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In this study large-eddy simulations of under-expanded supersonic impinging jets are
performed to develop a better understanding of the characteristics of the acoustic and
hydrodynamic waves. Time history, dispersion relation and autocorrelation of the velocity
and pressure fluctuations are used to investigate the propagation velocity, time and
length scales of the dominant flow structures in the shear layer and near field. The
mechanism by which the initial high-frequency instabilities change to low-frequency
coherent structures within a short distance is investigated utilising Mach energy norm and
linear spatial instability analysis with streamwise varying mean flow profiles. It is shown
that the hydrodynamic and acoustic wavepackets have different propagation velocities
and length scales while having a similar dominant frequency. It is also observed that
the hydrodynamic wavepackets form approximately one jet diameter downstream of the
nozzle lip. No evidence has been found to support the ‘collective interactive’ mechanism
proposed by Ho & Nosseir (J. Fluid Mech., vol. 105, 1981, pp. 119–142). The ‘vortex
pairing’ proposed by Winant & Browand (J. Fluid Mech., vol. 63, 1974, pp. 237–255) is
observed near the nozzle; however, it has an insignificant role in the sharp reduction of
the most unstable frequency of disturbances. Nonetheless, both Mach energy norm and
linear spatial instability analyses show that the most unstable frequency of disturbances
decreases rapidly in a very short distance from the nozzle lip in the near-nozzle region
through the spatial growth of instabilities where the linear instability analysis overpredicts
the frequency of the most unstable instabilities downstream of the nozzle.

Key words: high-speed flow, shear layer turbulence, jets

1. Introduction

Supersonic impinging jets have numerous practical applications such as cold additive
manufacturing, short take-off and vertical landing aeroplanes, cooling of turbine blades
and electronic devices. Under-expanded impinging jets form when the static pressure at
the nozzle exit is higher than the ambient pressure. As the jet exit pressure is higher than
the surrounding pressure, expansion fans are formed as the boundary of the jet expands.

† Email address for correspondence: shahram.karami@monash.edu
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The expansion waves are reflected by the shear layer and form compression waves. The
compression fans converge and form a Mach disk (Prandtl 1904, 1907; Pack 1948).
These expansions and contractions form a cellular pattern which is commonly observed
in schlieren visualisations of this flow (Risborg & Soria 2009; Soria & Risborg 2019).
A stand-off shock is created when the supersonic jet impinges on a wall (Powell 1953;
Henderson 1966; Carling & Hunt 1974; Sinibaldi, Marino & Romano 2015). Depending
on the nozzle-to-wall distance and nozzle pressure ratio, a recirculation zone may form.
A wall jet is created on the impingement surface. These are the ingredients of an
under-expanded supersonic impinging jet. The interaction of these physical processes
results in an intricate coupling between the flow and acoustic fields which in turn leads
to self-sustained oscillations in this configuration (Henderson 1966).

The self-sustained oscillation is a characteristic of a broad class of flows such as a
subsonic impinging jet (Ho & Nosseir 1981; Tam & Ahuja 1990), a screeching supersonic
jet (Baars & Tinney 2014; Edgington-Mitchell et al. 2014b; Mercier, Castelain & Bailly
2017; Edgington-Mitchell 2019), a resonance tube (Thethy, Tairych & Edgington-Mitchell
2019), an edge tone and a plate with a cavity (Rowley, Colonius & Basu 2002; Raman
& Srinivasan 2009). The feedback loop mechanism (Rossiter 1964; Powell 1988) is
a commonly accepted mechanism describing this self-sustained oscillation. Coherent
structures travel in the shear layer while amplified by the shear layer, and generate
upstream-travelling acoustic waves when they interact with shock or impinge on the
impingement surface. These acoustic waves travel upstream and excite further instabilities
at the nozzle lip through the receptivity mechanism (Karami et al. 2020).

Downstream-travelling coherent structures, a main component of the process, have
been extensively studied experimentally and numerically (Powell 1988; Zaman 1996;
Krothapalli et al. 1999; Elavarasan et al. 2001; Gojon, Bogey & Marsden 2015; Amili
et al. 2016; Gojon & Bogey 2017). These coherent structures have been visualised
using ultra-high-speed schlieren (Risborg & Soria 2009; Edgington-Mitchell, Honnery
& Soria 2012; Soria & Risborg 2019) in under-expanded supersonic free jets. Proper
orthogonal decomposition has been extensively used to study these coherent structures
in under-expanded supersonic free and impinging jets (Edgington-Mitchell, Honnery &
Soria 2014a; Nguyen, Maher & Hassan 2019; Weightman et al. 2019). Coherent structures
play a substantial role in the mixing process (Paschereit, Gutmark & Weisenstein 1999),
sound generation (Gaitonde & Samimy 2011; Brouzet et al. 2020; Zhang & Wu 2020) and
thermo-acoustic instabilities (Schadow et al. 1989). Hence, effective manipulation of these
coherent structures through flow control is the focus of recent studies (Brunton & Noack
2015; Gad-El-Hak 2019). This requires an understanding of the characteristics of these
structures, which is unavailable or incomplete in under-expanded supersonic impinging
jets and is one of the objectives of this paper.

Upstream-travelling acoustic waves have also been studied experimentally and
numerically (Tam & Hu 1989; Gojon et al. 2015; Gojon & Bogey 2017;
Edgington-Mitchell et al. 2018a). The mechanism of the upstream-travelling waves was
considered to be a straightforward process and, hence, it has received less attention in
previous studies. In recent numerical studies of ideally expanded supersonic impinging
jets (Bogey & Gojon 2017), a signature of the upstream-travelling waves inside the jet, but
outside the cone formed by the oblique shock, was reported using the temporal evolution of
the pressure field. These upstream waves and their characteristics were further investigated
in the experimental study of under-expanded supersonic free jets (Edgington-Mitchell
et al. 2018a), where the authors concluded that the upstream-travelling wave associated
with jet screech is a discrete acoustic jet mode in both the jet core and shear layer and not
the commonly accepted upstream-travelling free stream acoustic wave. (It should be noted
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that the velocity fluctuation fields were used in their analysis as there is no straightforward
experimental method to measure the pressure field inside the high-speed jet flows.) This
finding is unexpected in the jet core of the under-expanded supersonic jets where the
velocity is higher than the speed of sound (a cone-shaped supersonic region formed at
the nozzle exit shields the jet exit), while it is highly probable in subsonic jets as recently
reported by Towne et al. (2017) in the study of acoustic waves trapped in the potential core
of the jet with Mach number of 0.9.

Coupling of these two wave trains at the nozzle lip occurs through a receptivity
process. In our previous study of the receptivity process in an under-expanded supersonic
impinging jet (Karami et al. 2020), it was shown that acoustic waves with a broad
range of frequencies are internalised into high-frequency shear-layer instabilities (i.e. the
nozzle lip transfer function is higher at moderately high frequencies (1 < St < 5)), which
is consistent with the experimental study of Ho & Nosseir (1981) and the theoretical
prediction of Michalke (1977). Ho & Nosseir (1981) observed that the high-frequency
instabilities change into predominately low-frequency (i.e. ten times smaller) coherent
structures in a short distance from the nozzle lip, approximately 1.31d for the subsonic
jets. To explain these sharp changes in frequency content near the nozzle lip of
subsonic impinging jets, they proposed a mechanism named ‘collective interaction’.
Based on this mechanism, as schematically shown in figure 1(a), a low-frequency
acoustic wave displaces the high-frequency vortices by forming a wavy shear layer. These
high-frequency vortices are drawn together by the wavy motion of the shear layer and
create a large vortical structure. The experimental study of moderately under-expanded
(NPR < 2.5) impinging jets by Diebold & Elliott (2014) is the only study in which
large-scale oscillation of the shear layer described by the collective interaction process is
reported.

