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Within the framework of the generalised Landau-de Gennes theory, we identify a Q-tensor-based
energy that reduces to the four-constant Oseen–Frank energy when it is considered over orientable
uniaxial nematic states. Although the commonly considered version of the Landau-de Gennes theory
has an elastic contribution that is at most cubic in components of the Q-tensor and their derivatives,
the alternative offered here is quartic in these variables. One clear advantage of our approach over the
cubic theory is that the associated minimisation problem is well-posed for a significantly wider choice
of elastic constants. In particular, this quartic energy can be used to model nematic-to-isotropic phase
transitions for highly disparate elastic constants. In addition to proving well-posedness of the pro-
posed version of the Landau-de Gennes theory, we establish a rigorous connection between this
theory and its Oseen–Frank counterpart via a �-convergence argument in the limit of vanishing
nematic correlation length. We also prove strong convergence of the associated minimisers.

Key words: Nematic liquid crystal, Gamma-convergence, Landau-de Gennes theory, Q-tensor,
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1 Introduction

Two well-regarded and heavily researched mathematical models for nematic liquid crystals
are the director-based Oseen–Frank model [14, 31, 32, 34] and the Q-tensor-based Landau-de
Gennes theory [9, 10, 29, 32]. In this article, we present a version of Landau-de Gennes which
enables us to make a rigorous and relatively simple asymptotic connection between the two theo-
ries in the limit of Landau-de Gennes with vanishing non-dimensional nematic correlation length.
In [28], the authors carry out such a program in the so-called ‘equal-constants’ setting where the
elastic energy of both models is given by the Dirichlet integral. Here, we identify an elastic
energy density involving certain terms that are quartic in the Q-tensor and its derivatives such
that the corresponding Landau-de Gennes energy approaches, in the sense of �-convergence, the
full Oseen–Frank energy.

† D. G. acknowledges the support from NSF DMS-1729538. M. N. and P. S. acknowledge the support
from a Simons Collaboration grant 585520.
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We recall now the form of the Oseen–Frank energy,

FOF(n) :=
∫

�

(
K1

2
(div n)2 + K2

2
((curl n) · n)2 + K3

2
|(curl n) × n|2

+K2 + K4

2
(tr (∇n)2 − (div n)2)

)
dx, (1.1)

where K1, K2, K3 and K4 are material constants, � ⊂R
3 represents the sample domain and the

director n maps � to S
2.

We also recall the standard Landau-de Gennes model defined for Q : � → S , where

S := {
Q ∈ M3×3 : QT = Q, tr Q = 0

}
.

It is given by

FLdG(Q) :=
∫

�

(
L1

2
|∇Q|2 + L2

2
Qij,jQik,k + L3

2
Qik,jQij,k + W (Q)

)
dx, (1.2)

where Qij,k = ∂Qij/∂xk and repeated indices are summed from one to three. Here, the bulk
Landau-de Gennes energy density is

W (Q) := a tr
(
Q2

) − 2b

3
tr

(
Q3

) + c

2

(
tr

(
Q2

))2
, (1.3)

cf. [16]. The coefficient a is temperature-dependent and, in particular, is negative for sufficiently
low temperatures. Throughout this article, we will assume that we are in a temperature regime
where a < b2

27c , an inequality implying that Q-tensors in the minimal set N of W are in a uniaxial
nematic state describable in terms of a director as follows:

N :=
{

s0

(
n ⊗ n − 1

3
I

)
: n ∈ S

2

}
. (1.4)

Here, s0 is given explicitly in terms of the coefficients a, b and c, and by subtracting an appro-
priate constant from W , one can take W to vanish along this minimal set. We will ignore this
constant and simply assume without loss of generality that W vanishes along this minimal set of
states.

The effort to find a connection between FOF and a corresponding Q-tensor-based elastic energy
has a long history, going back at least to [7] and includes the contributions of [11, 25, 30].
However, these studies are premised on the observation that one can obtain FOF from a Q-tensor
model for certain values of the elastic constants by adding to the standard Landau-de Gennes
energy (1.2) an additional elastic term that is cubic in Q and its derivatives, namely,∫

�

Qlk∂kQij∂lQij dx.

As pointed out, for instance, in [2, p. 21], this choice represents one of the six possible linearly
independent cubic terms that are quadratic in ∇Q and respect the necessary symmetries. From the
standpoint of energy minimisation, unfortunately, such a version of Landau-de Gennes becomes
problematic, since the inclusion of the cubic term leads to an energy which is unbounded
from below [4]. Indeed, quoting [25], ‘In the presence of biaxial fluctuations the general third-
order theory in Qαβ becomes unstable and thus is thermodynamically incorrect. One has to
include higher-order terms (or neglect third-order ones) to preserve stability of the free energy’.
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Alternatively, one can impose a constraint through a choice of bulk potential that penalises large
Q and prevents the cubic elastic term(s) from overtaking the quadratic ones [4, 6, 13, 22].

Not surprisingly, this deficiency then also leads to instabilities in attempts to capture dynamics
through the corresponding gradient flow. Along these lines, we mention the work of [21] where
the authors overcome this impediment to obtain a dynamical well-posedness result under an
assumption of sufficiently small initial data, while also showing blow-up for large initial data.

In contrast to these sizable troubles to be overcome when taking a cubic elastic energy density
for Landau-de Gennes, we propose a version of Landau-de Gennes, in the spirit of the quotation
from [25] above, involving a quartic elastic energy density that presents none of these technical
difficulties. As usual, it is defined over the class S . In a prototypical form, the energy is given by

FLdG(Q) :=
∫

�

(
L1

2

∣∣∣( s0

3
I + Q

)
div Q

∣∣∣2 + L2

2

∣∣∣( s0

3
I + Q

)
curl Q

∣∣∣2

+L3

2

∣∣∣∣
(

2s0

3
I − Q

)
div Q

∣∣∣∣
2

+ L4

2

∣∣∣∣
(

2s0

3
I − Q

)
curl Q

∣∣∣∣
2

+ W (Q)

)
dx. (1.5)

Here, the elastic constants {Li} are taken to be positive, and we assume W is still given by (1.3).
We point out that our model is still quadratic in its dependence on the gradient of Q.

Before explaining how we arrive at FLdG, we want to be clear on our motivation for seeking
such a version of Landau-de Gennes energy. Our criteria were

• For a reasonable range of elastic constants, one should be able to recover the four-term Oseen–
Frank energy among uniaxial Q-tensors as in (1.4). This range should, in particular, allow for
the regime of extreme disparity between the Kis, since we wish to use the model to explore
various types of liquid crystals for which some subset of the three deformations splay, twist
and bend is far more favourable energetically than others. For example, we seek a model
capable of capturing the formation of tactoids in nematic/isotropic phase transitions. (See e.g.
[17, 18, 19].)

• Minimisation of FLdG via the direct method should be achievable, and in particular, the energy
should be bounded from below and coercive.

