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Compressible Rayleigh–Taylor turbulent mixing
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Rayleigh–Taylor instability induced turbulence between two compressible miscible
Newtonian fluids is studied in a strongly stratified configuration at a moderate Atwood
number. A direct numerical simulation has been carried out with an auto-adaptive
multidomain Chebyshev–Fourier–Fourier numerical method. The spatial resolution is
increased up to (9 × 100) × 10002

= 900M collocation points. These numerical data
are compared with those obtained from a simulation carried out at a lower Reynolds
number and at the same Atwood number, and those obtained from a simulation
carried out within the Boussinesq approximation at the same Reynolds number. A
comprehensive data analysis is reported. Physical-variable mean profiles – density,
concentration, temperature, entropy, velocity, vorticity, helicity and palinstrophy – are
provided. Anisotropy is studied in the spectral space. The intermediate-scale isotropy
and the small-scale anisotropy are exhibited for the scalars, i.e. concentration and
temperature. Velocity is anisotropic at all scales but this anisotropy is more marked at
small scales. The data are also analysed with the Favre-averaged equations. Sources
of the turbulent kinetic energy, mass flux, root-mean-square density and energy
equations are analysed. Compressibility effects are discussed in particular with the
Kovàsznay-mode decomposition. A statistical study is reported where skewnesses,
flatnesses and probability density functions (PDFs) are displayed and commented.
A flow visualization is also given. Finally, the temperature field appears to be the
slave of the mixing. This conclusion is drawn from the comparison of power spectra,
anisotropy spectra, skewnesses, flatnesses, PDFs and correlation coefficients. There is
however a significant time lag between the density and temperature evolution.
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1. Introduction
In this paper, Rayleigh–Taylor instability (RTI) induced turbulence between

compressible miscible Newtonian fluids is studied. We essentially present a detailed
data analysis of a large-scale numerical simulation carried out with a pseudo-spectral
code for a strongly stratified initial equilibrium state. By using the full Navier–Stokes
equations (NSEs), we have access both to the mixing and to the temperature field
and the three Kovásznay modes, namely the vorticity, entropic and acoustic modes,
are present.
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212 S. Gauthier

The RTI is the potentially unstable superposition of a heavy fluid above a lighter
one in a slowly variable acceleration field (Rayleigh 1883; Taylor 1950). This
instability has been the object of continuous interest over the last decades and
has been discussed at conferences such as Turbulent Mixing and Beyond and the
International Workshop on the Physics of Compressible Turbulent Mixing, as well as
in papers such as Anisimov et al. (2013) and Zhou (2017). RTI is present in various
physical situations but it is often met in high energy density physics and in particular
in inertial confinement fusion that aims at obtaining thermonuclear ignition by
compressing a small pellet filled with deuterium–tritium (Atzeni & Meyer-Ter-Vhen
2004). The RTI plays also a prominent role in supernova explosions in astrophysics
(e.g. Wang & Robertson 1985, Zingale et al. 2005). In these situations, the RTI mixes
the compounds and perturbs the temperature field, which reduces the nuclear reaction
efficiency. Such flows are unsteady, non-uniform and compressible. On the other
hand, it is well known that compressibility effects have two different origins. The
first one, called static compressibility, is due to the variable density of the fluid. In an
acceleration field, it results in a stable stratification and leads to finite density-gradient
length scales, LρH,L, for the heavy (H) and light (L) fluids, respectively. The second
one, called dynamic – or intrinsic – compressibility, is essentially an effect of the
finite speed of sound. For a perfect gas equation of state (EOS), this effect is
governed by the adiabatic indices γH,L of the two fluids. The continuous interest in
RTI includes an effort toward the understanding of compressibility effects and some
steps have already been made.

The linear regime of the RTI for compressible ideal fluids has been studied
by several authors in various configurations (Plesset & Hsieh 1964; Blake 1972;
Mathews & Blumenthal 1977; Baker 1983; Zhou 2017). Stabilizing and destabilizing
compressibility effects have been found, but Livescu (2004) has reconciled these
results. Indeed, he has shown that as the equilibrium pressure at the interface
increases, the compressibility decreases and the growth rate increases, while as
the specific heat ratio increases the compressibility also decreases and the growth
rate decreases. Lafay, Le Creurer & Gauthier (2007) numerically solve the linear
RTI problem for two miscible compressible Newtonian fluids. Diffusions (viscosity,
thermal conduction and species diffusion) introduce a cutoff wavenumber beyond
which the flow is marginally stable. They confirm that for increasing values of the
stratification (attached to the hydrostatic equilibrium), the flow is stabilized, whereas
for increasing values of the compressibility parameters (the γ values, attached to the
fluids), the flow is destabilized.

In the nonlinear regime, very few works have been devoted to the fully compressible
RTI, although a large number of the RTI simulations have been carried out with the
Euler equations. These simulations use the limit of small velocities, with a weak initial
stratification, i.e. in a quasi-incompressible regime. Moreover, dissipation comes from
the dissipation of the numerical scheme.

One of the first contributions to such a RT compressible configuration is due
to Wang & Robertson (1985), who studied models of accreting X-ray sources in
neutron stars. They consider two similar media with a temperature jump, without and
with a magnetic field. The mixing process is studied both for single-mode and random-
amplitude perturbations and implications for astrophysics are discussed. Later Jin et al.
(2005) carried out two-dimensional RTI simulations in the deeply compressible regime
with the Euler equations and they observed that density stratification is the leading
compressibility effect. George & Glimm (2005) established a renormalized self-similar
scaling law in this regime. They claim that the time-dependent Atwood number (the
dimensionless difference of the heavy and light fluid densities), largely removes
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Compressible Rayleigh–Taylor turbulent mixing 213

the effects of the length scale introduced by compressibility and that self-similarity
is maintained in RT multi-mode simulations. Mellado, Sarkar & Zhou (2005) use
large-eddy simulation techniques to study compressible RTI with miscible fluids
(the mesh sizes were 1282

× 256 and 2562
× 512) and they focus on intrinsic

compressibility, that is measured by a Mach number, based on the turbulent velocity
fluctuations. Three configurations are considered, where each layer are buoyancy
stable, neutral and unstable. They have shown with an energy analysis that the
turbulent Mach number has an upper bound. This upper bound may be small
enough to limit the RTI-intrinsic compressibility effects. They have also found
that potential energy feeds the vertical velocity fluctuations and the transfer to
horizontal components is carried out by the pressure–strain terms. Zingale et al.
(2005) also carried out three-dimensional numerical simulations of Rayleigh–Taylor
unstable flames in type Ia supernovae with a low Mach number hydrodynamics
method. They have shown that the turbulence is highly anisotropic on the large
scales and more isotropic on the small scales. Two-dimensional single-mode RTI
simulations between Newtonian compressible miscible fluids have been carried out
with a self-adaptive pseudo-spectral Chebyshev–Fourier multidomain method (Le
Creurer & Gauthier 2008). These simulations are started from rest and pursued
until the return toward mechanical equilibrium of the mixing. Four regimes – linear
and weakly nonlinear, nonlinear steady bubble rise, return toward equilibrium and
finally an acoustic wave system – can be identified. They have shown that this
one-dimensional system of stationary acoustic waves is damped at the correct rate,
i.e. by the physical viscosity. Reckinger, Livescu & Vasilyev (2012) and Reckinger,
Livescu & Vasilyev (2016) are developing a project of wavelet-based adaptive
numerical method to handle the compressible RTI. Characteristic analysis is used
on the hyperbolic part of the full NSEs to handle the boundary conditions to
evacuate the acoustic waves. Two-dimensional single-mode RTI simulations have
been carried out so far and are analysed. Compressibility effects are discussed with
respect to the Mach and the Atwood numbers. Recently, Sengupta et al. (2016)
carried out two-dimensional DNS of a system of two air masses initially at different
temperatures to trace the non-equilibrium thermodynamics and to test the Stokes’
hypothesis. They conclude that alternatives to this hypothesis based on experimental
data would be preferable (Ash 2017). Simpler models may also be used to deepen our
understanding of compressibility effects since carrying out DNSs with the full NSEs is
very expensive, although this approach is used in this paper. A systematic derivation of
incompressible-type models has been carried out recently (Schneider 2015; Schneider
& Gauthier 2015; Gauthier & Schneider 2017). Anelastic, quasi-isobaric, Sandoval
and Boussinesq models have been obtained by means of an asymptotic analysis
in terms of the Mach number, although heuristic derivations of the Sandoval and
Boussinesq models are available (Livescu & Ristorcelli 2007; Livescu 2013). In
that respect, the Sandoval model (1995) has been set-up for unstratified equilibrium
states. Since this model describes the mixture of two fluids of different densities,
the resulting mixing is of variable density. These variations may be large even
at moderate Atwood number. As such it can be used to evaluate variable-density
effects. This is an incompressible-type model, i.e. with an algebraic constraint on
the velocity divergence, which precludes the propagation of acoustic waves. A large
number of numerical simulations have been performed within this model since Cook
& Dimotakis (2001). Some of them have been carried out at large enough Atwood
number and analysis reveal compressibility effects.

In this way, Livescu & Ristorcelli (2007) stress the importance of the mass flux,
i.e. the correlation ρ ′u′i, where ρ ′ and u′i are the density and velocity fluctuations
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214 S. Gauthier

and · is the Reynolds average, which will be defined below. Indeed it plays a
central role in converting the potential energy to the kinetic energy. The pressure
gradient is not hydrostatic, as opposed to the Boussinesq flow. They also notice that
the integral length scale does not follow the local length scale ` = k3/2/ε, where
k and ε are the turbulent kinetic energy and its dissipation rate. This might be a
variable density effect, as well. Livescu & Ristorcelli (2008) have shown important
differences between variable density and Boussinesq RTI. They first noted that ‘the
pure heavy fluid mixes more slowly than the pure light fluid’, as shown by the
skew character of the density probability density function (PDF), as opposed to the
Boussinesq case. The density vertical derivative PDF is found to be asymmetric at
higher Atwood number and the magnitude of the density gradients increases. They use
a new measure of the non-Boussinesq effects based on the density-specific volume
correlation ρ ′V ′, which is involved in the momentum equation, where V ′ is the
specific volume fluctuation. Livescu et al. (2009) and Livescu et al. (2010) have also
pointed out several variable-density effects, both on the dynamics and on the mixing.
Livescu et al. (2009) performed a data analysis of the 30723 simulation (Cabot &
Cook 2006) and they focus on variable-density effects. Departures from Boussinesq
behaviour are seen at the layer edges where the spike front velocity is larger than the
bubble front. Indeed, experimental results show that spikes evolve significantly faster
than bubbles when the density ratio is large enough (Youngs 1989). Non-Boussinesq
effects manifest in several ways. Livescu et al. (2010) emphasized these departures
from Boussinesq behaviour on mixing. It is noted that in variable-density flows,
mixing is asymmetrical. Asymmetry of the turbulence kinetic energy, vertical mass
flux and specific volume pressure-gradient correlation profiles are also noted, as well
as the departure of the mean pressure gradient from the hydrostatic value. Departure
of the correlation ρ ′V ′ from normalized density variance is also observed. It is also
shown that the specific volume pressure-gradient correlation V∂ip is the largest term
in the mass flux equation.

An anelastic model has been used for large-scale Chebyshev–Fourier–Fourier
DNSs with different values for the compressibility parameters (Atwood number and
stratification) (Schneider & Gauthier 2016a). For intermediate Atwood number values
and finite stratification, compressibility effects quickly occur and so does the limit
of validity. As a result, only nonlinear behaviours are reached. The influence of the
compressibility parameters on the growth rate of the RTI is discussed. A low Atwood
number and a mildly stratified configuration allow us to reach a turbulent regime.
This anelastic model is actually a low Mach number model that only permits modest
stratification of the two pure fluids. Moreover this is also a low Atwood number
model. As a result, for stratified configurations at finite Atwood number, the full
NSEs have to be used.

As a conclusion of this short survey of our knowledge of compressibility effects
in the RTI, it is clear that there is much to learn from the true compressible regime,
where the three Kovásznay modes are present. It is the objective of this paper
to present a comprehensive analysis of a DNS of RTI between two compressible
Newtonian fluids at a Reynolds number equal to Re = 6 × 104. These simulation
results are also compared with those obtained from a simulation carried out at a
lower Reynolds number (Re= 3× 104) and at the same Atwood number, on a much
coarser grid (Gauthier 2013). They are also compared with results obtained from a
simulation carried out within the Boussinesq approximation at the same Reynolds
number, Re= 3× 104 and at a low Atwood number (Schneider & Gauthier 2016c).

The paper is organized as follows. The physical model is described in § 2. The
numerical simulations are defined in § 3 and global results – mean quantity profiles,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.565


Compressible Rayleigh–Taylor turbulent mixing 215

Reynolds numbers, turbulent kinetic energy, mixing properties, vorticity and spectra
– are reported in § 4. The anisotropy is discussed in § 5. Comparison between
numerical data and the source terms of the Favre-averaged equations is discussed
in § 6. Kovásznay-mode decomposition is performed in § 7. A statistical study is
reported in § 8. A short visualization is given in § 9 before summarizing the main
results in the conclusion.