The other mechanism, which may explain the change of high-frequency to
predominately low-frequency instabilities is ‘vortex pairing’ proposed by Winant &
Browand (1974) in a two-dimensional shear layer. Based on this mechanism, which is
schematically shown in figure 1(b), vortices interact by rolling around each other and
forming a single coherent structure of approximately twice the spacing of the former
structures. A long distance is required to cause a sharp frequency reduction of ten
times through the vortex pairing process; hence, Ho & Nosseir (1981) concluded that
this mechanism does not play any role in the configuration of subsonic impinging
jets. Bogey & Bailly (2010) showed that the vortex rolling-ups and pairings strongly
depend on the momentum thickness of the shear layer. They observed that decreasing the
shear-layer thickness results in significantly smaller coherent structures where rolling-up is
pushed farther upstream, and low random noise inside the nozzle hinders rolling-ups and
pairings.

Hence, a clear phenomenological explanation of the evolution of the frequency of
the instabilities near the nozzle and characteristics of the acoustic and hydrodynamic
instabilities in the configuration of an under-expanded supersonic jet is lacking and is
the focus of this study. For this purpose, large-eddy simulations (LES) are performed
using an in-house high-fidelity code, ECNSS (Karami et al. 2019). The characteristics of
the acoustic and instability waves, namely propagation velocity, length scales and spatial
growth, are presented. This study, utilising both nonlinear (i.e. LES) and linear spatial
instability analysis, shows that the most unstable frequency of the instabilities reduces by
ten times through spatial growth of instabilities.

The manuscript is organised as follows. In § 2 the configuration, large-eddy simulation
and linear stability formulations are presented. In § 3 the results of the large-eddy
simulations, dispersion relation and cross-correlation analyses and spatial instability
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FIGURE 1. (a) Collective interaction, figure from Ho & Nosseir (1981) with permission from
the authors. (b) ‘Schematic diagram of entrainment process as a function of downstream distance,
or alternatively, as a function of time while riding with the mean speed’, figure and caption from
Winant & Browand (1974) with permission from the authors.

analysis using the compressible Rayleigh equation are presented. This is followed by
concluding remarks in § 4.

2. Configuration and numerical methods

2.1. Configurations
The configuration is an under-expanded impinging jet with a nozzle–to–wall distance of
h. The jets emanate from an infinite-lipped nozzle (i.e. a circular hole in a flat plate).
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FIGURE 2. Schematic of the domain and the configuration of this study.

The size of the domain in the radial direction is 12d (figure 2). The mean inlet axial
velocity is specified using a hyperbolic-tangent function similar to

Bodony & Lele (2005) given by

Uin

Ve
=

⎧⎪⎨
⎪⎩

− tanh
[

1
4δin

(
2r − 1

2r

)]
, r < 0.5,

0.0, r � 0.5,

(2.1)

where Uin is the jet inlet velocity profile, Ve is the centreline jet exit velocity, r is
the non-dimensionalised radial location and δin the inlet momentum thickness. The
non-dimensional inlet momentum thickness of 0.04d is considered, which is within the
range of previous studies (Bogey, Marsden & Bailly 2011; Hamzehloo & Aleiferis 2014;
Karami et al. 2019). The inlet velocity is non-turbulent as the nozzle of the under-expanded
supersonic jet of this study has a high contraction ratio, similar to the experimental
studies of Edgington-Mitchell et al. (2014a), Amili et al. (2015a,b) and Soria & Amili
(2015). The Reynolds number is 50 000, which is approximately an order of magnitude
lower than the experimental studies. This Reynolds number is chosen to maintain the
LES resolution requirement at an acceptable computational cost (Kawai & Lele 2010;
Karami, Edgington-Mitchell & Soria 2018a; Karami et al. 2019). The ratio between the
stagnation pressure measured in the jet plenum and the ambient pressure commonly
referred to as nozzle pressure ratio (NPR) is 3.4. This NPR is higher than the critical
NPR (=1.893 for dry air); hence, the nozzle is choked, and the nozzle exit Mach number
is unity (i.e Ve/ae = 1, where ae is the speed of sound at the choked condition.). This
NPR corresponds to an ideally expanded jet Mach number of 1.45 (ideally expanded jet
Mach number is defined as Uj/aj, where Uj is the ideally expanded velocity and aj is the
speed of sound at the ideally expanded condition). The non-dimensionalised temperature
in the jet plenum is unity. The speed of sound at atmospheric condition (ao) is used
for non-dimensionalisation of the velocity, hence, the non-dimensionalised centreline jet
exit velocity (Ve) is equal to 0.912. The nozzle pressure ratio of 3.4 is selected based
on the experimental study of Risborg & Soria (2009), Cierpka, Soria & Kahler (2014),
Weightman et al. (2019) and our previous numerical experiment (Karami et al. 2018a,
2019, 2020). The significance of this NPR is that at this NPR the initial formation of
a small Mach disk (large enough to be captured by the resolution of the simulation) is
observable. The two nozzle-to-wall distances of 2d and 5d are selected in this study to
examine the influence of impingement plate location on the characteristics of acoustic
and hydrodynamic waves. The infinite-lipped nozzle is considered to be relevant to many
industrial applications including short take-off and vertical landing aircraft (Krothapalli
et al. 1999; Alvi et al. 2003), jet impingement cooling for high power electronics
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(Wu et al. 2019) and turbine blade cooling (Zhou, Wang & Li 2019). It is noted that both
hydrodynamic and acoustic fields of the under-expanded supersonic free and impinging
jets are sensitive to inlet conditions (e.g. NPR, the stagnation temperature in the jet
plenum, Reynolds number) and geometry of the nozzle (e.g. the shape of the nozzle exit,
external boundaries) as reported in previous experimental studies (Tam & Morris 1985;
Weightman et al. 2017a).

2.2. Large-eddy simulations
An in-house developed high-fidelity LES parallel code (ECNSS) with a novel shock
identification and capturing method is used for this study. This code has been developed,
tested and validated in previous studies (Stegeman et al. 2016a; Stegeman, Soria & Ooi
2016b; Karami et al. 2018a,b, 2019, 2020; Amjad et al. 2020; Sikroria et al. 2020). It solves
the filtered non-dimensionalised compressible Navier–Stokes equations in the cylindrical
coordinate system. The equations and all other parameters are non-dimensionalised
with respect to jet diameter (d), speed of sound (ao) and viscosity at atmospheric
temperature and the non-dimensionalised variables will be used in the rest of the
manuscript. The subgrid-scale terms are computed using Germano’s dynamic model with
the adjustment proposed by Lilly (1992). A sixth-order central finite difference method
is applied in the smooth regions in the spatial directions, while a fifth-order weighted
essentially non-oscillating scheme with local Lax–Friedrichs flux splitting is used in
the discontinuous regions. The temporal integration is performed using a fourth-order
five-step Runge–Kutta scheme (Kennedy & Carpenter 1994; Kennedy, Carpenter &
Lewis 2000). The centreline numerical singularity in cylindrical coordinate is treated
utilising the procedure developed by Mohseni & Colonius (2000), which has been used
in different studies as it is accurate and simple to implement (Fukagata & Kasagi 2002;
Morinishi, Vasilyev & Ogi 2004; Livermore, Jones & Worland 2007; Bogey et al. 2011;
Gojon & Bogey 2017). The modified Navier–Stokes equations are considered in our
implementation of the wall boundary condition where all the convective terms vanish
in case of no-slip/no-penetration wall boundary condition. The no-slip wall is located at
a midpoint distance after the last computational grid point. For the sixth-order spatial
discretisation applied here, four extra cell points are used as ghost cells where the primitive
variables are evaluated using the Taylor extrapolation for these points considering the
no-slip, adiabatic wall condition. The approach of treating the wall boundary condition
by introducing ghost cells has been proven to be stable and effective (Tam & Dong 1994;
Colonius & Lele 2004). For further details on the numerical method, the novel shock
identification and capturing method and LES code, the interested reader is referred to
Karami et al. (2019).