• Any elastic terms should respect the necessary symmetries and so be selected from the list to
be found, for example, in [24]. Among the quartic choices – that is, quadratic in both Q and
∇Q – there are 13 to work with.

• One should strive for as simple a choice as possible that meets the previous three criteria.

To arrive at FLdG, we begin by considering Q ∈N where the corresponding director field n is
sufficiently smooth. We show that each elastic term in the Oseen–Frank energy can be realised
through projections of div Q and curl Q on n and on the plane perpendicular to n. This allows
us to rewrite FOF in terms of the divergence and curl of Q ∈N . We subsequently relax the
constraint Q(x) ∈N to allow biaxial states as well by assuming simply that Q takes values in S
and add W (Q) to the elastic energy density to force energy minimising configurations to have
values close to N . While we certainly do not claim that our choice is unique, this version of
Landau-de Gennes model leads to a variational problem that is well-posed under minimisation
and rigorously reduces to FOF in the limit of vanishing non-dimensional nematic correlation
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length. Indeed, we feel that the resulting energy FLdG given in (1.5) meets all the criteria listed
above.

Though in this article we do not address dynamics, in [17], we carry out computations in the
context of an associated gradient flow in a thin film limit. The computations are performed for
a director that lies in the plane of the film and in the regime where splay is heavily penalised,
that is, where L1 in FLdG is much larger than the other elastic coefficients. In doing so, we also
pursue a temperature regime for the Landau-de Gennes potential W where both the nematic and
isotropic states are preferable. We find nice agreement with certain experimentally observed mor-
phologies associated with tactoid evolution and defect splitting. Indeed, this highlights another
favourable feature of the energy FLdG, namely, that it allows one to model nematic/isotropic
phase transitions in such a way that in the uniaxial nematic region, the energy agrees with
Oseen–Frank.

We emphasise again that the model we propose here is not the only possible higher-order
extension of the Landau-de Gennes elastic energy. Indeed, although we choose to retain up to
quartic terms in Q, we neither explored all possible combinations of cubic and quartic elastic
terms nor considered terms of even higher order. We conjecture nevertheless that, if one chooses
to cut-off the expansion of the elastic energy at terms of an odd power in Q, the energy would
not be bounded from below. Further, because we retain the standard version of the Landau-de
Gennes potential, our expression for the Landau-de Gennes energy would still suffer from the
usual deficiencies of the Landau-de Gennes approach at low temperatures [26, 27].

The plan of the paper is as follows. In Proposition 2.6, we show that for Q in the uniax-
ial minimising set given by (1.4), FLdG(Q) reduces to precisely FOF(n) for a particular set of
constants {Li} given in terms of {Ki}. More precisely, we can assert this equivalence when Q
is orientable, in the sense that Q ∈ H1(�, N ) is representable as Q = s0(n ⊗ n − I/3) for some
‘lifting’ n ∈ H1(�; S2), a property that, in particular, always holds when � is taken to be sim-
ply connected, cf. [5]. After a non-dimensionalisation, leading to a dimensionless version of
FLdG, namely Fε given in (3.4) below, we argue that this form of Landau-de Gennes is coer-
cive over H1(�; S), and weakly lower semicontinuous, making it well suited for minimisation
via the direct method in the calculus of variations when a Dirichlet (strong anchoring) condition
is imposed on ∂�, cf. Theorem 3.3. As described at the outset of Section 3, the parameter ε

appearing in the non-dimensionalisation represents a ratio of the nematic correlation length to a
characteristic length scale of the domain.

To make rigorous the asymptotic connection between Fε and FOF in the limit of small
nematic correlation length, we then establish �-convergence and compactness with respect to
weak H1-convergence, cf. Theorem 3.4 and Proposition 3.5. From standard �-convergence
theory, this implies the weak H1-convergence of minimisers of Landau-de Gennes to a min-
imiser of Oseen–Frank. In our last result, Theorem 3.6, we upgrade this convergence to strong
H1-convergence.

2 Tensor formulation of the Oseen–Frank energy

In this section, we present several calculations which establish equalities between the terms in
the Oseen–Frank energy of an S

2-valued vector field n and quartic terms in n ⊗ n and ∇(n ⊗ n).
These calculations form the basis for our choice of elastic terms for a Landau-de Gennes energy.
Let us first establish the notation used throughout this section and the rest of the manuscript.
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Definition 2.1 For a function f : Rn →R
m, we define ∇f to be matrix of partial derivatives

∇f = (∂fi/∂xj) ∈R
m×n.

When f is scalar-valued, we will for convenience sometimes treat ∇f as a column vector as
opposed to a row vector, to aid in calculations.

We will often use the notation Aj for the jth row of a matrix A.

Definition 2.2 For a smooth, matrix-valued map A : Rn →R
n×n, the vector field div A : Rn →R

n

is given by

div A =
n∑

j=1

(div Aj)ej,

so that the jth entry of div A is the divergence of the jth row of A.

Definition 2.3 We define the curl of a tensor field A by

(curl A)v := curl (ATv) for all v ∈R
3, (2.1)

which is equivalent to defining curl A via

curl A = εijkAmj,iek ⊗ em.

Hence, the jth column of curl A is the curl Aj.

In order to calculate terms involving the curl of a symmetric tensor, we need the following
lemma, the proof of which is immediate from the previous definition.

Lemma 2.1 1. For any smooth vector field m, we have

curl (m ⊗ m) = ((curl mjm)i) ∈R
3×3.

That is, the jth column of curl (m ⊗ m) is curl (mjm).
2. For any tensor field Q taking values in the space of symmetric matrices, if we refer to the

jth row of Q as Qj, we have

curl Q = ((curl Qj)i) ∈R
3×3. (2.2)

We begin our analysis with expressions for the K1, K2 and K3 elastic terms from Oseen–Frank
in terms of derivatives of n ⊗ n.

Proposition 2.2 Let n be a smooth vector field defined on an open subset of R
3 and taking

values in S
2. Then

(div n)2 = |(n ⊗ n) div (n ⊗ n)|2. (2.3)

Proof Let us first note that

0 = 1

2
∇(|n|2) = ∇nT n, (2.4)
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which follows from the fact that |n| = 1 everywhere. We now use (2.4) to write

(div n)n = (div n)n + ∇nT n

= (div n)n + (n · ∇nT n)n

= (div n)n + (∇n n · n)n

= (n ⊗ n)(div n)n + (n ⊗ n)(∇n n)

= (n ⊗ n) div (n ⊗ n). (2.5)

Taking | · |2 on both sides yields (2.3).

Proposition 2.3 Let n be a smooth vector field defined on an open subset of R
3 and taking

values in S
2. Then

((curl n) · n)2 = |(n ⊗ n) curl (n ⊗ n)|2, (2.6)

where for any matrix M, |M |2 denotes the sum of the squares of the entries.

