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Abstract. We establish several new characterizations of amenable W ∗- and C∗-dynamical
systems over arbitrary locally compact groups. In the W ∗-setting we show that amenability
is equivalent to (1) a Reiter property and (2) the existence of a certain net of completely
positive Herz–Schur multipliers of (M , G, α) converging point weak* to the identity of
G�̄M . In the C∗-setting, we prove that amenability of (A, G, α) is equivalent to an
analogous Herz–Schur multiplier approximation of the identity of the reduced crossed
product G � A, as well as a particular case of the positive weak approximation property
of Bédos and Conti [On discrete twisted C∗-dynamical systems, Hilbert C∗-modules
and regularity. Münster J. Math. 5 (2012), 183–208] (generalized to the locally compact
setting). When Z(A∗∗) = Z(A)∗∗, it follows that amenability is equivalent to the 1-positive
approximation property of Exel and Ng [Approximation property of C∗-algebraic bundles.
Math. Proc. Cambridge Philos. Soc. 132(3) (2002), 509–522]. In particular, when
A = C0(X) is commutative, amenability of (C0(X), G, α) coincides with topological
amenability of the G-space (G, X).

Key words: dynamical systems, crossed products, locally compact groups, amenable
actions
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1. Introduction
Amenability and its various manifestations have played an important role in the study of
dynamical systems and their associated operator algebras. Zimmer introduced a dynamical
version of amenability [46] of an action of a locally compact group on a standard measure
space through a generalization of Day’s fixed-point criterion, which has proven very useful
in ergodic theory and von Neumann algebras.

https://doi.org/10.1017/etds.2021.57 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2021.57
https://orcid.org/0000-0002-0656-2974
mailto:cbearden@uttyler.edu
mailto:jasoncrann@cunet.carleton.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2021.57&domain=pdf
https://doi.org/10.1017/etds.2021.57


Amenable dynamical systems over locally compact groups 2469

Motivated by the structure of crossed products, Anantharaman-Delaroche generalized
Zimmer’s notion of amenability to the level of W ∗-dynamical systems (M , G, α) [2]. In
[4, Théorème 3.3] she characterized amenability of (M , G, α) with G discrete through
a Reiter type property involving asymptotically G-invariant functions in Cc(G, M),
generalizing Reiter’s condition for amenable groups. She also introduced a notion of
amenability for discrete C∗-dynamical systems (A, G, α), and showed, among other
things, that a commutative discrete C∗-dynamical system (C0(X), G, α) is amenable
precisely when the transformation groupoid G � X is topologically amenable in the sense
of Renault [37].

Various approaches to amenability for non-discrete C∗-dynamical systems have been
studied, including amenable transformation groups (e.g., [5]) and the approximation
property of Exel and Ng [19]. Recently, a notion of amenability for arbitrary C∗-dynamical
systems was introduced by Buss, Echterhoff and Willett [15], who performed an in-depth
study of this notion in relation to amenability of the universal W ∗-dynamical system [26],
measurewise amenability, and the weak containment problem (among other things).

In this work we establish several new characterizations of amenable W ∗- and
C∗-dynamical systems over arbitrary locally compact groups. For W ∗-systems we
generalize [4, Théorème 3.3] to the locally compact setting, giving a Reiter property
for arbitrary amenable (M , G, α) (see Theorem 3.6). Our approach relies on a continuous
version of [4, Lemme 3.1], whose validity was required by Anantharaman-Delaroche in
that paper. We therefore answer this question in the affirmative. We also characterize
amenability of arbitrary (M , G, α) through a ‘fundamental unitary’ Wα associated to the
action, and through Herz–Schur multipliers on the crossed product G�̄M [9, 31, 30]. Our
results in this context can be summarized as follows.

