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MODELING MACROECONOMIC
SUBAGGREGATES: AN
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Many macroeconometric models depict situations where the shares of the major demand
aggregates in output are stable over time. The joint dynamic behavior of the considered
demand aggregate and output may thus be approximated by a cointegrated vector
autoregression. However, the shares of many demand subaggregates in output are rather
mobile and changing over time. In order to simultaneously capture the flexibility of the
shares of the subaggregates and the long-run constancy of the share of the total aggregate,
we consider trivariate systems of two macroeconomic subaggregates and output with
error-correction terms that are nonlinear functions of the original variables. The merits of
the models are evaluated by means of several forecasting experiments.
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1. INTRODUCTION

Econometric forecasting basically has to strike a balance between statistical ev-
idence and plausibility. A case in point is the well-known fact that excellent
short-run macroeconomic forecasts can be obtained from models that generate
quite infeasible economies in the longer run. For example, good one-quarter fore-
casts for private consumption can be derived from models that imply enormous or
negative household saving in the longer run. Similarly, good short-run forecasts
for the unemployment rate may be obtained from models that imply a longer-run
rate below zero or above 50%.

Conversely, the benefits of using a good model may not be revealed in short-run
prediction. Engle and Yoo (1987) have shown that cointegration is able to improve
prediction only at larger forecast horizons, even in simulated structures, where
the cointegrated model is known to be true [see also Christoffersen and Diebold
(1998)]. However, cointegration expresses plausible and well-accepted economic
equilibrium conditions.
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If a forecaster aims at longer horizons—developing scenarios for several
decades—pure extrapolation of statistically identified coefficient structures often
fails. To attain plausibility, long-run equilibrium conditions have to be accounted
for, even if they are rejected on statistical grounds for a sample of limited time
range. On the basis of this reasoning, the current paper focuses on the longer-
run implications of certain error-correction models for macroeconomic scenarios
rather than on statistical tests.

The problem at hand is one that concerns longer-run scenarios, even though
it has been mostly ignored in the forecasting literature. Demand aggregates such
as private consumer expenditure, in short consumption, and gross fixed capital
formation, in short investment, are known to keep to a rather stable share of
total output as measured by gross domestic product (GDP). In some theoretical
models, the properties of long-run constant ratios of consumption to output and
of investment to output follow from the assumptions of collective utility maxi-
mization and relatively general forms of aggregate production functions (Romer
1996). In macroeconomic works, this long-run constancy of “great ratios” is
usually captured by the econometric condition of cointegration that ties demand
aggregates to roughly constant shares of output in dynamic equilibrium (Stock and
Watson 1988; Kunst and Neusser 1990; King et al. 1991). Although the long-run
constancy of the great ratios in actual data has been controversial from its early
days (Klein and Kosobud 1961) and its validity has been criticized on theoretical
and empirical grounds, it constitutes one of the typical working hypotheses for
macroeconometric model building.

Usually, economic forecasters are additionally required to compile predictions
for subaggregates of the main demand aggregates, such as consumption of durable
goods and investment in machinery. For these subaggregates, no long-run relation-
ships are known or have been found to hold. For example, many OECD economies
show trends of declining shares of investment in construction and rising shares
of investment in equipment, possibly due to changes in technology. Imposing
cointegration or error correction with regard to the subaggregates may result in
implausible longer-run scenarios. Alternatively, imposing long-run constancy on
the main demand shares in equations for subaggregates implies error correction
models with nonlinear cointegration. These will be outlined in Section 2.

For longer-run scenarios, asymptotic properties of such error-correction models
are crucial. Simulating the basic nonlinear cointegration models usually leads to a
high probability of one of the subaggregates disappearing from the market, while
the other subaggregates take over the whole time-constant share. We show how
restricting the deterministic drift part of the cointegrating models may lead to a
considerable delay of such unwanted long-run features.

As empirical examples for the techniques, we use data for investment com-
ponents in the United Kingdom. Minor components are aggregated so that total
capital formation is split among the two parts of construction investment, resi-
dential structures and the remainder. The scenarios serve to highlight the main
longer-run features of the models.
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Our main finding is that, although unit-root testing is not really conclusive with
regard to classifying the data-generating processes (DGP) of the aggregate as well
as the subaggregate investment-output ratios, the nonlinear cointegration model is
superior as a forecasting device at the projection horizons of interest of up to ten
years. We confirm this finding by means of a parametric bootstrap experiment that
assumes the nonlinear model as the DGP. Interestingly, the nonlinear cointegration
model even dominates when the experiment assumes that the DGP conforms to a
linear cointegration model. A very similar impression was obtained from parallel
experiments for Austria and France. For brevity, we do not report them here in
detail.