Proof Let us first record

(n ⊗ n)(∇nj × n) = (n · (∇nj × n))n = (∇nj · (n × n))n = 0. (2.7)

In the following calculation, we will use the fact that |n|2 = 1 in the first and third lines and use
(2.7) once to add 0 in the fourth line. We write

((curl n) · n)2 = |((curl n) · n)n|2
= |(n ⊗ n)(curl n)|2
=

∑
j

|nj(n ⊗ n)(curl n)|2

=
∑

j

|nj(n ⊗ n)(curl n) + (n ⊗ n)(∇nj × n)|2

=
∑

j

|(n ⊗ n)(njcurl n + ∇nj × n)|2

=
∑

j

|(n ⊗ n) curl (njn)|2. (2.8)

But curl (njn) is precisely the jth column of curl (n ⊗ n), so that∑
j

|(n ⊗ n) curl (njn)|2 = |(n ⊗ n) curl (n ⊗ n)|2.

Combining this with (2.8) finishes the proof of (2.6).

Proposition 2.4 Let n be a smooth vector field defined on an open subset of R
3 and taking

values in S
2. Then,

|(curl n) × n|2 = |(I − n ⊗ n) div (n ⊗ n)|2. (2.9)
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Proof Using the calculation from (2.5) of (n ⊗ n) div (n ⊗ n), let us first write

(I − n ⊗ n) div (n ⊗ n) = div (n ⊗ n) − (div n)n

= ∇n n + (div n)n − (div n)n

= ∇n n.

Now recalling (2.4), we may subtract ∇nT n = 0 from the right-hand side of previous equation to
obtain

(I − n ⊗ n) div (n ⊗ n) = ∇n n − ∇nT n

=
⎛
⎝ 0 n1,y − n2,x n1,z − n3,x

n2,x − n1,y 0 n2,z − n3,y

n3,x − n1,z n3,y − n2,z 0

⎞
⎠ n

=
⎛
⎝ 0 −(curl n)3 (curl n)2

(curl n)3 0 −(curl n)1

−(curl n)2 (curl n)1 0

⎞
⎠ n

=
⎛
⎝ (curl n)2n3 − (curl n)3n2

(curl n)3n1 − (curl n)1n3

(curl n)1n2 − (curl n)2n1

⎞
⎠

= (curl n) × n.

Taking | · |2 on both sides completes the proof.

Proposition 2.5 Let n be a smooth vector field defined on an open subset of R
3 and taking

values in S
2. Then

|∇n|2 = |(I − n ⊗ n) curl (n ⊗ n)|2. (2.10)

Proof Let us first calculate |curl (n ⊗ n)|2, after which we can use Proposition 2.3 to find
|(I − n ⊗ n) curl (n ⊗ n)|2. Invoking Lemma 2.1 and then expanding, we write

|curl (n ⊗ n)|2 =
∑

j

|curl (njn)|2

=
∑

j

|∇nj × n + nj(curl n)|2

=
∑

j

|∇nj × n|2 +
∑

j

n2
j |curl n|2 +

∑
j

2(∇nj × n) · (njcurl n)

=: I + II + III . (2.11)

For I , we use Lagrange’s identity and the identity (curl n) × n = ∇n n from the previous lemma
to write

I =
∑

j

(|∇nj|2|n|2 − (∇nj · n)2)

=
⎛
⎝∑

j

|∇nj|2
⎞
⎠ − |∇n n|2

= |∇n|2 − |(curl n) × n|2. (2.12)
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Moving on to II , we immediately see that

II = |curl n|2. (2.13)

Finally, III vanishes since

III =
∑

j

(∇(|nj|2) × n) · (curl n) = (∇(|n|2) × n) · (curl n) = 0. (2.14)

Substituting (2.12)–(2.14) into (2.11) yields

|curl (n ⊗ n)|2 = |∇n|2 − |(curl n) × n|2 + |curl n|2 = |∇n|2 + ((curl n) · n)2. (2.15)

But with the aid of Lemma 2.3, we can also calculate |curl (n ⊗ n)|2 as

|(I − n ⊗ n) curl (n ⊗ n)|2 + |(n ⊗ n) curl (n ⊗ n)|2
= |(I − n ⊗ n) curl (n ⊗ n)|2 + ((curl n) · n)2. (2.16)

Equating (2.15) and (2.16) equal and subtracting ((curl n) · n)2, we arrive at (2.10).

For uniaxial Q such that W (Q) = 0, we can use the preceding propositions to establish an
equality between FLdG and the Oseen–Frank energy FOF .

Proposition 2.6 Let � be an open set in R
n and suppose W (Q) = 0 and Q ∈ H1(�; N ) is

orientable, so that Q = s0(n ⊗ n − I/3) for n ∈ H1(�; S2). Then, we have the equivalence

FLdG(Q) =
∫

�

(
L1

2

∣∣∣( s0

3
I + Q

)
div Q

∣∣∣2 + L2

2

∣∣∣( s0

3
I + Q

)
curl Q

∣∣∣2

+ L3

2

∣∣∣∣
(

2s0

3
I − Q

)
div Q

∣∣∣∣
2

+ L4

2

∣∣∣∣
(

2s0

3
I − Q

)
curl Q

∣∣∣∣
2
)

dx

=
∫

�

(
K1

2
(div n)2 + K2

2
((curl n) · n)2 + K3

2
|(curl n) × n|2

+ K2 + K4

2
(tr (∇n)2 − (div n)2)

)
dx = FOF(n), (2.17)

where s4
0L4 = K2 + K4 and s4

0(Li + L4) = Ki for 1 ≤ i ≤ 3.

Proof Rearranging Q = s0(n ⊗ n − I/3), we arrive at

s0n ⊗ n = s0

3
I + Q and s0(I − n ⊗ n) = 2s0

3
I − Q. (2.18)

Substituting the equations in (2.18) into the left-hand side of (2.17) and using the equalities (2.3),
(2.6) and (2.9)–(2.10) yields∫

�

(
L1

2

∣∣∣( s0

3
I + Q

)
div Q

∣∣∣2 + L2

2

∣∣∣( s0

3
I + Q

)
curl Q

∣∣∣2

+ L3

2

∣∣∣∣
(

2s0

3
I − Q

)
div Q

∣∣∣∣
2

+ L4

2

∣∣∣∣
(

2s0

3
I − Q

)
curl Q

∣∣∣∣
2
)

dx
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=
∫

�

(
s4

0L1

2
|(n ⊗ n) div (n ⊗ n)|2 + s4

0L2

2
|(n ⊗ n) curl (n ⊗ n)|2

+ s4
0L3

2
|(I − n ⊗ n) div (n ⊗ n)|2 + s4

0L4

2
|(I − n ⊗ n) curl (n ⊗ n)|2

)
dx

=
∫

�

(
s4

0L1

2
(div n)2 + s4

0L2

2
((curl n) · n)2 + s4

0L3

2
|(curl n) × n|2

+ s4
0L4

2
|∇n|2

)
dx.

