, a streamwise displacement of the transition
region at the increasing inter-spiral distance. Furthermore, a multi-step grouping
mechanism among tip vortices was highlighted and discussed. It is shown that such
a phenomenon is driven by the mutual inductance between adjacent spirals whose
characteristics change by changing the number of blades.
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1. Introduction
The knowledge of the mechanisms of wake instability behind rotor systems, such

as propellers, wind turbines or helicopters rotors, plays an important role in many
engineering applications because of its direct correlation to performance, vibrations,
noise and structural problems.

From the physical point of view, the wake generated by a single rotor blade consists
of two systems of vortical structures at the root and tip sections and a sheet of trailing
vortices shed spanwise as the consequence of the non-constant circulation that usually
characterizes the operating range of a rotor. This vortex system forms a helical vortex
sheet surface that undergoes a complex process of roll-up, dividing the flow into
a strong central vortex and distinct embedded tip vortices (see e.g. Kerwin 1986;
Conlisk 1997; Vermeer, Sorensen & Crespo 2003).

The study of the rotor wake evolution has received some attention in the literature
and a number of empirical and theoretical analyses dealing with the problem of the
development and the dynamics of the wake structures in the near field have been
reported (Landgrebe 1972; Kobayashi 1982; Jessup 1989; Chesnakas & Jessup 1998;
Leishman 1998; Stella et al. 2000; Di Felice et al. 2004; Felli et al. 2006).

Recent advances in the stability analysis of helical tip vortices pointed out that
the stability of a rotor wake is the consequence of the mutual interaction among
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the tip and hub vortices and the helical filaments trailing from each blade (Lugt
1996; Okulov & Sørensen 2007). This mutual interaction stabilizes the system of
multiple helical tip vortices in a rotor wake, otherwise unstable independent of the
filament number, the core diameter, the disturbance type and the occurrence of
the hub vortex, as widely proved in the literature (Levy & Forsdyke 1928; Widnall
1972; Gupta & Loewy 1974; Okulov 2004; Okulov & Sørensen 2007). In this regard,
considering a model with N helical tip vortices embedded in a helical vortex field
formed by the trailing vortex sheet of the blades and the root vortices, Okulov &
Sørensen (2007) demonstrated the existence of stable tip vortices. Therefore, the
unconditionally unstable model of Joukowsky (1912) was based on the assumption
that the circulation is constant over the blade span and that the wake only consists
of a root and a tip vortex stabilizes if the contribution of the trailing vortex sheet
is considered. It is worth noting that even though the flow configurations might
be significantly different, most of the stability models and theories concerning the
stability of helical vortices can be applied not only to propellers but also to helicopter
rotors and wind turbines (see Okulov 2004; Okulov & Sorensen 2007, 2010 for wind
turbine rotors; and Leishman et al. 1998 for helicopter rotors).

In spite of a number of studies dealing with the problem of the instability of helical
vortex systems, the identification of the triggering mechanism of the rotor wake
instability as well as the reconstruction of the complex dynamics of the propeller
structures in the transition and the far wake are still open problems in the fluid
dynamics research, not yet explained or described thoroughly in the literature. Indeed,
the adoption of simplified theoretical models is not adequate to represent the wake
evolution in the transition region and the far field, where the progressive distortion
of the wake from the helical geometry with radial and longitudinal variations of
the pitch, the auto and mutual interaction effects among the vortical structures,
the complex deformation of the tip and hub vortices, the effect of turbulence and
viscosity have to be considered for a correct description of the problem. Owing to
the complexity of the flow field, the support of complex theoretical models and very
advanced experimental techniques are required for a thorough understanding of the
problem of the rotor wake instability and far-field evolution mechanisms.

The analysis of the state of the art reveals some open problems and a number
of basic questions arise from the lack of understanding of this specific problem.
Specifically these are as follows.

(i) Rotor wake transition to instability. The mechanisms leading to the instability of
a rotor wake have not been described yet in the literature. Recent experimental works
provide a description of some typical features of the propeller wake in the transition
and far fields, as the occurrence of a precession motion of the propeller streamtube
around the hub vortex spiral coupled with the energy transfer from the blade to
the shaft harmonic (Felli et al. 2006). However, no explanation on the nature of the
perturbation triggering to the wake instability and its mechanism of propagation has
been given yet. Di Felice et al. (2004) hypothesized a strict correlation between the
transition to instability and the interaction between the trailing wake of the actual
blade and the tip vortex of the previous one which occurs as the consequence of
the different pitch angle of their helical paths. Pressure measurements (Felli et al.
2006) and flow visualizations (Stella et al. 2000) support this thesis, which revealing
dependence of some typical features of the wake instability (e.g. phase shift of the
tip vortex, blade-to-shaft harmonic energy transfer, destabilization of the hub vortex,
precession of the streamtube) on the aforementioned mechanism of mutual interaction
between the tip vortex and the trailing wake of the successive blade. Therefore, the
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Mechanisms of evolution of the propeller wake in the transition and far fields 7

distance between two consecutive blade wakes seems to play a role in the slipstream
instability mechanism, especially at the starting point of the tip and hub vortex
destabilization.

(ii) Wake evolution in the transition and the far regions. The dynamics of the
propeller vortices is a complex phenomenon in which the effect of the viscosity,
the mechanisms of auto and mutual induction (Widnall 1972), the effect of torsion
(Ricca 1994) have to be accounted for and described during the evolution down to
the breakdown. This is a difficult task for both a theoretical and an experimental
approach, justifying the lack of studies dealing with this aspect in the literature,
especially for what concerns the transition and the far wakes. Indeed, the state of
the art on the problem of the rotor wake evolution is limited to the near wake and
to the development of simplified models. On the theoretical side, the state of the art
has progressed from the early momentum and vortex theories (Rankine 1865; Froude
1889; Glauert 1927; Goldstein 1929; Mangler & Squire 1953; Pizali & Duwaldt 1962;
Miller, Tang & Perlmutter 1968) to advanced models with a distorted geometry of
the wake, in which each blade releases a sheet of vortex filaments free to interact
and distort until converging to a deformed geometry. These models include the
tip vortex roll-up and the distortion of the wake shed from the inboard sections
(Landgrebe 1972; Kerwin 1986). On the experimental side, the support of advanced
optical techniques and flow visualizations allowed a quite detailed reconstruction of
the rotor structure dynamics in the near wake of marine propellers, helicopter rotors
and wind turbines. The mechanism of the tip vortex rolls up was investigated by
Kobayashi (1982), Cenedese, Accardo & Milone (1985), Jessup (1989), Chesnakas &
Jessup (1998), Stella et al. (2000). In these papers, the problem of wake evolution was
analysed through velocity measurements along transversal planes in the near wake
of a marine propeller. Di Felice et al. (2004) studied the propeller wake evolution
along a diametral plane of the wake for different swirl numbers. Felli et al. (2006) re-
proposed the experiment of Di Felice et al. (2004) investigating the phase correlations
between velocity and pressure signals. Vermer et al. (2003) tackled the problem of
the aerodynamics of a wind turbine. The problem of the rotor wake instability was
tackled experimentally by Ortega (2001) for a two-bladed propeller and re-proposed
by Felli et al. (2008) that analysed the power spectra of the velocity signals streamwise
down to the far wake.

(iii) Tip and hub vortex breakdown. The basic underlying mechanism leading to
tip and hub vortex breakdown in a rotor wake is still not known completely. Flow
visualizations have provided some global information on the location where the hub
vortex breaks down (Stella et al. 2000). However, the behaviour of the tip vortices
as well as the physical mechanism or mechanisms leading to the propeller wake
breakdown is still unknown. This is mainly due to the fact that measurements,
whether invasive (e.g. hot wires) or non-invasive (e.g. LDV), and flow visualizations
are difficult to obtain and interpret in such a complex, unsteady, three-dimensional
(3D) flow.

In this paper, we experimentally investigate the above aspects through velocity
measurements and high-speed visualizations. The study was performed on a reference
model of a marine propeller, widely studied in the literature with the most advanced
experimental (Cenedese et al. 1985; Stella et al. 2000; Di Felice et al. 2004; Pereira,
Salvatore & Di Felice 2004a; Pereira et al. 2004b) and numerical techniques (Salvatore
et al. 2003, 2006; Greco et al. 2004; Bensow, Liefvendahl & Wikstrom 2006).

In order to analyse the instability mechanisms at different inter-spiral distances, the
number of blades was varied from two to four.
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Figure 1. Test section facility.

