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The formation and control of strongly nonlinear standing plasma waves (SPWs)
from a trivial equilibrium by a chirped frequency drive are discussed. If the drive
amplitude exceeds a threshold, after passage through the linear resonance in this
system, the excited wave preserves the phase locking with the drive, yielding a
controlled growth of the wave amplitude. We illustrate these autoresonant waves via
Vlasov–Poisson simulations, showing the formation of sharply peaked excitations with
local electron density maxima significantly exceeding the unperturbed plasma density.
The Whitham averaged variational approach applied to a simplified water bag model
yields the weakly nonlinear evolution of the autoresonant SPWs and the autoresonance
threshold. If the chirped driving frequency approaches some constant level, the driven
SPW saturates at a target amplitude, avoiding the kinetic wave breaking.
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1. Introduction
Plasmas can sustain laser intensities many orders of magnitude larger than typical

solid state optical components. This makes plasmas attractive for the manipulation
and control of intense laser beams, but requires the formation of large and stable
electron density structures in the plasma to impact the propagation of the laser light
significantly. A typical approach to this problem is via ponderomotive forces using
additional driving laser beams. Several applications of plasma photonics based on
light scattering off electron density structures have been proposed, including short
pulse amplification via the resonant excitation of plasma waves (Malkin, Shvets &
Fisch 1999), transient plasma gratings (Lehmann & Spatschek 2016), crossed-beam
energy transfer for symmetry control in inertial confinement fusion (Michel et al.
2009) and, more recently, plasma-based polarization control (Michel et al. 2014;
Turnbull et al. 2016, 2017; Lehmann & Spatschek 2018). All of these examples
involve the formation of travelling plasma structures. Furthermore, efficiency was an
important factor in these applications, as the goal was to create the largest amplitude
plasma density perturbation using the smallest possible driver intensities. Recently,
it was shown that very large amplitude travelling or standing ion acoustic waves
(SIAW) can be excited via the autoresonance (AR) approach (Friedland & Shagalov
2014, 2017; Friedland et al. 2019). The latter exploits the salient property of nonlinear
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waves to stay in resonance with driving perturbations if some parameter in the system
(e.g. the driving frequency) varies in time (for a review of several AR applications
see Fajans & Friedland (2001) and Friedland (2009)). Such systems preserve the
resonance with the drive via self-adjustment of the driven wave amplitude leading
to a large amplitude amplification even when the driver is relatively weak. In this
paper, we will discuss the AR approach to excitation of very large amplitude standing
plasma waves (SPW) using both the kinetic model and a simplified water bag model.
The nonlinear SIAWs (Friedland et al. 2019) and SPWs (see a related analysis of
nonlinear Trivelpiece–Gould waves in Dubin & Ashourvan (2015)) are much more
complex than their travelling wave counterparts. For example, the autoresonant SIAW
driven to large amplitudes by a weak, chirped frequency standing ponderomotive wave
is a two-phase solution, each phase locked to one of the travelling waves comprising
the drive (Friedland et al. 2019). The peak electron density in these waves can reach
several times the initial plasma density. We will show that similar giant plasma
structures can be excited in the form of autoresonant SPWs.

The paper is organized as follows. In § 2, we will illustrate autoresonant SPWs
in Vlasov–Poisson simulations and compare the results to those from the simplified
water bag model presented in § 3. We will discuss weakly nonlinear SPWs in § 4 and
use their form as an ansatz in developing a weakly nonlinear theory of driven–chirped
SPWs based on the Whitham averaged variational principle (Whitham 1974) in § 5. In
§ 6, we reduce a system of slow coupled amplitude–phase mismatch equations yielding
the autoresonance threshold on the driving amplitude for excitation of autoresonant
SPWs. In the same section, we will also discuss the control of large amplitude
autoresonant SPWs by tailoring the time dependence of the driving frequency. Finally,
§ 7 will present our conclusions.