The details of the computational grid for the two cases are shown in table 1. A uniform
grid is employed in the azimuthal direction, θ . In the axial direction, x , a fine grid is used
near the nozzle and near the impingement wall. In the radial direction, r, a fine grid is
used in the mixing layer region with a polynomial stretching of the grid points towards
the centre of the jet and the far field. The locations of the radial and axial grid points are
shown in figure 3 for the sake of completeness. Note that the maximum mesh spacing of
0.04 for r < 4.5 allows the capture of the propagation of acoustic waves with Strouhal
number up to 5.0 in the LES. These choices of the non-uniform grid are guided by the
previous numerical studies (Bogey & Bailly 2006; Bogey et al. 2011; Brès et al. 2015;
Gojon & Bogey 2017; Brès et al. 2017) and our numerical experiments. It was found that
the high resolution at the sharp edge of the nozzle is necessary to capture the receptivity
at the nozzle lip (Karami et al. 2020). Some aspects of the shock-capturing scheme and its
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Nozzle-to-wall distance (h) Nx × Nr × Nθ

2 480 × 432 × 96
5 608 × 632 × 96

TABLE 1. Computational grid of LES.
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FIGURE 3. (a) Radial and (b) axial mesh spacing.

influence on the computational cost of LES were also investigated in our previous study
(Karami et al. 2019).

2.3. Linear stability equations
To study the frequency evolution of the initial instabilities in the shear layer, a linearised
local instability analysis is considered. The linearised compressible Navier–Stokes
equations can be expressed in a compact form as

dq′

dt
= Aq′, (2.2)

where q′ is a vector representing the primitive variables (ρ ′, u′
x , u′

r, u′
θ , p′), and A is a

linear operator advancing the primitive variables in time. Assuming the mean flow field is
parallel (i.e. not varying in axial direction) and periodic in azimuthal direction, the solution
for q′ becomes separable in time, axial and azimuthal directions using normal modes as

q′ = q̂(r) exp(i(αx + mθ − ωt)), (2.3)

where α = αr + iαi is a complex number whose real part is the spatial wavelength
of the perturbation and the imaginary part is the spatial growth/decay rate, m is the
wavenumber in the azimuthal direction and ω = ωr + iωi is a complex number whose
real part is the frequency of the perturbation and the imaginary part is the temporal
amplification/damping rate. With an assumption of parallel flows and negligibility of
viscous terms, a generalised form of the compressible Rayleigh equation (Koshigoe et al.
1988; Gudmundsson & Colonius 2007; Gudmundsson 2010; Lajús et al. 2019) is obtained
by algebraic manipulation of the linearised Navier-Stokes equations for the pressure as

d2p̂
dr2

+
(

1
r

− 2α

αūx − ω

∂ ūx

∂r
− 1

ρ̄

∂ρ̄

∂r

)
dp̂
dr

−
(

m2

r2
+ α2 − ρ̄(αūx − ω)2

γ p̄

)
p̂ = 0. (2.4)
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The velocity profile of a free jet is convectively unstable due to the inflection point in the
profile. Disturbances develop as Kelvin–Helmholtz instabilities and grow exponentially
near the nozzle. Considering previous success of linear stability analysis in subsonic jets
(Michalke 1977; Tissot et al. 2017; Lajús et al. 2019), the compressible Rayleigh equation
is used in this study to investigate the characteristics of the instabilities in the shear layer
of the under-expanded supersonic impinging jets. In this case the complex solution for α
will be obtained for a given real ω. Utilising the linear companion matrix method (Bridges
& Morris 1984; Theofilis 1995), the compressible Rayleigh equation is rearranged to form
a generalised nonlinear, cubic eigenvalue problem given by

(α3f3 + α2f2 + αf1 + f0)p̂ = 0. (2.5)

The terms f0 to f3 are defined as

f0 = −ω

[
d2

dr2
+ 1

r
d
dr

− m2

r2
− 1

ρ̄

∂ρ̄

∂r
d
dr

+ ω2 3ρ̄

γ p̄

]
− 2

∂ ūx

∂r
d
dr

, (2.6)

f1 = ūx

[
d2

dr2
+ 1

r
d
dr

− m2

r2
− 1

ρ̄

∂ρ̄

∂r
+ ω2 ρ̄

γ p̄

]
, (2.7)

f2 = −ω

[
3ū2

x

ρ̄

γ p̄
− 1

]
, (2.8)

f3 = ūx

[
ū2

x

ρ̄

γ p̄
− 1

]
. (2.9)

The amplitudes of the velocity components and density are related to the amplitude of the
pressure by

ûx(r) = −

(
∂ ūx

∂r
∂ p̂
∂r

+ (αūx − ω)αp̂
)

ρ̄(αūx − ω)2
, (2.10)

ûr(r) = −1
iρ̄(αūx − ω)

∂ p̂
∂r

, (2.11)

ûθ (r) = −1
ρ̄(αūx − ω)

mp̂
r

, (2.12)

ρ̂(r) = −ρ̄

i(αūx − ω)

(
iαûx + 1

r
∂(rûr)

∂r
+ mûθ

r

)
. (2.13)

Given that the mean profiles of the streamwise velocity, density and pressure are available,
(2.5) can be recast into a linear eigenvalue problem. The local spatial instability analysis
will be used to assess the changes in the frequency characteristics of the instabilities in the
shear layer near the nozzle lip.
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3. Results and discussion

3.1. Dynamics of flow structures
The instantaneous flow structures are discussed in this section to illustrate the shear-layer
instabilities and the acoustic waves in the feedback loop in the under-expanded supersonic
impinging jets of this study. The contour plots of the density gradient with an adjustment
of the colour map are used to demonstrate both the formation and development of the
shear-layer instabilities and the acoustic waves. The feedback loop mechanism proposed
by Powell (1988) and Henderson & Powell (1993) involves both downstream-propagating
hydrodynamic and upstream-propagating acoustic waves. The fluctuations associated with
the hydrodynamic waves are many orders of magnitude stronger than those associated
with the acoustic waves. Thus, to clearly elucidate both components, contour plots of the
density gradient with an adjustment of the colour map (i.e. white to black colour is used
for log(|∇ρ|) between −1 and 0.5, while the black to green colour is used for log(|∇ρ|)
between 0.5 and 1.0) are provided in figures 4 and 5 for cases with the nozzle-to-wall
distance of 2d and 5d, respectively.

We start with the nozzle-to-wall distance of 2d. Figure 4 shows the contour map of
the instantaneous density-gradient field for this case. The contour maps are sequential
snapshots with an equal time difference of 0.26 acoustic time units. This time is equivalent
to 0.28 characteristic time of the jet based on inlet velocity and the nozzle diameter, and
0.34 characteristic time of the dominant coherent structures convected in the shear layer
of this nozzle-to-wall distance considering these dominant structures travel by a speed
which is approximately 0.7 jet exit velocity (0.77ao) (see figure 7a). Both flow instabilities
propagating downstream in the shear layer of the jet and acoustic waves propagating
upstream in the medium are visible. Starting with the flow instability, a disturbance with a
small wavelength grows as it convects in the shear layer. The disturbance has a wavelength
of a nozzle radius as it convects one jet diameter downstream of the nozzle.

Evolution of one of these coherent structures in the shear layer is now discussed in more
detail. This vortical structure grows as it convects in the first three-time instants from t0
to t2. At t3, it interacts with the oblique shock and pushes the oblique shock downstream.
This interaction results in a deformation of this vortical structure. It reaches the stand-off
shock at the next instant, and finally, it impinges on the wall and travels parallel to the
wall in the wall jet. Here, the coherent structure is stretched in the radial direction and is
compressed in the axial direction as it propagates in the wall jet. The impingement of this
vortical structure and formation of an acoustic wave at the impingement region is visible
at the time instant t6.

The pattern of the acoustic wave indicates that it radiates cylindrically in this plane.
The origin of the acoustic source can be estimated simply by tracing it back to the origin
(Weightman et al. 2017b), which is found to be located near the impingement wall at 0.8d
from the jet centreline at this nozzle-to-wall distance. The concurrency of the impingement
of a coherent structure on the wall and the appearance of an acoustic wave near the
impingement wall suggests that there is a connection between these two processes.