2. The physical model for compressible miscible Newtonian fluids
We present in this section the governing equations and the mixing model for two

miscible Newtonian fluids. The motion takes place in a three-dimensional domain
(Lx, Ly, Lz). The heavy fluid (referenced with the subscript H) is initially located in
the upper side of the domain, for 0 6 z 6 zt, on top of a light fluid (subscript L)
occupying the region zb 6 z6 0, where zb and zt denote the coordinates of the bottom
and the top of the domain. The mixing of these two compressible miscible fluids is
analysed within the framework of the single fluid approximation. The partial densities,
ρH and ρL are defined such that

∫
V ρH dx dy dz = mH and

∫
V ρL dx dy dz = mL, where

mH,L are the masses of the heavy and light fluids contained in the total volume V .
The ‘partial pressures–partial densities’ mixing model is written

p= pH + pL and ρ = ρH + ρL. (2.1a,b)

A fluid concentration, c, is also defined such that the partial densities are

ρH = cρ and ρL = (1− c)ρ. (2.2a,b)

Let us recall the full NSEs for a binary mixture of two Newtonian miscible
fluids (Hirschfelder, Curtiss & Bird 1954, chap. 11), (Cook 2009)

∂tρ + ∂jρuj = 0,
∂tρui + ∂jρuiuj =−∂ip+ ∂jσij − gρδi3,

∂tρe+ ∂jρuje=−p∂iui + σijsij − ∂iqi,

∂tρc+ ∂jρujc= ∂i[(ρD)∂ic],

 (2.3)

where ui, (i = 1, 2, 3), are the three velocity components. The equation of state of
each component is

pα = ραR/MαT with α =H, L. (2.4)

The momentum equation (2.3) contains the buoyancy term −gρδi3, where g is the
acceleration due to gravity. The stress tensor, σij=µ(∂jui+ ∂iuj− 2/3δij∂`u`), where µ
is the dynamic viscosity coefficient, is calculated within the Stokes approximation, and
sij= 1/2(∂jui+ ∂iuj)/2 is the rate-of-deformation tensor. This is valid for monoatomic
gases and consistent with the value γ = 5/3. The dissipation function in the energy
equation is σijsij. The heat flux expression is qi =+hαJαi − κ∂iT , (α = H, L ) where
hα is the enthalpy of the species α and Jαi = −ρD∂icα is the diffusive mass flux.
The diffusion coefficient of species is D and the thermal conductivity coefficient is
denoted κ . The molar weights are MH and ML and the perfect gas constant is R.
Finally, let us recall that this system contains the three Kovásznay modes, namely
the vorticity, entropic and acoustic modes (Chu & Kovásznay 1958), see (Monin
& Yaglom 1962, § 1.7). System (2.3) is written in a dimensionless form with the
following units. The reference of length is the width box, Ly (or Lx). The unit of time
is (Ly/g)1/2. The unit of mass, denoted ρr, is given by the half-sum of densities on
each side of the pseudo-interface and the temperature reference is given by a uniform
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216 S. Gauthier

temperature, denoted Tr. As a result, the complete dimensionless NSEs for a binary
mixing of Newtonian miscible fluids are written

∂tρ + ∂j(ρuj)= 0,
ρ(∂tui + uj∂jui)=−Sr−1∂ip+ Re−1∂jσij − ρδi3,

ρCv;m(∂tT + uj∂jT)= (γr − 1)[SrRe−1σijsij − p∂juj]

−Re−1Sc−1TdcCv;m∂jjc+ Re−1Pr−11?
H,L∂i[T∂ic]

+Re−1Pr−1γr∂jjT,
∂tc+ uj∂jc= (ρReSc)−1∂jjc,

p= ρT(1+ At − 2Atc).


(2.5)

The specific heats at constant volume and pressure of each fluid and their ratios are
denoted Cv,p;H,L and γH,L. The mixing adiabatic index is γm(c) = Cp,m/Cv,m, where
the expression of the mixture-specific heats read Cv,p;m(c) = cCv,p;H + (1 − c)Cv,p;L.
The reference concentration is chosen to be cref = (1 − At)/2, where At = (ρH −

ρL)/(ρH + ρL) is the Atwood number. We also use the reference value γr = γm(cref ).
The derivative with respect to the concentration is denoted dc and the dimensionless
difference of specific heats at constant pressure is ∆?

H,L (see appendix A). The
expression of the stratification parameter and the Reynolds, Schmidt and Prandtl
numbers are

Sr=
gLy

RT/Mr
, Re=

g1/2L3/2
y

µ/ρr
, Sc=

µ

ρD
and Pr= γr

µCv,ref

κ
, (2.6a−d)

where 2/Mr = 1/MH + 1/ML and Cv,ref = Cv;m(cref ) is the reference value. System
of PDEs (2.3) has to be equipped with appropriate initial and boundary conditions. In
physical situations, e.g. in astrophysical configurations or in a small pellet in inertial
confinement fusion, the boundaries of the computational domain used here are actually
contact surfaces between the fluids. As a result, acoustic waves are partially reflected
or transmitted through these contact surfaces. A limit case is studied here where
acoustic waves are reflected and remain inside the domain. The opposite limit case
where acoustic waves are fully transmitted is also possible (Reckinger et al. 2016).
In any case, the number of boundary conditions that has to be specified is given by
the analysis of Strikwerda (1977). The numerical implementation may be achieved
by using the approach proposed by Thompson (1990) and it has been applied in
a spectral framework by Boudesocque-Dubois et al. (2003), among others. As a
result, we chose periodic boundary conditions in the horizontal (x, y)-directions for
all physical quantities with stress-free conditions along the top and bottom boundaries
for the velocity. There is no flow and therefore no mass flux through the top and
bottom boundaries. The temperature is kept fixed at the bottom boundary and there
is no heat flux at the top. These boundary conditions are written

∂zux,y(x, y, z= zb, zt; t)= uz(x, y, z= zb, zt; t)= 0,
∂zc(x, y, z= zb, zt; t)= 0,

T(x, y, z= zb; t)= 1 and ∂zT(x, y, z= zt; t)= 0.

 (2.7)

There is no boundary condition on the density and pressure.

2.1. The averaging procedures
For the data analysis in the turbulent regime we will use either the Reynolds (·) or
the Favre (̃·) averaging procedure. Since the turbulent mixing layer is homogeneous
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Name Model Sr At Re Sc Pr δ xini zt =−zb

Sr6-Re6× 104 Compressible 6 0.25 6× 104 0.7 0.7 0.002 −0.001 0.5
Sr6-Re3× 104 Compressible 6 0.25 3× 104 0.7 0.7 0.005 −0.040 0.5
Sr0-Re3× 104 Boussinesq 0 0.10 3× 104 0.7 — 0.005 −0.010 5

TABLE 1. List of parameter values used in the three simulations. The specific heat ratios
of the two fluids are equal, γH = γL = γr = 5/3.

At Sr Re cs,H,L LρH,L ρt/ρb pt/pb

0.25 6 6× 104 0.24/0.187 0.208/0.125 361 608

TABLE 2. Characteristics of the numerical simulation Sr6-Re6× 104: the Atwood number,
the stratification, the Reynolds number, the speeds of sound in the heavy (H) and light
(L) fluids, the density-gradient length scales and the ratios of the densities and pressures
between the top and the bottom of the domain.

in the two horizontal directions, the ensemble mean of a variable ϕ is computed from
a spatial average as

ϕ(x, y, z, t)= ϕ(z, t)+ ϕ′(x, y, z, t), (2.8)

where ϕ(z, t)= (LxLy)
−1
∫
ϕ(x, y, z, t) dx dy. We will also use the volume average over

a fraction of the mixing layer defined as

〈ϕ〉β(t)=
1

βh(t)

∫ βhH(t)

−βhL(t)
ϕ(z, t) dz, (2.9)

where β is such that 0 < β 6 1. For density-variable flows, the Favre averaging is
defined as

ϕ = ϕ′′ + ϕ̃ with ϕ̃ =
ρϕ

ρ
, (2.10)

for any quantity ϕ but the density and the pressure.

3. Numerical simulations
3.1. Simulation definition

The system of PDEs (2.5) is solved in the code AMÉNOPHIS, and those features
are recalled in appendix B. The characteristics of the simulations under study are
summarized in tables 1 and 2. The Sr6-Re3 × 104 spatial resolution is (6 × 64) ×
3822
≈ 56M. The Sr6-Re6 × 104 simulation is started with (9 × 64) × 5762

≈ 191M
collocation points. It is increased up to (9× 100)× 10002

= 900M and later decreased
at (9× 64)× 6402

≈ 236M collocation points. The grid modifications are achieved in
the spectral space such as described in Schneider et al. (2015, § 3.8) and recalled in
appendix B. The Sr0-Re3×104 Boussinesq simulation is started with 24×30×6002

=

259M collocation points and increased at (24× 40)× 9402
= 848M.

3.2. The equilibrium state and its linear stability

The initial one-dimensional equilibrium state (ρ, ui ≡ 0, T , c and p) is found by
assuming hydrostatic equilibrium in both the heavy and light fluids with a uniform
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FIGURE 1. (Colour online) (a) Initial equilibrium state: density (blue) and pressure (green)
profiles for a stratification parameter value Sr= 6 and an Atwood number At= 0.25. The
density jump is located at z= 0. (b) Dispersion curves for the Rayleigh–Taylor equilibrium
state given in equation (3.1), for two values of the Reynolds number Re= 6× 104 (blue)
and Re=3×104 (green). The vertical dashed lines define the spectral domain of the initial
condition.

temperature T . Using equations (2.5), it comes Sr−1dzpH,L + ρH,L = 0. This density
profile is regularized with the two functions H±(z)= (1± erf(z/δ))/2 where δ is the
pseudo-interface thickness. It yields

ρ(z) = (1+ At) exp(−L−1
ρH

z)H+(z)

+ (1− At) exp(−L−1
ρL

z)H−(z), (3.1)

where the density-gradient length scales are equal to LρH,L = |d ln ρH,L/dz|−1
=

(1 ∓ At)/Sr. The density and pressure profiles are given in figure 1(a) for a
stratification parameter Sr = 6 and an Atwood number At= 0.25. The linear stability
of the profile, given by (3.1), has been studied within the normal-mode analysis with
the stability code SPECLMD (Lafay et al. 2007; Lafay 2008). The dispersion curves
are given in figure 1(b). For the simulation Sr6-Re6 × 104, the maximum occurs
at the wavenumber km ≈ 196, where the growth rate is σmax = 4.37 and the cutoff
wavenumber is kc≈ 570. For the simulation Sr6-Re3× 104, these values are km≈ 122,
σmax= 3.23 and kc≈ 330, respectively. Figure 1(b) displays the range of wavenumbers
involved in the initial condition of the numerical simulations reported here.

3.3. The initialization procedure
The simulations are initialized with a multimode solenoidal vector field, made of sin
and cos functions with random amplitudes, so that the perturbation is defined as a
white-noise process. The wave numbers (kxky) are chosen in an annulus such that

150.8 6 |k| =
√

k2
x + k2

y 6 182.2, or 0.34 10−1 6 λ6 0.42 10−1.

4. Numerical results
The RTI phenomenology where both fluid layers are stably stratified is the

following. This scenario will be deepened and clarified in the next sections. The
linear regime is classically defined by a(t)k 6 1, where a(t) = ao cosh(σ t). For the
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FIGURE 2. (Colour online) (a) Zoom of the mean density profiles, ρ(z, t), at six selected
times. (b) The large-scale Atwood number, ALS(t), as a function of time. The initial value
ALS(t= 0), is slightly below the value of the simulation At= 0.25, due to the regularization
of the initial density jump (see equation (3.1)) with the small-scale Atwood number, ASS(t),
defined by the root-mean-square density.

unstable scale k ≈ 182.2, ao = 10−3 and σ = 4.3, the linear regime ends very early
at t ≈ 0.43. The nonlinear regime of the instability is developing and transition to
turbulence occurs, then a turbulent mixing layer begins to develop. This regime is
qualitatively close to a classical RT regime. However, quantitatively, this regime is
affected by the stratification, since the mixing layer starts to smooth the density jump
so that physical quantities start decaying, but at different times and at different rates.
The root-mean-square (r.m.s.) density ρ ′2

1/2
maximum occurs at t ≈ 3.25 and the

baroclinic production reaches its maximum at t≈ 3.15, while the global ALS Atwood
number decays monotonically from the beginning and vanishes at t ≈ 3.50. The
first vorticity maximum occurs at t ≈ 4.35 and the second at t ≈ 6.85. The vertical
Taylor–Reynolds number reaches its maximum (ReTz ≈ 76) at t ≈ 8.30 and the r.m.s.
temperature maximum occurs at t≈ 8.40. The mixing layer thickness saturates around
t ≈ 9 and from this instant the concentration flattens. The simulation is stopped at
t≈ 18.55 where the vertical Taylor–Reynolds number is only 20. The density-gradient
length scale reaches very high values at the beginning of the process. It then decreases
and reaches a quasi-uniform value within the mixing layer during the freely decaying
turbulent regime (hereafter denoted FD regime).