2. Standing autoresonant plasma waves in Vlasov–Poison simulations
Our study of autoresonant SPWs is motivated by numerical simulations of the

following one-dimensional Vlasov–Poisson (VP) system describing an externally
driven plasma wave

ft + ufx + (ϕ + ϕd)x fu = 0, ϕxx = κ
2ϕ +

∫
f du− 1. (2.1a,b)

Here, we assume constant ion density, f (u, x, t) and ϕ(x, t) are the electron
velocity distribution and the electric potential, and ϕd = 2ε cos(kx) cos θd, where
θd = kx −

∫
ωd dt is a small amplitude standing wave-like ponderomotive potential

having a slowly varying frequency ωd(t). All dependent and independent variables
in (2.1) are dimensionless, such that the position x, time t and velocity u are
rescaled with respect to the inverse wave vector 1/k, the inverse plasma frequency
ω−1

p =
√

m/(4πe2n0) (n0,m, e being the ion density, the electron mass and charge) and
ωp/k. Then, in the dimensionless form of the driving phase, k= 1 and ωd is rescaled
by ωp. The distribution function and the potentials in (2.1) are rescaled with respect to
kn0/ωp, and mω2

p/(ek2), respectively. We have also added an effective screening term
κ2ϕ in the Poisson equation modelling the typical finite radial extent of the driving
potential. The term describes for example the radial extent of the driving wave formed
by beating two laser beams, or the radial boundary conditions in applications involving
driven Trivelpiece–Gould modes (Dubin & Ashourvan 2015). The screening affects
the dispersion of the driven waves, but most importantly, reduces the threshold driving
amplitude for the autoresonant excitation (see § 6). We assume 2π periodicity in x
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(a) (b)

FIGURE 1. The colour map of the waveforms of the electron density n (a) and fluid
velocity v (b) in the final time interval δτ = 0.125 of the simulation. The slopes of the
white lines are the phase velocities of the two travelling waves comprising the drive.

imposed by the drive and solve the time evolution problem, subject to simple initial
equilibrium ϕ(x,0)=0 and f (u, x,0)= (2πσ 2)−1/2 exp(−u2/2σ 2), where σ = kλD (λD=

ue/ωp being the Debye length and ue the initial electron thermal velocity). Note that σ ,
κ and the driving parameters fully define our rescaled, dimensionless problem. Finally,
we are interested in a driving frequency of the order of the plasma frequency and,
consequently, assume σ� 1 to avoid the kinetic Landau resonance (ωd/k≈ u) initially.

We have applied our VP code (Friedland, Khain & Shagalov 2006) to solve this
problem numerically and show some results of the simulations in figures 1–4 for
σ = 0.1, κ = 0 (the effect of the non-zero κ will be discussed later), and driving
frequency (dimensionless) ωd = ω0 + αt, where ω0 =

√
(1+ κ2)−1 + 3σ 2 is the

normalized plasma wave frequency in the linearized warm fluid model (see (4.4)),
while α = 0.00005 and ε = 0.0021. We present the results of the simulations versus
slow time τ = α1/2t (a convenient representation in AR problems), as the system
evolves between initial τ0=−5 and final τ1= 2.7 times (the total dimensionless time
in this simulation is 1t = 7.7/α1/2

= 1089, i.e. 173 periods of plasma oscillations).
Figure 1 shows the waveform of the electron density n =

∫
f du and fluid velocity

v=
∫

uf du in a small time window δτ = 0.125 of the evolution just before reaching
τ1. One can see a very large amplitude SPW with its peak electron density reaching
2.5 times the initial plasma density (unity in our dimensionless problem). Furthermore,
as expected, for a given time, the solutions are 2π periodic in x. But there also exist
two directions shown by white lines in the figure with slopes dx/dτ =±ωd/α

1/2 (these
slopes are the phase velocities of the two traveling waves comprising the drive) along
which the solutions are π periodic. This suggests that u, n are periodic functions of
three arguments Θ1, Θ2, x, where Θ1,2 = x ±

∫
ωdt and the solutions are π periodic

in Θ1,2 and 2π periodic in x. Similar two-phase solutions, with each phase Θ1,2

locked to one of the phases of the waves comprising the drive, were also observed in
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(a) (b)

FIGURE 2. The snapshots of the electron distribution function at two times τ = 2.69 (a)
and 2.7 (b) during the last period of the wave oscillation in figure 1. The fluid velocity
vanishes in (a), while the electron density reaches its maximal value of 2.5. In contrast,
in (b), the fluid velocity |v| is at its maximum at two locations in x. The straight white
lines are at the locations of the phase velocities ±ωd/k.

autoresonant SIAWs (Friedland et al. 2019). The occurrence of multi-phase solutions
is known in the theory of some partial differential equations (Novikov et al. 1984).

Additional results of the simulations are presented in figure 2, showing the
snapshots of the electron distribution function at two different times inside δτ .
Figure 2(a) corresponds to the time when the fluid velocity vanishes, while the
electron density reaches its maximal value of 2.5, while at the time in figure 2(b)
the fluid velocity |v| is at its maximum at two locations in x. The white horizontal
lines in figure 2 show the locations of the phase velocities ±ωd/k associated with
the travelling waves comprising the drive. One can see in figure 2(b) that a small
fraction of the electrons in the tail of the distribution reach the Landau resonance,
indicating proximity to the kinetic wave breaking. However, we did not observe any
significant effect of this resonance on the excited wave at this stage of the evolution.