Section 3 provides a description of the data, whereas Section 4 presents the main
empirical results. Section 5 presents two small prediction evaluation experiments.
The first experiment compares a stochastic forecast with the observed data. The
second experiment draws simulated processes via a parametric bootstrap and
compares stochastic predictions with the simulated data. Section 6 concludes.

2. METHODOLOGY

2.1. Traditional Error-Correction Models

According to economic theory and also to observation, the share of a major demand
aggregate—say, consumption or investment—in output is roughly constant in the
long run. If a modeler just wished to fulfil the task of developing a joint model
for two considered demand aggregates and output, he or she might approximate
dynamic behavior by a cointegrated vector autoregression, otherwise known as a
vector error-correction model (VECM),⎛
⎝�ct

�et

�yt

⎞
⎠ = µ + α1(ct−1 − yt−1 − δ1) + α2(et−1 − yt−1 − δ2) + �

⎛
⎝�ct−1

�et−1

�yt−1

⎞
⎠+ εt .

(1)

In (1), c and e denote the demand aggregates in logarithms and y denotes the output
in logarithms. Depending on the loading vectors αi , i = 1, 2, which typically have
negative entries at location i and positive entries at location 3 and on �, the
model is marginally stable in the sense that first differences (�c,�e,�y) form
a stationary and ergodic process, whereas (c, e, y) do not. For some applications,
particularly for the consumption-output ratio, the third entry of the corresponding
α vector is close to zero and y becomes weakly exogenous for that vector. The
model is called error-correcting, as the variables c−y and e−y tend to move back
to their long-run equilibria δ1 and δ2. Nonlinear functions of c − y and e − y, such
as the original “great” ratios exp(c − y) and exp(e − y), will also remain close to
their equilibrium. For a good presentation of the linear VECM and its statistical
features, see Johansen (1995).
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In large macroeconometric models, many demand aggregates are decomposed
into subaggregates. Gross fixed investment is disaggregated into investment on
construction and on equipment. Private consumer spending may be disaggregated
into spending on services, durable goods, and nondurables. Let g denote the
logarithm of a main demand aggregate that is decomposed into two subaggregates.
Let c and e now denote the logarithms of the two subaggregates. Then there is a
theoretical exact adding-up condition, exp(g) = exp(c)+ exp(e). Generalizations
to a larger number of subaggregates are straightforward.

In some cases, the share of each subaggregate in output will itself be constant
in the long run. Then, one may consider trivariate VECMs for the subaggregates
and y. System (1) has this form already. The total aggregate g results from c and e

and is not included explicitly. Like c − y and e − y, g − y will also be stationary.
In many other cases, individual ratios exp(c−y) and exp(e−y) are rather mobile

and changing through time, while exp(g − y) remains stable. For example, after
World War II, the share of construction in total investment and hence in total output
was decreasing for several decades in most of the war-torn European economies.
During that phase, perhaps except in the immediate aftermath of the war, the
investment-output ratio was roughly constant. Expenditures on machinery simply
replaced expenditures on construction. Similarly, the consumption-output ratio has
shown a remarkable constancy over the last few decades, while the components of
household expenditure were subject to trends that reflected the increasing wealth
and also shifts in taste. A relative decrease in expenditures on nondurables reflects
the lesser importance of basic goods. Simultaneously, durable goods showed a
relative expansion. Later on, an increased demand for luxury services implied a
rising share of services in consumer expenditures. In summary, sizeable shifts
occur among the subaggregates, while the total aggregate grows in parallel with
the general economy.

2.2. An Error-Correction Model with Nonlinear Cointegration

A trivariate variable X = (c, e, y)′ consists of two parts of a demand aggregate
and gross output. We consider the model⎛

⎝�ct

�et

�yt

⎞
⎠ = µ + α[ln {exp (ct−1 − yt−1) + exp (et−1 − yt−1)} − δ]

+�

⎛
⎝�ct−1

�et−1

�yt−1

⎞
⎠ + εt , (2)

which contains an error-correction term that is a nonlinear function of the level
variables. It is convenient to include an explicit target for the logarithmic “great”
ratio δ and to separate it from economic growth represented by µ. As in (1),
the third element of α may be close to zero, expressing the fact that there is no
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tendency in overall output to adjust to equilibrium. In that case, y can be regarded
as exogenous for the longer-run characteristics α and δ.