Now, we turn our attention to the acoustic wave. The acoustic wave is formed near the
impingement wall as just described, and it propagates towards the nozzle lip as shown in
the four instants from t0 to t3, where the blue arrow in figure 4(b) indicates the wave’s
propagation direction. It is reflected from the wall at the next instant, t3, and travels as
a wavefront as can be seen at instances t4 and t5. The acoustic wave comes in from the
front and perpendicular to the flow direction, which is consistent with the observation in
the recent experimental study of Weightman et al. (2019). The propagation of the acoustic
waves along the wall after reflecting from the wall was also demonstrated using the linear
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FIGURE 4. Instantaneous contour plots of the density gradient with a time interval of 0.26
acoustic time units (solid circles show the tracked vortical structures, dashed red curves show
the tracked acoustic wave and y is related to the radius by −r < y < r).
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FIGURE 5. Instantaneous contour plots of the density gradient with a time interval of 1.3
acoustic time units (dashed curves show the acoustic waves and y is related to the radius by
−r < y < r).
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impulse response in our recent study of the receptivity process in the same configuration as
this study (Karami et al. 2020). The acoustic wave reaches the nozzle lip, and a shear-layer
instability is initialised, and, hence, the feedback loop is completed.

The acoustic waves generated in the impingement region are considered the strongest
compared to the other possible acoustic sources based on the strength of the density
gradient. Acoustic waves are also created by interactions of large coherent structures with
the oblique shock and the stand-off shock. However, these acoustic waves are weaker than
the acoustic waves generated by the impingement of the coherent structures on the wall. As
can be seen in figure 4, the density gradient is intense for the acoustic wave formed by the
impingement of a coherent structure on the wall compared to the acoustic waves created
by interactions of large coherent structures with the oblique shock and the stand-off shock.

Turning our attention to the case with the nozzle-to-wall distance of 5d, contour plots of
the instantaneous density gradient for this nozzle-to-wall distance are presented in figure 5
for four instants with a time interval of 1.3 acoustic time units. (This time is equivalent to
1.68 characteristic time of the dominant coherent structures travel in the shear layer of
this nozzle-to-wall distance considering these dominant structures propagate with a speed
which is approximately 0.7 jet exit velocity (0.77ao) (see figure 9a).) At first instant, t0, two
acoustic waves are visible. The wavefronts of these two acoustic waves are marked with the
red and blue dashed curves while the propagation directions are shown by arrows. These
waves radiate from the same region, i.e. the impingement region. At this instant, a strong
interaction of a large coherent structure and an oblique shock is also visible (marked with
a solid circle). The oblique shock is pushed downstream by this coherent structure and,
consequently, this coherent structure is deformed. This leads to the creation of an acoustic
wave outside of the shear layer (marked with a solid red curve at this instant) similar to the
experimental results observed by Edgington-Mitchell et al. (2018b). At the next instant,
t1, the acoustic wave, created at the impingement region, propagates almost half of the
nozzle-to-wall distance. It propagates towards the wall and is reflected from the wall. The
acoustic wave is internalised, and a shear-layer instability is formed via the receptivity
at t3.

Similar to the other nozzle-to-wall distance, the acoustic wave radiates cylindrically
in this plane and the origin of the acoustic source can be estimated to be located at
1.1d from the jet centreline at this nozzle-to-wall distance. In the numerical study of
an under-expanded jet with NPR of 4.03 impinging on a flat surface (Gojon et al.
2015) (similar to the configuration of this study but with higher NPR and thin nozzle
lip), two acoustic sources with different origins are found where the one contributes to
close the feedback loop found to be located in the shear layer at the impingement wall,
similar to the observation in the present study. However, in the recent experimental study
of an under-expanded jet with NPR of 3.4 impinging on a cylindrical surface with a
nozzle-to-wall distance of 3.5d by Weightman et al. (2017b), it was found that the origin
of the acoustic source which contributes to close the feedback loop is located near the
impingement wall and at 1.4d from the jet centreline.

To visualise the vortex pairing and rolling process, the contour plots of instantaneous
vorticity magnitude for the case with the nozzle-to-wall distance of 5d are presented
in figures 6(a)–6(d). (The vorticity near the nozzle of the other case shows the same
behaviour and, hence, is not presented for the sake of brevity.) The sequences are selected
to show both processes of vortex rolling/pairing and rolling/without pairing. The solid
blue arrow shows the direction of a rolling/pairing process. Two vortices come together,
roll and pair, and form a larger coherent structure which is highly distorted due to the
interaction with the oblique shock. These coherent structures propagate with a constant
dominant group velocity. As can be seen in figures 6(a)–6(d), at most one or occasionally
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FIGURE 6. (a–d) Snapshots in the (x, r) plane of vorticity downstream of the nozzle exit with
a time interval of 0.26 acoustic time units (blue solid arrow shows a rolling/pairing process and
the black dashed arrow shows the rolling/without pairing event).

two pairings may occur which reduce the frequency by a factor of two or four, which
is also reported by Ho & Nosseir (1981) and Le et al. (2020). The black dashed line, in
figures 6(a)–6(d), shows the direction of rolling/without pairing of a vortex as it travels
downstream. The vortex size has significantly increased due to spatial growth and has a
wavelength of the nozzle radius as it convects one jet diameter downstream of the nozzle,
which is similar to experimental results of Brown & Roshko (1974). The spatial growth of
small-amplitude perturbations, as will be shown in § 3.4.2, is also the dominant process in
the configuration of this study.

3.2. Flow structures and their characteristics

3.2.1. Temporal evolution
Using the time history of different quantities sampled at the shear layer and a

straight vertical line at r = 2.0, the characteristics of the flow structures are investigated
quantitatively. Starting with the nozzle-to-wall distance of 2d case, figure 7(a) shows
the streamwise velocity fluctuations along the shear layer, where the shear layer is
approximated to be at the radial location of the maximum ensemble-averaged turbulent
kinetic energy at each axial location. A periodic series of peaks and troughs is
evident, which forms an organised pattern of wavepackets propagating downstream.
The propagation velocity of the dominant wavepackets in the shear layer, Vs, is 0.77ao.
(The non-dimensionalised choked velocity at the exit of the nozzle (Ve/ao) is 0.912 and the
non-dimensionalised ideally expanded velocity (Uj) for NPR of 3.4 is 1.45aj (aj is the
sound velocity at the ideally expanded condition); hence, the ratio of Uj to Ve is 1.33.)
The propagation velocity is estimated by following a peak or a valley (i.e. a statistical
estimation based on the slope of the velocity crest), as shown by a dashed red line in
figure 7(a). The complex pattern observed in figure 7(a) indicates the different time scales
of the flow features in the shear layer of the jet which is consistent with the previous study
of an ideally expanded supersonic jet impinging on an inclined plate (Brehm, Housman
& Kiris 2016). Figure 7(b) shows the time history of the pressure fluctuations on a
vertical straight line at r = 2.0. There are two patterns; one represents waves travelling
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FIGURE 7. Time history of (a) streamwise velocity fluctuations along the shear layer of the
jet and (b) pressure fluctuations on a straight streamwise line at r = 2.0 for the nozzle-to-wall
distance of 2d.

from the impingement wall towards the nozzle, and the other waves travelling from the
infinite-lipped nozzle towards the impingement wall. Both waves are propagating with
the speed of sound, which confirms the acoustic nature of these waves. In contrast to
space–time plots of the velocity fluctuations, the pattern is less perturbed with limited
flow features. This is expected in the region away from the periphery of the jet where the
flow is irrotational and acoustic waves are dominant.