The evolution of the system leading to the final stage shown in figures 1 and 2
is illustrated in figure 3, where panel (a) presents the envelope of the maxima of
fluid velocity v during the evolution versus slow time. In the same figure, we also
show a similar envelope (dashed line) obtained by using a simplified water bag
model described in the next section. We observe an excellent agreement between the
two models even for very large excitations. This agreement is important since the
water bag model will be used below in calculating the threshold for AR excitation
of SPWs. Also shown in figure 3(a) by the dashed line is the driving wave phase
velocity ud =ωd/k=ωd. One can see that at the final times of the excitation the fluid
velocity approaches the phase velocity, indicating again the proximity to the Landau
resonance. Finally, figure 3(b) shows the driving and driven wave frequencies (the
latter is calculated from the time differences between successive peaks of the fluid
velocity) versus τ . It illustrates the characteristic signature of autoresonant waves,
i.e. the frequency (phase) locking between the driven and driving waves, which
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(a)

(b)

FIGURE 3. The excitation of the autoresonant SPW for driving amplitude above the AR
threshold. (a) The envelope of the maxima of the electron fluid velocity v versus slow
time τ = α1/2t in VP simulations (blue solid line) are compared to water bag model
simulations (dotted red line). The dashed line represents the phase velocity ωd/k of the
driving wave. (b) Shows the frequencies of the driving (straight line) and driven (dotted
line) waves. The continuous AR frequency locking is seen starting τ ≈−3.

(a)

(b)

FIGURE 4. The numerical simulations as in figure 3, but with the driving amplitude below
the AR threshold. (a) Illustrates saturation of the excited wave amplitude, while (b) shows
that the frequency locking discontinues, leading to saturation shortly after passage through
the linear resonance.

starts even prior to passage through the linear resonance ωd = ω0 (at τ = 0) and
continues to the fully nonlinear stage. We complete this section by figure 4, showing
the results of the simulations similar to those in figure 3 (the same parameters and
initial conditions), but for a smaller driving amplitude ε = 0.0011. One can see in
the figure that the wave excitation saturates in this case (see panel a), as the phase
locking between the driven and driving wave discontinues (see panel b) shortly after
passage through the linear resonance. We find that the peak electron density in this
case reaches 1.7 of the initial density, as compared to 2.5 in the AR case in figure 3.
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FIGURE 5. The water bag model. The electron distribution is confined between two
limiting trajectories u1,2.

These results illustrate the existence of the characteristic AR threshold εth on the
driving amplitude (εth= 0.0015 for the parameters of the above simulations, see (6.8)
below). The autoresonance threshold is a weakly nonlinear phenomenon studied in
many applications (Friedland 2009). We have seen in figures 3 and 4 that a simplified
water bag model can be used in describing the weakly nonlinear evolution of the
driven SPWs instead of using the full VP system. The next four sections will present
the theory of weakly nonlinear autoresonant SPWs based on this model.

3. The water bag model of driven–chirped plasma waves
The water bag model (DePackh 1962; Feix, Hohl & Staton 1969; Hohl 1969; Berk,

Nielsen & Roberts 1970) assumes that the electron distribution function remains
constant, f (u, x, t) = 1/(2∆), between two limiting trajectories u1,2(x, t) in phase
space and vanishes outside these trajectories (see figure 5). Then the electron density
is n(x, t)=

∫
f du= (u1 − u2)/(2∆) and our kinetic SPW problem is governed by the

following set of momentum and Poisson equations

u1t + u1u1x = (ϕ + ϕd)x,

u2t + u2u2x = (ϕ + ϕd)x,

ϕxx = κ
2ϕ + (u1 − u2)/(2∆)− 1,

 (3.1)

where we use the same normalization for x, t, f , u1,2, ϕ, and ϕd as in the previous
section. We will be solving this system subject to 2π periodicity in x for a trivial
initial equilibrium ϕ= 0, u1,2=±∆. Note that if one also defines v(x, t)= (u1+ u2)/2,
equations (3.1) yield

nt + (vn)x = 0,
vt + vvx = (ϕ + ϕd)x −∆

2nnx,

ϕxx = κ
2ϕ + n− 1.