The laboratory study conducted in controlled flow conditions has a practical
relevance, since in real situations the position at which the tip vortex system destabilize
depends, besides the loading conditions, largely on the propeller geometry and the
blade number. The destabilization of the tip vortex system can occur even very close to
the trailing edge of the propeller blades and, thus, it may influence the performance
of the rudder and the hull. For instance, this is the case of highly skewed propellers
or propeller/rotors having a large number of blades. Furthermore, the grouping
mechanism induced by the destabilization may influence the acoustic signature of a
propeller in submarines (Liefvendahl, Felli & Troëng 2010). In addition, for installed
propellers, the perturbation of the incoming flow may influence the position at which
the wake destabilizes. However, the analysis of instability mechanisms in more realistic
configurations is quite complex and remains a challenge for future studies.

This work is organized as follows. In § 2, we deal with the description of the propeller
model, the measurement techniques and the experimental set-up. The problem of the
propeller wake instability and breakdown is addressed in §§ 3 and 4. The problem
was tackled through the analysis of high-speed visualizations in the transition and
the far wake and phase-averaged velocity measurements, at different blade numbers.
In addition, a thorough data analysis was performed on velocity time histories.

Different indicators such as power spectral density (PSD), phase trajectories (PT),
Lyapunov exponents (LE) (Bergé, Pomeau & Vidal 1984; Hilborn 2000) were adopted.
A description of such mathematical tools is provided in § 3. Conclusions and final
remarks are presented in § 5.

2. Experimental set-up and test conditions
2.1. Facility

The tunnel, a Kempf & Remmers close jet-type circuit, having dimension 12 m × 8 m,
is developed along a vertical plan. The test section is 2.6 m long and has a square
cross-section of 0.6 × 0.6 m2 (figure 1). Eight Perspex windows on the four walls (two
for each side) enable the optical access. The nozzle contraction ratio is 5.96 : 1 and
the maximum water speed is 12 m s−1. The highest free-stream turbulence intensity in
the test section is less than 2 %. In the test section, the mean velocity uniformity is
within 1 % for the axial component and 3 % for the vertical component.

In the present experimental set-ups, the propeller was installed on a J15 model
Kempf & Remmers dynamometer, having 2450 N maximum thrust, 98 Nm maximum
torque and 4000 r.p.m. maximum speed, at x = 200 mm downstream of the test section
entrance.
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Mechanisms of evolution of the propeller wake in the transition and far fields 9

Figure 2. Blade configurations of the E779 propeller.

2.2. Propeller model

The propeller used for the experimental activity was derived from the E779a model.
This is a Wageningen modified type, four bladed, fixed-pitch, right-handed propeller,
characterized by a nominally constant pitch distribution and a very low skew. This
model propeller was chosen for two main reasons. First, this propeller was widely
studied in the past using advanced experimental techniques and has been referred
to in a number of papers in the literature (Cenedese et al. 1985; Stella et al. 2000;
Di Felice et al. 2004; Pereira et al. 2004a, b; Felli et al. 2006). Second, this model
propeller, highly loaded at the tip, sheds strong tip vortices and, hence, it is particularly
suitable for the study of the wake instability and breakdown phenomena, where the
dynamics of the tip vortices is considered to play an important role. The propeller was
assembled into different configurations, with different number of blades. This solution
was developed by designing three special hubs whose geometries allow arrangement
of the blades in configurations with two, three and four elements, respectively. A
picture of the three propeller configurations is given in figure 2.

The geometrical characteristics of the propellers are given in table 1; further
information (i.e. radial distribution of chords, pitch, skew, blade section camber and
thickness forms) is documented in Salvatore et al. (2006).

The performance characteristics were determined for the three configurations of the
E779a propeller. The different values of the advance coefficient were obtained varying
the facility speed and keeping the propeller rotational speed constant at n= 25.

The propeller coefficients (i.e. thrust (Kt), torque (Kq) and efficiency ([eta])) versus
the advance ratio are illustrated in figure 3(a). Obviously, the intensity of the propeller
thrust coefficient increases with the increasing blade number. However, the dependence
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Propeller diameter D = 227.27 mm
Number of blades Z = 2,3, 4
Rake (nominal) i = 4◦350′ (forward)
Expanded area ratio EAR = 0.689
Hub diameter (at prop. ref. line) DH = 45.53 mm
Pitch ratio (nominal) P/D = 1.1

Table 1. Dimensions of the INSEAN E779a model propeller.
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Figure 3. (a) Performance characteristics and (b) thrust coefficient per blade for the two-,
three- and four-bladed propellers.

of the propeller thrust on the blade number is not linear due to the blade-to-blade
interaction that induces performance decay as the blade number increases. This
behaviour is illustrated in figure 3(b), which represents the thrust coefficient per blade
versus the advance ratio. In this case, increasing the blade number results in a decay
of the thrust.

This trend is particularly apparent at low J (highly loaded propellers) where a
larger deviation among the diagrams of the three propellers is observed. The reduced
hydrodynamic pitch of the propeller wake at low J and, consequently, the stronger
inter-blade induction effects explain this behaviour.

Additional tests were performed in order to quantify the effect of the Reynolds
number on measured loads. In particular, measurements were repeated for three
different values of the propeller rotational speed, corresponding to 12, 25 and 30
revolutions per second (r.p.s.). Measured thrust coefficients are compared in figure 4.

The analysis shows that the effect of Reynolds number becomes definitively
negligible above a ‘critical’ value. Actually, the deviation among the diagrams of
the thrust coefficient versus the advance ratio, nearly zero for n= 25 and 30, increases
sensibly when the rotating velocity of n= 12 is considered. This behaviour is due to
the laminar portion of the boundary layer at the blade’s leading edge, as observed by
Di Felice et al. (2004). In fact, its extension depends on the local Reynolds number
and, in particular, it reduces as the Reynolds number increases. The variability of
the propeller thrust and torque as to the Reynolds number, widely discussed in
the literature, is typically experienced during open-water tests in towing tanks on
medium-size propeller models. Comments on this subject may be found e.g. in the
Report of the Propulsion Committee of the 23rd ITTC (2002).
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Mechanisms of evolution of the propeller wake in the transition and far fields 11
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Figure 4. Effect of the Reynolds number on the thrust coefficient: two- (a), three- (b) and
four- (c) bladed propellers.

Encoder E779a propeller

n

LDV probe

LDV processors

Synchronizer PC

Figure 5. Experimental set-up for the LDV measurements.

2.3. Velocity measurements

Flow velocities were measured by means of a two-component back-scatter laser
Doppler velocimeter (LDV, which consists of a 6 W argon laser, a fibre optic probe,
a 40 MHz Bragg cell for the velocity versus ambiguity removal and a digital burst
correlator signal processor. The experimental set-up of the LDV tests is sketched in
figure 5.

The probe works in a back-scatter mode and allows measurement of two orthogonal
velocity components simultaneously. Specifically, it was arranged to measure the axial
and vertical components of the velocity in a fixed frame. In view of the axisymmetrical
propeller inflow, the reconstruction for the 3D field in a transversal plane behind the
propeller can be carried out sweeping the measurement volume along two orthogonal
radial directions: along a vertical radius for the axial and radial components and along
a horizontal radius for the axial and tangential components (Cenedese et al. 1985).
Therefore, all measurements at a certain radius can be conducted without moving the
LDV volume, acquiring the angular position of the reference blade and using phase
sampling techniques (PST). This was carried out by a rotary 7200 pulse/revolution
encoder and a synchronizer that provides the digital signal of the propeller position
to the TSI RMR (rotating machine resolver).

The correspondence between the randomly acquired velocity bursts and the
propeller angular position was carried out by using the TTT (tracking triggering
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Encoder
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Camera 1
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Synchronizer

E779a propeller

Figure 6. Experimental set up for the high-speed visualizations.

technique) phase sampling technique (Stella et al. 2000; Felli & Di Felice 2005).
Details about this technique are provided in § 3.4. The LDV probe was set up
on a computer-controlled traversing system which allows obtaining a displacement
accuracy of 0.01 mm in the three axes and to achieve a high automation of the LDV
system. The seeding particles size and concentration were controlled in the facility: the
water was filtered before the measurements (3 µm low-pass) and seeded with 10 µm
silver hollow coated glass particles. Water seeding was performed at the start of the
tests, because it was observed that the density of the seeding particles remains almost
constant for a long time in the facility. Data acquisition was accomplished by using a
personal computer, while the post-processing analysis, requiring several gigabytes of
data storage and computational resources, was performed on a workstation.