Recalling the identity

|∇n|2 = (div n)2 + ((curl n) · n)2 + |(curl n) × n|2 + tr (∇n)2 − (div n)2

for smooth n : � → S
2, we can rewrite the last integral as∫

�

(
s4

0(L1 + L4)

2
(div n)2 + s4

0(L2 + L4)

2
((curl n) · n)2

+ s4
0(L3 + L4)

2
|(curl n) × n|2 + s4

0L4

2

(
tr (∇n)2 − (div n)2

))
dx.

We will refer to the elastic energy density terms in FLdG as

σ (Q) := L1

2

∣∣∣( s0

3
I + Q

)
div Q

∣∣∣2 + L2

2

∣∣∣( s0

3
I + Q

)
curl Q

∣∣∣2

+ L3

2

∣∣∣∣
(

2s0

3
I − Q

)
div Q

∣∣∣∣
2

+ L4

2

∣∣∣∣
(

2s0

3
I − Q

)
curl Q

∣∣∣∣
2

. (2.19)

Remark 1 It is straightforward that σ satisfies the requisite frame indifference and material
symmetry conditions; cf. Lemma 4.1. Moreover, in the Appendix, we identify each term in σ as
an appropriately weighted sum of terms from the generalised Landau-de Gennes theory [24].
For example, the term

∣∣( s0
3 I + Q

)
div Q

∣∣2
corresponds to the L(2)

2 -, L(3)
3 - and L(4)

6 -invariants.

Remark 2 To ensure that σ is non-negative, it is natural to require that each Li is non-negative.
In fact, as we will see in the upcoming Proposition 3.1, when each Li is positive, FLdG is coercive
over H1. Conversely, if one of the Lis is negative, then one can construct a map Q such that
σ (Q) < 0. For example, if L1 < 0, a curl-free map Q can be constructed which satisfies

|L1|
2

∣∣∣( s0

3
I + Q

)
div Q

∣∣∣2
>

L3

2

∣∣∣∣
(

2s0

3
I − Q

)
div Q

∣∣∣∣
2

pointwise and ensures that σ (Q) < 0.

Remark 3 The Oseen–Frank elastic constants Ki and our constants Li are related to each other
as follows:

L4 = K2 + K4

s4
0

, and Li = Ki − K2 − K4

s4
0

for 1 ≤ i ≤ 3,

or

Ki = s4
0(Li + L4) for 1 ≤ i ≤ 3, and K4 = −s4

0L2.
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In the equal elastic constant case, K1 = K2 = K3 = K, K4 = 0, so that

FOF(n) = K

2

∫
|∇n|2/2,

each Li vanishes except for L4. If we include the additional term
∫
�

L5|∇Q|2/2, then the equal
elastic constant case yields a Q-tensor model in which only L4- and L5-terms survive, satisfying
L4 + 2L5/s2

0 = K. As a special case, one may choose L4 = 0, so that the elastic energy is just the
Dirichlet energy for the Q-tensor.

Remark 4 One might inquire as to the relationship between the inequalities Li ≥ 0 and
Ericksen’s inequalities

2K1 ≥ K2 + K4, K2 ≥ |K4|, K3 ≥ 0 (2.20)

for FOF, which guarantee that the energy density in FOF is non-negative [12]. It is quickly
checked that if each Li is non-negative, then (2.20) is satisfied. Conversely, if {Ki} satisfies (2.20),
it can be checked that the additional assumptions

K1 ≥ K2 + K4, K3 ≥ K2 + K4, K4 ≤ 0

are needed so that each Li is non-negative. It is possible that these additional assumptions can
be relaxed through the inclusion of more quartic terms identified by [24], but we do not pursue
this issue further.

3 Analysis and �-convergence of FLdG

Motivated by Proposition 2.6, we combine the quartic Q-tensor elastic terms with the bulk poten-
tial W given by (1.3) to obtain the following generalised Landau-de Gennes energy with quartic
elastic energy density, defined over Q ∈ H1(�; S):

FLdG(Q) :=
∫

�

(
L1

2

∣∣∣( s0

3
I + Q

)
div Q

∣∣∣2 + L2

2

∣∣∣( s0

3
I + Q

)
curl Q

∣∣∣2

+ L3

2

∣∣∣∣
(

2s0

3
I − Q

)
div Q

∣∣∣∣
2

+ L4

2

∣∣∣∣
(

2s0

3
I − Q

)
curl Q

∣∣∣∣
2

+ W (Q)

)
dx.

We assume that Li > 0 for each i. This will ensure that our energy is coercive over H1(�; S); cf.
Proposition 3.1. Let us point out that Q merely belonging to H1(�; S) is not enough to conclude
that FLdG(Q) < ∞. If, for example, Q ∈ (L∞ ∩ H1)(�; S) or W 1,4(�; S); however, then FLdG is
necessarily finite.

In order to establish a meaningful asymptotic connection between this generalisaed Landau-
de Gennes model and Oseen–Frank, we next non-dimensionalise the energy FLdG by scaling the
spatial coordinates

x = x/D,
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where D := diam(�). We also rescale Q by letting

Q(x) := Q(x)/s0.

Although the order parameter Q is already dimensionless, dividing by the dimensionless param-
eter s0 enables us to eliminate it from the elastic energy density. Let ζ := L1s4

0/D2 and define a
dimensionless elastic energy density via

σ
(
Q

)
:= 1

ζ
σ (Q).

Then, in the x-coordinates,

σ
(
Q

) = L1

2

∣∣(I/3 + Q
)

div Q
∣∣2 + L2

2

∣∣(I/3 + Q
)

curl Q
∣∣2

+ L3

2

∣∣(2I/3 − Q
)

div Q
∣∣2 + L4

2

∣∣(2I/3 − Q
)

curl Q
∣∣2

, (3.1)

where Li := Li/L1 for 1 ≤ i ≤ 4. Next, we rescale the Landau-de Gennes potential W by
introducing

W
(
Q

)
:= a tr

(
Q

2
)

− 2b

3
tr

(
Q

3
)

+ c
(

tr
(

Q
2
))2

, (3.2)

where a = as2
0/c, b = bs3

0/c and c = s4
0/2. Then, setting ε :=

√
ζ

c , we have

W
(
Q

) = ε2

ζ
W (Q).

Recall that we are assuming the global minimum of W is 0, and it is now achieved along the set{
n ⊗ n − 1

3
I : n ∈ S

2

}
, (3.3)

which we will still refer to as N . If we write � := �/D, then the total energy is given by∫
�

(σ (Q) + W (Q)) dx = ζD3
∫

�

(
σ

(
Q

) + 1

ε2
W

(
Q

))
dx.