 (3.2)

Therefore, the water bag model is isomorphic to the usual warm fluid limit of the
driven plasma waves with the adiabatic electron pressure scaling p∼ n3 and ∆2

= 3σ 2.
The results shown by the dotted red lines in figures 3 and 4 were obtained by
solving (3.1) numerically and show excellent agreement between the VP and water
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bag simulations until approach to the Landau resonance. These water bag simulations
used a code similar to that for SIAWs (Friedland & Shagalov 2017) and based on a
standard spectral method (Canuto et al. 1988).

In analysing the AR threshold in the problem, we use a Lagrangian approach. We
introduce new potentials ψ1,2 via u1,2 =±∆+ ∂xψ1,2 and rewrite (3.1) as

ψ1tx +1ψ1xx +ψ1xψ1xx = (ϕ + ϕd)x,

ψ2tx −1ψ2xx +ψ2xψ2xx = (ϕ + ϕd)x,

ϕxx = κ
2ϕ + (ψ1x −ψ2x)/2∆.

 (3.3)

This system can be derived from the variation principle δ(
∫

L dx dt)=0, with the three-
field Lagrangian density

L =
1
2
ϕ2

x +
κ2ϕ2

2
−
ψ2

1x +ψ
2
2x

4
−
ψ1xψ1t −ψ2xψ2t

4∆

−
ψ3

1x −ψ
3
2x

12∆
+
(ψ1x −ψ2x)(ϕ + ϕd)

2∆
. (3.4)

Our next goal is to apply the Whitham averaged variational principle (Whitham 1974)
and derive the weakly nonlinear slow evolution system describing driven–chirped
SPWs governed by this Lagrangian. We proceed by discussing weakly nonlinear
driven and phase locked, but not chirped SPWs.

4. Weakly nonlinear SPWs
If one starts in the trivial equilibrium ϕ=0, n=1, v=0 (u1,2=±∆), equations (3.2)

after averaging over one spatial period, yield constant-in-time averaged density and
fluid velocity 〈n〉 = 1, 〈v〉 = 0 (〈u1,2〉 = ±∆). We consider the linear stage of driven
SPWs first, i.e. write n= 1+ δn and linearize (3.2) to get

(δn)t + vx = 0,
vt = ϕx −∆

2δnx − 2ε cos θd sin x,
ϕxx = κ

2ϕ + δn.

 (4.1)

In the case of a constant driving frequency, this set yields phase-locked standing wave
solutions of frequency ω=ωd for all dependent variables

δn= a cos θ cos x,
v = b sin θ sin x,
ϕ = c cos θ cos x,

 (4.2)

where θ = θd =ωt,

a=−
2ε

ω2 −ω2
0
,

b=ωa,
c=−

a
1+ κ2

,

 (4.3)

and
ω2

0 =
1

(1+ κ2)
+∆2. (4.4)
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Note that ω0 is the natural frequency of a linear SPW in the problem and the case
ω = ω0 corresponds to the linear resonance. As usual, this singularity is removed if
one adds nonlinearity or dissipation. Equations (4.2) yield the linear solutions

u1,2 = v ±∆(1+ δn)=±∆+ b sin θ sin x±1a cos θ cos x (4.5)

and, thus,
ψ1,2 =−b sin θ cos x±1a cos θ sin x. (4.6)

Interestingly, in contrast to n, u and ϕ, the linear solutions for u1,2 and ψ1,2 are not
standing waves.

Our next goal is to include a weak nonlinearity in the problem, but still for a
constant driving frequency case. To this end, we use spatial periodicity and write
truncated Fourier expansions

ψ1,2 = b1,2 cos x+ a1,2 sin x+ d1,2 cos(2x)+ e1,2 sin(2x), (4.7)
ϕ = c1 cos x+ c2 cos(2x), (4.8)

where a1,2, b1,2 and c1 are time-dependent amplitudes viewed as small first-order
objects, while d1,2, e1,2 and c2 are due to the nonlinearity and, thus, are of second
order. The time dependence of the first-order amplitudes is assumed to be that
of the linear solutions (4.6) and (4.2), i.e. a1,2 = A1,2 cos θ , b1,2 = B1,2 sin θ and
c1 = C1 cos θ . But what is the time dependence of the second-order amplitudes?
Instead of working with the original system (3.1) for answering this question, we use
a simpler Lagrangian approach in appendix A. The final result is (see (A 3))

d1,2 =D1,2 sin(2θ),
e1,2 = F1,2 + E1,2 cos(2θ),

c2 = B+C cos(2θ),

 (4.9)

where D1,2, F1,2, E1,2, B and C are constants. Thus, the potentials characterizing a
weakly nonlinear SPW phase locked to the drive are

ψi = Bi sin θ cos x+ Ai cos θ sin x+Di sin(2θ) cos(2x)+ [Fi + Ei cos(2θ)] sin(2x),
(4.10)

ϕ =C1 cos θ cos x+ [B+C cos(2θ)] cos(2x). (4.11)

Here i = 1, 2, the solutions preserve the space–time symmetry of the linear limit,
and all the coefficients (amplitudes) are constant and could be related to the driving
amplitude ε by using the approach of appendix A. Nevertheless, we will not follow
this route because, knowing the form of (4.10) and (4.11) is sufficient for addressing
our original driven–chirped problem via the Whitham averaged variational principle
(Whitham 1974), as described next.