4.1. Mean quantities
Mean density profiles, ρ(z, t), are represented in figure 2 where the smoothing of
the density gradient due to turbulent diffusion is clearly seen. A large-scale effective
Atwood number is built from the mean density profiles with the following procedure.
At a given time, the two local extrema of the density profile are selected and the ALS

Atwood number is calculated as

ALS(t)=
ρmax − ρmin

ρmax + ρmin
. (4.1)

This ALS Atwood number quickly decays and reaches vanishing values at time
t≈ 3.5 (figure 2a). This decay depends on the initial conditions, i.e. the perturbation
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FIGURE 3. (Colour online) (a) Mean concentration profiles, c(z, t), at six different times.
After the baroclinic source term is turned off, the turbulence homogenizes the mixing. (b)
Mean temperature profiles T(z, t) at the six times selected.

amplitude and the initial thickness δ. Different values for these parameters give
slightly different results. Indeed the simulation Sr6-Re3× 104 leads to a quasi-linear
decay of the large-scale effective Atwood number (Gauthier 2013). An Atwood
number has been defined through the r.m.s. density by Cook, Cabot & Miller
(2004) (Mellado et al. 2005) as

ASS(t)=
ρ ′2

1/2

ρ
, (4.2)

which is a local small-scale Atwood number. As opposed to the large-scale Atwood
number, ALS, ASS grows in the RT regime, where the number of locally unstable
configurations grows and reaches its maximum where ALS vanishes. In the FD regime,
ASS slowly vanishes. The mean concentration profiles, at six different times (t = 0,
3.25, 4.35, 6.85, 8.30 and 18.55), are displayed in figure 3(a) where the yellow profile,
at t = 6.85, is the limit time where a diffusion-type profile is observed. Beyond that
time, the turbulent mixing zone thickness does not increase significantly. The decaying
turbulence homogenizes the mixing and the concentration profile flattens. Temperature
profiles are represented in figure 3(b) at the same times. The mixture region located
in the heavy fluid is significantly cooled (−15 %) while the mixture located in the
light fluid is heated (+10 %), by starting with a uniform temperature profile. The
mean vertical velocity ũ(z, t) is displayed in figure 4(a). The classical RT velocity
profile – with a velocity jump localized near z = 0 – is recognized. These profiles
are modified by the acoustic waves, which are stronger in the heavy fluid than in the
light fluid. A local condition for the stability of a compressible fluid is given by the
entropy gradient (Landau & Lifshitz 1959, § 4), (Cox 1980, § 17.2). More precisely,
negative entropy gradients characterize unstable regions. For thermal convection, this
criterion may be expressed as a condition on the temperature gradient or on the
sign of the Brunt–Väisälä frequency. For the RTI, where mixing occurs, we use the
entropy profiles to estimate the unstable regions. The mixture entropy reads with the
units defined above (Le Creurer 2005)

sm(ρ, T, c) = c
γr − 1
γH − 1

(1− At) ln[T(ρc)1−γH ]

+ (1− c)(1+ At)
γr − 1
γL − 1

ln[T(ρ(1− c))1−γL]. (4.3)
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FIGURE 4. (Colour online) (a) Mean velocity profiles, ũ(z, t), versus the vertical
coordinate z. (b) Entropy profiles, sm(z, t), at six different times. The dashed black lines
stand for the entropy of the ideal initial state. Unstable regions correspond to negative
entropy gradient, dsm/dz< 0.
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FIGURE 5. (Colour online) Thickness of the turbulent mixing layer versus time, in linear
(a) and log–log (b) scales computed from h(t)= 3〈c(1− c)〉. The full lines correspond to
the Sr6-Re6× 104 simulation and the dashed lines to the Sr6-Re3× 104 simulation. The
dashed black line stands for the t2-scaling.

The entropy profiles at the six times selected are plotted in figure 4(b), where the
entropy of the ideal initial state is represented by a dashed black line. The unstable
region is located in the upper side of the mixing layer. Since the mean flow evolution
has been described, one has access to the global thickness of the mixing layer. The
thickness mean values of the bubbles (hH), the spikes (hL) and the total thickness are
shown in figure 5. They have been computed from

hL(t)= 3
∫ 0

zb

c(1− c) dz and hH(t)= 3
∫ zt

0
c(1− c) dz, (4.4a,b)

with h(t)=hH(t)+hL(t)=3〈c(1− c)〉 (Poujade & Peybernes 2010). Different thickness
values are observed in the heavy and light fluids due to the non-vanishing Atwood
number. Notice that during the transitional regime the spike thickness is slightly larger
than the bubble thickness. After the maximum of the vertical Reynolds number, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.565


222 S. Gauthier

5 10 15 200

20

40

60

80(a) (b)

Time

Atwood

5 10 15 200

50

100

140

Time

Ta
yl

or
–R

ey
no

ld
s 

nu
m

be
rs

FIGURE 6. (Colour online) Taylor-based Reynolds number, ReTx,z. (a) The vertical and the
horizontal Taylor–Reynolds numbers. The dashed black curve stands for the mean effective
Atwood number (80ALS(t)/ALS(0)). (b) Comparison of the vertical Taylor–Reynolds number
for the three simulations, Sr6-Re6× 104, Sr6-Re3× 104 and Sr0-Re3× 104.

mean value thickness of the bubbles is larger. In the FD regime, hL, i.e. the mean
value of the spike thickness, saturates while hH still grows at a very small rate. This
is explained by the generation of turbulence by acoustic waves (Oster & Ulmschneider
1973), which are stronger in the heavy fluid than in the light fluid. In figure 5(b), the
three thicknesses hH , hL and h are plotted in log–log scales with the t2-scaling. None
of these thicknesses follows this scaling. Besides there is no reason for this scaling
to be valid. Indeed, this t2-temporal scaling actually holds in the limit case of perfect
incompressible fluids, i.e. for unstratified fluids at an infinite Reynolds number, in an
infinite geometry where only the acceleration g is taken into account. This is not the
case here where hL,H are of the same order as the density-gradient length scales, LρH,L
(see table 2). Moreover compressibility also introduces an additional time scale given
by the velocity divergence, which is of the same order as the phenomenon duration.
Indeed, one has divu=−ρ̇/ρ, so that this time scale is equal to (divu)−1

= 7.13, 7.73,
8.91, at times t= 3.25, 4.15, 8.305.

4.2. Reynolds numbers
The Taylor-based Reynolds numbers in the horizontal and vertical directions are
defined as

ReTx,z = Re〈λx,z

√
2k̃〉, (4.5)

where the Taylor length scales are defined as λ2
x = u′′2x /(∂u′′x/∂z)2 and λ2

z =

u′′2z /(∂u′′z /∂z)2 and the Favre-averaged turbulent kinetic energy is k̃ = ρu′′i u′′i /(2ρ).
The Reynolds numbers defined by the relations (4.5) are displayed in figure 6(a) for
β = 0.8. The maximum of the turbulent Reynolds number ReTz ≈ 76 is reached at
t≈ 8.30, while the maximum of the horizontal Taylor–Reynolds number is ReTx ≈ 46.
They both show the same behaviour, the sequence described above is clearly seen:
transition, RT regime and the transition to the FD regime. Figure 6(b) shows the
evolution of the vertical Taylor–Reynolds number, ReTz, for the three simulations,
Sr6-Re6 × 104, Sr6-Re3 × 104 and Sr0-Re3 × 104. For the Sr6-Re3 × 104 simulation,
the maximum of the Taylor–Reynolds number is ReTz ≈ 45, reached at time t≈ 5.10.
In other words, by doubling the prescribed Reynolds number Re, the maximum of
the Taylor–Reynolds number is multiplied approximately by 1.7.
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FIGURE 7. (Colour online) Total kinetic energy, ρK̃ = ρuiui/2. (a) Two-dimensional map
in the plane (t, z). The two maxima are clearly visible. (b) Vertical profiles at six selected
times.

4.3. Total kinetic energy and Mach numbers

The total kinetic energy, ρK̃ = ρuiui/2 is displayed in figure 7. In panel (a), the
two-dimensional map in the plane (t, z) emphasizes the two peaks due to the RT
regime and the acoustic wave production. Figure 7(b) shows the profiles at the six
selected times. The asymmetry with respect to the initial density jump located at z= 0
appears clearly. Several Mach numbers may be defined to characterize the dynamic
compressibility. Here we use two definitions, a turbulent Mach number, Mt, based on
the fluctuating velocity and a flow Mach number, Mf , based on the mean velocity.
They are written

M2
t =

〈
|u′′i u′′i |
γ p/ρ

〉
β

=

〈
2k̃
γ p/ρ

〉
β

and M2
f =

〈
|uiui|

γ p/ρ

〉
β

. (4.6a,b)

Figure 8 displays the evolution of these two Mach numbers for the two simulations
Sr6-Re6 × 104 and Sr6-Re3 × 104. These four results are very close to each other.
The Mach number reached in the Sr6-Re3 × 104 simulation is even slightly larger,
which is probably due to a larger initial condition. These Mach number evolutions
follow closely the behaviour of the turbulent kinetic energy, with two maxima. They
strongly grow during the RT regime, with a rebound due to acoustic production and
vanish in the FD regime. There is only a time lag between the turbulent Mach number
evolution of the Re= 6× 104 and Re= 3× 104 simulations. In particular, they both
reach the same maximum. The turbulent Mach numbers, calculated with β = 0.8 and
β=0.2, are also very close to each other. Although the flow exhibits two compressible
features (mixing layer growth termination and an intense acoustic production), these
various Mach numbers are very small.

4.4. Mixing
The degree of molecular mixing is usually estimated by means of a molecular mixing
fraction function. We use the following definition (Linden, Redondo & Youngs 1994;
Dalziel, Linden & Youngs 1999)

〈θ〉β(t)=

〈
c(1− c)
c(1− c)

〉
β

. (4.7)
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FIGURE 8. (Colour online) (a) Mach numbers. Turbulent Mach number Mt defined by
(4.6) (blue, Re= 6× 104). Flow Mach number Mf defined by (4.6), for the Sr6-Re6× 104

simulation and β = 0.8 (dashed red) and β = 0.2 (yellow). Turbulent Mach number Mt
for the Sr6-Re3× 104 simulation (dashed green). (b) Two-dimensional vertical velocity ũz
map in the plane (t, z). This map reveals an acoustic wave system stronger in the heavy
fluid (upper side) than in the light fluid (lower side).

The time evolution of this quantity is plotted in figure 9(a), for two values of the
coefficient β. This mixing fraction reaches a first minimum 〈θ〉β = 0.80 at time
t= 3.45 close to the r.m.s.-density maximum. After this first minimum, 〈θ〉β increases
and reaches the value 0.88 at time t= 4.90 and then slightly decreases down to 0.86.
During the FD regime, where turbulence still mixes the fluids, the mixing fraction
grows continuously up to 0.99 at the end of the simulation. This value is close to the
value of a fully homogenized state. This first minimum, 〈θ〉β ≈ 0.80, is in the upper
bound of values obtained with incompressible fluids. Indeed the experimental data
lead to the values 0.75–0.80 (Linden et al. 1994; Dalziel et al. 1999; Ramaprabhu
& Andrews 2004) and numerical simulation within the Boussinesq approximation
leads to the maximal value 0.79 (Schneider & Gauthier 2016c). The final value,
〈θ〉β = 0.99, is by far much larger than those obtained in numerical simulations
of incompressible or weakly compressible fluids. However in this strongly stratified
configuration, the mixing layer stops growing quite early such that no more pure fluid
enters in the turbulent layer. Therefore turbulence continuously mixes the two fluids
and increases the homogeneity. On this same figure 9(b) the r.m.s. concentration,
the mixing fraction and the large-scale ALS Atwood number have been displayed.
The RT regime, where the density jump is smoothed by the instability (the Atwood
number decreases) is clearly seen at the beginning of the simulation. During the FD
regime, the r.m.s. concentration decays while the mixing fraction grows. The r.m.s.
concentration rebound associated with acoustic waves is clearly seen around t≈ 5.