The model (2) is a member of a class of nonlinear dynamic models that was
analyzed by Escribano and Mira [2002, (EM); see also Escribano (2004)]. These
models are characterized by two main features. First, the equilibrium term is a
nonlinear function of a linear transform of the original variables; in EM’s notation
J (β ′X) and

J (w) = J (w1, w2) = α[ln {exp (w1) + exp (w2)} − δ].

This corresponds to (2) for X = (c, e, y)′ and

β =
⎛
⎝1 0

0 1
−1 −1

⎞
⎠ .

Second, the function ∂J (w)/∂w follows a Lipschitz condition. This derivative can
be represented as

∂J (w)

∂w′ = α[{1 + exp(w2 − w1)}−1, {1 + exp(w1 − w2)}−1] = J1(w).

The function J (w) has bounded derivatives and therefore obeys the required
Lipschitz condition. According to EM’s Theorem 4, the model (2) is stable in the
sense that �X has a stationary solution, if the spectral radius of the matrix(

� J1 (w)

β ′� I2 + β ′J1 (w)

)
(3)

is less than 1 − ε.
For the model (2), estimation constitutes no problems, as the error-correction

vector is given and thus OLS can be applied. Linear regression yields esti-
mates µ̂∗, α̂, �̂ of parameters µ∗, α, �, where µ∗ denotes the total intercept
µ − αδ. Then δ̂ is obtained as the sample mean of the error-correction variable
ln {exp (z1 − y) + exp (z2 − y)}. In a second step, µ̂ is obtained as µ̂∗ + α̂δ̂.

Unfortunately, this approach may yield estimated model structures that do not
fulfil important features of the observed data. First, unrestricted α̂ may contain ele-
ments that violate stability conditions. A simple remedy is to replace such elements
by zero. For example, α̂3 may be negative, thus driving away the output variable y

from the equilibrium. A valid model is obtained by replacing α̂ = (α̂1, α̂2, α̂3)
′ by

α̂∗ = (α̂1, α̂2, 0)′. This is not the maximum-likelihood estimate under the restric-
tion α3 = 0, which would require a GLS–type correction.

Another critical feature of the OLS estimates may be inhomogeneous growth in
X, whenever E(�X) is not scalar. This does not impair nonlinear integratedness
and stationarity of �X or of the error-correction variable. However, inhomogeneity
tends to drive the ratios exp (c − y) and exp (e − y) to marginal values in the sense

https://doi.org/10.1017/S1365100507060385 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060385


156 ADUSEI JUMAH AND ROBERT M. KUNST

that, for the slower-growing component, for example c, exp (c − y) approaches 0
and exp (e − y) approaches exp (δ).

Growth homogeneity can be imposed in the following steps. If the mean error-
correction variable is δ, one obtains

E(�X) = µ + �E(�X)

and therefore
E(�X) = (I − �)−1µ,

where I denotes the identity matrix. For example, the estimate µ̂ will lead to an
estimate mx = (I − �̂)−1µ̂ of E(�X). The averaged version

m̃x = 3−1(1′mx)1,

with 1 = (1, . . . , 1)′, then yields a modified estimate of µ as

µ̃ = (I − �) m̃x. (4)

The estimate µ̃ enforces homogeneous growth among components and gives more
realistic trajectories. Again, an alternative solution would be to use restricted
maximum-likelihood estimation. If the generating model is simulated using the
model (2) with an intercept µ∗ = µ − αδ, then an estimate for this intercept is
formed according to µ̃∗ = µ̃ − α̂δ̂.

3. THE DATA

We use seasonally adjusted quarterly national accounts data for the United
Kingdom over the time range 1965–2005. Gross domestic product (GDP) in con-
stant prices is used directly for the output series exp(y). Construction investment
exp(c) results from adding the positions for gross fixed capital formation (GFCF)
for housing and for other construction, while equipment investment exp(e) is
obtained by adding the remaining GFCF components at constant prices. Due to
the recent transition of national accounting from the traditional Paasche indices to
chained deflators, the sum exp(c)+ exp(e) does not correspond exactly to the real
total GFCF position of national accounting. The discrepancy is minor and disap-
pears toward the end of the sample. We feel that using this sum exp(c) + exp(e)

for total investment is the most preferable option, in order to preserve the internal
consistency of the data series.