The characteristics of the wavepackets can be examined further using a spatio-temporal
decomposition of the time history of the velocity and pressure at the shear layer and
pressure at the near field. Figure 8 shows the frequency-wavenumber (St − kx ) spectra of
(a) streamwise velocity fluctuations extracted at the shear layer, (b) pressure fluctuations
extracted at the shear layer, and (c) pressure fluctuations extracted at r = 2.0 and
0.0 < x < 1.5 of the under-expanded supersonic impinging jet with the nozzle-to-wall
distance of 2d. The dominant downstream-travelling waves in the shear layer of the
jet have a positive propagation velocity as expected. The propagation velocity of these
wavepackets is 0.77ao, which is similar to the findings in the time history of the velocity
fluctuations (figure 7a). Figure 8(b) shows frequency-wavenumber (St − kx ) spectra of
pressure fluctuations extracted at the shear layer. There are low-frequency waves which
have negative propagation velocities indicating upstream-travelling waves in the shear
layer of the jet. (It is noted that the phase velocity of each wave defined as ω/k(St/(kx/2π))

and the group velocity is defined as ∂ω/∂k and is therefore proportional to the slope of
the dispersion relation, and it is the propagation velocity of the dominant waves.) The
existence of these waves have been reported in previous studies of supersonic jets (Bogey
& Gojon 2017; Edgington-Mitchell et al. 2018a) and subsonic jets (Towne et al. 2017). The
dispersion relation for the pressure fluctuations extracted at r = 2.0 and 0.0 < x < 1.5 is
presented in figure 8(c). There are both upstream- and downstream-travelling waves with
a propagation velocity equal to the speed of sound. It appears that the upstream-travelling
waves are stronger. The strong near-field downstream-travelling waves are due to the
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FIGURE 8. Frequency-wavenumber spectra of (a) streamwise velocity fluctuations extracted at
the shear layer, (b) pressure fluctuations extracted at the shear layer, and (c) pressure fluctuations
extracted at r = 2.0 and 0.0 < x < 1.5 of the impinging under-expanded supersonic jet with the
nozzle-to-wall distance of 2d.

configuration of this study which is an infinite-lipped nozzle. The frequency-wavenumber
spectrum of pressure shows a wide range of wavelengths in the vicinity of the dominant
frequency (i.e. St number), which is also reported in the finite-lipped ideally expanded
supersonic impinging jets (Bogey & Gojon 2017). These large wavelengths are associated
with the sharp pressure gradient of acoustic waves at the wavefronts, and the sharp gradient
is more conceivable in the instantaneous contour plots of the density gradient (marked with
dashed red curves) in figures 4 and 5.

Considering the case with the nozzle-to-wall distance of 5d, figure 9(a) shows the
history of the streamwise velocity fluctuations at the shear layer of the jet. An organised
pattern of wavepackets is formed before the first Mach disk; these wavepackets propagate
with speed, Vs, which is approximately 0.77ao. This pattern is distorted as wavepackets
interact with the first oblique shock; however, the dominant feature, i.e. the high amplitude
wave, travels with nearly constant velocity. The pattern in the time-space of the velocity
fluctuations at the shear layer shows a wide range of flow features in this nozzle-to-wall
distance compared to the case with the nozzle-to-wall distance of 2d. Now turning our
attention to the time history of the pressure fluctuations on a straight vertical line at
r = 2.0, acoustic waves are propagating upstream and are reflected by the infinite-lipped
nozzle. This observation is similar to the behaviour observed in figure 7(b) for the case
h = 2d.

The dispersion relation for the streamwise velocity and pressure fluctuations at the
shear layer and pressure fluctuations at r = 2.0 are presented in figures 10(a), 10(b)
and 10(c) for the case with the nozzle-to-wall distance of 5d. Similar to the case with
nozzle-to-wall distance of 2d, the dominant downstream-travelling wave in the shear
layer of the jet has a positive propagation velocity with a propagation velocity of 0.77ao
(figure 10a). There are also wavepackets with a negative wavenumber (figure 10b) which
indicates the presence of upstream-travelling waves in the shear layer of this nozzle-to-wall
distance similar to the case with the nozzle-to-wall distance of 2d, consistent with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.740


905 A34-16 S. Karami, D. Edgington-Mitchell, V. Theofilis and J. Soria

5

4

3

2

1

0

5

4

3

2

1

0
265 270 275 280 285

265 270 275 280 285

t

x

x

0.2

0.1

0

–0.1

–0.2

0.04

0.02

–0.02

–0.04

0

u′x

p′

Vs= 0.77a0

Va= –a0
Va= a0

(a)

(b)

FIGURE 9. Time history of (a) streamwise velocity fluctuations along the shear layer of the
jet and (b) pressure fluctuations on a straight streamwise line at r = 2.0 for the nozzle-to-wall
distance of 5d.

previous experimental (Edgington-Mitchell et al. 2018a) and numerical (Gojon et al.
2015) studies of under-expanded supersonic jets and numerical studies of subsonic jet
(Towne et al. 2017). It is noted that these upstream propagation waves could be either
free stream upstream-propagating acoustic waves (Weightman et al. 2019) or intrinsic
upstream-propagating acoustic waves (Jaunet et al. 2019) which overlap when the group
velocity is negative and equal to the speed of sound. The dispersion relation for the
pressure fluctuations extracted at r = 2.0 and 0.0 < x < 4.1 (figure 10c) shows both
upstream- and downstream-travelling wavepackets with propagation velocity equal to the
speed of sound.

3.2.2. Dominant time scale
In order to clarify the nature of the coherent structures in the under-expanded impinging

jets with these two nozzle-to-wall distances, the autocorrelations of the streamwise and
radial velocity fluctuations at the shear layer are presented in figures 11 and 12. Figure 11
shows the autocorrelations of (a) the streamwise and (b) the radial velocity fluctuations
for sample points at the shear layer of the h = 2d case. The autocorrelation of the
streamwise velocity fluctuations (figure 11a) shows a large undershoot near to the peak,
which indicates that the coherent structures are dominant in this flow (Brehm et al.
2016). Figure 11(b) shows the autocorrelation of radial velocity fluctuations for the h = 2d
case. There are negative–positive alternations in the autocorrelation, which indicate the
presence of a dominant coherent structure for this nozzle-to-wall distance with a time
scale of approximately 1.1 acoustic time units. For the sake of clarity, the profiles of the
autocorrelations of the radial velocity fluctuations at different axial locations are presented
in appendix A, where the positive–negative alternations in the autocorrelation are clearer.

Figure 12 shows the autocorrelations of the (a) streamwise and (b) radial velocity
fluctuations for sample points at the shear layer for the h = 5d case. There is a large
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extracted at r = 2.0 and 0.0 < x < 4.1 of the impinging under-expanded supersonic jet with the
nozzle-to-wall distance of 5d.
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undershoot near to the peak in the autocorrelation of the streamwise velocity fluctuations,
as shown in figure 12(a), which is consistent with the case with the nozzle-to-wall
distance of 2d. A negative–positive alternation in the autocorrelation of the radial velocity
fluctuations is also evident in this nozzle-to-wall distance. However, the time scale of the
dominant coherent structure is approximately 2.2 acoustic time units (also see appendix A,
figure 21b). This time scale corresponds to St =0.45, where St number is defined based on
the ambient sound velocity and actual nozzle diameter (fd/ao). In the recent experimental
study by Weightman et al. (2019), the acoustic spectrum obtained using a long period
microphone measurement shows that the dominant tone frequency has Stj = 0.385 for
the infinite-lipped nozzle with a nozzle-to-wall distance of 5d where the Stj number is
defined based on the ideally expanded supersonic jet diameter (dj) and ideally expanded
velocity (Uj). Utilising the same non-dimensionalisation as in the experiment, the Stj

number corresponding to the St number of the dominant coherent structure obtained using
autocorrelation is 0.39.

The horizontal dashed lines in figures 11 and 12 indicate the locations of the oblique
shock/shear-layer interactions for these two nozzle-to-wall distances. There are variations
in the level of the undershoot in the autocorrelations due to these interactions. These
interactions were also observed to deform the vortical structures in the contour plots of
the density gradient presented in figures 4 and 5.