THEOREM 1.1. Let (M , G, α) be a W ∗-dynamical system with M ⊆ B(H). The following
conditions are equivalent.
(1) (M , G, α) is amenable.
(2) There exists a net (ξi) in Cc(G, Z(M)c) such that:

(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) 〈ξi , (λs ⊗ αs)ξi〉 → 1 weak*, uniformly on compact subsets of G.

(3) There exists a net (ξi) in Cc(G, Z(M)c) such that:
(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) 〈ξi , ξi〉 → 1 weak*;
(c) ‖Wα(ξi ⊗α η) − ξi · η‖L2(G×G,H) → 0, η ∈ L2(G, H).

(4) there exists a net (ξi) in Cc(G, Mc) such that:
(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) �(hξi

) → idG�̄M point weak*,
where hξi

(s)(a) = 〈ξi , (1 ⊗ a)(λs ⊗ αs)ξi〉, are the associated completely positive
Herz–Schur multipliers in the sense of [31], and �(hξi

) are the induced mappings
on G�̄M .

The equivalence between (1) and (4) in Theorem 3.12 may be viewed as a dynamical
systems analogue of [23, Theorem 1.13], which characterizes amenability of a locally
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compact group G through a net (ui) of normalized positive definite functions on G whose
multipliers converge to the identity of V N(G) in the point weak* topology.

For C∗-dynamical systems, we complement the recent work of Buss, Echterhoff and
Willett [15] by showing the equivalence between their notion of amenability, amenability
of the universal enveloping W ∗-system, and a particular case of the 1-positive weak
approximation property of Bédos and Conti [8] (suitably generalized to the locally compact
setting). We also obtain an analogous Herz–Schur multiplier characterization at the level
of the reduced crossed product. Our results in this context are summarized as follows.

THEOREM 1.2. Let (A, G, α) be a C∗-dynamical system. The following conditions are
equivalent.
(1) (A, G, α) is amenable in the sense of [15].
(2) There exists a net (ξi) in Cc(G, �2(A)) such that:

(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) hξi

(e) → idA in the point norm topology;
(c) �(hξi

) → idG�A in the point norm topology,
where hξi

(s)(a) = 〈ξi , (1 ⊗ 1 ⊗ a)(λs ⊗ 1 ⊗ αs)ξi〉 are the associated completely
positive Herz–Schur multipliers in the sense of [31], and �(hξi

) are the induced
mappings on G � A.

(3) There exists a net (ξi) in Cc(G, �2(A)) such that 〈ξi , ξi〉 ≤ 1 for all i, and

‖hξi
(f (s)) − f (s)‖ → 0, f ∈ Cc(G, A),

uniformly for s in compact subsets of G.
(4) The universal W ∗-dynamical system (A′′

α , G, α) (from [26]) is amenable.
Moreover, when Z(A∗∗)=Z(A)∗∗, the net (ξi) can be chosen in Cc(G, Z(A)), in which
case hξi

(s)(a) = a〈ξi , (λs ⊗ αs)ξi〉, s ∈ G, a ∈ A.

The equivalence (1) ⇔ (4) generalizes the corresponding result for exact locally
compact groups [15, Proposition 3.10].

As a corollary to Theorem 1.2, when Z(A∗∗) = Z(A)∗∗, amenability of (A, G, α) is
equivalent to the 1-positive approximation property of Exel and Ng [19]†. It follows that a
commutative C∗-dynamical system (C0(X), G, α) is amenable in the sense of [15] if and
only if the action G � X is topologically amenable (see Corollary 4.14). This generalizes
[4, Théorème 4.9] from discrete groups to arbitrary locally compact groups, and shows that
amenability of (C0(X), G, α) coincides with topological amenability of the transformation
groupoid G � X. Combining Corollary 4.14 with the recent result [15, Theorem 5.16]
of Buss, Echterhoff and Willett, we obtain a positive answer to the long-standing open
question whether topological amenability and measurewise amenability coincide for
actions G � X when G and X are second countable.