5. Whitham’s averaged variational principle for driven SPWs
As in the case of the standing IAWs (Friedland et al. 2019), the Whitham approach

uses the ansatz of form (4.10) and (4.11) for the solution of our driven–chirped
problem, but now all the amplitudes are viewed as slow functions of time and θ
is the fast wave phase having a slowly varying frequency ω(t) = dθ/dt generally
different from the frequency ωd(t) of the chirped driving wave. This ansatz is then
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substituted into the Lagrangian density (3.4), where the driver is written as ϕd =

2ε cos(θ + Φ) sin x and the phase mismatch Φ(t) = θd − θ is viewed as a slow
function of time. Then, all the slow variables are frozen in time and the Lagrangian
density is averaged over 2π in both x and θ (fast scales). This results in a new
averaged Lagrangian density Λ, which depends on slow objects only (i.e. A1,2, B1,2,
C1 (first-order amplitudes), D1,2, E1,2, F1,2, B, C (second-order amplitudes), the wave
frequency ω and the phase mismatch Φ). To fourth order in amplitudes we obtain
(via Mathematica (Wolfram Research Inc. 2017)) Λ=Λ2 +Λ4 +Λd, where

Λ2 = 2C2
1(1+ κ

2)− A2
1 − A2

2 − B2
1 − B2

2

−
2
∆
[ω(A1B1 − A2B2)−C1(A1 − A2)], (5.1)

Λ4 = −4(2F2
1 + 2F2

2 +D2
1 +D2

2 + E2
1 + E2

2)

+ 2(4+ κ2)(2B2
+C2)−

4
∆
[2ω(D1E1 −D2E2)

+ 2B(F1 − F2)+C(E1 − E2)] −
1
∆
[A1B1D1 − A2B2D2]

+
1

2∆
[B2

1(2F1 − E1)− A2
1(2F1 + E1)− B2

2(2F2 − E2)+ A2
2(2F2 + E2)], (5.2)

Λd =
4ε
∆
(A1 − A2) cosΦ. (5.3)

The truncation of the averaged Lagrangian at fourth order in amplitudes is necessary
for getting the usual lowest-order significant set of wave amplitude equations of
weakly nonlinear resonance and second-order nonlinear shift of the wave frequency
(see § 6). Note that Λ is algebraic in terms of all amplitudes with the wave phase
θ entering via Φ = θd − θ and ω(t) = dθ/dt. Therefore, Lagrange equations for the
amplitudes comprise a set of eight algebraic equations

∂Λ

∂Zi
= 0, i= 1, . . . , 8, (5.4)

where the Zi represent each of the 8 slow amplitudes in the problem. In addition, the
Lagrange equation for θ yields an ordinary differential equation (ODE)

d
dt

(
∂Λ

∂ω

)
=−

∂Λ

∂Φ
. (5.5)

To lowest order, the last equation becomes

d
dt
(A1B1 − A2B2)=−2ε(A1 − A2) sinΦ, (5.6)

and, as expected, describes the slow evolution, provided ε is sufficiently small.
The plan for analysing our slow driven system is as follows. First, we will use

the algebraic equations (5.4) for expressing seven of the eight amplitudes and ω in
terms of Φ and the eighth amplitude (chosen to be C1), i.e. we obtain relations Zi =

Zi(C1, Φ) and ω=ω(C1, Φ). Then

dΦ
dt
=ωd(t)−ω(C1, Φ), (5.7)
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which in combination with (5.6) comprise a closed set of two ODEs describing the
slow evolution in our driven system. This plan is algebraically complex, but can
be performed using Mathematica (Wolfram Research Inc. 2017). We describe the
intermediate steps of this calculation in appendix B and here present the final results.
To lowest significant order, the amplitudes in (5.6) are as in the linear undriven
problem (see (B 2), (B 3))

A1 =−A2 ≈−
C1∆

ω2
0 −∆

2
=−C1∆(1+ κ2), (5.8)