2.4. High-speed visualizations

Flow visualizations were undertaken making the tip vortices cavitating by varying the
pressurization of the facility. Figure 6 shows a sketch of the camera arrangement
in the test section. Visualizations were performed by means of two high-speed
CMOS cameras, arranged to image the test section from two orthogonal directions.
The cameras were two Photron-Ultima APX having a maximum resolution of
1024 × 1024 pixel2 up to 2000 frames s−1. Cameras were equipped with a 60 mm lens
with 2.8 f-number. The synchronization between the two devices was accomplished
by an external impulse that triggers the acquisition of the first (master) and second
camera (slave), at the desired frame rate and with a selected delay (in the present
case �t = 0). Three 1000 W lamps were used to light the investigated area with the
aim to ensure a homogeneous distribution of the light over the imaged area and
an adequate quality of the visualizations up to a frame rate of 4000 Hz. During
the visualizations, the static pressure of the facility was modulated depending on
the propeller blade configuration and ranged between 0.4 and 0.7 bar. This ensured
an adequate identification of the propeller vortical structures during their evolution,
without compromising the quality of the images for the occurrence of air bubbles.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.150


Mechanisms of evolution of the propeller wake in the transition and far fields 13

2.5. Reference frames and dimensionless groups

Two reference systems were adopted.
(i) A Cartesian reference frame O–XYZ with the origin O at the intersection

between the propeller disk and the rotation axis, the X axis downstream-oriented
along the tunnel centreline, the Y axis along the upward vertical and the Z axis
along the horizontal towards starboard.

(ii) A cylindrical reference frame O–XRθ with the origin O in the intersection
between the propeller disk and the rotation axis, the X axis downstream-oriented
along the propeller axis, the R axis along the radial outward and the θ axis along the
azimuth.

Two dimensionless groups govern the rotor flow field in non-cavitating conditions:
the advance ratio J = U∞/2nR, where U∞ is the free-stream velocity, n is the revolution
frequency and 2R is the rotor diameter and the Reynolds number Re = C0.7V0.7/ν,
where C0.7 and V0.7 are the chord of the blade and the velocity at 0.7 r/R, respectively,
and ν is the kinematic viscosity.

3. Mathematical tools for the dynamical analysis of the propeller
wake evolution

The mechanism of the propeller wake instability is characterized through the
application of the following mathematical tools commonly adopted for the analysis
and the classification of dynamical systems: PSD, PT, LE and PST. A short description
of the procedures is given in the following paragraphs, leaving the details to the wide
bibliography available in the field.

3.1. Power spectral density

The Fourier PSD was performed on the time histories of the velocity signals. The
random sampling times in LDV preclude the use of standard spectral methods
for even-spaced samples and require the implementation of spectral estimators for
randomly sampled data. In this regard, the power spectrum of the randomly acquired
LDV signals was estimated using the ‘slotted time’ method as in Gastor & Roberts
(1977). In this algorithm, data pairs are grouped according to the time window
into which their time difference falls. The width of the time window equals the
time delay increment of the digital autocorrelation, so that the correlation estimate
is smoothed over this time and the PSD, computed by Fourier transforming the
estimated correlation, is a windowed estimate. The random nature of the LDV signal
allowed removal of the Nyquist sampling requirement and obtaining a good estimation
of the power spectrum in the range of frequencies of interest. Also, long records (i.e.
about 10 min) were necessary to achieve an acceptable statistical convergence.

3.2. Phase trajectories

The phase space is a mathematical space in which each orthogonal coordinate
represents a degree of freedom of a dynamical system. Usually, the number of degrees
of freedom is not known a priori and it is necessary to reconstruct both the phase
space and the topology of the attractor by using a time delay technique (Takens 1981;
Bergé et al. 1984) from the values of the variable x(t) at the instant t and at n − 1
uncorrelated instants. Then, a phase pseudo-space (i.e. the phase space reconstructed
by the time delay technique) is defined as

X(t) = {x(t), x(t + τ ), . . . , x(t + (n − 1)τ )} . (3.1)
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The time delay τ is typically given by the first zero of the autocorrelation function,
calculated for each signal systematically (Bergé et al. 1984). In this case, the behaviour
of the dynamic system is described in a 3D projection of the pseudo-phase space
through the evolution of the phase trajectories.

A first-order polynomial interpolation of the velocity signals was used in order to
reconstruct a continuous time series to resample at even-time intervals.

3.3. Lyapunov exponents (LE)

For a dynamical system, sensitivity to initial conditions is quantified by the Lyapunov
exponents. When the attractor is chaotic, two trajectories with nearby initial conditions
tend to diverge, on average, at an exponential rate characterized by the largest
Lyapunov exponent (Bergé et al. 1984). This concept is also generalized for the
spectrum of Lyapunov exponents, λi (i = 1, 2, . . . , n), by considering a small n-
dimensional sphere of initial conditions, where n is the number of state variables
used to describe the system. As time (t) progresses, the sphere evolves into an
ellipsoid whose principal axes expand (or contract) at rates given by the Lyapunov
exponents. The presence of a positive exponent is sufficient for diagnosing chaos and
represents local instability in a particular direction.

In the present case, the adopted procedure to evaluate the sensitivity to the initial
conditions is to estimate the maximal Lyapunov exponent according to the method
proposed by Rosenstein, Collins & De Luca (1993). This consists in estimating directly
the separation between pairs of neighbouring points in state space as they diverge
over time. By plotting the log of the divergence versus time the maximal Lyapunov
exponent is estimated by computing a least-squares fit to the linear region of the
resulting curve.

3.4. Phase sampling techniques

The TTT was implemented to phase the randomly acquired velocity bursts with the
angular position of the reference blade. Velocity samples were acquired when Doppler
signal was detected in any of the two LDV channels and tagged with the angular
position of the reference blade at the measurement time. Once acquired, velocity data
were arranged inside angular slots of constant width and here statistically processed
by ensemble averaging. The average was achieved by a large number of repeated
experiments (i.e. 15 000 statistical events considering an acquisition time of 600 s and
a propeller revolution speed of 25 r.p.s.), where each one is a complete revolution
of the propeller. An exhaustive description of the TTT technique and the slotting
procedures can be found in Stella et al. (2000) and Felli & Di Felice (2005). In the
present analysis, statistical processing was performed using 360 overlapped slots of
2ε =2◦ width and implementing a weighted average with Gaussian law to determine
the influence of each velocity sample with the distance from the slot centroid.

This choice was proved adequate to describe accurately flow regions with high
gradient. The statistical population ranged from 1000 to 1500 samples per slot,
depending on the local frame rate of the LDV system.

4. Analysis of the propeller wake instability and breakdown mechanisms
The problem of the propeller wake instability and breakdown is addressed in the

following paragraphs through the analysis of time-resolved visualizations (§ 4.1) and
time histories of velocity signals (§ 4.2).
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4.1. Analysis of the time-resolved visualizations

Time-resolved visualizations are a powerful tool for the detailed qualitative analysis of
the tip and hub vortex dynamics in the transition and the far wake, providing accurate
information on the mechanisms of the propeller wake instability and breakdown. In
addition, this kind of information is particularly helpful to integrate, understand and
interpret the results of the dynamical analysis that is presented in § 4.2. The study aims
at getting an insight into the main features of the tip and hub vortex destabilizing
mechanisms as well as at highlighting any differences in the tip vortex evolution for
different blade number configurations.

High-speed visualization involved an extensive collection of camera recordings at
high frame rates (i.e. 2 kHz), and were acquired for a wide combination of loading
conditions (i.e. J = 0.45, J = 0.55, J = 0.65, J = 0.75, J = 0.85), imaged areas and
blade number configurations (i.e. Z = 2, Z =3, Z = 4). In the following, for the sake
of conciseness, only part of this extensive dataset, representative of the main features
of the tip and hub vortex evolution, is shown.

4.1.1. Visualizations of the propeller wake instability modes

An overview of the wake evolution is shown in figures 7 and 8. The effect of the
number of blades is shown in figure 7, where the evolution of the cavitating traces
of the tip vortices is shown for Z =2, Z = 3 and Z =4. At a given Z, snapshots
are referred to different instants, spaced every �t = 0.1T (where T is the revolution
period).

In this case, the advance ratio of the three propellers (i.e. J =0.45) was chosen
to confine the wake evolution, from the trailing edge to the far wake, within a
single window of the test section. Figure 8 shows the effect of the advance ratio for
Z = 2, Z = 3 and Z =4.

According to Okulov (2004), the transition to the instability shows clear dependence
on the spiral-to-spiral distance. More specifically, the transition region moves
downstream more and more when the spiral-to-spiral distance reduces. It follows
that the blade number Z conditions the position of the onset of the wake instability.
In fact, the blade number influences the spiral-to-spiral distance and the blade loading
conditions (see figure 3b). The latter has an effect on the hydrodynamic pitch of the
wake and, thus, on the spiral-to-spiral distance indirectly.