Parallel analyses were conducted on three different data sets: Austrian data for
the time range 1988–2002, French data 1970–1998, and an older version of U.K.
accounts 1965–2003. For brevity, we will only mention the results from these
investigations in brief.

Figure 1 shows the evolution over time of ratios of total GFCF and of the two
main investment components to GDP. The ratio of total GFCF over GDP has
remained fairly stable over the whole time range, at around 16%. By contrast, the
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FIGURE 1. Shares of major investment components in British GDP. Quarterly data 1965–
2005.

share of equipment investment has increased from around 5% to 7–8%, whereas
the share of construction investment has fallen from a maximum of 13% in the
1960s to less than 10% over the same time range. Even more pronounced changes
in their contribution appear when the shares of the original subaggregates of
national accounts are analyzed. The construction of our two major components
of investment follows the historical classification (Berndt 1996) that is still in
predominant usage in many macroeconomic forecasting models.

In summary, the ratio of total investment to GDP is fairly stable over time,
whereas construction investment shows a tendency to lose ground to the benefit of
the rather heterogeneous aggregate of equipment (or, rather, “nonconstruction”)
investment. Similar tendencies were observed in the parallel data sets for Austria
and France.

Some descriptive unit-root test statistics are summarized in Table 1. The vari-
ables are logarithms of the share of construction investment in GDP, of equipment
investment in GDP, and of total GFCF in GDP. Whereas for the Dickey–Fuller
tests the lag order was determined by the AIC information criterion, a window
length of 4 was generally used for the Phillips–Perron version of the test. Both
tests are unable to reject unit roots in the component ratios, whereas the unit root
in the share of total GFCF is rejected at the 10% significance level. This result is
in line with visual evidence.
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TABLE 1. Unit root tests

c − y e − y g − y

Dickey–Fuller tests
Augmenting lags 4 7 5
µ-statistics −1.669 −1.674 −2.672∗

Phillips–Perron tests
Window length 4 4 4
Statistics −1.674 −1.646 −2.815∗

RUR tests
RUR 1.015∗∗ 1.562 1.640
RUR-BF 2.374 2.429 2.650

Note: c, e, g, and y are the logarithms of construction investment, equipment
investment, total fixed investment, and gross domestic product, respectively. For
the RUR test, simulated significance points are 1.11 and 3.56 at the 5% level, and
1.26 and 3.24 at the 10% level. For RUR-BF, simulated significance points are 1.73
and 4.92 at the 5% level, and 1.84 and 4.47 at the 10% level.

Additionally, we document the results of the recently introduced RUR (range
unit root) test (Aparicio et al. 2006), which is designed to be more robust against
outliers and nonlinearities. In contrast to the Dickey–Fuller and Phillips–Perron
tests, it rejects its null of a unit root in its left tail if the variable is I(0) without a
trend, and in its right tail if the variable is I(0) with a linear trend. By construction,
the test may be sensitive to the presence of sublinear trends. Whereas the RUR test
in its reportedly more powerful BF (backward and forward) version is unable to
reject a unit root in all cases, its standard version rejects the unit root at the 5% level
for the equipment investment ratio only. More experience with these new tests will
be required before the information provided by this outcome can be properly as-
sessed. However, the reported statistics sound a warning that the statistical evidence
in favor of the theoretical concept—a stationary “great ratio” of total investment to
GDP and time-changing subcomponent ratios—is far from unanimous. The results
from several unreported bivariate and multivariate cointegration tests according to
Johansen (1988, 1995) are also in line with the RUR tests. Unit-root tests on the
parallel data sets yield ambiguous outcomes. Particularly for shorter time spans,
the statistical tests were unable to reject a unit root for the total investment quota.

In summary, statistical support for the stationarity of the investment quota is
unclear, although macroeconomic forecasters may tend to impose it for a longer-
run prediction, for reasons of plausibility. By contrast, stationarity of subaggregate
quotas is unsupported by nearly all statistics as well as by plausibility.

4. ESTIMATION

Table 2 gives the results of the preliminary unrestricted VAR estimation. Only one
lag of differences was included according to information criteria. The nonlinear
cointegration term has the correct sign for the investment subaggregates. For the
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TABLE 2. Coefficient estimates: Estimation time range
is 1965–2005.