The time scale of the turbulent structures can be obtained by further decomposing the
fluctuations into a coherent part and a random fluctuation part. This approach, which is
commonly known as triple decomposition (Hussain & Reynolds 1970), was used recently
by Zhang & Wu (2020) to study acoustic radiation of coherent structures in subsonic
turbulent free shear layers and previously by Edgington-Mitchell et al. (2014b) to study the
coherent structures in free under-expanded supersonic jets. The autocorrelation of random
fluctuations of the radial velocity (i.e. u′′

r ) at the shear layer are presented in figures 13(a)
and 13(b) for the h = 2d and 5d cases, respectively. The random fluctuations are calculated
by subtracting the coherent part of the fluctuations from the total fluctuations, where
the coherent part is obtained by bandpass filter of the velocity fluctuations around the
dominant frequency (i.e. St of 0.91 for the h = 2d case and St of 0.45 for the h = 5d
case) with lower and upper bands being 5 % of the dominant frequency. The integral time
scales of these random fluctuations, which are obtained by integrating the autocorrelation
functions, are presented for both cases in figure 13(c). These random structures have
time scales of an order of magnitude smaller than the time scale of the dominant
coherent structures in both cases. This separation in time scales indicates that the random
fluctuations have no significant contribution to the coherent dynamics embedded in this
flow configuration. This also indicates that the linear stability analysis is valid to study the
coherent structures in this configuration (Oberleithner, Rukes & Soria 2014).

3.3. Acoustic-hydrodynamic coupling (non-normalised cross-correlation)
In § 3.2.1 we demonstrated that the dominant instabilities at the shear layer of both jets
propagate downstream with a nearly same propagation velocity of 0.77ao and acoustic
wavepackets travel with the speed of sound in the near field of the nozzle. Autocorrelation
of the velocity fluctuations in the shear layer is used to show that these structures have
a dominant time scale of 1.1 and 2.2 acoustic time units for the h = 2d and 5d cases,
respectively. Tam (1986) proposed that excitation of the intrinsic instability waves in shear
flows requires two conditions. The frequencies of the incident sound wave and the excited
instability wave should be matched as well as the phase velocities of the two waves.
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FIGURE 13. Autocorrelation of the radial velocity random fluctuations for sample points in the
shear layer for the nozzle-to-wall distance of (a) 2d, (b) 5d and (c) integral temporal scales along
the shear layer of both cases of the nozzle-to-wall distance of 2d and 5d.

The matching of the frequency for the two signals to interact is expected; however, the
second condition is not easy to conceive. Ho & Nosseir (1981) showed that a phase lock at
resonance frequency is essential for the coupling of acoustic and hydrodynamic waves at
the nozzle lip which does not dictate the phase velocity matching condition of Tam (1986).
From the dispersion relation, it is clear that the second condition proposed by Tam (1986)
is not satisfied in the configuration of this study and the dominant acoustic and instability
waves have two different propagation velocities with opposite sign (i.e. propagating in the
opposite direction) similar to previous experimental studies of high-speed flows by Nosseir
& Ho (1979) and Ho & Nosseir (1981). However, both acoustic wavepackets in the near
field and shear-layer instabilities should have a different wavelength to maintain the same
frequency. To demonstrate the length scale of these two waves, the spatial cross-correlation
of the near-field pressure fluctuations at x = 1.0 and r = 2.0 with pressure fluctuations and
velocity fluctuations are presented in this section. The non-normalised cross-correlation of
a variable φ at a fixed location of (xref , rref ) in the x–r plane and a variable χ is defined as

Cφχ = 1
Nt × Nθ

Nt∑
i=1

Nθ∑
j=1

φ(xref , rref , θj, ti)χ(x, r, θj, ti), (3.1)

where Nt is the number of snapshots over which the average is computed and Nθ is the
number of azimuthal grids. The non-normalised cross-correlation is utilised to reveal
coherent structures. In the recent study of noise generation in a supersonic jet impinging
on an inclined plate by Brehm et al. (2016), both non-normalised and normalised
cross-correlations were utilised to identify the acoustic source location. It was found
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FIGURE 14. The contour maps of non-normalised cross-correlation for the observation
reference of the pressure fluctuations at x = 1.0 and r = 2.0 and (a) pressure (Cp′p′ ), (b) radial
velocity (Cp′u′

r
) for the nozzle-to-wall distance of 2d.

that the non-normalised cross-correlation is a better measure to determine the acoustic
source location as it retains information about the amplitudes of fluctuations in the source
region. On the other hand, the normalised cross-correlation gives high weight to the events
which are not statistically significant and have small variance at near-field regions and
could not reveal the acoustic source location. In the configuration of under-expanded
supersonic jets of this study, it was found that both normalised and non-normalised
cross-correlations can be employed to reveal the dominant coherent structures; however,
the acoustic waves are clearer in the non-normalised cross-correlation. For the sake
of brevity, the non-normalised cross-correlation is discussed in this section, while the
normalised cross-correlation is presented in appendix B.

For the configurations of this study, which contains a single significant periodic time
component, the spatial distribution of the cross-correlation maps reveals the large-scale
behaviour (Bell et al. 2018). The contour map of non-normalised cross-correlation
for the reference pressure fluctuations at x = 1.0 and r = 2.0 and the pressure
(Cp′p′) is presented in figure 14(a), while figure 14(b) presents the contour map of
non-normalised cross-correlation for the reference pressure fluctuations at x = 1.0 and
r = 2.0 and the radial velocity (Cp′u′

r
) for the nozzle-to-wall distance of 2d. The

non-normalised cross-correlation of the pressure fluctuation shows clear correlations
between the near-field pressure fluctuations and both oblique and stand-off shocks,
which indicate the oscillations of the stand-off and oblique shocks coupled with the
creation of acoustic waves for this nozzle-to-wall distance. This is also conceivable in
the normalised cross-correlation presented in figure 22(a) in appendix B. The acoustic
wave has a wavelength, λa, of approximately 1d. Figure 14(b) shows the non-normalised
cross-correlation for the observation reference of the pressure fluctuations at x = 1.0 and
r = 2.0 and the radial velocity, Cp′u′

r
. There is a strong correlation of the radial velocity

fluctuations and near-field reference pressure at locations of the oblique shock, stand-off
shock, wall jet and shear layer of the jet which is clearer in the normalised cross-correlation
presented in figure 22(b) in appendix B. The dominant downstream-travelling wave in the
shear layer has a wavelength, λs, of approximately 0.85d. Considering the propagation
velocity and wavelength, it is trivial to find the frequency or the time scale, τ = λ/V , of
these wavepackets. The time scales of both acoustic waves and shear-layer instabilities are
found to be 1.1 acoustic time unit which is consistent with the time scale obtained from
the autocorrelation analysis presented in § 3.2.2.

Figure 15 shows the same quantities as in figure 14 for the h = 5d case with an
observation reference of the pressure fluctuations at x = 2.5 and r = 4.25. The pressure
at the reference point is correlated with pressure modulations in the shear layer and the
centre of the jet (see also figures 23a and 23b in appendix B). The acoustic wave has a
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FIGURE 15. Colour contours of non-normalised cross-correlation for the observation reference
of the pressure fluctuations at x = 2.5 and r = 4.25 and (a) pressure (Cp′p′), (b) radial velocity
(Cp′u′

r
) for the nozzle-to-wall distance of 5d.

wavelength, λa, of approximately 2d (figure 15a). The pressure at the reference point is
strongly correlated with the shear-layer instabilities in contrast to the h = 2d case. The
shear layer has a wavelength, λs, of approximately 1.7d. These wavelengths with their
corresponding propagation velocities result in a time scale of 2.2 acoustic time units
for both wavepackets, which is also consistent with the time scale obtained using the
autocorrelation analysis presented in § 3.2.2.