In the transition wake, the incoming instability of the propeller wake is featured
by an abrupt destabilization of the vortex system. This is clearly shown in the
visualizations of figures 7 and 8. In particular, (i) the tip vortices deform from
the helical path and tend to interact mutually and form group; (ii) the hub vortex
undergoes a sudden deformation from straight to a spiralling geometry.

On the basis of the available dataset of flow visualizations, a comparative estimation
of the positions where the tip and hub vortex instability transitions occur was
carried out for different blade number configurations. In this regard, the location of
the instability inception point would be estimated referring to a typical feature of the
instability process once an identification criterion is defined. In the present case,
the following criteria were adopted to localize the instability inception point of the
tip and hub vortices.

(i) Tip vortices. In the image plane, the envelope of tip vortices describes a curve
I tip(x) (x is the axial coordinate in the image plane) whose slope is zero after the
wake contraction and diverges suddenly where the tip vortex instability transition
occurs (figure 9). The position x∗, at which the tip vortex destabilizes, was defined by
identifying the first position at which such a divergence equals 50 % of the maximum
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t = 0T

t = 0 .1T t = 0 .1T t = 0 .1T

t = 0 .2T

t = 0 .3T

t = 0 .4T

t = 0 .5T

t = 0 .6T

t = 0 .7T

t = 0 .8T

t = 0 .9T t = 0 .9T t = 0 .9T

t = 0 .8T t = 0 .8T

t = 0 .7T t = 0 .7T

t = 0 .6T t = 0 .6T

t = 0 .5T t = 0 .5T

t = 0 .4T t = 0 .4T

t = 0 .3T t = 0 .3T

t = 0 .2T t = 0 .2T

t = 0T t = 0T

(a) (b) (c)

Figure 7. Propeller wake evolution of the two- (a), three- (b) and four- (c) bladed propellers
at J = 0.45. The separation time delay between successive snapshots is �t = 0.1 T .
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J = 0 .45

J = 0 .55

J = 0 .65

J = 0 .75

J = 0 .85 J = 0 .85 J = 0 .85

J = 0 .75 J = 0 .75

J = 0 .65 J = 0 .65

J = 0 .55 J = 0 .55

J = 0 .45 J = 0 .45

(a) (b) (c)

Figure 8. Effect of the advance ratio: single snapshot of the time-resolved wake evolution for
Z = 2 (a), Z = 3 (b) and Z =4 (c) at different values of J (i.e. J = 0.45, 0.55, 0.65, 0.75 and 0.85,
from top to bottom). The acquisition time of each snapshot as referred to in the propeller
rotation period is generic.

slope of the tip vortex envelope:

atan

(
∂Itip(x

∗)

∂x

)
= 0.5Imax

tip , (4.1)

where Imax
tip is the maximum slope of tip vortex envelope. The curve Itip(x) was drawn

from the standard deviation image calculated over 1000 snapshots in the time history
of the visualizations of the wake evolution.

(ii) Hub vortex. The transition to instability of the hub vortex was defined according
to the position at which it starts to deviate from the straight geometry. In the image
plane, the boundary of the hub vortex trace describes a curve Ihub(x) whose slope is
zero in the near wake, where the vortex is straight, and starts to diverge suddenly from
the transition point because of the hub vortex oscillations after the instability (Felli
et al. 2006) (figure 9). Analogous to the case of the tip vortices, the position x∗ of the
hub vortex instability inception was defined according to the following criterion:

atan

(
∂Ihub(x

∗)

∂x

)
= 0.5Imax

hub , (4.2)
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Slope of the tip vortex
envelope in the near wake

Tip vortex instability
inception region

Hub vortex instability
inception region

I top (x)

Hub vortex
oscillation amplitude

tip

I top (x)
hub

I bottom(x)hub

I bottom(x)tipWake contraction

Figure 9. Identification criteria for the tip and hub vortex instability transition.

10

Tip vortex Z = 4

Tip vortex Z = 3

Tip vortex Z = 2

Hub vortex Z = 4

Hub vortex Z = 3

Hub vortex Z = 2

8

6

4

2

0.5 0.6

J

x* /
R

0.7

Figure 10. Dependence of the instability transition point x∗/R of the tip and hub vortices on
the advance coefficient J . The location of the instability inception was estimated through a
statistical approach, considering the positions where the tip and hub vortices start to deviate
from the helical and straight geometries, respectively.

where Imax
hub is the maximum slope of tip vortex envelope. The curve Ihub(x) was drawn

from the standard deviation image calculated over 1000 snapshots in the time history
of the visualizations of the wake evolution, analogous to the case of the tip vortices.

The dependence of the instability transition point on the advance ratio is shown in
figure 10.

Unfortunately, only two points, limited to J = 0.45 and J = 0.55, are available in
figure 10 for the two-bladed propeller, the transition occurring downstream of the
last optically accessible site in the test section at the higher values of the advance
coefficient. The experimental points in figure 10 are best fitted by a linear regression
for both the cases of the tip (solid lines) and the hub (dashed lines) vortices.
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The analysis points out that the transition to the instability of the tip and hub
vortices does not occur simultaneously, independently of the blade number and the
propeller loading conditions. This suggests a possible cause–effect relation between
the destabilization of the tip vortices and that of the hub vortex. More specifically, we
hypothesize that the destabilization of the tip vortices might induce a perturbation
which makes the hub vortex unstable. Analyses of the instability transition in a ducted
propeller (Felli et al. 2008), where a vorticity sheet occurs in the place of coherent
tip vortices, seem to support this thesis. In fact, in this case, the hub vortex tends to
remain stable for a longer distance than a conventional propeller.

The transition-to-instability position moves downstream when the number of blades
is reduced owing to the wider and wider spiral-to-spiral distance. This supports the
thesis that the mutual interaction between adjacent spirals is at the base of the
propeller wake instability.

The slopes of the regression lines in figure 10 differ on changing the blade
number and are larger for the hub vortex. It follows that (i) increasing J , the
transition-to-instability position moves downstream more and more on the reducing
blade number for both the tip and the hub vortices; (ii) the streamwise shift
δtrans at which the hub vortex instability follows the destabilization of the tip
vortices (i.e. δtrans (J

∗) = xhub∗(J ∗) − xtip∗(J ∗)) increases on the increasing advance ratio
(∂δtrans/∂J > 0).

A deeper insight into the instability mechanisms of the tip vortices can be achieved
by a detailed analysis of the available images. According to the theoretical model of
Widnall (1972), the instability of the tip vortex filaments occurs through three modes:
(i) a short-wave instability, (ii) a long-wave instability and (iii) a mutual-inductance
instability mode. An exhaustive description of the aforementioned instability modes
is given in Widnall (1972).

In practice, the different instability modes are superimposed and, hence, it is rather
difficult to isolate them experimentally through visualizations.

The short-wave instability is induced by the self-induced motion of a curved filament
in which the local deformation is dominated by the inductance from the nearest points
of the filament. Analogous to the wave instability of a vortex ring (Saffman 1970),
the short-wave instability is recognizable as a ‘smooth-sinuous-wave-type’ mode. An
example of such an instability mode is given in figure 11, where a short-wavelength
sinuous wave is found out in the cavitating trace of the tip vortex.

The mutual-inductance instability mode appears when adjacent helical filaments
pass within a distance so that they experience the influence of each other (Widnall
1972). This mutual-inductance effect causes the adjacent spirals to roll-up around
each other, resulting in the classic ‘leapfrogging’ phenomenon, often seen with parallel
vortex rings (Lugt 1996). A detailed description of such an instability mode is given
in figure 12, for Z = 4: (i) filaments 1 and 2 begin with the same radius; (ii) under the
effect of the mutually induced velocities, filament 1 (back filament) is pulled forward
through filament 2 (front filament), reducing its radius as it moves; (iii) meanwhile,
filament 2 expands; (iv) the result is that the role of the filaments is reversed and the
process may repeat itself.

According to the results of Leishman et al. (2002), the mechanism of mutual
interaction occurs through a 180◦ out-of-phase between the axial and radial
deformation modes of adjacent tip vortices. In this regard, figure 13 shows the
perturbed (cavitating trace) and equilibrium (dashed line) geometries of the tip vortex
for the cases of the two- and three-bladed propellers. Geometries of the perturbed tip
vortices in the axial direction resemble the characteristic shape of the axial modes 1
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(a) (b)

Figure 11. Visualizations of the short-wave instability: side (a) and top views (b).

(two-bladed propeller) and 2 (four-bladed propeller). This result is in agreement with
the conclusions given in Leishman et al. (2002), in which the most unstable modes
in a system of Z helicoidal vortices (Z = blade number) are shown to correspond to
half-integer multiples of the number of blades.