B1 = B2 ≈
C1ω0

ω2
0 −∆

2
=C1ω0(1+ κ2), (5.9)

while (see (B 9) and (B 10) in appendix B)

ω2(C1, Φ)≈ω
2
0 +NC2

1 +
2ε cosΦ
(1+ κ2)C1

, (5.10)

where

N =
9κ2(3+ κ2)+ R

96[1+ (4+ κ2)∆2]
, (5.11)

and R = (1 + κ2)∆2
[3(60 + 56κ2

+ 11κ4) + 20(1 + κ2)(4 + κ2)(5 + 2κ2)∆2
+ 16(1 +

κ2)2(4+ κ2)2∆4
].

6. Dynamics and control of chirped–driven SPWs
At this stage, we discuss the slow evolution in our driven–chirped SPWs system.

Upon substitution of (5.8) and (5.9) into (5.6), we obtain

dC1

dt
=−

ε

ω0(1+ κ2)
sinΦ. (6.1)

Next, for a small frequency deviation in the vicinity of the linear resonance, ω=ω0+

δω, equation (5.10) yields

δω≈
N

2ω0
C2

1 +
ε cosΦ

ω0(1+ κ2)C1
, (6.2)

where the two terms on the right represent the wave frequency shifts due to the
nonlinearity and interaction, respectively. Then, from (5.7) and using the driving
frequency ωd =ω0 + αt, we obtain

dΦ
dt
= αt−

N
2ω0

C2
1 −

ε cosΦ
ω0(1+ κ2)C1

. (6.3)

Equations (6.1) and (6.3) comprise a complete set of amplitude–phase mismatch
ODEs describing the passage through the linear resonance in our problem. These
equations involve several parameters, but the number of parameters can be reduced
to just one by rescaling the problem. Indeed, if we use the slow time τ = α1/2t and

define new amplitude Q via Q2
=

N
2ω0α1/2

C2
1, our system reduces to

dQ
dτ
=−µ sinΦ, (6.4)

dΦ
dτ
= τ −Q2

−
µ cosΦ

Q
, (6.5)
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FIGURE 6. The rescaled threshold driving amplitude εth/α
3/4 versus σ = kλD for

different values of the screening parameter κ .

where

µ=
εN1.2

√
2α3/4ω

3/2
0 (1+ κ2)

. (6.6)

Note that, if one defines a complex variable Ψ =QeiΦ , our system is further reduced
to a single complex ODE

iΨτ + (τ − |Ψ |2)Ψ =µ (6.7)

characteristic of AR problems in many different physical systems and studied in
numerous applications (Friedland 2009). For example, if initially Ψ = 0 and one
starts at sufficiently large negative τ (i.e. far from the linear resonance), this equation
predicts transition to AR at large positive τ if µ is above the threshold µth ≈ 0.41,
or returning to our original parameters,

ε > εth = 0.58
α3/4ω

3/2
0 (1+ κ2)

N1.2
. (6.8)

The threshold (6.8) assumes its simplest form when either ∆ or κ vanish. Indeed, in
the cold plasma case, ∆= 0 and

N =
3κ2(3+ κ2)

32
. (6.9)

Therefore, for small κ , εth scales as εth ∼ α
3/4/κ and one needs a non-vanishing

screening factor κ to get a sufficiently small εth for the AR excitation. In the case of
κ = 0 and ∆� 1,

N ≈
15∆2

8
, (6.10)

so εth scales as εth∼α
3/4/∆ (recall that ∆=31/2kλD and measures the electron thermal

spread in the problem). We illustrate these results in figure 6 showing εth/α
3/4 versus

σ (this is kλD in dimensional notations) for several values of κ .
Finally, we address the possibility of autoresonant control of large amplitude SPWs.

This control uses a one-to-one correspondence between the amplitude and frequency
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(a)

(b)

FIGURE 7. The control of the autoresonant SPW by tapering the driving frequency.
(a) The envelope of the maxima of the electron fluid velocity v versus slow time τ =α1/2t.
The dashed line represents the phase velocity ωd/k of the driving wave and the dotted red
line represents the envelope of the maxima of the upper limiting velocity of the water bag
model. Panel (b) shows the frequencies of the driving (red line) and driven (blue line)
waves. The waves are frequency locked starting τ ≈−3.