4.5. Potential vorticity
The potential vorticity equation is written

∂t

(
ωi

ρ

)
+ um∂m

(
ωi

ρ

)
=
ωj

ρ
∂jui + εijk

1
ρ3
∂jρ∂kp+

1
ρ
εijk∂j

(
1
ρ
∂mσkm

)
, (4.8)

where the second term is the baroclinic vorticity production, which is dominant in RT
flows, and the third term is the potential vorticity dissipation. The evolution of the
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FIGURE 9. (Colour online) (a) Molecular mixing fraction 〈θ〉β = 〈c(1− c)/c(1 − c)〉β
versus time, for two values of β, 0.8 (blue) and 0.2 (green). (b) The r.m.s. concentration,
normalized by its maximum in time (blue), the mixing fraction (green) and the averaged
Atwood number, At/At(0) (black dashed).
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FIGURE 10. (Colour online) Vorticity and baroclinic vorticity production evolution. (a)
Vorticity and baroclinic norms and their components. Baroclinic terms have been divided
by 10 for the sake of clarity. The mean effective Atwood number evolution is represented
by the dashed black curve. (b) Same quantities normalized by their maximum in time.

baroclinic vorticity production norm and the horizontal and vertical components are
displayed in figure 10(a). The evolution of the vorticity norm and the horizontal and
vertical vorticity components are also displayed in the same figure. The horizontal
baroclinic production are much larger than the vertical component, since the former
involves vertical density and pressure gradients. The vertical baroclinic component
is not zero and this is a feature of compressible flows. Indeed, in RT Boussinesq
turbulence, this vertical baroclinic component is exactly zero (Schneider & Gauthier
2016c). The influence of the acoustic waves are also clearly seen on the vertical
vorticity component at time t ≈ 6. The same quantities are represented in relative
values in the same figure 10(b). This emphasizes the time lag between baroclinic
production and vorticity evolution and between their components. The horizontal
baroclinic component first grows, which produces horizontal vorticity, then vertical
vorticity production grows, which produces vertical vorticity. The vorticity maximum
is reached at time t ≈ 4.35, while the ALS Atwood number vanishes at t ≈ 3.50
(represented by the dashed black curve) and the ASS Atwood number reaches
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FIGURE 11. (Colour online) Helicity. (a) Helicity evolution versus time of the three
simulations, Sr6-Re6 × 104, Sr6-Re3 × 104 and Sr0-Re3 × 104. The helicity of the
Sr0-Re3 × 104 simulation has been divided by 10 for the sake of clarity. The helicity
strongly decays during the RT regime and in a second step due to acoustic waves. In the
FD regime, helicity vanishes slowly. (b) Helicity source terms of (4.9), corresponding to
the simulation Sr6-Re6× 104. Baroclinic source term (blue), pressure source term (green)
and dissipation (red). The detailed behaviour of these three contributions depends on the
value of β (not included), but not the global evolution.

its maximum at t = 3.25. The maximum of the Taylor–Reynolds number occurs
much later at t ≈ 8.30. The time lag between the maxima of the horizontal and
vertical baroclinic production is equal to 1t = 0.60, while the time lag between
baroclinic production and vorticity is 1t = 0.60 in the x-direction and 1t = 0.40 in
the z-direction.

4.6. Helicity
The helicity is one of the quantities built from the vorticity and it is defined as H=∫
V uiωi dV . This is a conserved quantity for an inviscid barotropic fluid (Moffatt &

Tsinober 1992) and its evolution equation is written

dH
dt
=

1
Sr

∫
V

1
ρ2
εijkui∂jρ∂kp dV −

1
Sr

∫
V

ωi

ρ
∂ip dV

−
2

Re

∫
V
∂j

(
ωi

ρ

)
σij dV. (4.9)

The first term on the right-hand side is the baroclinic helicity production, the
second term comes from pressure forces and the third is the dissipation. Notice
that the pressure term vanishes for a fluid of uniform density. The evolution of
the helicity is displayed in figure 11(a) for the three simulations. Helicity of the
Sr6-Re6 × 104 simulation starts growing at t ≈ 3.35, where the large-scale ALS
Atwood number vanishes (t ≈ 3.55). A similar evolution is observed in the two
compressible simulations, Sr6-Re6× 104 and Sr6-Re3× 104. They however differ by
a time lag of 1t≈ 3 due to different initial conditions (see § 3.3) and the amplitude
of the Sr6-Re6 × 104 helicity is larger by a factor ≈ 1.8 due to a larger Reynolds
number. This growth occurs after the RT regime, defined by the evolution of the
large-scale ALS Atwood number. The helicity grows between t ≈ 5.2 and t ≈ 7.7.
This time interval corresponds to the highest values of the vertical Taylor–Reynolds
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FIGURE 12. (Colour online) (a) Comparison of the evolution of the palinstrophy norm in
linear–log scales for the three simulations, Sr6-Re6× 104, Sr6-Re3× 104 and Sr0-Re3×
104. (b) Palinstrophy isosurface at time t= 4.35, coloured by the concentration.

number, ReTz, (figure 6). It also corresponds to the growth of the mixing layer
thickness (figure 5). Beyond that point t ≈ 7.7, the flow is stabilizing, velocity and
vorticity decay and so does the helicity. The helicity of the Boussinesq simulation,
Sr0-Re3× 104, starts after a long transient and grows rapidly to negative values and
reaches, at the end of the simulation, a monotonic behaviour. It is worth noticing
that positive (respectively negative) helicity values occur when velocity and vorticity
are mainly parallel (respectively anti-parallel). The evolution of the three helicity
source terms of equation (4.9), are displayed in figure 11(b) for the Sr6-Re6 × 104

simulation. The baroclinic and pressure source terms (first and second terms of the
right-hand side, equation (4.9)) are of the same order, while dissipation is dominant.
This explains why the first helicity decay regime is close to the RT Boussinesq
turbulence. Indeed, since the velocity divergence is small, dissipation terms in the
compressible and incompressible flows are close to each other.

4.7. Palinstrophy

The palinstrophy density is defined as 1/2(∇×ω)2, while the palinstrophy is (Lesieur
1997)

P(t)=
1
2

∫
V
(∇×ω)2 dV. (4.10)

Palinstrophy density emphasizes the tightening of vorticity contours. It helps to reveal
the structure of a vortical flow (Shipton 2009). Indeed, palinstrophy is built from high-
order derivatives, namely the second-order velocity derivative squared, which strongly
emphasizes small scales. As such, palinstrophy density is an accurate criteria to detect
flow structures. Moreover palinstrophy appears in the enstrophy evolution equation
and it is related to the energy spectrum (Lesieur 1997, § VI-7). The evolution of the
palinstrophy is displayed in figure 12(a) in linear–log scales for the three simulations.
The palinstrophy of the Sr6-Re6 × 104 simulation reaches its maximum Pmax(tm) =
0.104 × 107 at time tm ≈ 4.10, slightly before the vorticity maximum (t ≈ 4.35). It
then decays monotonically to small values, i.e. P(t= 18.55)= 0.968× 103, at the end
of the simulation. The evolution of the palinstrophy of the Sr6-Re3× 104 simulation is
similar with a time shift of 1t= 1.62 and a factor 5 in amplitude. As we have already
said, these shifts are due to different initial conditions and different Reynolds numbers,
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FIGURE 13. (Colour online) (a) Density fluctuation spectra. The dashed straight line
represents the −5/3 power law. (b) Pressure fluctuation spectra. The dashed straight line
represents the −7/3 power law. The vertical dashed lines stand for the horizontal and
vertical Taylor wavenumbers and the horizontal and vertical Taylor mixing wavenumbers,
respectively.

respectively. The Boussinesq-Sr0-Re3× 104 palinstrophy grows monotonically and an
approximate exponential behaviour is observed from time t ≈ 11, in the turbulent
regime. Spatial profiles of the palinstrophy density are very similar to those of other
variables, see for example the kinetic energy profiles in figure 7. Indeed maximum
values are reached approximately at the mixing layer core and decay rapidly toward
both layer edges. Figure 12(b) displays the palinstrophy isosurface at time t = 4.35,
coloured by the concentration. It indeed emphasizes small scales.

4.8. One-dimensional spectra
The one-dimensional power spectra of various quantities are reported in this section
and compared with classical scalings for the inertial range. Spectra are computed by
performing a one-dimensional Fourier transform in an horizontal direction. The result
is thus averaged first with respect to the second horizontal direction and a vertical
averaging is also performed. Consequently, spectra depend only on the horizontal
wavenumber kx and on time t. Schneider & Gauthier (2016c) have shown, for a RT
Boussinesq turbulence, that the spectra obtained from the above procedure do not
depend on the proportion of the mixing layer on which the average is performed.
On the other hand, comparisons between numerical results and classical scalings
are often difficult, since the inertial range is often narrow. This is the case here,
where the comparison is made difficult by the modest Reynolds number reached, the
flow unsteadiness and the compressibility effects, i.e. the variable density and the
acoustics, even if the latter is weak. The density fluctuation spectra, at selected times,
are represented in figure 13 with the Kolmogorov–Obukhov (KO) law, E(k) = k−5/3,
in the inertial range. The best agreement may be found at short times, at t = 4.15
(density fluctuation maximum on the very interior of the mixing layer) and at
t = 4.35 (vorticity maximum). Such agreement is not observed at later times where
the Taylor-based Reynolds number is larger. At the maximum of this Reynolds
number, t = 8.30, the result is quite similar (not included). Pressure power spectra
are given in figure 13(b) at the same three different times. The k−7/3-scaling obtained
from a quasi-normal approximation within an incompressible isotropic turbulence
(Batchelor 1971), (Leslie 1973, § 11.5) have been added. For weakly incompressible
turbulence, it has been shown by Bataille, Bertoglio & Marion (1992) that the
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FIGURE 14. (Colour online) Velocity fluctuation spectra. (a) Horizontal velocity,
√
ρux,

spectra. The dashed straight line represents the −5/3 power law. The vertical dashed lines
stand for the horizontal and vertical Taylor wavenumbers and the horizontal and vertical
Taylor mixing wavenumbers, respectively. (b) Vertical velocity,

√
ρuz, spectra.
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FIGURE 15. (Colour online) Spectra of concentration (a) and temperature (b) fluctuations.
The dashed straight line represents the −17/3 power law. The vertical dashed lines stand
for the horizontal and vertical Taylor wavenumbers and the horizontal and vertical Taylor
mixing wavenumbers, respectively. These two sets of spectra are very close to each other.

pressure spectra behave as k−5/3 in the inertial range and it evolves toward k−11/3 at
large times. These two scalings have been represented in figure 13(b) in blue and
red, respectively. The numerical results are not incompatible with such scalings. A
spectral blocking (Boyd 2000, § 11.3) of the pressure power spectra is observed. This
is related to insufficient resolution since both turbulent and acoustic signals have to be
resolved. The requirements for acoustic wave resolution are more severe than those for
turbulent velocity fluctuations. This spectral blocking is thus probably due to the weak
resolution of the high frequency acoustic waves. Nevertheless this spectrum spreads
over 13 decades. The velocity fluctuation spectra, at selected times, are represented
in figure 14 with the KO-scaling k−5/3. No agreement is found for the reasons
recalled above. Finally, the power spectra of the scalar fluctuations, concentration and
temperature, are displayed in figure 15, with the k−17/3-scaling (Batchelor, Howells &
Townsend 1959; Ristorcelli 2006). These two sets of concentration and temperature
spectra are very similar for the three times displayed, which shows that concentration
and temperature behave and evolve closely. The classical k−17/3-scaling is encouraging,
although agreement is observed on a very narrow spectral region.
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FIGURE 16. (Colour online) Reynolds stress anisotropy tensor defined by (5.1). (a)
Vertical profiles of the diagonal component Bzz, at six different times. (b) Evolution of
the bzz (black), byy (green) and byz (blue) components, as defined in (5.1).

5. Anisotropy
Since the flow and mixing anisotropies are a current concern in RT-induced

turbulent mixing layers, this point is considered in this section. We use the Reynolds
stress anisotropy tensor for the velocity, where no distinction between the various
scales is made. We also use a spectral anisotropy indicator for the velocity and the
scalars, to have access to the anisotropy of a given scale. The horizontal, Bij(z, t) and
volume average, bij(t), of the Reynolds stress anisotropy tensor are defined as

Bij(z, t)=
ρu′′i u′′j
2ρk̃

−
1
3
δij and bij(t)=

〈ρu′′i u′′j 〉

2〈ρk̃〉
−

1
3
δij. (5.1a,b)

Vertical profiles of the Bzz-component are displayed in figure 16(a) at six different
times. Notice that expressions (5.1) are defined for all values of the z-coordinate,
although outside of the turbulent mixing layer the three contributions of the turbulent
kinetic energy are very small. At t= 3.25, turbulence anisotropy reaches 0.55, which
means that 88 % of the turbulent kinetic energy is in the third direction, while
at t = 7.45, 64 % of the turbulent kinetic energy is in the third direction. The time
evolution of the three components of the mean value bij are represented in figure 16(b).
It also shows a strong anisotropy during the RT regime, where the kinetic energy
corresponding to the vertical direction is about 90 % of the total turbulent kinetic
energy. After this maximum, the anisotropy abruptly decreases to bzz ≈ 0.40 between
t ≈ 3 and 4. Afterwards, the isotropy is slowly re-established meanwhile turbulence
is decaying. The horizontal diagonal Reynolds stress anisotropy tensor components,
bxx and byy, are very closed to each other (not included), all along the process.
The off-diagonal term, byz (or bxz), is negligible at all times, which shows that
turbulence production is essentially, or totally, of baroclinic type, no shear production
occurs here. On the other hand, it has already been shown that intermediate scales
are isotropic while small scales are not, at low and large Atwood numbers, within the
Sandoval model (Livescu & Ristorcelli 2008; Chung & Pullin 2010; Livescu et al.
2010). Similar conclusions have also been drawn from a RT Boussinesq large-scale
simulation (Schneider & Gauthier 2016a). This anisotropy is stronger in the middle
of the mixing layer where turbulence is stronger. In addition, in this compressible
case, acoustic waves may also contribute to this anisotropy.
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FIGURE 17. (Colour online) Velocity spectral anisotropy, as defined by (5.2), at four
different times, t = 4.35 (first vorticity maximum), t = 6.85 (second vorticity maximum),
t= 7.45 (kinetic energy maximum) and t= 11 (within the FD regime).