Figure 14 shows the equilibrium values of the helicoidal pitch τ against the advance
ratio J and the blade number Z. Here, the pitch is given by τ =h/2πa, where h

represents the geometric pitch of a given tip vortex before destabilizing and a the
radius of the circumference that surrounds it.

The equilibrium values of the pitch fall outside the stability limits determined by
Okulov (2004), for a system of multiple, azimuthally even-spaced helical vortices, and
Okulov & Sørensen (2007), limited to the system of N tip vortices of strength Γ and
a root vortex of strength −NΛ (i.e. Joukowski’s model), which results in even more
unconditional instability.

The disagreement between the analytical results and the visualization of stable tip
vortices on a long distance behind the propeller highlights the ineffectiveness of the
above models for predicting stability boundaries of the propeller wake. In this regard,
we agree with the assertion of Okulov & Sørensen (2007) that refined models in
which the contribution of the trailing vortex sheet is taken into account have to be
considered for a more realistic prediction of the stability boundaries of a propeller
wake.

In Okulov & Sørensen (2007), the ineffectiveness of the stability models in justifying
the occurrence of stable vortices in the near wake of a propeller was overcome by
considering multiplicity of helical vortices embedded in an assigned flow field (i.e.
Rankine, Gaussian and Scully vortices), representative of the contributions of the
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t = 0.000 s

1 2

1

2

12

1
2

1 2

12

12

t = 0.010 s

t = 0.020 s

t = 0.030 s

t = 0.005 s

t = 0.015 s

t = 0.025 s

t = 0.035 s

(a) (b)

Figure 12. (a, b) Mutual inductance between consecutive vortex filaments. Leapfrogging effect
between vortices 1 and 2. Snapshots are spaced at �t = 0.125 T . Snapshots refer to the case of
a four-bladed propeller at J = 0.65.

(a) (b)

Figure 13. Normal-mode perturbations of the tip vortex for Z = 2 (a) and Z = 4 (b). Dashed
lines represent the equilibrium. The tip vortex deformation resembles the shape of mode 1 for
Z = 2 and mode 2 for Z = 4, according to Leishman et al. (2002).
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0.39
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J
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Z = 3
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0.37

Figure 14. Equilibrium pitch of the tip vortex τ =h/2πa against the advance ratio J, for
Z = 2, Z = 3 and Z = 4. Pitch was measured considering the cavitating traces of the tip vortices
in the visualizations.

trailing wake and the hub vortex. Unfortunately, none of the azimuthally averaged
velocity fields derived by the aforementioned assigned vorticity distributions fits with
those obtained experimentally for the case of a marine propeller and, thus, it was not
possible to refer to those stability boundaries.

In Okulov & Sørensen (2007), it was conjectured that the Joukowski’s model
becomes valid when the mutual influence between tip vortices and trailing wake
is negligible and, thus, concentrated tip vortices are formed. According to the
unconditioned instability of the Joukowski’s model, in this condition tip vortices
destabilize suddenly. The occurrence of concentrated tip vortices is explained to be
the consequence of the roll-up process, whose complete development is considered to
trigger instability (Okulov & Sørensen 2010).

In the above hypothesis, the transition to instability of propellers having a different
number of blades and same intensity of the tip vortex should occur about at the same
distance from the propeller plane, the features of the roll-up being correlated mainly to
the strength of the tip vortex. This seems to be in contrast with the results of figure 10.
Our concern is that the transition to instability may be correlated more to the mutual
interference between consecutive spirals than to the complete development of the
trailing wake roll-up. In this regard, Di Felice et al. (2004) and Felli et al. (2006)
earlier observed a correlation between the transition to instability of the propeller
wake and the interaction between the trailing wake of the actual blade and the tip
vortex of the previous one. This interaction induces the tip vortex to lose the link
with its trailing wake gradually and definitely, and, thus, to form concentrated tip
vortices, such as in the Joukowski model. This aspect is worth discussing thoroughly
in a future study.

The amplification rate of the mutual-inductance instability mode is observed to
increase with the propeller loading condition (i.e. decreasing J ), as shown in figure 8.
We assume this behaviour to be the consequence of the following two reasons: (i) the
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Filament grouping

Figure 15. Filament grouping for the case of a two-bladed propeller.

reduction of the wake pitch, whose effect on the mutual-inductance mode instability
was discussed earlier; (ii) the larger core size of the tip vortex that has a destabilizing
effect on the mutual-inductance mode, according to the results by Widnall et al.
(1972), Okulov (2004) and Okulov & Sørensen (2007).

The analysis of the results achieved at different Z shows that the evolution of
the tip vortex filaments occurs through a ‘multi-step’ grouping mechanism, whose
characteristics depend on the blade number. More specifically as follows.

(i) The two-bladed propeller (Z =2) undergoes only one grouping process that
occurs far downstream as for configurations with a larger number of blades; the
larger the distance between adjacent spirals, less effective is the destabilizing effect of
the mutual inductance (figure 15).

(ii) In the case of the three-bladed propeller (Z = 3), the grouping mechanism
is observed to occur through a two-step process. In the first step, an alternative
grouping with one single and one pair of vortex filaments occurs (figure 16a, b). More
downstream, a complex ‘three-partners-one-single-one-pair’ leapfrogging is observed
to occur, in which the single filament tends to be rolled up by the inductance effect
of the filaments pair, while progressing in a second grouping with three filaments
(figure 16c, d ).

(iii) In the case of the four-bladed propeller (Z =4), the grouping mechanism is
analogous to the previous one but the first grouping occurs to form two pairs of
filaments and the second step is featured by a ‘four-partner two pairs’ leapfrogging
(figure 17).

The analysis of the two-, three- and four-bladed propeller configurations suggests
the following equation to describe the dependence of the grouping steps on the blade
number:

N = ceil(log2 Z), (4.3)

where N is the number of grouping steps, Z is the blade number (Z = 2, 3, 4) and
ceil(A) is a function that rounds A to the nearest integer greater than or equal to A.
The validity of (4.1) was verified for the case of the E779a propeller geometry limited
to the two-, three- and four-blade configurations. Further tests performed on different
propellers with five and six blades seem to confirm (4.1), even though the extension
to a general content is still to be demonstrated.

The general features of the hub vortex instability are highlighted in figures 18–20.
The following aspects can be pointed out.
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Filament single

Filament pair Filament pair

Three-filament group Three-filament group

Filament single

(a)

(c) (d)

(b)

Figure 16. First (a, b) and second (c, d ) grouping steps for the case of a three-bladed
propeller. XZ (a, c) and XY views (b, d ) at the same instant.

1st grouping

2nd grouping

Figure 17. Grouping steps for the case of a four-bladed propeller.

(i) At the transition point the hub vortex starts to oscillate according to a spiral
geometry until breakdown occurs.

(ii) The period of the hub vortex oscillation equals that of one propeller revolution
T and, thus, it is independent of the blade number and the advance ratio. This results
from the analysis of the cavitating trace of the hub vortex that recurs periodically
with a period �t = T (figures 18–20).
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t = 0T

t = 0 .2T

t = 0 .4T

t = 0 .6T

t = 0 .8T

t = 1 .0T

Figure 18. Hub vortex evolution for the case of a two-bladed propeller. Dots represent the
cavitating trace of the hub vortex at t = 0. The traces of the hub vortex appear aligned after a
revolution period of the propeller.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.150


26 M. Felli, R. Camussi and F. Di Felice

t = 0T

t = 0.2T

t = 0.4T

t = 0.6T

t = 0.8T

t = 1 .0T

Figure 19. Hub vortex evolution for the case of a three-bladed propeller. Dots represent the
cavitating trace of the hub vortex at t = 0. The traces of the hub vortex appear aligned after a
revolution period of the propeller.
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t = 0T

t = 0.2T

t = 0.4T

t = 0.6T

t = 0.8T

t = 1.0T

Figure 20. Hub vortex evolution for the case of a four-bladed propeller. Dots represent the
cavitating trace of the hub vortex at t = 0. The traces of the hub vortex appear aligned after a
revolution period of the propeller.
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0.5
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Figure 21. Oscillation amplitude of the hub vortex versus the advance coefficient for Z = 2,
Z =3 and Z = 4.

(iii) The amplitude of the hub vortex oscillation shows dependence on the propeller
loading conditions and, thus, on the advance coefficient J. Graphs in figure 21,
describing the maximum amplitude of the hub vortex oscillation versus the advance
coefficient for different Z, seem to support the conjecture that the number of helices
in a propeller wake influences the amplitude of the hub vortex oscillation, besides
having an effect on the position where the hub vortex destabilizes. The oscillation
amplitude is observed to reduce on increasing the advance coefficient.