�ct �et �yt

�ct−1 −0.176 −0.031 −0.013
[−2.198] [−0.301] [−0.650]

�et−1 0.073 −0.242 0.032
[1.152] [−3.002] [1.974]

�yt−1 0.645 0.444 −0.066
[1.935] [1.047] [−0.786]

µ∗ −0.146 −0.071 0.006
[−1.912] [−0.735] [0.326]

α −0.081 −0.042 0.000
[−1.942] [−0.805] [0.008]

R2 0.082 0.064 0.028

Note: Columns give the results for the three equations of the unrestricted
nonlinear cointegration model.

output equation, it is very small and obtains the wrong sign for shortened samples
that are used for forecasting, where it will be set to zero. For this restricted VAR
system with nonlinear cointegration, mean forecasts with zero residuals are shown
in Figure 2, whereas Figures 3 and 4 show stochastic forecasts. The low values
of R2 in Table 2 imply that the model has comparatively little explanatory power;
hence the confidence bands are relatively wide.

The forecast for the total investment quota in Figure 3 reflects the fact that the
British investment quota is only slightly above its historical mean at the end of
the sample. Following a five-year decrease to that historical mean, the median
forecast is constant over the remainder of the forecast time range. Figure 4 shows
that construction investment is in a long-run decline that is assumed to continue
into the future, whereas equipment investment is predicted to continue its relative
increase. The distribution of the equipment predictors is asymmetric, and its upper
5% fractile even exceeds that of the investment predictor after 2022. The equipment
median will overtake the construction median after 2030.

It is interesting to contrast this picture with the results from the older U.K.
data set that ended in 2002. That data was much more supportive of an imminent
overtaking of construction investment by equipment investment. Apparently, the
long-run decline of the construction share has been weakening over the past few
years.

If growth homogeneity is imposed on the British system (see Figure 5), median
forecasts for both investment components become flat at approximate end-of-
sample values of 7% for equipment and 9% for construction, thus reflecting the
low degree of dynamic dependence in the model. This variant avoids the extremely
high or low shares of the two subaggregates that evolve from the model with
inhomogeneous growth, at the price of reducing the scenario to uninformative
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FIGURE 2. Twenty-five years of forecasting for the U.K. nonlinear system with zero resid-
uals. A vertical bar separates the sample from the prediction interval.

random-walk behavior. Contrary to a usual cointegration model, there is no
stochastic restriction on the difference between investment components, excepting
the error-correction term for the sum, which keeps the components from undue
expansion.

5. FORECASTING EVALUATION

5.1. Different Concepts of Evaluating Forecasts

Our intention is to rely mainly on visual evaluation of the plausibility of longer-
range prediction rather than on a numerical prediction evaluation, because of the
prominence of sample-specific features in any selected finite time range. However,
for a better clarification of the issues, we also report the results of an out-of-sample
prediction evaluation.

Regarding the stochastic assumption about the prediction model and the true
model, one can distinguish four types of forecast evaluations. The simplest way
of evaluating forecasts is by comparing a mean forecast x∗

s+h for an observa-
tion xs+h, which is a function of the observations x1, . . . , xs and the observation
xs+h, typically by a distance function g

(
x∗

s+h, xs+h

)
. Often, such evaluations are

summarized by averaging over a range of values for s, tacitly assuming that
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FIGURE 3. Median and upper and lower 5% quantiles for stochastic forecasts from the U.K.
nonlinear system. Predicted variable is the total investment quota.

m−1 ∑n
s=n−m+1 g(x∗

s+h, xs+h) converges to some constant, which we denote sym-
bolically by g(x∗, x). The forecasting model with the lowest value for g(x∗, x)

is then interpreted as the best one. This approach is not appropriate for nonlinear
forecasting models or for stochastic prediction.

Most prediction experiments rely on a variant of approximating the integral

∫
g(x∗, x)f (x) dx,

where x denotes the data-generating process, x∗ is the forecast, and g(x, y) is a
distance function, for example, the squared distance g2(x, y) = (x − y)2. It is
obvious that this approach is used as a backdrop for the prediction accuracy tests,
as suggested by Diebold and Mariano (1995), for example. Again, for a stochastic
forecast x∗, this interpretation of measuring accuracy is inconvenient, and the
assumption of a true probability model for the data also appears to be restrictive.