of nonlinear waves. Since in autoresonance the driven wave frequency is locked to the
driving frequency, the wave amplitude can be controlled by simply varying the driving
frequency. For example, we have seen previously (see figure 3), that a continuous
linear time variation of the driving frequency leads to the excited wave approaching
the wave breaking limit. But what if one wants to avoid this limit and excite a wave
having some given target amplitude? This goal can be achieved by tailoring the time
variation of the driving frequency appropriately. We illustrate such control in figure 7
showing the results of the simulations using the water bag model for the case of
σ = 0.05, κ = 0.75, ε= 0.0011 (εth = 0.00084 in this case) and the driving frequency
ωd = ω0 + αt for t < 0, but ωd = ω0 + (2d/π)arctg(t/T) for t > 0, where T = 2d/πα.
This driving frequency approaches a fixed value of ω0 + d at large times (we used
d = 0.033 in the simulations). Figure 7(a) shows the envelopes of the maxima of
the electron fluid velocity v (solid line) and of the upper limiting velocity u1 of the
water bag model (dotted line). In the same figure, we also show the driving wave
phase velocity (dashed line). Separate simulations show that if the driving frequency
in this example is chirped linearly in time, the upper limiting velocity of the water
bag approaches the Landau resonance (u1 ≈ ωd/k) at τ = 6, where wave breaking
is expected. In contrast, for the saturated driving frequency case shown in figure 7,
the excited fluid velocity also saturates at larger times and performs slow oscillations
around some fixed value. The frequency of these oscillations scales as ε1/2 (Friedland
2009) and their presence illustrates stability of the AR evolution. The velocity u1 also
saturates and, thus, the kinetic wave breaking is avoided. This saturation is caused by
the autoresonant frequency locking in the system as illustrated in figure 7(b), showing
the evolution of the frequencies of the driven and driving waves.

7. Conclusions
We have studied excitation and control of large amplitude SPWs by a chirped

frequency driving wave. The process involved passage through the linear resonance
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in the problem and transition to autoresonant stage of excitation, where the driven
SPW self-adjusts its amplitude to stay in a continuous resonance with the drive. The
method allowed reaching of extreme regimes, where the electron density developed
a sharply peaked spatial profile with the maximum electron density exceeding the
initial plasma density significantly (see figure 1). These results were illustrated in both
Vlasov–Poisson and water bag simulations. The simpler water bag model (3.1) was
used to develop the adiabatic theory using the Whitham averaged variational principle
for studying the weakly nonlinear stage of slowly chirped, driven autoresonant
SPWs. In this regime, the problem was reduced to the standard set of coupled
amplitude–phase mismatch equations (6.4) and (6.5) characteristic of many other
autoresonantly driven problems. The reduction also allowed finding of the threshold
driving amplitude (see (6.8)) for the transition to autoresonance. By slowly decreasing
the chirp rate of the driving frequency and reaching some fixed frequency level, one
could arrive at a given target amplitude of the autoresonant SPW and avoid the
kinetic wave breaking (see figure 7).

The self-consistent inclusion of the variation of the driving amplitude and of
three-dimensional effects in the process of autoresonant excitation of SPWs seem to
be important goals for future research. The form of the autoresonant SPW suggests
that it comprises a two-phase solution, with each phase locked to one of the travelling
waves comprising the drive. A better understanding of such waveforms, analysing
other autoresonant multi-phase plasma waves and studying details of the kinetic wave
breaking process in application to autoresonant SPWs also comprise interesting goals
for the future.
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Appendix A. Second-order amplitudes
To calculate the second-order amplitudes, we substitute equations (4.7) and (4.8)

into the Lagrangian (3.4), write the result to second nonlinear order in amplitudes
and average over one spatial period. This spatially averaged Lagrangian governs the
time dependence of all the amplitudes. Its variations with respect to the second-order
amplitudes yield a system of ODEs for these amplitudes versus time. Algebraically,
this reduction is a tedious process done here using Mathematica (Wolfram Research
Inc. 2017). The resulting set of equations is

(e1,2)t =
1
2(a1,2b1,2 ± 41d1,2),

(d1,2)t =
1
4(4c2 − a2

1,2 + b2
1,2 ∓ 81e1,2),

c2 =
e2 − e1

∆(4+ κ2)
,

 (A 1)

or after substituting the first-order dependencies a1,2∼ cos θ , b1,2∼ sin θ , and c1∼ cos θ

(e1,2)t = p1,2 sin(2θ)± 21d1,2,

(d1,2)t = q1,2 + r1,2 cos(2θ)+ c2 ∓ 21e1,2,

c2 =
e2 − e1

∆(4+ κ2)
,

 (A 2)
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where p1,2, q1,2, r1,2 are constants. These equations have the following time periodic
solutions

d1,2 =D1,2 sin(2θ),

e1,2 = F1,2 + E1,2 cos(2θ),

c2 = B+C cos(2θ),

 (A 3)

where D1,2, F1,2, E1,2, B and C are constants.