The paper is organized as follows. We begin in §2 with preliminaries on dynamical
systems and vector-valued integration. Section 3 contains our results on amenable

† After this paper appeared in preprint, Ozawa and Suzuki showed (using Theorem 1.1) that amenability and the
positive approximation property coincide for arbitrary C∗-dynamical systems [32].
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W ∗-dynamical systems as well as results of independent interest which build on the recent
theory of Herz–Schur multipliers for crossed products [9, 10, 30, 31]. Section 4 contains
our results on amenable C∗-dynamical systems.

2. Preliminaries
2.1. Vector-valued integration. Throughout this subsection S will be a locally compact
Hausdorff space with positive Radon measure μ.

For a Banach space B, we let L1(S, B) denote the space of (locally almost everywhere
(a.e.) equivalence classes of) Bochner integrable functions f : S → B with the norm
‖f ‖ = ∫

S
‖f ‖ dμ(s). By the Pettis measurability theorem and Bochner’s theorem (see

[38, Section 2.3]), for f : S → B supported on a σ -finite set, f ∈ L1(S, B) if and only if
f is weakly measurable, essentially separably valued, and satisfies

∫
S

‖f (s)‖ dμ(s) < ∞.
In particular, there is a canonical map Cc(S, B) → L1(S, B), where Cc(S, B) denotes
the continuous B-valued functions of compact support. It is well known that L1(S, B) ∼=
L1(S, μ) ⊗π B isometrically, where ⊗π is the Banach space projective tensor product
(see, for example, [42, Proposition IV.7.14]).

If M is a von Neumann algebra we have the following canonical identifications:

(L∞(S, μ)⊗M)∗ ∼= L1(S, M∗) ∼= L1(S, μ) ⊗π M∗,

where ⊗ denotes the von Neumann tensor product (see [42, Proposition IV.7.14 and
Theorem IV.7.17].) We remark that L∞(S, μ)⊗M does not necessarily coincide with the
space L∞(S, M) of essentially bounded w∗-locally measurable functions from S to M

since we do not assume that M∗ is separable (see [39, 41]). However, by [42, Theorem
IV.7.17], for each F ∈ L∞(S)⊗M , there exists a weak*-measurable function F̃ : S →
M such that, for every g ∈ L1(S, M∗), the function s �→ 〈F̃ (s), g(s)〉 is a measurable
function on S, and

〈F , g〉 =
∫

S

〈F̃ (s), g(s)〉 dμ(s), g ∈ L1(S, M∗).

In this case, we will say that F̃ represents F , and usually abuse notation by omitting the
tilde in the latter centered equation. There are some pitfalls that one must take care to avoid
though; for example, if S = [0, 1] with Lebesgue measure, and M = �∞[0, 1] is the space
of all bounded functions on [0, 1], then the function f : S → M , f (t) = χ{t}, is non-zero
everywhere, but f represents 0 ∈ L∞(S)⊗M .

LEMMA 2.1. If M is a von Neumann algebra and ω ∈ M∗, there is a map ω̃ : L1(S, M) →
L1(S, M∗) determined by the formula

〈ω̃(g)(s), x〉 = 〈ω, g(s)x〉
for g ∈ L1(S, M), s ∈ S, and x ∈ M . Moreover, ‖ω̃‖ ≤ ‖ω‖.

Proof. Using the canonical identifications, the map ω̃ is just id ⊗ ω0 : L1(S) ⊗π M →
L1(S) ⊗π M∗, where ω0 : M → M∗ is the operator satisfying 〈ω0(y), x〉 = 〈ω, yx〉 for
x, y ∈ M . The norm inequality is obvious.
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If A is a C∗-algebra, we let L2(S, A) denote the Hilbert module completion of Cc(S, A)

under the A-valued inner product

〈ξ , η〉 =
∫

S

ξ(s)∗η(s) dμ(s), ξ , η ∈ Cc(S, A).