Spectral anisotropy has been investigated by several authors (Livescu & Ristorcelli
2008; Chung & Pullin 2010; Livescu et al. 2010; Cabot & Zhou 2013). The following
indicator for the velocity anisotropy (Chung & Pullin 2010; Schneider & Gauthier
2016c) is used

Su(kx, t)=
〈û2

3(kx, ky = 0, z, t)〉
3∑

i=1

〈û2
i (kx, ky = 0, z, t)〉

−
1
3
, (5.2)

where û denotes the Fourier transform of the vector variable u. Results for the velocity
anisotropy, Su(kx, t), are shown in figure 17, at four different times, t = 4.35 (first
vorticity maximum), t = 6.85 (second vorticity maximum), t = 7.45 (kinetic energy
maximum) and t= 11 (within the FD regime). At any time, the intermediate scales are
isotropic, as opposed to the RT Boussinesq turbulence (Schneider & Gauthier 2016c).
However, from time t = 7.45, intermediate scales are more isotropic than the small
scales. Within the FD regime, all scales are slightly anisotropic. The scalar anisotropy
is evaluated with the following indicator

S∇c(kx, t)=
〈∇̂3c

2
(kx, ky = 0, z, t)〉

3∑
i=1

〈∇̂ic
2
(kx, ky = 0, z, t)〉

−
1
3
. (5.3)
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FIGURE 18. (Colour online) Concentration-gradient spectral anisotropy, as defined by
(5.3), at four different times, t= 4.35, 6.85, 7.45 and 11.

similar to equation (5.2). The anisotropy variations with respect to the horizontal
wavenumber kx are shown in figures 18 and 19 for the concentration and temperature.
Isotropy clearly occurs at intermediate scales only, for the four times displayed
and for the two scalars, concentration and temperature. We notice a very strong
resemblance between the concentration and temperature spectra at a given time. Very
similar results have been obtained for the Boussinesq simulation, Sr0-Re3× 104, and
the compressible simulation, Sr6-Re3× 104.

6. Averaged turbulent equations
In this section, the numerical data are further analysed by using the Favre-averaged

equations. Such an analysis is also relevant for second-order modelling (Grégoire,
Souffland & Gauthier 2005; Livescu et al. 2010). The equation for the turbulent
kinetic energy is first recalled. The right-hand side of this equation contains the three
families of terms, i.e. production, diffusion and dissipation. From equations (2.5) and
definition (2.10), one obtains the exact averaged equation for the turbulent kinetic
energy (Chassaing et al. 2002, § 5.7)

∂tρk̃+ ∂jρũjk̃ = −ρu′′i u′′j ∂jũi −
1
Sr

u′′i ∂ip

− ∂i

(
ρu′′i k′′ +

1
Sr

u′′i p′ +
1

Re
u′′j σij

)
+

1
Sr

p′∂iu′′i − ρε̃, (6.1)

where the expression of the dissipation rate is

ρε̃=
1

Re
∂iu′′j σij. (6.2)
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FIGURE 19. (Colour online) Temperature-gradient spectral anisotropy, as defined by (5.3),
at four different times, t= 4.35, 6.85, 7.45 and 11.

The first two terms of the right-hand side of equation (6.1) are producing turbulence,
one from the velocity shear, the second from the baroclinic term. The third
contribution is the diffusion term, then the pressure velocity–divergence correlation,
which is mainly a dissipation term, and the viscous dissipation. The evolution
of the turbulent kinetic energy 〈k〉β of the three simulations, Sr6-Re6 × 104,
Sr6-Re3× 104 and Sr0-Re3× 104, are given in figure 20. The kinetic energy of the
Sr6-Re6 × 104-simulation grows during the RT regime and reaches a first maximum
at t ≈ 3.9. A second peak is reached at t ≈ 6.55, essentially due to acoustic waves.
Similar evolution is obtained from the compressible run, Sr6-Re3 × 104. The same
amplitude is observed in these two simulations with a time shift of 1t≈ 1.40. These
evolutions are different to the one obtained from the Boussinesq approximation where
the turbulent kinetic energy grows as t2 in the turbulent regime. Dissipation rates of
the two compressible runs have the same behaviour, i.e. a strong increase in the RT
regime followed by two maxima and the FD regime. They also differ from a time
shift of 1t ≈ 1.40 with a factor 1.08 in amplitude. The dissipation rate behaviour
obtained from the Boussinesq approximation grows as t at a much larger level. The
turnover time scale is estimated as the ratio 〈k̃/ε̃〉β and its initial value is often
used to measure a flow duration. If we assume that the flow is turbulent when the
Taylor–Reynolds number reaches ReTz ≈ 30 (t = 2.55), the initial turnover time scale
is τturn−over = 0.43. The RT regime thus undergoes several turnover time scales. At
later times, the turnover time scale grows continuously and is equal to τturnover = 2.69
at time t = 3.25, τturnover = 4.45 (t = 4.15) and τturnover = 13.0 (t = 7.45). It is still
growing during the FD regime, up to t ≈ 15, where it slowly decays. This remark
about the turnover time scales also applies to the Sr6-Re3× 104 simulation.
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FIGURE 20. (Colour online) (a) Turbulent kinetic energy ρk̃ = ρu′′i u′′i /2. Comparison
between results obtained from simulations Sr6-Re6 × 104 (blue), Sr6-Re3 × 104 (green)
and Sr0-Re3× 104 (red). (b) Dissipation rate. Comparison between results obtained from
simulations Sr6-Re6× 104 (blue), Sr6-Re3× 104 (green) and Sr0-Re3× 104 (red).
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FIGURE 21. (Colour online) Mean profiles related to (6.1). (a) Turbulent kinetic energy
ρk̃, dissipation rate ρε̃, pressure source term −1/Sru′z∂zp and pressure–velocity divergence
correlation 1/Srp′∂iu′i. The mean effective Atwood number 3× 10−3At(t)/At(0) versus time
is represented by the black dashed curve. (b) Disequilibrium as defined by (6.3) for two
values of β = 0.8; (blue) and β = 0.2 (green). The black dashed line is located at the
ordinate 1, the equilibrium value.

Mean value evolutions of the source terms of equation (6.1), i.e. turbulent kinetic
energy, dissipation rate and production term u′z∂zp are given in figure 21(a). The ALS
Atwood number computed from the (x, y)-averaged density profile is also plotted.
The turbulent kinetic energy exhibits two maxima, the first one is associated with the
RT instability, the second with acoustic production. During the RT regime, kinetic
energy follows closely the production term, u′z∂zp, while dissipation lags behind.
However, from the end of the RT regime, where the large-scale ALS Atwood number
vanishes, this production term and the dissipation decay while the kinetic energy is
still fed by acoustic waves. Turbulent kinetic energy only decays after its second
maximum. Turbulence production from velocity shear is negligible, its maximum is
10−4, while baroclinic production maximum is of the order of 3× 10−3. The pressure
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FIGURE 22. (Colour online) Vertical mean profiles of the r.m.s.-density source terms
(equation (6.4)). (a) Density-gradient source term −2ρ ′u′z∂zρ̄. (b) Velocity-gradient source
term −2ρ ′2∂zũz.

velocity–divergence correlation, which would act as a dissipation term during the RT
regime, is also negligible. In the FD regime, it produces turbulence at a very small
rate, the maximum being 2× 10−4 obtained at t≈ 8. Classically, the turbulent kinetic
energy decay may be fitted with a power law of the form t−n (Kitamura et al. 2014).
However, it was not possible to obtain a fit on a reasonable time interval, probably
due the perturbation brought by the acoustic waves.

The mixing layer disequilibrium is defined as the ratio of the production to the
dissipation (Chung & Pullin 2010)

Dequil. =
u′′i ∂ip/Sr
ρε̃

. (6.3)

A turbulent mixing layer is said to be at the equilibrium when the turbulence is
produced and dissipated at the same rate, i.e. when Dequil. = 1. This quantity is
plotted in figure 21(b) for two values of the coefficient β = 0.8 and 0.2. It turns out
that a RT compressible mixing layer is never in equilibrium. Instead strong departures
from equilibrium are observed during the RT regime. At the end of this regime the
smallest value is Dequil. = 1.22 at t ≈ 4.35, which is also the vorticity maximum.
At large times, in the FD regime, the source term changes sign and so does the
equilibrium parameter.

The turbulent kinetic energy equation (6.1) uses the mass flux ρ ′u′′z =−ρu′′z in the
baroclinic production. It is thus of interest to derive the evolution equation of this
quantity and to analyse the production terms. It turns out that this equation contains
the r.m.s. density. We thus also derive the evolution equation for this quantity. The
equation for the r.m.s. density is

(∂t + ũi∂i)ρ ′2 =−2ρ ′u′′i ∂iρ − 2ρ ′2∂iũi +Diffusion+Dissipation. (6.4)

The two source terms of the right-hand side are displayed in figure 22 at six selected
times. The term proportional to the density gradient follows the RT regime and
vanishes at time t≈ 5. At time t= 3.25, its contribution is small and for larger times,
this term becomes a sink for the r.m.s. density. This density-gradient source term is
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FIGURE 23. (Colour online) Mass flux source terms of equation (6.5). (b) Mean values
of the three production terms proportional to the density, vertical velocity and pressure
gradients, respectively. The pressure-gradient term is dominant and reaches its maximum
at t= 3.25. (b) Vertical profiles of the mass flux source term proportional to the pressure
at six different times.

one order of magnitude larger than the velocity-gradient source term. It is a source
in the light fluid but a sink in the heavy fluid part. The equation for the mass flux
is written (Chassaing et al. 2002, § 5.5)

ρ(∂ + ũi∂i)u′′i =+ũ′′i u′′j ∂jρ − ρu′′j ∂jũi −
ρ ′2

ρ2 ∂ip+Diffusion+Dissipation. (6.5)

Equations (6.4) and (6.5) for the density fluctuations and the mass flux are coupled
through their source terms. Density fluctuations and mass flux are mainly created by
the density gradient and the pressure gradient, respectively. In a second step, the mass
flux and the pressure gradient produce turbulent kinetic energy. The evolution of the
three source term mean values of equation (6.5) are represented in figure 23. The term
proportional to the pressure gradient is dominant and always positive. Its maximum
is reached at t ≈ 3.25. Production due to the velocity gradient is always negligible.
Production due to the density gradient is small, positive in the RT regime and negative
in the FD regime. Its maximum is reached very early at t≈ 2.80.

The energy equation is also written as an equation for the Favre-averaged
temperature, T̃ . It is written

∂tρT̃ + ∂iρũiT̃ = −(γr − 1)
p∂iui

Cv;m
+

Sr
Re
σijsij

Cv;m

−
dcCv;m

ReSc
T∂jjc
Cv;m
+
∆?

H,L

RePr
1

Cv;m
∂i[T∂ic]

+ γrRePr
1

Cv;m
∂jjT − ∂iρu′′i T ′′. (6.6)

The six terms of the right-hand side have been evaluated and the maximum values
observed in the interval 3.25 6 t 6 18.55 are the following. The p∂juj term is
approximately 0.10 × 10−1. The dissipation function is smaller, i.e. 0.07 × 10−1, the
term due to variations of the specific heat is 0.20 × 10−1, the enthalpic part of the
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FIGURE 24. (Colour online) Vertical profiles of r.m.s. thermodynamic fluctuations, density
ρrms/ρ (blue), pressure prms/p (green), temperature Trms/T (red) and concentration crms/2
(yellow), at times t= 3.25; 4.15; 6.85; 7.45; 8.15; and 18.55.

heat flux contribution is 1.50 × 10−1, the diffusive contribution is 0.10 × 10−1 and
the turbulent energy flux, ∂zρu′′z T ′′ is 0.50× 10−1. The enthalpic part of the heat flux
contribution and the turbulent energy flux are therefore the two main contributions.
The enthalpic contribution has very large values at the initial times and very quickly
decays, while the turbulent thermal flux is zero at the initial time and grows with
temperature and velocity fluctuations. To be more precise, at times t= 3.25, 4.15 and
8.40, these two contributions have the same magnitude, (0.015, 0.040), (0.080, 0.055)
and (0.035, 0.035), respectively. These relative values can be explained by the modest
Reynolds number reached in this simulation. On the other hand, at short times the
full right-hand side is negative in the light fluid side and positive in the heavy fluid.
At larger times, this is the opposite, the right-hand side is positive in the light fluid
and negative in the heavy fluid. Finally the difference between Favre and Reynolds
averaging has been evaluated on the temperature. The difference T ′′= T − T̃ is found
to be approximately −2 × 10−3 in the middle of the mixing layer and 2 × 10−3 at
the edges. Compressibility effects on the temperature field are therefore quite small.