3.4. Frequency characteristics of instability wavepackets
The most striking result obtained by the non-normalised cross-correlation is that the
dominant coherent structures are formed approximately 1d downstream of the nozzle lip.
To the best of our knowledge, there exist two mechanisms to explain the formation of
coherent low-frequency structures in shear flows: the collective interactive mechanism
proposed by Ho & Nosseir (1981) and pairing of small high-frequency structures observed
by Winant & Browand (1974) in a two-dimensional shear layer at moderately low Reynolds
numbers. The former has only been reported in the study of a weakly under-expanded
impinging jet by Diebold & Elliott (2014) and not been reported in previous studies of
moderate and high under-expanded supersonic jets (Powell 1953; Henderson & Powell
1993; Henderson, Bridges & Wernet 2005; Edgington-Mitchell et al. 2014a) and have
not been observed in this study, either. The pairing process requires a long distance
to induce the reduction in the frequency of the initial instabilities, as also pointed out
by Ho & Nosseir (1981). The other mechanism that might explain the formation of
coherent low-frequency structures in a short distance of 1d is the exponential growth of
instabilities. It is noted that the linear stability theory has been used widely to understand
the underpinning physics in many flows (Hammond & Redekopp 1997; Pier 2002; Barkley
2006; Sipp & Lebedev 2007; Mittal 2008; Oberleithner et al. 2014; Sartor et al. 2015;
Turton, Tuckerman & Barkley 2015; Beneddine et al. 2016; Illingworth, Monty & Marusic
2018); however, to-date, few studies have utilised this approach to reveal the fundamental
physics behind instabilities in supersonic jets (Nichols & Lele 2011; Jaunet et al. 2019)
where the growth is being calculated on a varying base flow extracted from either
experimental or numerical dataset. To the best of our knowledge, this study is the first
to use this approach to study the frequency characteristics of the flow structures near the
nozzle of under-expanded supersonic jets. Hence, the aim of this section is to investigate
whether the linear instability growth can support the frequency reduction in a short
distance of 1d in the configuration of under-expanded supersonic jets. This analysis then

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.740


905 A34-22 S. Karami, D. Edgington-Mitchell, V. Theofilis and J. Soria

1.6

1.2

0.8

0.4

0

0 0.5 1.0 1.5 2.0

ūx
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FIGURE 16. Profiles of ensemble-averaged streamwise velocity at different axial locations for
the cases with a nozzle-to-wall distance of (a) 2d and (b) 5d.

follows by spatial growth analysis based on the LES data to support the findings from the
linearised analysis.

3.4.1. Linear spatial instability analysis
The ensemble-averaged streamwise velocity, pressure and density obtained from LES

are substituted into (2.5) at each axial location to perform the spatial instability analysis.
Before the discussion of the results obtained from this analysis, it is noted that the linear
spatial instability analysis is used to evaluate the changes in the most unstable frequency as
we progress downstream and not the growth rate. The base flow is obtained from LES and
the mean profiles at each axial locations are used to perform local linear stability analysis.

Figures 16(a) and 16(b) show the ensemble-averaged streamwise velocity at the axial
locations where the spatial instability analysis was performed. The profiles in both cases
are very different from a tanh function which was used in previous studies for subsonic
jets (Koshigoe et al. 1988; Gudmundsson & Colonius 2007; Gudmundsson 2010; Lajús
et al. 2019). As can be seen in this figure, an increase in the nozzle-to-wall distance
results in shifts in the inflection points of the mean profiles and, hence, different instability
characteristics are expected. The shear layer of the case with the nozzle-to-wall distance
of 2d seems to be slightly thicker. The spatial instability analysis is limited to the region
between the nozzle lip and one jet diameter downstream of the nozzle lip as previous
studies show that the instabilities in the potential core of the jet are dominated by modal
instabilities and the non-modal behaviour kicks in far downstream of the potential core
(Tissot et al. 2017; Lajús et al. 2019). We also restrict our attention to the axisymmetric
mode as it is found to be the leading dominant mode (see appendix C for further
discussion) in the previous study of an under-expanded supersonic impinging jet with the
same NPR and nozzle-to-wall distance (Weightman et al. 2019).

The growth rates are presented in figure 17. Near to the nozzle at x = 0.1, the growth
rate is high with a broad range of unstable Strouhal numbers for both cases; however, the
shear layer of the h = 2d case has a slightly wider range of unstable Strouhal numbers
with the slightly lower maximum growth rate. The maximum growth rate rapidly reduces
at axial stations further downstream. The upper band of the unstable Strouhal numbers
also reduces at axial stations further downstream, and it is below St of 1.2 at x = 0.9 for
both cases. However, the Strouhal number with the maximum growth rate for both cases
approaches a Strouhal number of 0.4, as shown in figure 18. This figure also shows that
the St number of the maximum growth rate of both cases converges to the same value as
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FIGURE 17. The spatial growth rates obtained from solution of compressible Rayleigh equation
at different axial locations for the cases with a nozzle-to-wall distance of (a) 2d and (b) 5d.
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FIGURE 18. Strouhal number of the maximum growth rate as a function of axial location for
both cases with the nozzle-to-wall distance of 2d and 5d.

we progress downstream. This sharp decrease of the most unstable frequency shows that
the shear layers of the under-expanded supersonic jets of this study support the formation
of coherent low-frequency structures in a short distance from the nozzle lip.

3.4.2. Nonlinear spatial growth from LES
This section connects the findings based on parallel linear spatial instability analysis to

the LES results, mostly discussing the evolution of the frequency band as the disturbances
grow in the shear layer and not the growth rate itself. The evolution of disturbances in
incompressible flows is characterised by the kinetic energy of the disturbances, which
is commonly used to define the norm for the energy of disturbances. However, in
compressible flows fluctuations of thermodynamic quantities contribute to the energy and
need to be included (Mack 1984; Hanifi, Schmid & Henningson 1996; Freund & Colonius
2002; Tumin & Reshotko 2003; Ray, Cheung & Lele 2009; Paredes et al. 2016); hence,
the energy of the disturbances also known as the Mach energy norm is defined as

E = 1
2

(
ρ̄u′

iu
′
i
∗ + T̄ρ ′ρ ′∗

ρ̄γ M2
+ ρ̄T ′T ′∗

γ (γ − 1)T̄M2

)
, (3.2)

where ∗ denotes the complex conjugate and M is the Mach number, defined based on inlet
velocity and the speed of sound based on inlet temperature. The fluctuation terms in (3.2)
are obtained by decomposing the three-dimensional disturbance fields in the azimuthal
direction, which is periodic, to limit the analysis to each azimuthal mode number. The
azimuthally decomposed variables are used to obtain the energy of the disturbances
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FIGURE 19. The energy of disturbances for the axisymmetric mode and St of 1.2 (the colour
map is normalised between 0 and 1 for the purpose of demonstration). The lower and upper
limits of the integration in (3.2) are presented by red and black dots, respectively.

using (3.2). The energy of the disturbances is then temporally decomposed using temporal
Fourier transform to investigate their frequency characteristics. To obtain the norm of
the energy, integration of the energy in an appropriate domain is required. In order to
characterise the spatial development of the disturbances in the shear layer, the integration
is performed in the radial direction to obtain an appropriate measure for streamwise growth
of the disturbances. In contrast to previous studies of jet and shear flows (Oberleithner
et al. 2014; Lesshafft et al. 2019), where the lower and upper limits of the integration
are centreline and infinity, the upper and lower limits are confined to obtain an accurate
measure of shear-layer instabilities as in the present configuration a Mach disk and an
oblique shock also play a role, and, hence, the norm of the energy of disturbances is
defined as

A(x, m, St) =
∫ ru

rl

Ê(x, r, m, St)r dr, (3.3)

where .̂ denotes Fourier transform of E, rl and ru are the upper and lower limits of the
integration, respectively. These limits are defined as the radial locations of the maximum
velocity gradient on two sides of the shear layer. These definitions are demonstrated in
figure 19. The contour map presents the energy of disturbances for the axisymmetric
mode and St = 1.2 (the colourmap is normalised between 0 and 1 for the purpose of
demonstration), where the lower and upper limits of the integration in (3.3) are presented
by red and black dots, respectively.