4.1.2. Propeller far-wake evolution and breakdown

A qualitative analysis of the far-wake evolution and breakdown was performed on
the basis of a number of time-resolved visualizations performed at different values of
the advance coefficient J and the blade number Z.

In the far wake the cavitating traces of the tip vortices appear distorted and more
and more weaker as the distance from the propeller increases, the latter due to the
diffusion of vorticity that accomplishes the mutual interaction among tip filaments
and, thus, by a more and more flat profile of low pressure in the vortex core that
reduces the amount of cavitation.

In the far wake, the hub vortex undergoes progressive deformation until breakdown
occurs.

Figures 22 and 23 show a complex interaction between the hub vortex and the
tip filaments that occurs in the far wake of the three- and four-bladed propellers.
This interaction occurs following a mechanism similar to that documented in Klein,
Majda & Damodaran (1995) and Ortega, Bristol & Savaş (2003). More specifically,
the tip vortex filaments tend to be rolled up and collide with the hub vortex, owing
to the inductance of the latter. This interaction stresses the hub vortex, causing its
sudden destabilization.
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t = 0.000 s

t = 0.010 s

t = 0.015 s

t = 0.020 s t = 0.020 s

t = 0.015 s

t = 0.010 s

t = 0.000 s

(a) (b)

Figure 22. Far-wake evolution of the three-bladed propeller: roll-up of a tip vortex around
the hub vortex. XZ (a) and XY (b) views. Snapshots are spaced at �t =0.125 T .

The key parameters that drive this phenomenon are the distance and the relative
circulation between the hub vortex and a single tip vortex filament. According to the
definition given in Klein et al. (1995), the relative circulation is here defined as

Γ =
Γhub

Γtip

, (4.4)

where Γtip and Γhub are the circulation values of the tip and the hub vortex,
respectively.
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t = 0.000 s t = 0.000 s

t = 0.010 s

t = 0.015 s

t = 0.020 st = 0.020 s

t = 0.015 s

t = 0.010 s

(a) (b)

Figure 23. Far-wake evolution of the four-bladed propeller: roll-up of a tip vortex around
the hub vortex. XZ (a) and XY (b) views. Snapshots are spaced at �t = 0.125T .

In the far wake of a propeller, the above interaction appears as a random event
at first sight. The dynamical analysis in § 4.2 supports this thesis showing more and
more chaotic behaviour of the tip vortices in the far wake.

Therefore, in the chaotic dynamics of the tip vortex, it is statistically possible that
it might pass under the region of influence of the hub vortex and interact with it. It
is reasonable to think that the probability of such an interaction increases with the
circulation ratio Γ and reduction in the inter-distance.
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t = 0 .25T
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t = 0 .1875T
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t = 0 .46875T

t = 0 .5T

Figure 24. Double-helix breakdown for the two-bladed propeller. Dotted lines represent the
cavitating traces of the reference filament of the double helix at t = 0, and solid lines represent
the current cavitating traces of the reference filament of the double helix. The best alignment
between dotted and solid lines appears after about �t = T/2.

The absence of evidence of this induction effect in the case of the two-bladed
propeller regardless of the loading conditions seems to confirm this conjecture.

For the z > 2 cases, the distance at which the hub vortex inductance is effective
increases with Γ . This explains the larger number of interaction events observed in
the visualizations when Z was increased.

The hub vortex breakdown appears as a double helix (Sarpkaya 1971) that evolves
by shearing and splitting of the centreline filament maintaining the same sense of
rotation as the propeller. This is shown in the visualizations of figures 24–26, where
the time history of the cavitating traces of the double helix is shown for Z = 2, Z =3
and Z = 4.

The analysis of the characteristic frequency of the double-helix rotation was
performed by imaging the breakdown region and comparing the current cavitating
trace of a reference filament with its trace at t = 0 (figures 24–26). The result shows
that the oscillation period of the double helix Tbreak equals that of the blade passage
(i.e. Tbreak = T/Z) independent of the blade number.

In all the analysed conditions (i.e. different J and Z), the position of the hub
vortex breakdown was observed to fluctuate up and down, ranging within a region
whose extent is observed to become larger and larger for increasing J. We assume
this behaviour to be the consequence of fluctuations in the downstream flow (in
the sense of Sarkpaya 1971) whose intensities increase on the increasing loading
condition (i.e. reducing J) and whose effect is to cause upstream (flow deceleration)
and downstream (flow acceleration) movements of the breakdown position, according
to Sarpkaya (1971).
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Figure 25. Double-helix breakdown for the three-bladed propeller. Dotted lines represent the cavitating traces of the reference filament of the
double helix at t = 0, and solid lines represent the current cavitating traces of the reference filament of the double helix. The best alignment
between dotted and solid lines appears after about �t = T/3.
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Figure 26. Double-helix breakdown for the four-bladed propeller. Dotted lines represent the
cavitating traces of the reference filament of the double helix at t = 0, and solid lines represent
the current cavitating traces of the reference filament of the double helix. The best alignment
between dotted and solid lines appears after about �t = T/4.

4.2. Dynamical analysis

4.2.1. Test matrix and conditions

In the present paper, the dynamical analysis was focused on investigating the effect
of the spiral-to-spiral distance and the blade number on the evolution mechanisms of
the tip vortices. In this regard, with the scope of eliminating the dependence upon the
vortex strength, the advance ratio of each propeller was adjusted in order to obtain
the same tip vortex intensity.

It is worth pointing out that even the hydrodynamic pitch of the wake shows
dependence on the advance ratio (Di Felice 2004). However, this effect can be
reasonably considered of secondary importance compared to that of the different
spiral-to-spiral distances when the blade number is varied (Okulov 2004).

The actual configurations adopted in the experiments for the three propellers
were determined through a preliminary numerical analysis. Specifically, advance ratio
values giving the same tip vortex intensity in the three propellers were determined
through an inviscid irrotational flow model (Greco et al. 2004). The intensity of the
blade-shed vorticity was determined as dΓ/ds, where Γ is circulation and derivation
is taken along a path lying on the shed vortex sheet and normal to vortex lines.
Here, an estimate of the tip vortex strength is determined by calculating the spanwise

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.150


34 M. Felli, R. Camussi and F. Di Felice

Blade number N U∞ Corrected advance ratio Advance ratio Reynolds number
(Z) (r.p.s.) (m s−1) (J) (J) (Re)

2 25 4.54 0.8 0.794 1.141 × 106

3 25 4.26 0.75 0.745 1.133 × 106

4 25 4.03 0.71 0.705 1.127 × 106

Table 2. Test conditions of the LDV measurements.

0
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ω
 (

R
)

0.2 0.4 0.6

J
0.8 1.0

2 blades (J = 0.8)
3 blades (J = 0.75)
4 blades (J = 0.71)

Figure 27. Tip vortex intensity as a function of the advance ratio for the two-, three- and
four-bladed propeller models

derivative of circulation Γ at the blade tip, as

ω(R) =
∂Γ (R)

∂s
, (4.5)

where s is the arclength along the blade’s trailing edge. The derivation of the
circulation should have been taken along a path lying on the shed vortex sheet
and normal to vortex lines. However, propeller blades have a typically complex
geometry and the radial direction is a rough approximation of such a shedding line.
For this reason, the partial derivative has been taken with respect to the trailing edge,
which was proved to provide a better description of the shedding line.

The graph in figure 27 compares tip vortex intensities from the above equation for
two-, three- and four-bladed propellers against the advance ratio.

Assuming the two-blade configuration at J = 0.8 as a reference, the corresponding
values of the advance ratios for the three- and four-bladed propellers were J = 0.75
and J = 0.71, respectively.

The experimental conditions investigated through the dynamical analysis are
documented in table 2, where the values of the advance ratio are adjusted to
account for the tunnel effect. For the sake of completeness, the values of the advance
coefficients before the correction are also reported in table 2. The differences in the
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Blade number (Z) Corrected advance ratio (J) Γtip (m2 s−1) Γhub (m2 s−1) γ

2 0.8 0.0725 −0.173 −1.19
3 0.75 0.0722 −0.321 −1.48
4 0.71 0.0728 −0.479 −1.64

Table 3. Strength of the tip and hub vortices and circulation ratio of the three propeller
configurations in the LDV measurements.

–150

(a) (b) (c)

–117 –83 –50 –17 17 50 83 117 150 –150 –117 –83 –50 –17 17 50 83 117 150 –150 –117 –83 –50 –17 17 50 83 117 150

Figure 28. Normalized vorticity field for the two- (a), three- (b) and four- (c) bladed propellers
at J = 0.8, J = 0.75 and J = 0.71, respectively. In the three propellers, the intensity of the tip
vortices is the same according to the results of figure 24.