7. Kovàsznay modes: vorticity, entropy and acoustics
The r.m.s. density, pressure, temperature and concentration are first detailed. Vertical

profiles of the relative r.m.s.-thermodynamic quantities are displayed in figure 24 at
six different times. For the concentration fluctuations the absolute value has been used,
and divided by 2 for the sake of clarity. Density and concentration fluctuations take
the most important values in the RT regime and quickly decrease in the FD regime. At
the contrary, temperature fluctuations are larger in the FD regime. In the RT regime
concentration fluctuations follow closely the density fluctuations, while in the FD
regime, temperature fluctuations follow closely the concentration fluctuations. Pressure
fluctuations remain small along the whole phenomena. Temperature fluctuations are
higher in the heavy fluid than in the light fluid. The asymmetry between r.m.s.
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FIGURE 25. (Colour online) (a) Evolution of r.m.s. density, 〈ρrms/ρ〉β , pressure, 〈prms/p〉β ,
temperature, 〈Trms/T〉β and concentration fluctuations, 〈crms〉β/2 versus time. (b) Entropic
and acoustic modes of the density and temperature versus time, i.e. 〈ρ ′2en

1/2
/ρ〉β (blue),

〈ρ ′2ac
1/2
/ρ〉β (green), 〈T ′2en

1/2
/T〉β (red), 〈T ′2ac

1/2
/T〉β (yellow), respectively.

temperature in the light and heavy fluid side has already been seen in the mean
temperature profile (figure 3). Recall that the heavy and light fluids are slightly
cooled and heated, respectively (see figure 3b). The maximum is reached much
later than the density fluctuations. Averaged value evolution of density, pressure,
temperature and concentration fluctuations, versus time, is given in figure 25. They
confirm the previous conclusions drawn from figure 24. Density fluctuations reach
their maximum 〈ρrms/ρ〉β |max= 8.6 % at t≈ 3.25, while temperature fluctuations reach
their maximum 〈Trms/T〉β |max = 7.8 % much later, at t ≈ 8.85. Pressure fluctuations
remain at a low level and reach their maximum 〈prms/p〉β |max = 0.46 % at t ≈ 4.05.
Unsurprisingly, concentration fluctuations reach their maximum 〈ρrms/ρ〉β |max = 21 %
at approximately the same time as the density fluctuation maximum, i.e. t≈ 3.45.

Dynamic compressibility effects may be well understood through the Kovàsznay-
mode decomposition. Indeed it is well known that a small-amplitude motion in a
compressible fluid may be decomposed into three modes, i.e. vorticity, acoustic and
entropic modes. The vorticity behaviour has been detailed in § 4.5. Chassaing et al.
(2002, § 9.6.2) recall that this decomposition is not unique and we follow here their
guidelines, in which the acoustic mode is given by the pressure fluctuations, as

p′ac = p′,

ρ ′ac =
p′

cs
,

T ′ac =
γ − 1
γ

T
p′ac

p
,


(7.1)

and the entropic mode is thus given by

p′en = 0,
ρ ′en = ρ

′
− ρ ′ac,

T ′en = T ′ − T ′ac.

 (7.2)
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FIGURE 26. (Colour online) Acoustic-mode vertical profiles of the density ρ ′2ac
1/2
/ρ (a)

and temperature T ′2ac
1/2
/T (b).

This decomposition for the pressure and density fluctuations has also been used for
RT flows by Mellado et al. (2005). The r.m.s. densities of the acoustic and entropic
mode are computed from (7.1) and written

ρ ′2ac

ρ2 =
p′2

ρ2c2
s

and
ρ ′2en

ρ2 =
ρ ′2

ρ2 +
p′2

ρ2c4
s

− 2
ρ ′p′

ρ2c2
s

, (7.3a,b)

and the r.m.s. temperatures of the acoustic and entropic parts are

T ′2ac

T2 =
γ − 1
γ

p′2

p2 and
T ′2en

T2 =
T ′2

T2 +
(γ − 1)2

γ 2T2

p′2

p2 − 2
γ − 1
γ

T ′p′

T2

T
p
. (7.4a,b)

Figure 25 shows the evolution of the entropic, 〈ρ ′2en
1/2
/ρ〉β and 〈T ′2en

1/2
/T〉β , and

acoustic part, 〈ρ ′2ac
1/2
/ρ〉β and 〈T ′2ac

1/2
/T〉β of the density and temperature modes,

respectively. These averages have been calculated with β = 0.8. As such, it gives a
complementary point of view of figure 26 where mean spatial profiles are given. It
shows that the entropic parts are one or two orders of magnitude larger than the
acoustic parts. As a result, they are almost equal to their r.m.s. values. The density
entropic mode grows in the RT regime and starts decaying right after, while the
temperature entropic mode grows much more tardily, as we have already seen above.
The density and temperature acoustic modes evolve closely and they maintain their
magnitudes during the acoustic regime in the beginning of the FD regime. Figure 26
displays the density, ρ ′2ac, and temperature, T ′2ac, acoustic modes computed from (7.3)
and (7.4). We now study the correlation between thermodynamic variables, density,
pressure and temperature.

The density–pressure correlation coefficient Rρ(ρ, p) is defined as (Chassaing et al.
2002, § 9.6.2)

Rρ(ρ, p)=
ρ ′p′

ρrmsprms
. (7.5)

When density fluctuations are essentially of acoustic type, i.e. ρ ′ ∝ p′, this coefficient
is close to unity. However, since some thermodynamic fluctuations vanish outside the
turbulent mixing layer, correlation (7.5), and also correlation coefficients defined by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.565


240 S. Gauthier

(a) (b)

Z Z
–0.10 –0.05 0 0.05 0.10

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–0.2 –0.1 0 0.1 0.2

FIGURE 27. (Colour online) (a) Density–pressure correlation, Rρ(ρ, p), defined by (7.5)
as a function of the vertical coordinate z, at five different times. (b) Density–temperature
correlation, S(ρ, T), defined by (7.7) as a function of the vertical coordinate z, at three
different times.

(7.6) and (7.7), are plotted only at collocation points where they are unambiguously
defined. This explains the shape of figure 27. Profiles of the density–pressure
correlation Rρ are displayed in figure 27, at five different times. At short times,
up to t ≈ 2.7, in the early transitional regime, the correlation is positive in the light
fluid side (z< 0) and negative in the heavy fluid (z> 0). From t≈ 2.7 this correlation
begins changing sign, i.e. it is negative in the light fluid and positive in the heavy
fluid. At larger times, from t ≈ 6, the behaviour is non-monotonic in space. Outside
the mixing layer boundaries, the correlation Rρ is not defined, although one may infer
that the weak density fluctuations are associated with the acoustic mode, i.e. pressure
fluctuations.

A temperature–pressure correlation coefficient may also be defined as

RT(T, p)=
T ′p′

Trmsprms
. (7.6)

The behaviour of this temperature–pressure correlation is very close to the density–
pressure correlation and calls for the same comments.

Finally a density–temperature correlation coefficient is defined as

S(ρ, T)=
ρ ′T ′

ρrmsTrms
. (7.7)

Figure 27 shows that density and temperature fluctuations are strongly correlated
inside the turbulent mixing layer. However, on the boundaries of the mixing layer, at
large times when temperature fluctuations are well developed, density and temperature
fluctuations are anti-correlated.

8. Statistical study
A statistical study is now conducted. We have successively computed skewness,

which measures the PDF asymmetry, and flatness, which gives indications about the
Gaussianity of a random variable. Probability density functions are also calculated.
They are built through the kernel method with a Gaussian kernel. The interpolation
from the spectral grid to a uniform grid is achieved by computing the Lagrange
interpolation polynomial locally (Schneider & Gauthier 2016c, appendix B).
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FIGURE 28. (Colour online) Velocity statistics. Skewness, u′3z /u′2z
3/2

(a) and flatness,

u′4z /u′2z
2

(b), of the vertical velocity. The flatness of the Gaussian process is represented
by the horizontal dashed line.
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FIGURE 29. (Colour online) Velocity PDFs. (a) Horizontal velocity, u′x and vertical
velocity, u′z. (b) Vertical gradient of the horizontal velocity and vertical velocity
components. On each plot, the dashed lines show Gaussian distribution with the same
mean and variance.

The skewness of one horizontal velocity component, u′3x /u′2x
3/2

, which refers to
large scales, has no particular structure (not included). Skewnesses of the horizontal
and vertical derivative of the horizontal velocity, (∂x,zu′x)3/(∂x,zu′2x )

3/2
, which refers

to intermediate scales, show two peaks of same sign at the layer boundaries. It
means that this quantity is weakly skewed in the turbulent region. The skewness and
flatness of the vertical velocity component, u′3z /u′2z

3/2
and u′4z /u′2z

2
, are represented

in figure 28. Two peaks of different sign are observed for the skewness, matched
by a zero crossing. This zero crossing is slightly shifted to the light fluid. These
peaks have the sign of the dominant velocities, i.e. positive on the upper side of the
mixing layer and negative on the lower side. Two peaks are also observed for the
flatness and departure from Gaussianity is clearly seen. The flatness of the vertical
derivative of the vertical velocity ∂zuz exhibit a larger departure from Gaussianity
(not included). The horizontal velocity flatness (not included) is similar to the vertical
velocity flatness but the former is clearly closer to a Gaussian process than the
vertical velocity. We may thus anticipate the velocity component PDFs. Figure 29(a)
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FIGURE 30. (Colour online) (a) Pressure PDFs for two different intervals defined by
the mean concentration c. (b) PDF of the horizontal and vertical potential vorticity
components.

displays the horizontal and vertical velocity component PDFs. Horizontal velocity
PDF is very close to the Gaussian process and the vertical velocity component shows
small departures from Gaussianity. The distribution is indeed slightly asymmetric and
flatter than the Gaussian for low velocity values. The vertical derivative of the vertical
velocity PDFs are shown in figure 29(b). The tails are clearly closer to an exponential
than a Gaussian, except the derivative of the vertical velocity for positive values.
The PDF of the horizontal velocity gradient, ∂zu′x, is symmetric and the tails are
exponential, i.e. far from Gaussianity, as opposed to the PDF of the vertical velocity
gradient, ∂zu′z, which is not symmetric. Positive events are close to Gaussianity, but
negative values of the gradient are on an exponential tail. Exponential tails are also
observed in figure 30, where the PDFs of the horizontal and vertical potential vorticity
components are displayed. These departures from Gaussianity are associated with
intermittency. Pressure PDFs are shown in figure 30(a) for two different proportions
of the mixing layer, defined by 0.4 6 c 6 0.6 and 0.2 6 c 6 0.8, respectively. These
two PDFs are very close to each other, this is a general result which holds for most
of the variables. Positive events are Gaussian, while on the negative side, there is
an exponential tail. This behaviour is consistent with earlier observations on various
turbulent flows (Lesieur 1997, chap. VI, § 8). Indeed, it occurs in decaying isotropic
turbulence (Kalelkar 2006), statistically steady turbulence (Cao, Chen & Doolen
1999) and in RT Boussinesq turbulence (Schneider & Gauthier 2016c). As is recalled
in this former reference, this asymmetry is related to the fact that vortex centres
and pressure minima correspond. However the tail is only exponential as opposed
to the Boussinesq case at a Taylor–Reynolds number Reλzz ≈ 142 where the tail is
superexponential (Pumir 1994a; Schneider & Gauthier 2016c). Figure 30(b) shows
the PDFs of the potential vorticity components, ωx,z. Tails are of exponential type,
which is characteristic of the small-scale intermittency (Siggia 1981; She, Jackson
& Orszag 1990; Vincent & Meneguzzi 1991, 1994; Pumir 1994b). Concentration
skewness and flatness versus the horizontal coordinate z are displayed in figure 31.
Skewness takes large values at the mixing layer edges, positive on the light fluid
side, where c= 0, and negative on the heavy fluid side, where c= 1. The profiles are
however slightly skewed, values on the light fluid side are larger than the values of
the heavy fluid. This is clearly a variable-density effect (Livescu & Ristorcelli 2008).
Inside the mixing layer, the skewness is small and the plateau is increasing with
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FIGURE 31. (Colour online) Mixing statistics. Skewness, c′3/c′2
3/2

(a) and flatness, c′4/c′2
2

(b), of the concentration fluctuation at six different times, t= 3.25, 4.15, 4.35, 6.85, 7.45
and 8.30. The horizontal black dashed line stands for the Gaussian process flatness.
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FIGURE 32. (Colour online) Mixing statistics. Flatness of the concentration fluctuation
gradient versus the vertical coordinate z at six different times, t= 3.25, 4.15, 4.35, 6.85,
7.45 and 8.30. (a) Horizontal gradient (∂xc′)4/(∂xc′)2

2
. (b) Vertical gradient (∂zc′)4/(∂zc′)2

2
.