The contour plot of the norm of the energy, A, for both nozzle-to-wall distances of 2d
and 5d are presented in figures 20(a) and 20(b), respectively. It is clear from the figure
that the high-frequency disturbances are saturated by strong low-frequency disturbances
as they travel in the shear layer by only 1d. The red circles are the Strouhal number of the
maximum growth rate at each axial station obtained from linear spatial instability analysis
(see figure 18). It appears linear instability analysis underpredicts the most unstable
frequency (Strouhal number); however, the trend of decreasing the unstable Strouhal
number is well predicted. This discrepancy is associated with the parallel flow assumptions
in the linear stability analysis. In the under-expanded supersonic jet, the parallel flow
assumption is not valid, and the mean profiles (streamwise velocity shown while density,
pressure, radial velocity profiles are also a function of radial location) vary drastically in
the axial direction as shown for the axial velocity profiles in figure 16. It is also noted that
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FIGURE 20. The norm of energy, A, of the axisymmetric mode (m = 0) for the cases with the
nozzle-to-wall distance of (a) 2d and (b) 5d. (The red circles are the Strouhal number of the
maximum growth rate obtained from linear spatial instability analysis.)

the linear parabolised stability equations (PSE), where the assumption of parallel flow is
relaxed, is expected to deliver a better agreement with LES results (Sinha et al. 2016; Kim
et al. 2019; Towne, Rigas & Colonius 2019; Wong et al. 2019).

4. Conclusion

Two main ingredients of the feedback loop in the under-expanded supersonic impinging
jets, the hydrodynamic instabilities in the shear layer and acoustic waves in the medium,
have been illustrated utilising the instantaneous time evolution of the density gradient
from LES in the streamwise-radial plane. The spatial histories of the streamwise velocity
fluctuations along the shear layer of the jets show that hydrodynamic instabilities are
dominantly convected downstream with the propagation velocity of 0.77 ambient speed
of sound (0.7 jet exit velocity) for both cases. The near-field acoustic waves travel
in both upstream and downstream directions with the speed of sound as expected for
both nozzle-to-wall distances. The propagation velocities of both acoustic and instability
wavepackets were obtained using a dispersion relation analysis and are in agreement with
the spatial history analysis.

The autocorrelations of the velocity fluctuations show that the flows exhibit a single
significant periodic time scale, which is 1.1 and 2.2 acoustic time units for the
nozzle-to-wall distances of 2d and 5d, respectively. The autocorrelations of the triple
decomposed velocity fluctuations show that the small-scale turbulent structures, which
have a random nature, have no influence on the dominant coherent structures in these
flows. Cross-correlation analysis was employed to reveal the acoustic and instability
wavelengths corresponding to this single time scale. The cross-correlation analysis also
reveals that these dominant coherent structures are generated approximately one jet
diameter downstream of the nozzle lip.
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FIGURE 21. Profiles of autocorrelation of the radial velocity fluctuations for the sample points
at the shear layer (a) h = 2d (profiles are for axial locations 0.8 < x < 1.3 with an increment of
0.1), (b) h = 5d (profiles are for axial locations 1.5 < x < 2.5 with an increment of 0.1).

The mechanism by which the initial high-frequency instability changes to a
low-frequency coherent structure in a short distance of approximately 1d is investigated. It
is shown that the shear layer of under-expanded supersonic jets in contrast to their subsonic
counterparts support the changes in the most unstable frequency of the instabilities in
the very short distance of 1d, which its trend is reasonably well predicted by linear
spatial instability analysis where the mean profiles of the primitive variables (i.e. velocity
components, density and pressure) are considered to vary in the streamwise direction.
This strong dependence on the local mean shear-layer profile suggests a need for care
when using vortex sheet or tanh approximations (i.e. the parallel flow assumption with
streamwise uniform mean shear-layer velocity) to calculate growth rates and the most
unstable frequencies.
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Appendix A. Profiles of autocorrelation and dominant time scale

Figure 21(a) shows the profiles of the autocorrelation of the radial velocity fluctuations
at the shear layer (the contour map is presented in figure 11b) extracted at axial locations
between 0.8 and 1.3 with an increment of 0.1 for the case with the nozzle-to-wall distance
of 2d, while figure 21(b) shows the profiles of the same quantity (the contour map is
presented in figure 12b) extracted at axial locations between 1.5 and 2.5 with an increment
of 0.1 for the case with the nozzle-to-wall distance of 5d. The negative–positive alternation
in the autocorrelations are more conceivable in these figures as well as the time scale of
the dominant coherent structure which were found to be approximately 1.1 and 2.2 acoustic
time units for the cases with the nozzle-to-wall distance of 2d and 5d, respectively.
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(〈Cp′u′

r
〉) for the nozzle-to-wall distance of 2d.

Appendix B. Normalised cross-correlation

The normalised cross-correlation of a variable φ at a fixed location of (xref , rref ) in the
x − r plane and a variable χ is defined as

〈Cφχ 〉 = Cφχ

CφCχ

=
1

Nt×Nθ

∑Nt
i=1

∑Nθ

j=1 φ(xref , rref , θj, ti)χ(x, r, θj, ti)

(
1

Nt×Nθ

∑Nt
i=1

∑Nθ

j=1 φ2(xref , rref , θj, ti)

)1/2 (
1

Nt×Nθ

∑Nt
i=1

∑Nθ

j=1 χ 2(x, r, θj, ti)

)1/2 ,

(B 1)

where Nt is the number of snapshots over which the average is computed and Nθ is the
number of azimuthal grids.

Figures 22(a) and 22(b) show the contour map of normalised cross-correlation for the
reference pressure fluctuations at x = 1.0 and r = 2.0 and the pressure (〈Cp′p′ 〉) and the
radial velocity (〈Cp′u′

r
〉) for the nozzle-to-wall distance of 2d. The correlations between the

near-field pressure fluctuations and both oblique and stand-off shocks is clearer in these
subfigures which indicate the oscillations of the stand-off and oblique shocks are coupled
with the creation of acoustic waves for this nozzle-to-wall distance. Figure 23 shows the
same quantities as in figure 22 for the case with a nozzle-to-wall distance of 5d with an
observation reference of the pressure fluctuations at x = 2.5 and r = 4.25. The correlation
of the pressure at the reference point and pressure modulations in the shear layer and the
centre of the jet is more conceivable in figure 23(a) and the correlation of the pressure at
the reference point with the shear-layer instabilities (figure 23b) in contrast to the h = 2d
case is strong.

Appendix C. Energy norm of azimuthal modes

In § 3.4 we restricted our attention to the axisymmetric mode, to elaborate on this choice
the norm of the energy of disturbances defined in (3.3) is integrated in both the axial and
frequency domain to obtain the norm of the energy associated with each azimuthal mode
number as

Ā(m) =
∫ St=8.0

0

∫ xo

0
A(x, m, St) dSt dx, (C 1)
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FIGURE 23. Colour contours of normalised cross-correlation for the observation reference of
the pressure fluctuations at x = 2.5 and r = 4.25 and (a) pressure (〈Cp′p′ 〉), (b) radial velocity
(〈Cp′u′

r
〉) for the nozzle-to-wall distance of 5d.
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FIGURE 24. The normalised energy of disturbances as a function of azimuthal mode number
for both cases, h = 2d and 5d.

where xo is the maximum x location confined by red and black dashed lines in figure 19
(i.e. the spatial area of the integration is the region confined by red and black dashed lines
in figure 19). Using this equation, the energy of disturbances of each azimuthal mode is
accessed utilising the normalisation defined as

Υ (m) = Ā(m)∑9
m=0 Ā(m)

× 100. (C 2)

Figure 24 shows the normalised energy of disturbances as a function of the azimuthal
mode number. It is clear from this figure that the axisymmetric mode is the dominant
mode.
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