As an alternative, one may consider integrals of the type

∫
g(x∗, x)f (x∗) dx∗,
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FIGURE 4. Stochastic prediction from the nonlinear model for the U.K. data. Median
forecasts for construction investment quota (solid curve) and for equipment investment
quota (dashed curve). Dotted curves represent lower and upper 5% quantiles of the forecast
distribution.

where the expectation of g(x∗, x) is conditioned on the observed data x and the
forecast x∗ is random. Such an interpretation is in line with the current popularity
of fan charts and appears to be more appropriate for our purposes. For empirical
applications, the integral is to be approximated by

m∑
t=1

	∑
ω=1

g(x∗
t (ω), xt ),

where ω is drawn according to the probability distribution of the stochastic fore-
cast. For our experiment, we use 	 = 200, that is, there are 200 replications
of the stochastic forecast, and m = 50, that is, we evaluate predictive accuracy
over the last 12.5 years of the sample. We repeat the experiment for a whole
range of horizons, ranging from single-step to 40-step forecasts, and remember
to focus on a prediction horizon of 5 to 10 years. Note that for a horizon of h

and a time range of m, only the first n − h − m + 1 observations can be used for
estimating the model parameters, if the prediction is supposed to be truly out-of-
sample.
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FIGURE 5. Stochastic prediction from the nonlinear model for the U.K. data under the
restriction of growth homogeneity. Median forecasts for construction investment quota
(solid curve) and for equipment investment quota (dashed curve). Dotted curves represent
lower and upper 5% quantiles of the forecast distribution.

A fourth variant assumes stochastic processes for both the forecast x∗ and the
true model x, that is, ∫ ∫

g(x∗, x)f (x∗, x) dx∗ dx.

Here, the difficulty is that the generating law for x is unknown. A workable solution
would be to act as if the estimated parameters from the observations x1, . . . , xs

determined the true structure and to draw from the assumed statistical distribution.
One obtains an approximation by sums of the form

m∑
t=1

	1∑
ω1=1

	2∑
ω2=1

g[x∗
t (ω1), xt (ω2)],

where the notation simplifies the fact that both the generating laws for x∗ and
for x are time-changing in the sense that an increasing training sample is used
to determine the parametric structures. Such evaluations answer the question of
whether the suggested prediction method performs satisfactorily, if the true model
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class is given. For example, the assumed true model class may be nonlinear
cointegration models and the methods may be linear or nonlinear cointegration
models. Due to sampling variation in parameter estimation, a match between
method and true class does not necessarily define the best method. We shall first
consider the above mentioned alternative with fixed x and then return to the
double-stochastic version.

5.2. Evaluations Conditional on Observed Data

As candidates for stochastic forecasts, we use model-based predictions for five
models: an unrestricted VAR in differences, the nonlinear cointegration model
without and with imposing growth homogeneity, a linear VECM with stationary
subcomponent ratios, and a VAR in differences with growth homogeneity. For all
error-correction models, instability was excluded by replacing unstable influences
of the error-correction terms to zero. This criterion was used separately at each
time point, so that the experiment is out-of-sample in all regards. Although various
other models could be used for a comparison, note that it is not necessary to
impose growth homogeneity on the linear cointegration model, as it is fulfilled
automatically.

For the function g2 (x, y) = (x − y)2, that is, mean squared errors, results are
displayed in Figures 6 and 7. For g1 (x, y) = |x −y|, that is, mean absolute errors,
the ranking of forecasts is very similar. The benchmark models in differences
without any further restriction clearly yield the largest prediction errors, and the
effect of the growth homogeneity restriction is small. Contrary to the simulations
of Engle and Yoo (1987), cointegrating models dominate at almost all horizons
for all series, not only at larger horizons. Note, however, that we do not use the
VAR in levels as a benchmark that was used by Engle and Yoo but in differences,
and that we evaluate predictive accuracy for the (stationary or at least bounded)
ratios and not for the assumedly integrated variables, such as y.

For the total investment quota and for the construction subaggregate, the non-
linear cointegration models dominate convincingly for longer prediction horizons.
The linear cointegration model does well for short horizons but its performance
deteriorates at the long end. For forecasting the equipment investment quota, the
assumption of linear cointegration of subcomponents and therefore also of the
equipment quota yields the optimum results. The performance of all rival models
is similar, with a slight lead of the nonlinear model with growth homogeneity.
Presumably, growth homogeneity would prove more beneficial at even longer
horizons, whereas different growth rates for subaggregates are acceptable within
the limits of the experiment. The general impression from all three variables is
that the nonlinear cointegration model with growth homogeneity yields the most
satisfactory results.