Appendix B. The reduction of the variational system

All algebraic manipulations in this appendix use Mathematica (Wolfram Research
Inc. 2017). We employ the averaged Lagrangian Λ (see (5.1)–(5.3)) and proceed from
the variations with respect to the first-order amplitudes A1,2, B1,2, C1

−2C1 + 2A1F1 + B1D1 + A1E1 + 2B1ω+ 2A1∆= 4ε cosΦ,

−2C1 + 2A2F2 + B2D2 + A2E2 + 2B2ω− 2A2∆= 4ε cosΦ,

2F1B1 − A1(D1 + 2ω)− B1(E1 + 2∆)= 0,

−2F2B2 + A2(D2 + 2ω)+ B2(E2 − 2∆)= 0,

A1 − A2 + 2C1(1+ κ2)∆= 0.


(B 1)

The first four equations in this set yield the linear approximation in terms of C1

A′1 =−A′2 =−
C1∆

ω2 −∆2
, (B 2)

B′1 = B′2 =
C1ω

ω2 −∆2
. (B 3)

Then the fifth equation in (B 1) gives the linear dispersion relation

ω2
0 =

1
1+ κ2

+∆2. (B 4)

Next, we take variations with respect to the second-order amplitudes D1,2, E1,2, F1,2,
B, C (to lowest significant order using the linear result for the first-order amplitudes
and ω) to get

A′1B′1 + 8E1ω0 + 8D1∆= 0,

A′2B′2 + 8E2ω0 − 8D2∆= 0,

−8C0+ A′21 + B′21 + 16D1ω0 + 16E1∆= 0,

−8C0+ A′22 + B′22 + 16D2ω0 − 16E2∆= 0,

8B− A′21 + B′1 − 16F1∆= 0,

8B− A′22 + B′22 + 16F2∆= 0,

F1 − F2 + B(4+ κ2)∆= 0,

E1 − E2 +C(4+ κ2)∆= 0.



(B 5)
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This system is now solved for the second-order amplitudes via C2
1

D1 =
C2

1ω0[2+ω2
0(4+ κ

2)+ 3∆2(4+ κ2)]

16(ω2
0 −∆

2)2[1−ω2
0(4+ κ2)+∆2(4+ κ2)]

,

E1 =−
C2

1∆[3ω
2
0(4+ κ

2)+∆2(4+ κ2)]

16(ω2
0 −∆

2)2[1−ω2
0(4+ κ2)+∆2(4+ κ2)]

,

F1 =
C2

1(4+ κ
2)∆

16(ω2
0 −∆

2)[1+∆2(4+ κ2)]
,

D2 =D1, E2 =−E1, F2 =−F1,

B=−
C2

1

8(ω2
0 −∆

2)[1+∆2(4+ κ2)]
,

C=
C2

1(3ω
2
0 +∆

2)

8(ω2
0 −∆

2)2[1−ω2
0(4+ κ2)+−∆2(4+ κ2)]

.



(B 6)

Finally, we return to the first two equations in (B 1) and solve these equations for A1,2
to higher (third) order in C1

A′′1 =−
C1∆

ω2 −∆2
+

C1G1 − 4ε∆(ω2
0 −∆

2) cosΦ
2(ω2

0 −∆
2)2

, (B 7)

A′′2 =
C1∆

ω2 −∆2
+

C1G2 + 4ε∆(ω2
0 −∆

2) cosΦ
2(ω2

0 −∆
2)2

, (B 8)

where G1 = ω
2
0(2F1 − E1) + 2D1ω0∆ − ∆

2(2F1 + E1) and G2 = ω
2
0(2F2 − E2) −

2D2ω0∆ −∆
2(2F2 + E2). Finally, we use (B 6) in (B 7) and (B 8) and substitute the

resulting A′′1,2 into the last equation in (B 1). This yields a higher-order approximation
for the frequency ω of the wave

ω2
=ω2

0 +NC2
1 +

2ε cosΦ
(1+ κ2)C1

, (B 9)

where

N =
9κ2(3+ κ2)+ R

96[1+ (4+ κ2)∆2]
, (B 10)

and R = (1 + κ2)∆2
[3(60 + 56κ2

+ 11κ4) + 20(1 + κ2)(4 + κ2)(5 + 2κ2)∆2
+ 16(1 +

κ2)2(4+ κ2)2∆4
].
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