Finally, noting that ζD3 has the dimensions of energy, we define the non-dimensionalised
energy via

Fε

(
Q

)
:=

∫
�

(
σ

(
Q

) + 1

ε2
W

(
Q

))
dx.

The parameter ε can be interpreted as ξNI/D, where ξNI is the nematic correlation length that
determines isotropic core size [16]. With a slight abuse of notation, we will dispose of the bars
for the rest of the paper, so that the non-dimensionalised energy is written as

Fε(Q) =
∫

�

(
σ (Q) + 1

ε2
W (Q)

)
dx, (3.4)
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with σ (Q) henceforth given by (3.1) and W (Q) given by (3.2). We will consider the ε → 0
limit for Fε, which should be understood as the limit in which the nematic correlation length is
vanishingly small compared to the size of the domain.

Finally, we will require throughout the rest of the article that admissible competitors for Fε

are subject to a Dirichlet boundary condition

g ∈ Lip (∂�; S).

For such g, the set H1
g (�; S) contains competitors which are also Lipschitz, so that the infimum of

Fε among H1
g (�; S) is not infinity. Later on, when we are considering the asymptotic behaviour

of Fε as ε → 0, we will further require that g takes values in N .

Proposition 3.1 (Coercivity of Fε) There exist constants C1 = C1({Li}) > 0 and C2 = C2(g) such
that for any Q ∈ H1

g (�; S),

‖Q‖2
H1 ≤ C1Fε(Q) + C2. (3.5)

Proof It is standard to bound ‖Q‖2
L2 from above by the potential term in the energy Fε, so we

focus on σ . First, recall that for any symmetric matrix M and vectors v1, v2,

〈Mv1, v2〉 = 〈v1, Mv2〉.
Using this fact, we calculate

|(I/3 + Q) div Q|2 + |(2I/3 − Q) div Q|2
= 〈div Q, (I/3 + Q)2div Q〉 + 〈div Q, (2I/3 − Q)2div Q〉
= 〈div Q, (2Q2 − 2Q/3 + 5I/9) div Q〉
= 〈

div Q,
(
I/2 + 2 (Q − I/6)2

)
div Q

〉
= |div Q|2/2 + 2 |(Q − I/6) div Q|2 . (3.6)

Similarly, we have

|(I/3 + Q) curl Q|2 + |(2I/3 − Q) curl Q|2
= |curl Q|2/2 + 2 |(Q − I/6) curl Q|2 . (3.7)

The equalities (3.6)–(3.7) imply that

1

2
min

i

Li

2

(|div Q|2 + |curl Q|2) ≤ σ (Q). (3.8)

To bound this from below using |∇Q|2, we need the identity

|∇Q|2 =
∑

j

(
(div Qj)

2 + |curl Qj|2 + tr (∇Qj)
2 − (div Qj)

2
)

(3.9)

cf. [20, Lemma 1.4], where Qj is the jth row of Q. Therefore, with C1 = 4/(min1≤i≤4 Li), we can
combine (3.8) and (3.9) to arrive at∫

�

|∇Q|2 dx ≤ C1

∫
�

σ (Q) dx +
∫

�

∑
j

(
tr (∇Qj)

2 − (div Qj)
2
)

dx.
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The remainder on the right-hand side is a null Lagrangian, and since the boundary data g is
Lipschitz, it can be written as

∫
∂�

⎛
⎝∑

j

(∇tan gj)gj − (tr ∇tan gj)gj

⎞
⎠ · ν dH2, (3.10)

which is a constant C2 independent of Q ∈ H1
g (�; S). We refer the reader to [20, Lemma 1.2] for

the derivation of this formula.

To prove the existence of minimisers of Fε among H1
g (�; S) and to prove a �-convergence

result, we will need the following proposition.

Proposition 3.2 (Lower semicontinuity of σ ) For any sequence Qn which converges weakly in
H1(�; S) to Q ∈ H1(�; S), we have∫

�

σ (Q) dx ≤ lim inf
n→∞

∫
�

σ (Qn) dx. (3.11)

Proof We focus on the term |(I/3 + Qn) div Qn|2; the argument for the other terms is the same.
Let us assume that the right-hand side of (3.11) is finite; if it is not, the proof is trivial. The
essence of the subsequent proof is the real analysis fact

fn → f strongly in L2, gn → g weakly in L2, ‖fngn‖L2 ≤ C < ∞
=⇒ fngn → fg weakly in L2.

Without loss of generality, we can assume (by restricting to a subsequence) that
lim inf

∫
�

|(I/3 + Qn) div Qn|2 dx is finite, and the sequence of integrals converges to its limit
inferior. Let us first recall that weak convergence in H1(�; S) entails strong convergence in
L2(�; S), so that

I/3 + Qn → I/3 + Q in L2(�; S). (3.12)

Next, since div Qn converges weakly in L2(�; R3) to div Q and I/3 + Qn converges strongly in
L2(�; S) to I/3 + Q, we have for any φ ∈ L∞(�; R3):∫

�

(I/3 + Qn) div Qn · φ =
∫

�

[(I/3 + Qn) − (I/3 + Q)] div Qn · φ

+
∫

�

(I/3 + Q) div Qn · φ →
∫

�

(I/3 + Q) div Q · φ.

Thus,

(I/3 + Qn) div Qn → (I/3 + Q) div Q weakly in L1(�; R3).

Now from the uniform L2 bound on (I/3 + Qn) div Qn, we have that (up to a subsequence)

(I/3 + Qn) div Qn → h weakly in L2(�; R3)

for some h ∈ L2(�; R3). But from the previous observation and the uniqueness of weak limits,
we deduce that the weak L2-limit h must coincide with (I/3 + Q) div Q, the weak L1-limit. The
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inequality ∫
�

|(I/3 + Q) div Q|2 dx ≤ lim inf
n→∞

∫
�

|(I/3 + Qn) div Qn|2 dx

now follows from the lower semicontinuity of the L2-norm under weak convergence. Repeating
the same argument for the other terms in σ concludes the proof.

Remark 5 The proposition 3.2 should hold for other quartic elastic energies, provided the
energy is strongly lower semicontinuous and convex [8]. This would also allow for gene-
ralisation of the �-convergence result (Theorem 3.4) to other models with quartic elastic
energies.

Next, we turn our attention to the existence of minimisers of Fε.

Theorem 3.3 (Existence of a minimiser) For any ε > 0 and Lipschitz g : ∂� → S , there exists
Q0 which minimises Fε within H1

g (�; S).

Proof Fix ε > 0 and g as stated in the theorem. By virtue of the previous two propositions, the
existence of a minimiser will follow without difficulty from the direct method in the calculus of
variations.

Let {Qn} be a sequence such that

lim
n→∞ Fε(Qn) = inf{Fε(Q) : Q ∈ H1

g (�; S)}.