Similar results were obtained for the French and Austrian data sets, as well as
for an older variant of the British data. For most series, always including the total
investment quota, the nonlinear cointegration model achieves the best accuracy,
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FIGURE 6. Mean squared errors for prediction horizons h = 1 to h = 40. Predicted variable
is the U.K. construction investment quota. Curves represent VAR in differences (solid),
nonlinear cointegration model (long dashes), nonlinear cointegration model with growth
homogeneity (dots), linear cointegration of subcomponents (short dashes), and VAR in
differences with growth homogeneity (fine dots).

and it typically benefits from imposing growth homogeneity at longer horizons.
While the linear cointegration model is competitive for some component series, it
tends to be less attractive for the total. The models in differences rank last, at least
for longer horizons.

5.3. Evaluations Conditional on Simulated Data

These evaluations assume that a specified model class is the correct one and
determines the free parameters by estimation from the full available sample. From
this estimated pseudo-true model, artificial samples are generated (“parametric
bootstrap”), which are then “predicted” using all of the previously specified meth-
ods. One of the methods corresponds to the class used for generating the data.
These evaluations are helpful, as they provide information on the relative merits
with regard to the accuracy of forecasts from correctly specifying the model class.
Because of sampling variation in parameter estimation, the true model class is not
necessarily the best one at all forecast horizons.
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FIGURE 7. Mean squared errors for prediction horizons h = 1 to h = 40. Predicted variable
is the U.K. equipment investment quota. Curves represent VAR in differences (solid),
nonlinear cointegration model (long dashes), nonlinear cointegration model with growth
homogeneity (dots), linear cointegration of subcomponents (short dashes), and VAR in
differences with growth homogeneity (fine dots).

Figures 8 and 9 rely on experiments using 100 replications both for the stochas-
tic predictors and for the pseudo-true model. The assumed true model class is
the nonlinear cointegration model with the growth homogeneity restriction. Pre-
dictions based on the true model dominate at all horizons, while the ranking of
the other predictors varies. For the equipment investment quota, the nonlinear
model without the homogeneity restriction falls behind the linear model in pure
differences with the homogeneity restriction, whereas for the construction and
total quotas, the unrestricted nonlinear model comes in at a clear second position.
The comparatively good performance of the linear cointegration models in the
observed data is not matched in the simulated data.

These simulations offer an informal test of whether the assumed model is a
likely data-generating mechanism for the observed data, even though such tests
are not in the focus of our investigation. If a nonlinear cointegration model actually
had generated the British investment data, Figures 8 and 9 should roughly match
the features seen in the observational counterparts, Figures 6 and 7. Although
that correspondence is acceptable in general, there are some noteworthy differ-
ences. First, although the empirical plots support the linear cointegration model
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FIGURE 8. Mean squared errors for prediction horizons h = 1 to h = 40. Predicted variable
is a parametric bootstrap version of the British construction investment quota. Curves rep-
resent VAR in differences (solid), nonlinear cointegration model (long dashes), nonlinear
cointegration model with growth homogeneity (dots), linear cointegration of subcompo-
nents (short dashes), and VAR in differences with growth homogeneity (fine dots).

as a forecasting tool at some prediction horizons, this model is not among the
preferred ones for the simulation graphs. This mismatch may indicate that true
data behavior is in between the linear and the nonlinear model, in the sense that
the persistence of subcomponent quotas is stronger than would be implied by the
nonlinear cointegration model, though not as strong as would be implied by the
linear model. Second, the ranking of prediction models is robust to the prediction
horizon for the bootstrap version, whereas it critically depends on the horizon for
the empirical version. This may indicate that longer-run cycles play a larger role
in empirical data than in all suggested model classes. These longer-run cycles
may reflect cycles in political attitudes, as particularly construction investment is
severely influenced by policy decisions. Finally, the numerical values of the mean
squared errors show noteworthy differences, which however is to be expected due
to sampling variation, if the data is viewed as a single observation of a trajectory
from a time-series process.
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FIGURE 9. Mean squared errors for prediction horizons h= 1 to h= 40. Predicted variable is
a parametric bootstrap version of the British equipment investment quota. Curves represent
VAR in differences (solid), nonlinear cointegration model (long dashes), nonlinear coin-
tegration model with growth homogeneity (dots), linear cointegration of subcomponents
(short dashes), and VAR in differences with growth homogeneity (fine dots).

The parametric bootstrap evaluation can be repeated for any other assumed data-
generating process. For brevity, we summarize the results of such experiments
without reporting details. Generally, we find that the data-generating model class
does not always dominate with regard to predictive accuracy.