The horizontal black dashed line stands for the Gaussian process flatness.

time. The flatnesses are close, at least from t = 4.15, but not equal to 3, the value
of a Gaussian process. This behaviour should lead to a quasi-symmetric PDF. The
flatnesses of the concentration fluctuation x- and z-gradients are displayed in figure 32,
in semi-log scale. Very high values are reached on the mixing layer edges, while
inside the mixing layer, flatness profiles are rather flat, but far away from a Gaussian
process. As a result strong departures from Gaussianity may be inferred. Figure 33(a)
displays the PDFs of the concentration calculated in the interval z1 6 z6 z2, in such a
way that c(z1)= 0.4 and c(z2)= 0.6 and c(z1)= 0.2 and c(z2)= 0.8. These results are
close to each other as we have previously noted. They are slightly asymmetric and
close to a Gaussian process for small-amplitude events. Moreover, the largest interval
(c(z1)= 0.2 and c(z2)= 0.8) is closer to Gaussianity than the small interval. This is
consistent with the skewnesses and flatnesses displayed in figure 31. The PDFs of
the horizontal and vertical gradients of the concentration fluctuations are displayed in
figure 33 and shown a different behaviour. The PDF of the horizontal gradient
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FIGURE 33. (Colour online) Mixing statistics. (a) PDFs of the concentration fluctuations
c′ at time t = 7.45, for two different intervals. (b) PDFs of the concentration fluctuation
x- and z-gradients, at the same time.
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FIGURE 34. (Colour online) Density statistics. (a) PDFs of the density fluctuations c′ at
time t= 7.45, for two different intervals defined by the mean concentration c. (b) Density
fluctuation x- and z-gradient PDFs, at the same time.

∂xc′ is symmetric but the tails are rather exponential than Gaussian. It means
that concentration fluctuations show some organization at intermediate scales. The
PDF of the horizontal gradient ∂xc′ is strongly asymmetric and the tails are rather
exponential than Gaussian. These tails are piecewise exponential, with a smaller
slope for positive values than for the negative values. It means that very large
positive values of the vertical gradient concentration are more frequent than the
negative ones. To summarize, the concentration statistics in this fully compressible
case is not very different from the Boussinesq case (Schneider & Gauthier 2016c).
However in this compressible flow, one has access to the density whose PDFs are
displayed in figure 34(a). They have been obtained from the data points that are
such that 0.40 6 c 6 0.60 and 0.20 6 c 6 0.80 at time t ≈ 7.45. As opposed to
concentration PDFs, they are rather skewed and positive events are clearly favoured
with respect to negative ones. The PDFs of the horizontal and vertical gradients,
∂xρ
′ and ∂zρ

′, of the density fluctuations are displayed in this same figure 34(b).
They show a similar behaviour to the concentration PDFs, i.e. the ∂xc′-PDF is
rather symmetric with exponential tails, while the ∂zc′-PDF is strongly asymmetric
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FIGURE 35. (Colour online) Temperature statistics. Skewness T ′3/T ′2
3/2

(a) and flatness
T ′4/T ′2

2
(b) of the temperature fluctuations versus the vertical coordinate z, at six different

times, t= 3.25, 4.15, 4.35, 6.85, 7.45 and 8.30. The horizontal black dashed line stands
for the Gaussian process flatness.

with exponential tails. Large-amplitude positive events are more frequent than the
negative. Negative density and temperature gradients are thus more probable. The
largest gradients are positive, but rare. Temperature statistics is now detailed and as
it has already been stressed, temperature behaviour is important for the applications
in high energy density physics, particularly in inertial confinement fusion and in
astrophysics. Indeed the temperature field is modified in a RT mixing layer, even
with an isothermal initial state. We will show that the temperature statistics follows
closely the mixing statistics. Temperature skewness, T ′3/T ′2

3/2
, and flatness, T ′4/T ′2

2
,

versus the horizontal coordinate z are displayed in figure 35. Skewnesses take large
values at the turbulent layer edges, and as the concentration skewness, it is positive
on the light fluid side and negative on the heavy fluid side. However, as opposed
to the concentration skewness, it is strongly skewed, positive values are much larger
than negative ones, in absolute values. The plateau of almost zero skewness is
increasing with time. Flatness is given in figure 35(b). Temperature flatness is similar
to concentration flatness and they are close to a Gaussian process only at the very
interior of the mixing layer, during the RT regime. Consequently, the temperature
PDF is also skewed and asymmetric. The flatnesses of the temperature fluctuation
x- and z-gradients versus the vertical coordinate z, (∂iT ′)4/(∂iT ′)2

2
, i = x, z, at six

different times are represented in figure 36. Asymmetry is clearly observed in both
x- and z-directions, flatnesses are stronger in the light fluid side. Departures from
Gaussianity are also visible and more marked in the vertical direction. These skewness
and flatness characteristics are related to the shape of the PDFs, which are displayed
in figure 37. In brief, temperature PDFs are close to Gaussianity, although rare
large-amplitude events deviate from this Gaussianity. Temperature fluctuation x- and
z-gradient PDFs are clearly non-Gaussian, they are skewed, with exponential tails.
Large positive-amplitude events are more frequent than negative events of the same
amplitude. One observes a strong coherence between the three PDFs of the vertical
gradients of concentration, density and temperature (see figures 33–35). Moreover,
the density and temperature z-gradient maxima are slightly shifted toward negative
values. While these z-gradient PDFs bear some resemblance with PDFs obtained
in Pumir (1994b) for a passive scalar, they are are much more skewed. However, the
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FIGURE 36. (Colour online) Temperature statistics. Flatness of the temperature fluctuation
x- and z gradients versus the vertical coordinate z, at six different times, t= 3.25, 4.15,
4.35, 6.85, 7.45 and 8.30. (a) Horizontal gradient (∂xT ′)4/(∂xT ′)2

2
. (b) Vertical gradient

(∂zT ′)4/(∂zT ′)2
2
. The horizontal black dashed line stands for the Gaussian process flatness.
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FIGURE 37. (Colour online) Temperature statistics. (a) PDFs of the temperature
fluctuations T ′ at time t = 7.45, for two different intervals defined by the mean
concentration, c. (b) PDFs of the temperature fluctuation x- and z-gradient, at the same
time.

present configuration of a two-component mixing with variable temperature, linked
with density and concentration through an EOS, is quite different from the canonical
situation of a passive scalar in an incompressible flow. It has been shown by Ashurst
et al. (1987) and for various turbulent flows that the scalar gradient is preferentially
aligned with the strain rate eigenvector corresponding to the smallest – the third –
eigenvalue, while vorticity is preferentially aligned with the second eigenvector. As a
result, vorticity and scalar gradient are mostly orthogonal so that the cosine values
of the angle between vorticity and scalar gradient, i.e. cos θ = ω · ∇c/|ω||∇c|, are
mostly zero, where c stands for a scalar field. In other words, the PDF of the cosine
of this angle is peaked near θ = 0. This is true for the mixing of a passive scalar
in the presence of a mean gradient (Pumir 1994b) or in a RT turbulent mixing
layer, within the Sandoval model (Cabot & Zhou 2013). The PDFs of the cosine
of the angle between vorticity and temperature, density and concentration gradient
are displayed in figure 38(a) for the Sr6-Re6 × 104 simulation. These three PDFs
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FIGURE 38. (Colour online) Statistics. PDFs of the cosine of the angle between various
quantities at time t= 7.45, the turbulent kinetic energy maximum. (a) Superimposition of
the PDFs of the cosine of the angle between vorticity and temperature (blue), density
(green) and concentration (red) gradient, respectively. (b) PDFs of the cosine of the
angle between vorticity and pressure gradient (blue) and the gradients of density and
concentration (green) and density and pressure (red).

are almost superimposed, which shows that these three scalars are correlated to the
vorticity field and at the same high level. The PDF of the cosine of the angle between
vorticity and pressure gradient is also displayed (figure 38b), which shows that these
two quantities are also correlated, but the maximum is smaller than the one obtained
for the concentration–vorticity correlation. Moreover, these values are significantly
smaller than those obtained from a homogeneous isotropic turbulence at moderate
Reynolds number (Kalelkar 2006, figure 9). Figure 38(a) also displays the PDF of
the cosine of the angle between concentration and density gradient. It is strongly
peaked near 1, i.e. for θ ≈ 0. These two gradients are thus essentially aligned. Finally,
the PDF of the cosine of the angle between pressure and density gradient is also
represented in the same figure. It shows clearly the absence of correlation between
these two quantities, except for θ = 0 and π. These two gradients are thus almost
randomly distributed, the alignment and anti-alignment are slightly more frequent.

9. Flow visualization
RT turbulent flow visualization has been provided by several authors (efluids

2017). In Schneider & Gauthier (2016b), isosurfaces and slices of concentration,
vorticity, Q-criterion, turbulent kinetic energy, Taylor–Reynolds number, dissipation,
pressure and temperature have been displayed for the Boussinesq, anelastic and
fully compressible models. To illustrate the flow detailed in this article, temperature
and helicity isosurfaces are displayed in figure 39, in addition to the palinstrophy
isosurface displayed in figure 12. Temperature appears in blue in the top layer, since
the heavy fluid is cooled and the light fluid is heated. Mushroom-like patterns are
also clearly visible on the temperature field. The helicity isosurfaces coloured by the
concentration are displayed in figure 39(b), where small scales participating in the
mixing are also visible.

10. Summary and conclusions
We have presented a detailed analysis of a large-scale DNS performed with

the full NSEs for two Newtonian fluids, in which the initial equilibrium state
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FIGURE 39. (Colour online) Visualization. (a) Temperature isosurfaces (top view) T=0.95
(blue) and T = 1.05 (red). Temperature at rest is T = 1. Time is t = 4.6. (b) Helicity
isosurfaces for the two values, H=±0.20, coloured by the concentration, at time t= 4.35,
top view.

is strongly stratified. These results have been obtained with a pseudo-spectral
(Chebyshev–Fourier–Fourier) numerical method with an auto-adaptive Chebyshev
multidomain method. The spatial resolution is varied during the calculation from
(9 × 64) × 5762

≈ 191M to (9 × 100) × 10002
= 900M collocation points. In such

a stratified RT configuration, the flow is unsteady. After the linear regime and the
transition to turbulence, the RT regime is qualitatively close to the classical RT growth.
However, quantitatively, this regime is affected by the stratification, since the mixing
layer starts to smooth the density jump so that, at some instant, physical variables start
to decay, but at different times and at different rates. In particular, turbulence erases
the density jump and leads to the mixing layer growth termination. The final step is
a freely decaying turbulence regime in a stable stratification. Various compressibility
effects are involved in the present flow, static and dynamic. The stratification is
a variable-density effect. This static compressibility has a little influence on the
linear regime but a strong influence on the nonlinear behaviour since it leads to the
termination of the turbulent mixing layer growth. Compressibility effects due to the
mixing or non-zero velocity divergence effects are dynamic. There are also acoustic
effects or EOS effects, due to the finite speed of sound. Indeed a strong acoustic
production is observed, but the Mach number and the velocity divergence are rather
small.

Two time-variable Atwood numbers have been used. A large-scale global Atwood
number is built from the mean density profile, while a small-scale local Atwood
number is provided by the r.m.s.-density fluctuations (Cook et al. 2004). The
large-scale Atwood number decays quickly in the RT regime and vanishes at the
time where the small-scale Atwood number reaches its maximum. As a result, some
local buoyancy are still present in the freely decaying regime. Beyond some point in
this regime, the decaying turbulence homogenizes the mixing and the concentration
profile flattens. In the freely decaying regime, the mean value of the spike thickness
saturates while bubble thickness still grows at a very small rate. None of these
thicknesses follow the t2-scaling, since the density length scale, LρH,L, is of the same
order as the mixing thickness. One also observes that the mixing region located in
the heavy fluid side is significantly cooled, while the mixture located in the light
fluid is heated. In addition to the definition of two effective Atwood numbers, a local
condition for the stability of a compressible fluid is given by the gradient of entropy.
It shows that the instability region is located in the upper side of the mixing layer.
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The molecular mixing fraction reaches the value 〈θ〉β = 0.80 at the end of the RT
regime, close to the value obtained from the Boussinesq approximation (Schneider
& Gauthier 2016c). This is within the interval obtained in experiments with
incompressible fluids, i.e. 0.75–0.80 (Linden et al. 1994; Dalziel et al. 1999;
Ramaprabhu & Andrews 2004). The final value, 〈θ〉β = 0.99, is close to homogeneity.
Since the mixing layer stop to grow quite early, no more pure fluids enter in the
turbulent layer. However turbulence and vortical motions continuously mix the two
fluids and increases the homogeneity.