As noted earlier, since g is Lipschitz, the infimum is not ∞. Then by Proposition 3.1, we have a
uniform H1 bound on {Qn} and a subsequence, which we still refer to as {Qn}, converging weakly
in H1 to some Q0 ∈ H1

g (�; S). Proposition 3.2 then yields∫
�

σ (Q0) dx ≤ lim inf
n→∞

∫
�

σ (Qn) dx. (3.13)

By Rellich’s theorem, we may assume as well that Qn converge in L4 to Q0, from which we
deduce ∫

�

W (Q0) dx = lim
n→∞

∫
�

W (Qn) dx. (3.14)

The minimality of Q0 is now a consequence of (3.13) and (3.14).

We are now interested in the asymptotic behaviour of minimisers of Fε as ε → 0. Let us
begin by identifying a limiting functional. In the limit ε → 0, it is clear that competitors with
finite energy will have to take values in N , the well of W , cf. (3.3). Assume that in addition to
being Lipschitz, the boundary data g take values in N , so that W (g) = 0. The set of satisfactory
boundary data includes, for example, g which are formed using a Lipschitz vector field n : ∂� →
S

2 and considering the tensor field

n ⊗ n − 1

3
I : ∂� →N , (3.15)
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cf. [20, Lemma 1.1]. The limiting functional F0 is then defined by

F0(Q) =
⎧⎨
⎩

∫
�

σ (Q) dx if Q ∈ H1
g (�; N ),

∞ otherwise,

with σ given by (3.1).
Let us point out a key feature of the limiting model: F0 coincides with the Oseen–Frank model,

in the sense of Proposition 2.6. The question of when minimising F0 among Q-tensor fields
coincides with minimising the version of the Oseen–Frank energy above is more delicate. There
may well be strictly more competitors in the space of Q-tensors than in the space of S2-valued
fields n due to the possible ‘non-orientability’ of a Q-tensor field. It has been shown in [5] that
when � ⊂R

k is simply connected and k = 2, 3, every Q ∈ H1(�; N ) has a lifting nQ ∈ H1(�; S2)
such that

Q = nQ ⊗ nQ − I/3.

If � is not simply connected or if p < 2, then there might exist tensor fields which cannot be
‘oriented’ to produce a globally defined corresponding director. We refer the reader to [5] for a
more detailed treatment.

We state the first of two theorems regarding the asymptotic behaviour of Fε and its minimisers.

Theorem 3.4 (�-convergence) For any choice of boundary data g as above, the sequence {Fε}
�-converges in the weak topology of H1

g (�; S) to F0. That is,

1. For any Q ∈ H1
g (�; S) and for any sequence {Qε} in H1

g (�; S),

Qε ⇀ Q in H1
g (�; S) implies lim inf

ε→0
Fε(Qε) ≥F0(Q), (3.16)

and
2. For each Q ∈ H1

g (�; S), there exists a recovery sequence {Qε} in H1
g (�; S) satisfying

Qε ⇀ Q0 in H1
g (�; S), (3.17)

lim
ε→0

Fε(Qε) =F0(Q0). (3.18)

Before we present the proof, we state a compactness proposition, which follows immediately
from Proposition 3.1.

Proposition 3.5 (Compactness) Let {Qε} be a sequence of maps from � to S , and assume that
the sequence of energies Fε(Qε) is uniformly bounded. Then, there exists a subsequence {Qεj}
and Q ∈ H1

g (�; N ) such that Qεj ⇀ Q in H1(�; S).

Proof of Theorem 3.4 The lower semicontinuity condition (3.16) has been proved in
Proposition 3.2. For the construction of a recovery sequence given some Q0, we can simply
take Qε = Q0 for all ε.

Finally, we prove that
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Theorem 3.6 (H1-convergence of a subsequence of minimisers) For any sequence of minimisers
{Qε} of Fε, there exists Q0 ∈ H1

g (�; N ) which minimises F0 and a subsequence {Qεj} converging
to Q0 strongly in H1

g (�; S).

Proof We will prove the theorem under the assumption that

min
1≤i≤4

Li = L1 = 1 > 0; (3.19)

the proof when one of the other Lis is the smallest is similar. Appealing to Proposition 3.5 yields
a subsequence {Qεj}, which we will call {Qj} for convenience, such that Qj converges weakly in
H1(�; S) to some Q0 ∈ H1

g (�; N ) of F0. It is a classical fact from the theory of �-convergence
that Q0 minimises F0. To show the strong convergence of Qj, we will use the fact that weak
convergence together with convergence of norms implies strong convergence.

It will be necessary to first extend our maps to compactly supported Sobolev maps on a larger
domain. Let �′ ⊂R

3 be a smooth domain such that � is compactly contained in �′, and let
P : �′ \ � → S be an H1 function such that its trace on ∂� is g and its trace on ∂�′ is 0. We
extend each Qj to a map Q̃j ∈ H1

0 (�′; S) via

Q̃j(x) =
{

Qj(x) x ∈ �,

P(x) x ∈ �′ \ �,

and similarly for Q0. We will now use the calculations (3.6)–(3.7) from Proposition 3.1 to extract
a |∇Q|2 term from σ . First, from (3.6)–(3.7), we have∫

�′

(
1

2
|(I/3 + Q̃j) div Q̃j|2 + L2

2

∣∣∣(I/3 + Q̃j) curl Q̃j

∣∣∣2

+ L3

2

∣∣∣(2I/3 − Q̃j) div Q̃j

∣∣∣2 + L4

2
|(2I/3 − Q̃j) curl Q̃j|2

)
dx

= 1

2

∫
�′

(
|(I/3 + Q̃j) div Q̃j|2 + |(I/3 + Q̃j) curl Q̃j|2

+ |(2I/3 − Q̃j) div Q̃j|2 + |(2I/3 − Q̃j) curl Q̃j|2

+ L2 − 1

2

∣∣∣(I/3 + Q̃j) curl Q̃j

∣∣∣2 + L3 − 1

2

∣∣∣(2I/3 − Q̃j) div Q̃j

∣∣∣2

+ L4 − 1

2
|(2I/3 − Q̃j) curl Q̃j|2

)
dx

= 1

2

∫
�′

( (
|div Q̃j|2 + |curl Q̃j|2

)
/2 + 2|(Q̃j − I/6) div Q̃j|2

+ 2|(Q̃j − I/6) curl Q̃j|2 + L2 − 1

2

∣∣∣(I/3 + Q̃j) curl Q̃j

∣∣∣2

+ L3 − 1

2

∣∣∣(2I/3 − Q̃j) div Q̃j

∣∣∣2 + L4 − 1

2
|(2I/3 − Q̃j) curl Q̃j|2

)
dx.