17.2 R

0.
9 

R
Figure 29. Measurement grid used for the dynamical analysis of the tip vortices.

Reynolds numbers among the three configurations are negligible, as documented in
table 2.

The results of figure 27 were verified experimentally through LDV measurements
providing the velocity field along a transversal section of the wake just behind
the blade’s trailing edge. In this regard, figure 28 shows the distribution of the
axial vorticity at the test conditions specified above: the circulation at the blade tip
confirms that the tip vortex intensity is constant regardless of the different propeller
configurations. This result is supported by table 3, in which the circulation of the
tip and hub vortices and the circulation ratio γ = Γhub/N Γtip , measured by LDV, are
reported for the three propeller configurations.

The analysis was carried out considering LDV velocity signals acquired along a
grid of 50 equi-spaced points that extends longitudinally from the propeller trailing
edge up to about x = 17R downstream (figure 29). Velocity signals were acquired at
the mean data rate of about 1 kHz and the acquisition time was 600 s point−1.

4.2.2. Results of the dynamical analysis

The study of the dynamical behaviour of the tip vortex system was carried out by
applying the mathematical tools described in § 3 to the velocity signals acquired at
different streamwise positions of the wake (figure 29).
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Figure 30. Two-bladed propeller. Time history of the radial velocity (Urad ). Velocities are
normalized with the free-stream velocity (U[inf ]).

The analysis aims at providing a deeper insight into the evolution mechanisms
of the tip vortices in the transition and the far field, integrating the results of the
visualizations described in § 4.1.

With reference to the dynamics of the tip vortices, one can identify two regions: (i)
the near field in which the tip vortex passage occurs regularly at the blade frequency
and (ii) the transition and the far field in which the tip vortices destabilize more and
more until breakdown occurs.

The time histories and the phase-averaged evolutions of the velocity signals at
different streamwise positions of the tip vortices are reported in figures 30–32 (time
history) and figures 33–35 (phase-averaged velocities) for Z = 2, Z = 3 and Z =4,
respectively.

In the near field, the velocity signals show a periodic trend with a periodicity
that is correlated to the regular passage of the tip vortices over the measurement
volume. It follows that characteristic period of the perturbation is Tblade = Z/n s. The
occurrence of some nonlinear effects in the time histories of the velocity signals is the
consequence of the high level of turbulence in the tip vortex (Chesnakas & Jessup
1998; Stella et al. 2000). Such nonlinearities are filtered out when the velocity signals
are phase averaged. The extent of the near field ranges from the blade’s trailing edge
up to a distance that depends on the blade number and, in general, on the advance
coefficient (Di Felice et al. 2004), as discussed in § 4.1.1.
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Figure 31. (a–f ) Three-bladed propeller. Time history of the radial velocity. Velocities are
normalized with the free-stream velocity.

Starting from the transition field, the time histories of the velocity signals evidence
that a less and less periodic trend is observed when moving streamwise. In this
regard, a better understanding of the tip vortex dynamics is given by the phase-
averaged velocity signals that highlight a process in which peaks representing the
passage of the tip vortices appear less and less even-spaced streamwise till merging
further downstream.

This behaviour is further evidence of the mutual-inductance instability mode
whose effect reveals through the grouping among adjacent tip vortex filaments, as
documented in § 4.1.1.
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Figure 32. (a–f ) Four-bladed propeller. Time history of the radial velocity. Velocities are
normalized with the free-stream velocity.

More specifically, the following features can be observed by the graphs of
figures 33–36, the last figure representing the overview of the streamwise evolution of
the phase-averaged velocity:

(i) Two-bladed propeller. The peaks of the radial velocity, 180◦ circumferentially
spaced in the near wake (see figure 33a, b), get closer in pairs starting from about
x = 10R, as highlighted by the gradual reduction of their distance: 170◦ at x =12.30R

and 160◦ at x =16.85R. The complete merging of the velocity peaks was not observed
in the velocity signals because it occurs downstream of the test section at J = 0.8.

(ii) Three-bladed propeller. The velocity peaks tend to approach in groups of
three. In each group the positions of the peaks are less and less even-spaced with
increasing the distance from the propeller: 105◦ and 135◦ are the distances between
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Figure 33. (a–d ) Two-bladed propeller. Angular evolution of the phase-averaged radial
velocity. Velocities are normalized with the free-stream velocity.

consecutive peaks in a group at x = 7.75R, 95◦ and 150◦ at x = 9.50R, 82◦ and 118◦ at
x = 10.55R (figure 34). Further downstream, at x =12.30R and x = 16.15R, the traces
of the velocity peaks completely vanish in each group, replaced by a wider single
contribution given by the superposition of the three signals.

(iii) Four-bladed propeller. In this case, the grouping mechanism occurs between
pairs of velocity peaks, starting from nearly x = 3R. Plots at x = 3.55R (figure 35)
show a circumferential distance of 80◦ and 100◦ between two peaks of the same group
and two consecutive groups, respectively. Moving downstream, the trend is a gradual
reduction of the peak-to-peak distance inside a group and a gradual increase of the
peak-to-peak distance between one group and the other. This process ends around
x = 8R, resulting in a complete merger between peaks of the same group and a new
peak-to-peak distance of about 180◦ (figure 35d ). The second step of the grouping
process is already completed at x = 12.65R, where the phase-averaged velocity
signals show 360◦ spaced peaks resulting from the merger of the two-filament pairs
in a group of four filaments (figure 35f ).

A complementary view of the first grouping step is provided by the contour plots of
figure 37 that represent the distribution of the axial vorticity (i.e. ωx) for Z = 2, Z =3
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Figure 34. (a–f ) Three-bladed propeller. Angular evolution of the phase-averaged radial
velocity. Velocities are normalized with the free-stream velocity.
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Figure 35. (a–f ) Four-bladed propeller. Angular evolution of the phase-averaged radial
velocity. Velocities are normalized with the free-stream velocity.
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Figure 36. Phase-averaged evolution of the tip vortex TKE for the two- (a), three- (b) and
four-bladed (c) propellers.
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Figure 37. First step of the tip vortex grouping mechanism for Z =2 (a), Z = 3 (b) and
Z = 4 (c).

and Z =4 in the transition wake. Here, the traces of the tip vortices are uneven
spaced as the consequence of the mutual-inductance effects that tends to group the
tip vortex filaments to get a system of one pair (Z = 2), one-single one pair (Z = 3)
and two pairs (Z = 4).

Figures 38–40 show the distribution of the normalized power spectrum of the
velocity data at the same streamwise positions considered for the analysis of the time
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Figure 38. (a–d ) Two-bladed propeller. Power spectrum of the radial velocity.

histories and the phase-averaged signals. An overview of the power spectra streamwise
evolution is shown by the isocontours of figure 41.

In the power spectra of the near field, the fundamental frequency is correlated to
the blade passage and thus corresponds to f = nZ (i.e. f =50 Hz for the two-bladed
propeller, f = 75 Hz for the three-bladed propeller and f = 100 Hz for the four-bladed
propeller; see figures 38–40).

In the transition and the far field, the streamwise evolution of the PSD of the
velocity signals demonstrates a mechanism of energy relocation that involves the
fundamental frequency and the first and second shaft harmonics. Indeed, the process
of energy relocation does not occur through a single step with a direct energy
transfer from the blade to the shaft harmonics (Felli et al. 2006), but involves other
additional harmonics, fractions of the blade harmonic, in a multi-step mechanism.
The characteristics of such a mechanism differ depending on the blade number, as
shown in figures 38–41. More specifically these are as follows.

(i) Two-bladed propeller. At the beginning of the transition wake of the two-
bladed propeller (i.e. x ∼= 8R), two main contributions appear in the spectrum: the
fundamental frequency at 50 Hz and a secondary contribution at the shaft harmonic,
which increases more and more streamwise (figure 38a, b). At x =16.85R the process
of energy transfer from the blade to the shaft harmonic is not yet over but it runs
out further downstream at J = 0.8.
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Figure 39. (a–f ) Three-bladed propeller. Power spectrum of the radial velocity.