The vertical baroclinic vorticity production is non-zero, as opposed to the
incompressible case, but is much smaller than the horizontal components, since
these components involve vertical density and pressure gradients. The influence of
the acoustic waves are also clearly seen on the vertical vorticity component during
the FD regime. The helicity evolution and the three source term behaviours have
been investigated and dissipation appears to be dominant. The baroclinic and pressure
source terms – typical of compressible flows – are of same order of magnitude.
This helicity evolution shares some resemblance with the kinetic energy and the
Mach number evolution. Palinstrophy evolution of the three simulations has also been
described and compared to each other.

Comparisons between numerical results and classical power laws in the inertial
range are often difficult, since inertial ranges are often narrow. This is the case in
this simulation since the Taylor–Reynolds number maximum is modest. Moreover,
this flow is unsteady and compressibility effects, i.e. variable density and acoustics,
are present, even if the latter is weak. One-dimensional spectra of various quantities
have nevertheless been displayed. It turns out that the concentration and temperature
spectra are very similar to each other, which shows that concentration and temperature
behave and evolve closely. The agreement of the power spectra of the concentration
and the temperature with the classical k−17/3-scaling is encouraging, although it is
observed on a very narrow spectral region.

Anisotropy is an important issue in RT turbulent mixing layers. This characteristic
have been investigated with the mean value of the Reynolds stress tensor and a
spectral anisotropy indicator. It is confirmed that the anisotropy is very high in the
RT regime. At the r.m.s.-density maximum, the mean Reynolds stress tensor reaches
0.55, which means that 88 % of the turbulent kinetic energy is in the third direction,
while at the maximum of the kinetic energy, 64 % of the turbulent kinetic energy is
in the third direction. Velocity field spectral anisotropy shows a persistent anisotropy
at all scales, as opposed to the Boussinesq case, where intermediate scales are clearly
isotropic, while small scales are anisotropic. Concentration and temperature spectral
anisotropy are very close to each other and exhibit intermediate-scale isotropy and
small-scale anisotropy, as it has been observed in the Boussinesq turbulence. This
isotropy/anisotropy is present from short times to late times.

Favre-averaged equations – turbulent kinetic energy, r.m.s. density, mass flux and
internal energy equations – have also been used to analyse the numerical data. The
equilibrium, i.e. the ratio between turbulence production and dissipation has been
investigated. It turns out that such a turbulent RT compressible mixing layer in
a stratified configuration is never in equilibrium. Instead strong departures from
equilibrium are observed during the RT and the FD regimes. The source terms of
the r.m.s.-density and mass flux ρ ′u′i equations have been studied. Concerning the
r.m.s.-density equation, the source term proportional to the vertical density gradient
is one order of magnitude larger than the term proportional to the velocity gradient.
Concerning the mass flux equation, the term proportional to the pressure gradient
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is dominant and always positive. Velocity-gradient production is always negligible,
while density-gradient production is small, and becomes quickly negative.

In this compressible flow, the three Kovásznay modes, namely, vorticity, entropy
and acoustic are present. These two latter modes are actually compressibility effects
since the simplest RT model, the Boussinesq approximation does not contain a
temperature. The r.m.s. density, pressure, temperature and concentration have been
first displayed. The vorticity mode has been analysed with the vorticity, helicity and
palinstrophy behaviours. It has been assumed that the acoustic mode is given by the
pressure fluctuations, and the entropy mode is thus deducted. It turns out that the
density and temperature entropic parts are one or two orders of magnitude larger
than the acoustic part. The density entropy mode grows in the RT regime and start
to decay right after, while the temperature entropy mode grows much more tardily.

A statistical study has been conducted. Skewnesses, flatnesses and PDFs have
been plotted and commented. Some of the conclusions drawn in the Boussinesq
case apply in this weakly compressible turbulent flow. Indeed large scales have a
Gaussian behaviour, while intermediate scales, associated with the gradients of various
quantities, show departures from Gaussianity, i.e. PDF are strongly asymmetric and
wings are exponential. It has been confirmed that the PDF of the cosine of the
angle between vorticity and concentration gradient is peaked near θ = 0. Moreover,
the PDFs of the angle between vorticity and concentration, density and temperature
gradients are superimposed, so that these quantities are mostly aligned.

Temperature field appears to be the slave of the mixing. Indeed the thermal layer
has the same thickness than the mixing layer. Concentration and temperature spectra
are very close to each other, along the time. Anisotropy spectra of density and
temperature are also very close to each other. Concentration and temperature PDFs
are very similar. Moreover the correlation coefficients Rρ(ρ, p) and RT(T, p) have
very similar behaviour and the density–temperature correlation coefficient S(ρ, T)
shows that these two quantities are essentially correlated or anti-correlated. However
there is a significant time lag between the density and temperature evolution and, in
particular, the occurrence of their maxima in time. Acoustics has a little influence on
the concentration and temperature fields.

Finally, let us recall that the Boussinesq model leads to well-defined results,
i.e. self-similar behaviours and universal scalings. This approximation may thus be
investigated with only one large-scale simulation. By contrast, each compressible
case with a stratified initial equilibrium state is specific. A large number of
simulations is thus required to accumulate results and to obtain firm conclusions.
In particular, different equations of state, various initial temperature profiles and
boundary conditions, among others, have to be investigated.
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Appendix A. The mixing model

One considers the mixing of two perfect miscible gases within the single fluid
approximation, as in § 2. The components of the single fluid have molar weights MH

and ML, and the densities write ρH = mH/V and ρL = mL/V . The expression of the
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partial pressures reads

pα = ρα
R
Mα

T = (γα − 1)ραCvαT, with α =H, L. (A 1)

The perfect gas constant is R, the specific heat at constant volume is Cvi . The ‘partial
pressures – partial densities’ mixing model reads

p= pH + pL, ρ = ρH + ρL and T = TH = TL. (A 2a−c)

We also introduced the fluid concentration c based on the heavy density component

ρH = ρc, and ρL = (1− c)ρ. (A 3a,b)

From the additivity of the extensive variables one has Cv,m= cCvH + (1− c)CvL , or in
a dimensionless form

Cv,m(c)= (γr − 1)
[

c
1− At

γH − 1
+ (1− c)

1+ At

γL − 1

]
, (A 4)

and

dcCv,m = (γr − 1)
[

1− At

γH − 1
−

1+ At

γL − 1

]
. (A 5)

For γH = γL = γr, one has dcCv,m =−2At < 0. In the same way the ratio of specific
heats of the mixing is defined as

γm(c)=
Cp,m

Cv,m
=

cCv1γH + (1− c)CvHγL

cCvH + (1− c)CvL

=
cN−γH + (1− c)N+γL

cN− + (1− c)N+
, (A 6)

where N± = (1± Γ )(1± At). Instead of using the ratio of the γH,L − 1, we introduce
the ‘Atwood’ number, Γ , of these two quantities so that

γH − 1
γL − 1

=
1+ Γ
1− Γ

or Γ =
(γH − 1)− (γL − 1)
(γH − 1)+ (γL − 1)

. (A 7a,b)

One then gets the expression

γm(c)=
c(1− At)(1− Γ )γH + (1− c)(1+ At)(1+ Γ )γL

c(1− At)(1− Γ )+ (1− c)(1+ At)(1+ Γ )
. (A 8)

The reference of concentration is chosen to be cr= (1−At)/2, and the reference value
for the specific heat ratio of the mixing is obtained from γr = γm(cr). On the other
hand, we have

∆?
H,L ≡

Cp,H −Cp,L

Cv,r
=

γH

γH − 1
(1− At)−

γL

γL − 1
(1+ At). (A 9)

For γH = γL = γr, one has ∆?
H,L =−2γr/(γr − 1)At < 0. Finally, the expression of the

pressure as function of the internal energy is obtained from equations (A 1), (A 2),
(A 4) and (A 8). One obtains

p=
γm − 1
γr − 1

ρe. (A 10)
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Appendix B. The numerical method
The numerical method implemented in AMÉNOPHIS has been detailed in several

previous articles (Gauthier 1991; Guillard, Malé & Peyret 1992; Renaud 1996; Renaud
& Gauthier 1997; Gauthier et al. 2005; Le Creurer 2005). Let us recall here the key
features.

(i) A non-overlapping domain decomposition is used in the inhomogeneous
z-direction and a coordinate transform, ξ(z), is defined in each subdomain.
Physical quantities φ= ρ, ui(i= 1, 2, 3), T and c are expanded on Fourier series
along the homogeneous horizontal directions and on Chebyshev polynomials
along the z-inhomogeneous direction. It reads

φ(m)(x, y, z, t)=
Nz∑

k=0

Nx/2−1∑
kx=−Nx/2

Ny/2−1∑
ky=−Ny/2

φ
(m)
kxky
(t)Tk[ξ(z)]ei(kxx+kyy), m= 1, . . . ,Nd,

(B 1)
where Tk is the kth Chebyshev polynomial and ξ(z) belongs to the computational
space −1 6 ξ(z)6+1, and Nd is the number of subdomains.

(ii) Continuity of the dependent variables and their first derivatives are required
for quantities governed by second-order PDEs, i.e. velocity, temperature
and concentration. These quantities are matched with the influence matrix
method (Pulicani 1988). The density is governed by a first-order hyperbolic
equation and the matching between subdomains is performed with an upwind
method.

(iii) Both the numerical interface locations and the mapping parameters are
dynamically adapted by minimizing some error of a linear combination of
the calculated solution. This method is based on a theorem that claims that
the projection error, in the Hσ

ω-space, is upper bounded by the norm of the
solution (Bayliss & Matkowsky 1987; Guillard & Peyret 1988; Schneider et al.
2015). Numerical experiments suggest that the following expression for the test
function usually gives good results

Φ(m)
[φ

(m)
i ] =

∑
i

φ
(m)
i (z, t)

maxz φ
(m)
i (z, t)

, (B 2)

where φ
(m)
i stands for the density, concentration and temperature in the mth

subdomain. The functional over one subdomain is defined as

J2,ω[Φ] =

∥∥∥∥dΦ
dξ

∥∥∥∥2

1,ω

=

σ∑
i=0

∫
+1

−1

∣∣∣∣diΦ

dξ i

∣∣∣∣2 ω(ξ) dξ, (B 3)

with ω(ξ) = (1 − ξ 2)−1/2. The total functional is defined as J2[Φ] =
∑Nd

m=1
J2,ω[Φ

(m)
]. A simple and robust iterative procedure has been devised to determine

the best interface locations (Renaud & Gauthier 1997), (Renaud & Gauthier
1997; Peyret 2002, § 8.3.4). Adaptation is activated when the following criterion
is satisfied

max
m=1,...,Nd

∣∣∣∣ J2[Φ
(m)
]

Jref
2 [Φ

(m)]
− 1
∣∣∣∣> ε, (B 4)

where the reference value Jref
2 [Φ

(m)
] is the value at the previous adaptation.
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(iv) Temporal discretization is performed with a semi-implicit three-step second-order
Runge–Kutta scheme in a low storage formulation (Canuto et al. 1988).
Because of the domain decomposition, diffusive terms are handled through
a splitting (Renaud 1996; Renaud & Gauthier 1997)

1
ρ

∂σij

∂xj
=

(
1
ρ
−

1
ρs

)
∂σij

∂xj
+

1
ρs

∂σij

∂xj
, (B 5)

where ρs(z) = ρ(x, y, z, t). A similar decomposition to (B 5) is used for the
concentration and the temperature. A consequence of this splitting is to lower the
scheme order from two (three for the explicit terms) to one (Boudesocque-Dubois
et al. 2003). The time step is controlled as in Schneider et al. (2015).

(v) The spatial resolution may be varied during a calculation. The adequacy of a
given resolution is followed during the simulation with one-dimensional velocity
spectra and the ‘condensed three-dimensional spectrum’ is also used (Le Creurer
2005, p. 63). The spatial resolution is thus adjusted, increased or decreased. This
is achieved in the spectral space by adding or deleting the higher modes. Details
are given in (Schneider et al. 2015, § 3.8).

(vi) The code is parallelized on two levels with MPI. Each subdomain is dedicated
to a group of MPI processes. Communications between two different groups of
MPI processes mainly occur when matching calculations are performed. Within
a subdomain, each MPI process is in charge of a fraction of the Chebyshev
collocation points. A Fourier derivative is computed without communication,
while a Chebyshev derivative requires a significant number of communications.
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