But for any smooth Q ∈ H1
0 (�′; S), we have by (3.9) and (3.10)∫

�′

(|div Q|2 + |curl Q|2) dx =
∫

�′

(|∇Q|2 + null Lagrangian
)

dx

=
∫

�′
|∇Q|2 dx. (3.20)
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Hence (3.20) holds for all Q ∈ H1
0 (�′; S) by density. Plugging this equality into our expression

for
∫
�′ σ (Q̃j) dx gives∫

�′
σ (Q̃j) dx (3.21)

= 1

2

∫
�′

(
|∇Q̃j|2/2 + 2|(Q̃j − I/6) div Q̃j|2

+ 2|(Q̃j − I/6) curl Q̃j|2 + L2 − 1

2

∣∣∣(I/3 + Q̃j) curl Q̃j

∣∣∣2

+ L3 − 1

2

∣∣∣(2I/3 − Q̃j) div Q̃j

∣∣∣2 + L4 − 1

2
|(2I/3 − Q̃j) curl Q̃j|2

)
dx.

Define σ̃ (Q̃j) to be the sum of the integrands of the right-hand side of (3.21), so that∫
�′

σ (Q̃j) dx =
∫

�′
σ̃ (Q̃j) dx.

By the exact same argument as in Proposition 3.2, each of the individual terms in
∫
�′ σ̃ (Q̃j) dx is

lower semicontinuous with respect to weak H1-convergence. Therefore,∫
�′

σ̃ (Q̃0) dx ≤ lim inf
j→∞

∫
�′

σ̃ (Q̃j) dx. (3.22)

But since Qj minimises Fεj , we also have

lim sup
j→∞

∫
�′

σ̃ (Q̃j) dx = lim sup
j→∞

∫
�′

σ (Q̃j) dx

≤ lim sup
j→∞

∫
�′

(
σ (Q̃j) + 1

εj
W (Q̃j)

)
dx

≤
∫

�′
σ (Q̃0) dx

=
∫

�′
σ̃ (Q̃0) dx. (3.23)

Together, (3.22) and (3.23) give∫
�′

σ̃ (Q̃0) dx = lim
j→∞

∫
�′

σ̃ (Q̃j) dx.

Since each separate term in σ̃ is lower semicontinuous, it must be the case that∫
�′

|∇Q̃|2 = lim
j→∞

∫
�′

|∇Q̃j|2 dx. (3.24)

From the weak H1-convergence, we know that ∇Q̃j → ∇Q̃0 weakly in L2, which in conjunction
with (3.24) implies that

∇Q̃j → ∇Q̃0 in L2(�′; S).

Since Q̃j = P = Q0 on �′ \ �, we have shown that in fact

∇Qj → ∇Q0 in L2(�; S),
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and the proof is complete under the assumption that 1 = L1 ≤ Li for 2 ≤ i ≤ 4. If mini Li is
achieved by some Li where i �= 1, the proof follows almost exactly as above, with the sec-
ond integral in (3.21) replaced by a similar expression involving the three largest Lis and their
corresponding elastic terms.

4 Discussion

We have introduced a version of Landau-de Gennes model involving a quartic elastic energy
that reduces to the four-constant Oseen–Frank energy for uniaxial Q-tensors. This version has
several advantages, as laid out in the introduction, in addition to being capable of recovering the
full Oseen–Frank energy.

From the mathematical standpoint, it is far more stable than the frequently used cubic model
since the energy is bounded from below and coercive. From the physical viewpoint, we have
found this form of Landau-de Gennes is particularly useful in modelling liquid crystalline states
with coexisting isotropic and nematic phases, specifically in the context of lyotropic chromonic
liquid crystals (LCLCs) [23, 33]. To this end, in order to capture nematic-to-isotropic phase
transitions, a Q-tensor has to vanish in a part of the physical domain while being in a uniaxial,
RP

2-valued nematic state elsewhere. Clearly, this setup falls outside of the scope of an S
2-valued

director theory such as that of Oseen and Frank. What is more, because in the Oseen–Frank
limit, the standard quadratic Landau-de Gennes model (1.2) reduces to a director model with
two equal elastic constants, the quadratic Landau-de Gennes framework is not adequate when
the contributions from splay, twist and bend all incur different costs. In fact, it is well known
experimentally that for certain liquid crystals, including LCLCs, the elastic constants for splay,
bend and twist can vary dramatically. It is thus a keen interest of ours to explore the effects
of strong elastic disparity on evolution of interfaces and nematic singularities in isotropic-to-
nematic transitions. We are encouraged by the results of gradient flow simulations using our
model which exhibit good qualitative agreement with experiments, including the capture of such
features as phase boundary singularities – the so-called ‘boojums’ – and vortex splitting, cf. [17].

Example 4.1 (LCLCs) Let us compare the standard quadratic Landau-de Gennes energy (1.2), a
cubic Landau-de Gennes energy [4] and the quartic energy proposed here in terms of modelling
the LCLCs with highly disparate elastic constants considered in [33]. The authors in [33] mea-
sured the values of the Oseen–Frank elastic constants for disodium cromoglycate and found that
the coefficients K1 and K3 for splay and bend are of the order 10 pN, while the twist coefficient is
about 10 times smaller. However, the values of K1 and K3 are not equal. In Fig. 4 of [33], the ratio
K1/K3 varies between approximately 0.4 and 1.2, depending on temperature and concentration.
Therefore, modelling this liquid crystal using the standard quadratic model (1.2) is not feasible,
since the values of K1 and K3 in terms of Li for this model are equal, cf. [3, equation (4.17)]. If
one were to attempt to use the cubic model with modified potential from [4], a necessary con-
dition for minimisation is that one of the coefficients, L′

1, is positive, cf. [3, equation (5.16)]. In
terms of the Oseen–Frank constants Ki [3, equation 4.18], this condition is equivalent to

(1 − s0)(K1 − K3) + 3s0 K2 > 0, (4.1)

when K3 > K1. If, for instance, one has 10K2 ≈ K1 ≈ K3/2 from the experiment and s0 is in
the typically observed interval (0.6, 0.7) [2], this inequality does not hold. Thus, the standard
Landau-de Gennes model and its variants are ill-suited to modelling in this scenario, since
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they are not well-posed. In contrast, for the quartic model proposed here, the restrictions K1 >

K2 + K4, K3 > K2 + K4 needed in order to guarantee coercivity do not present any obstacles.
Furthermore, these inequalities are consistent with commonly observed values of Ki [15].