(ii) Three-bladed propeller. The wake transition is observed to occur around
x = 8R, the spectrum showing the appearance of the first (i.e. 25 Hz) and second
shaft harmonics (i.e. 50 Hz), in addition to the fundamental frequency (i.e. 75 Hz)
(figure 39b). Therefore, in this case, the energy transfer involves the blade harmonic
and the first and second shaft harmonics, in a two-step process. Firstly, the energy
content at the blade harmonic moves to the first and second shaft harmonics, as
confirmed by the increment of the peaks at 25 and 50 Hz and the simultaneous
reduction of the contribution at 75 Hz. Thereafter, the energy at the blade harmonic
and the second shaft harmonic flows into the shaft frequency, which is the only
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Figure 40. (a–f ) Four-bladed propeller. Power spectrum of the radial velocity.

contribution of the spectrum from x = 13R. In this regime, power-law decay with
exponent k = − 0.9 occurs (figure 39f ).

(iii) Four-bladed propeller. The process of energy transfer of the four-bladed
propeller is characterized by a two-step cascade mechanism. In the first step, the
energy transfer involves the harmonics at the blade- (i.e. 100 Hz) and half-the-blade
harmonic (i.e. 50 Hz), without providing any significant contribution to the shaft
harmonic (figure 40b). The peak at the shaft frequency appears further downstream,
starting around x =5R (figure 40c). Nearly at x = 7R, the blade harmonic completely
disappears from the spectrum and the process of energy transfer involves the
contributions of the shaft frequency and half-the-blade frequency (50 Hz) (figure 40d ).
This second step of the cascade runs out around x =12R and the shaft harmonic
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Figure 41. Evolution of the power spectrum of the velocity signals for the two- (a), three-
(b) and four- (c) bladed propellers.
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Figure 42. (a–d ) Two-bladed propeller. Phase trajectories in the normalized pseudo-space
U ∗

rad (t), U ∗
rad (t + τ ), U ∗

rad (t + 2τ ).

remains the only contribution in the PSD. The exponent of the power-law decay is
k = − 0.9, analogous to case of the three-bladed propeller (figure 40f ).

Trajectories and phase states in the pseudo-phase space are represented in
figures 42–44 in a 3D pseudo-phase space.

The representation in the pseudo-phase space shows a strange attractor with a
complex shape, whose projection in the picture plane resembles that of a deformed
triangle. This geometry, in which the phase trajectories describe zones of recurrent
behaviour in the form of orderly periodicity, is clearly due to the on-average periodic
nature of a signal with one fundamental frequency (Bergé et al. 1984). Therefore,
the evolution of the phase states does not repeat the same circuitous phase space
route periodically but describes different paths at each turn with a similar shape. This
aspect is correlated to the turbulent nature of the signal that influences the dispersion
rate of the space states at each period and, thus, the deviation among different turns
in a trajectory.

The highly deformed shape of the attractor is the consequence of the complex
nature of the signal that differs significantly from a sinusoid. Actually, the more the
signal deviates from a sinusoid the more the trajectories diverge from a torus in the
phase space (Bergé et al. 1984).

The shape of the attractor does not seem to show dependence on the blade number,
as expected considering that (i) the shape of the velocity signal depends mainly on
the geometrical characteristics of the blade, once the loading conditions are fixed;
(ii) the amplitude and the slope of the velocity signal due to a single blade are
nearly independent of the blade number, the propellers working at tip vortex identity;
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Figure 43. (a–f ) Three-bladed propeller. Phase trajectories in the normalized pseudo-space
U ∗

rad (t), U ∗
rad (t + τ ), U ∗

rad (t + 2τ ).

(iii) different values of the fundamental frequency do not influence the shape of the
attractor.

Moving streamwise within the first periodic regime, the attractor preserves its shape
even if it undergoes a gradual reduction of the taken volume and a more and more
broaden boundary. This behaviour is physically the consequence of the streamwise
increased levels of turbulence of the tip vortex (Jessup 1989; Stella et al. 2000; Di
Felice et al. 2004) that causes smoothing of the velocity peaks as well as a dispersion
of the phase states as mentioned earlier.

In this regard, it should be noted that the fluctuations of the velocity signals
at a point of the grid depend on two aspects: (i) the high levels of turbulence in
the tip vortex and (ii) the fluctuating positions of the tip vortex. In the near wake
the former contribution is predominant, the tip vortex passage being regular and
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Figure 44. (a–f ) Four-bladed propeller. Phase trajectories in the normalized pseudo-space
U ∗

rad (t), U ∗
rad (t + τ ), U ∗

rad (t + 2τ ).

the oscillations small; the latter contribution becomes more and more predominant
further downstream as a consequence of the strong distortions that the tip vortices
undergo in the transition and the far wake (see § 4.1.1.).

In the transition wake, phase trajectories lose the typical regularity of the near
wake and describe more and more disordered paths in which the phase states tend to
disperse in the shape of a cloud.

This trend is also confirmed by the behaviour of the maximal Lyapunov exponent
(figure 45): the positive value of the Lyapunov exponent, due to the chaotic nature
of the signal, increases streamwise, following approximately a zero-slope linear fitting
in the near wake and a parabolic fitting thereafter.

In the zero-slope linear fitting region, the maximal Lyapunov exponent is
LE = 0.12 ± 0.10 on average that is nearly zero considering the turbulent nature
of the tip vortices as well as their streamwise increasing fluctuations. The passage
from the zero-slope linear fitting to the parabolic fitting region occurs nearly in
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Figure 45. Evolution of the maximal Lyapunov coefficient for Z = 2 (a), Z = 3 (b) and
Z = 4 (c).

correspondence with the instability transition region (i.e. around x =10R for the
two-bladed propeller, x =6R for the three-bladed propeller and x = 3.5R for the four-
bladed propeller approximately). Here, assuming a more and more chaotic nature,
the velocity time histories start to lose the nearly periodic nature typical of the near
wake.

5. Conclusions and final remarks
In the present work the problem of the propeller wake evolution and instability was

addressed experimentally. Specifically, the study dealt with the effect of the spiral-to-
spiral distance and the number of blades on the mechanisms of destabilization and
evolution of the tip and hub vortices in the transition and the far wake.

Time-resolved visualizations allowed us to highlight the dependence of the wake
instability transition on the inter-spiral distance and, specifically, the streamwise
displacement of the transition region at the increasing inter-spiral distance. Judging
by the analysis of the visualizations, the destabilization of the tip vortices seems to
come before that of hub vortices, independent of the blade number and the propeller
loading conditions. This may suggest a possible cause–effect relationship between the
two phenomena whose demonstration requires a specific study to be performed.

In the transition wake, the streamwise evolution of the tip vortices occurs through a
multi-step grouping mechanism. Such a grouping mechanism is driven by the mutual
inductance between adjacent spirals, according to the model of Widnall (1972) for
a single helical vortex, and occurs differently on changing the blade number. More
specifically, the analysis of the time-resolved visualizations and the power spectra of
the velocity signal outlined the following behaviour for the propeller configurations
with two, three and four blades.

(i) Two-bladed propeller. The energy transfer occurs through a direct passage from
the blade to the shaft harmonics, that is the consequence of the pairing between the
two tip vortices.

(ii) Three-bladed propeller. A two-step grouping process distinguishes the tip vortex
evolution in a three-bladed propeller. In the first step, the spectrum is characterized
by a direct energy transfer from the blade harmonic to the first and second shaft
harmonics that is associated with an alternate grouping among adjacent filaments (a
single filament with one filament pair). Specifically, the system of three tip vortices,
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T/3 spaced originally, is reorganized to a system of one single and one filament pair,
T/2 spaced, after the first grouping step. Thus, the blade harmonic is replaced by
the first and second shaft harmonics: the former is associated with the passage of
a specific vortex system (i.e. passage of one filament or passage of a filament pair)
whose characteristic time is T , and the latter is associated with the passage of a
perturbation (i.e. passage of a single filament, a filament pair, a single filament and
so on), whose characteristic time is T/2. Further downstream, the second grouping
results in a complete grouping of the three vortex filaments that transfer energy from
the second to the first shaft harmonic, definitely.

(iii) Four-bladed propeller. The aforementioned cascade mechanism of energy
transfer is the result of a double ‘period-halving’ process that accomplishes the
grouping of two vortex filaments and two filament pairs in a filament pair and a
group of four filaments, respectively.

In the far wake, the mechanism of evolution of the propeller vortical filaments is
featured by a more and more chaotic evolution of tip vortices, highlighted by both
the distortion of the phase states in the shape of a cloud and by the almost flat
spectrum of the velocity signals.

In this region, a complex interaction between the hub vortex and the tip filaments
of the three- and four-bladed propellers was observed to occur with a mechanism
similar to that described in Ortega et al. (2003). The chaotic dynamics of the tip
vortices in the far wake suggests that this interaction may have a random nature.
Further downstream, the hub vortex undergoes a double-helix breakdown, whose
fundamental frequency corresponds to the blade harmonic.
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