For example, imposing growth homogeneity tends to improve forecasts, even
when the true model does not obey the homogeneity condition. This observa-
tion is in line with the traditional recommendation of using simplified structures
in forecasting, as parameter estimates with large uncertainty tend to deteriorate
performance, even in cases where the parameters are statistically significant. Al-
though this effect necessarily disappears as the sample size increases, it is definitely
present for sample sizes of empirical interest in macroeconomics.

Similarly, simulating a linear cointegration structure that has been fitted to the
actual data entails that the nonlinear model with growth homogeneity dominates
as a forecasting tool. Without homogeneity being imposed, the model does not
perform as well, but even then it beats the true data-generating model class for
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some horizons and series. We note that the linear cointegration model has more
parameters to be estimated, and some of the adjustment coefficients are relatively
imprecise. Ironically, the seemingly complex nonlinear model is simpler than the
linear rival, and therefore outperforms it.

Similar results were obtained for simulations that built on the Austrian and
French data. The nonlinear model with growth homogeneity yields the most robust
forecasting structure, whereas the models in pure differences without imposing
any long-run equilibrium conditions fail.

Finally, the technique of parametric bootstrap permits a review of the unit-root
statistics reported in Table 1. If the nonlinear model with homogeneity restriction
indeed generated the data, we would expect test statistics in the range of the
reported values, whether those point literally to unit roots or not. This is indeed
the case. The bootstrap processes yield Dickey–Fuller statistics with a median of
−0.66 to −1.18 for the subcomponent ratios and of −2.36 for the total ratio. The
sample values are slightly to the left of these values for the subcomponent ratios
but still not in the tails in the distribution, whereas the sample value for the total
ratio achieves a close match.

Similarly, the medians of the distributions of the bootstrapped RUR test statistics
are in the range of 1.33 to 1.72 and of 1.82 to 2.37 for the RUR-BF variant.
These medians roughly match the sample values in Table 2, which implies that
the RUR tests are unable to reject the I(1) hypothesis for variables that have
been generated by the nonlinear model and are otherwise similar to the observed
data.

In summary, the apparent mismatch between the statistical properties of the
suggested nonlinear process and the test results reported in Table 1 can be explained
fully by the particular features of the nonlinear model and by some additional
data-specific short-run parameters and starting values. Safe statistical detection
of nonlinearities of the suggested type would require either a hitherto unknown
test statistic or an implausibly long sample. Our bootstrap technique provides
some insight into this problem and does not exclude the possibility that the actual
data-generating process may be close to the suggested nonlinear structure.

6. SUMMARY AND CONCLUSION

We argue that, although macroeconomic theory postulates constancy of the share
of total investment in output in the steady state of an economy, there is little
information on the development of its components. We build on this argument by
means of a trivariate time-series model for forecasting.

The task of forecasting the subcomponents, under the restriction of long-run
constancy of the total investment share, yields a relatively simple example for
nonlinear cointegration. We suggest the elimination of unstable features from
longer-run scenarios in an iterative dialog with the data. Particularly in longer-
run forecasting, statistical test decisions obtained from samples of limited length
should be overridden in favor of admissibility restrictions imposed by plausibility
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and economic theory. Our results show that automatically generated forecasts from
statistical analysis of linear structures may not fulfil such plausibility requirements.
In scenarios with a very long time horizon, restricting the deterministic part of
the system can also become crucial in order to avoid that one subcomponent
disappears in the longer run.

We applied our nonlinear cointegration modelling idea to a three-variable system
for two main investment components and aggregate output in the United Kingdom.
Parallel experiments were performed on Austrian and French data.

Our main finding is that the nonlinear cointegration model is superior as a fore-
casting device at the projection horizons of interest of up to 10 years. We confirm
the evidence through parametric bootstrapping that assumes the nonlinear model
as the true model. Interestingly, the nonlinear cointegration model even dominates
when the experiment assumes that the DGP conforms to a linear cointegration
model.

The presented partial models on investment and output can be used as building
blocks in larger macroeconometric models, where the relationships between the
investment sector and other sectors of the economy can be fully captured. In
order to permit a focus on the main issues, we exclude such extensions from the
present paper. The study could, however, form a basis for future work on this
subject.

Without substantial modification, techniques similar to the one outlined in this
paper can be used for other cases where the total share is known to be more
constant than the shares of components, such as in modeling components of
consumer demand. We feel, however, that the basic modeling idea may have even
wider applicability in other areas of economic modeling.
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