Finally, we wish to emphasise that there are surely many, many other choices of elastic energy
densities beside those we take in (1.5) capable of recovering the four-constant Oseen–Frank
energy for uniaxial Q. This should not cause concern since what is physically measurable are
the Frank constants K1, K2, K3 and K4. Given that there are 6 different allowable cubic terms,
13 quartic terms, and even more terms if one ventures into higher order, it is clear that there
are myriad combinations of terms in a Q-tensor-based elastic energy density that can reduce to
the four-constant Oseen–Frank energy when Q is uniaxial. Of course, what may differ from one
choice to another are the constraints on the coefficients under which the particular version is well-
posed. On this point, it should be noted that one should expect any such choice of elastic energy
density to impose restrictions more stringent than those dictated by the Ericksen inequalities on
the Kis, cf. (2.20), since one is seeking well-posedness over a much broader class of competitors
than just uniaxials.
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Appendix. Relationship with generalized Landau-de Gennes elastic free energy

Here, we elucidate the relationship between the energy (2.19) and the independent elastic
invariants in [24]. First, we observe that∣∣∣( s0

3
I ± Q

)
div Q

∣∣∣2 = s2
0

9
|div Q|2 ± 2s0

3
div Q · Qdiv Q + |Qdiv Q|2 (A.1)

and, utilising the anticommutator {A, B} := AB + BA,

∣∣∣( s0

3
I ± Q

)
curl Q

∣∣∣2 = 1

2

3∑
j=1

∣∣∣{ s0

6
I ∓ Q, ∇Qj − ∇QT

j

}∣∣∣2

= s2
0

9

3∑
j=1

(∣∣∇Qj

∣∣2 − ∇Qj · ∇QT
j

)
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∓ s0

3

3∑
j=1

(
∇Qj − ∇QT

j

)
·
(

Q
(
∇Qj − ∇QT

j

)
+

(
∇Qj − ∇QT

j

)
Q

)

+
∣∣∣(Q

(
∇Qj − ∇QT

j

)
+

(
∇Qj − ∇QT

j

)
Q

)∣∣∣2
. (A.2)

The terms in (A.1) can be written as

|div Q|2 = Qij,jQik,k ,

div Q · Qdiv Q = QimQij,jQml,l,

|Qdiv Q|2 = QikQilQkj,jQlm,m.

These correspond to the invariants [L(2)
2 ], [L(3)

3 ] and [L(4)
6 ] in [24], respectively. Expanding the

terms quadratic in Q in (A.2) results in expressions∣∣∇Qj

∣∣2 = Qij,kQij,k ,

∇Qj · ∇QT
j = Qij,kQkj,i,

corresponding to [L(2)
1 ] and [L(2)

3 ] in [24]. The cubic terms in (A.2) are

∇Qj · Q∇Qj = QilQij,mQlj,m,

∇Qj · Q∇QT
j = QilQij,mQmj,l,

∇Qj · ∇Qj Q = QilQmj,iQmj,l,

and these are, respectively, the invariants [L(3)
4 ], [L(3)

6 ] and [L(3)
7 ] in [24]. Note that [L(3)

7 ] is not an
independent invariant (cf. [24]) because it can be written as

[L(3)
7 ] = 2[L(3)

6 ] + [L(3)
5 ] − 2[L(3)

4 ] + [L(3)
3 ] + 2[L(3)

2 ] − 2[L(3)
1 ].

Finally, the fourth-order terms in (A.2) are as follows:

Q∇Qj · Q∇Qj = QilQimQlj,pQmj,p,

Q∇Qj · Q∇QT
j = QilQlmQik,pQpk,m,

Q∇QT
j · Q∇QT

j = QilQlmQkj,iQkj,m,

Q∇Qj · ∇Qj Q = QikQlmQlj,iQmj,k ,

Q∇Qj · ∇QT
j Q = QikQmlQlj,iQkj,m.

The first term in this list is the invariant [L(4)
7 ], the second term is [L(4)

9 ] and the fourth term is
[L(4)

11 ]. The third and fifth terms do not belong to the list of independent invariants in [24], and
thus must be linear combinations of the invariants [L(4)

1 ] through [L(4)
13 ] in [24], cf. the following

lemma. We will not pursue the issue of finding the coefficients of these combinations further.

Lemma 4.1 The terms

Q∇QT
j · Q∇QT

j = QilQlmQkj,iQkj,m (A.3)

and

Q∇Qj · ∇QT
j Q = QikQmlQlj,iQkj,m (A.4)
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are frame indifferent and materially symmetric, and so can each be written as a linear
combination of the 13 quartic [L(4)

j ] invariants in [24].

Proof We begin with the first term (A.3) and follow the discussion in [1]. Both conditions
involve invariance of (A.3) under different coordinate changes x → z, with corresponding mea-
surements of the tensor Q, Q∗ in the x = (x1, x2, x3) (standard Cartesian) and z = (z1, z2, z3)
(Cartesian after a change of variables) coordinates, respectively. More precisely, the frame
indifference condition entails that for x ∈ �, R̃ ∈ SO(3) and z = x + R̃(x − x),

Q∇T
x Q · Q∇T

x Q = Q∗∇T
z Q∗ · Q∗∇T

z Q∗. (A.5)

Material symmetry is similar, except that z = x + R̂(x − x), where R̂ is the reflection R̂ = −I +
2e ⊗ e, |e| = 1. Since any R ∈ O(3) can be expressed as R̂R̃ for a reflection R̂ and R̃ ∈ SO(3),
verifying these two conditions can be combined and simplified into a single calculation, cf. [1].
Therefore, we must check that (A.5) holds for R ∈ O(3). We will start on the right-hand side of
(A.5) and simplify, using the relation RγαRγβ = δαβ and the identities

Q∗
ab = Raf QfgRbg, Q∗

de,a = RdoRepRaqQop,q,

Q∗
bc = RbhQhnRcn, Q∗

de,c = RdrResRctQrs,t,

which can be derived as in [1]. Here, δαβ is the usual Kronecker delta, and the first relation is a
restatement of the identity RT R = I for an orthogonal matrix. We write

Q∗∇T
z Q∗ · Q∗∇T

z Q∗

= Q∗
abQ∗

bcQ∗
de,aQ∗

de,c

= Raf QfgRbgRdoRepRaqQop,qRbhQhnRcnRdrResRctQrs,t

= Raf RaqRbgRbhRdoRdrRepResRctRcnQfgQhnQop,qQrs,t

= δfqδghδorδpsδtnQfgQhnQop,qQrs,t

= QfgQgtQop,f Qop,t.

Of course, the indices f , g, t, o, p can be replaced by i, j, k, l, m, and we have shown that Q∗∇T
z Q∗ ·

Q∗∇T
z Q∗ = Q∇T

x Q · Q∇T
x Q.

Moving on to the second term, we first record the identities

Q∗
ab = Raf QfgRbg, Q∗

de,a = RdoRepRaqQop,q,

Q∗
cd = RchQhnRdn, Q∗

be,c = RbrResRctQrs,t.

We may now calculate

Q∗∇zQ
∗
j · ∇T

z Q∗
j Q∗

= Q∗
abQ∗

cdQ∗
de,aQ∗

be,c

= Raf QfgRbgRchQhnRdnRdoRepRaqQop,qRbrResRctQrs,t

= Raf RaqRbgRbrRchRctRdnRdoRepResQfgQhnQop,qQrs,t

= δfqδgrδhtδnoδpsQfgQhnQop,qQrs,t

= QfgQhnQnp,f Qgp,h

= Q∇Qj · ∇QT
j Q.
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