2.2. Dynamical systems. A W ∗-dynamical system (M , G, α) consists of a von Neu-
mann algebra M endowed with a homomorphism α : G → Aut(M) of a locally compact
group G such that, for each x ∈ M , the map G � s → αs(x) ∈ M is weak* continuous. In
this case, the canonical action G � M∗ is norm continuous (see [43, Proposition 1.2]). We
let Mc denote the unital C∗-subalgebra consisting of those x ∈ M for which s �→ αs(x) is
norm continuous. By [34, Lemma 7.5.1], Mc is weak* dense in M .

The action α induces a normal injective unital ∗-homomorphism

α : M � x → (s �→ αs−1(x)) ∈ L∞(G)⊗M

defined by

〈α(x), F 〉 =
∫

G

〈αs−1(x), F(s)〉 ds for F ∈ L1(G, M∗).

A normal covariant representation (π , u) of (M , G, α) consists of a normal representa-
tion π : M → B(H) and a unitary representation u : G → B(H) such that π(αs(x)) =
usπ(x)us−1 for all x ∈ M , s ∈ G. When (π , u) is a normal covariant representation of
(M , G, α) (this includes the case when M ⊆ B(H) is standardly represented, since in
this case there exists a unique strongly continuous unitary representation u : G → B(H)

such that αs(x) = usxus−1 by [22, Corollary 3.6]), there is corresponding generator
U ∈ L∞(G)⊗B(H), defined by

〈U , F 〉 =
∫

G

〈us , F(s)〉 for F ∈ L1(G, M∗),

and we have α(x) = U∗(1 ⊗ x)U , x ∈ M . Moreover, for any ξ ∈ L2(G, H),

U(λs ⊗ 1)ξ(t) = ut ((λs ⊗ 1)ξ(t)) = ut (ξ(s−1t))

= usus−1t (ξ(s−1t))

= us(Uξ(s−1t))

= (λs ⊗ us)Uξ(t).

Hence, U(λs ⊗ 1) = (λs ⊗ us)U for any s ∈ G.
A C∗-dynamical system (A, G, α) consists of a C∗-algebra endowed with a homomor-

phism α : G → Aut(A) of a locally compact group G such that for each a ∈ A, the map
G � s �→ αs(a) ∈ A is norm continuous.

A covariant representation (π , σ) of (A, G, α) consists of a representation π : A →
B(H) and a unitary representation σ : G → B(H) such that π(αs(a)) = σsπ(a)σs−1 for
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all a ∈ A, s ∈ G. Given a covariant representation (π , σ), we let

(π × σ)(f ) =
∫

G

π(f (t))σt dt , f ∈ Cc(G, A).

The full crossed product G �f A is the completion of Cc(G, A) in the norm

‖f ‖ = sup
(π ,σ)

‖(π × σ)(f )‖

where the sup is taken over all covariant representations (π , σ) of (A, G, α).
Let A ⊆ B(H) be a faithful non-degenerate representation of A. Then (α, λ ⊗ 1) is a

covariant representation on L2(G, H), where

α(a)ξ(t) = αt−1(a)ξ(t), (λ ⊗ 1)(s)ξ(t) = ξ(s−1t), ξ ∈ L2(G, H).

The reduced crossed product G � A is defined to be the norm closure of (α × (λ ⊗
1))(Cc(G, A)). This definition is independent of the faithful non-degenerate representation
A ⊆ B(H). We often abbreviate α × (λ ⊗ 1) as α × λ. Recall that Cc(G, A) is a ∗-algebra
under the operations

f � g(s) =
∫

G

f (t)αt (g(t−1s) dt , f ∗(s) = �(s−1)αs(f (s−1)∗), f , g ∈ Cc(G, A),

and that α × λ is a ∗-homomorphism.
Analogously to the group setting, dual spaces of crossed products can be identified with

certain A∗-valued functions on G. We review aspects of this theory below and refer the
reader to [34, Chs. 7.6, 7.7] for details.

For each C∗-dynamical system (A, G, α) there is a universal covariant representation
(π , σ) such that

G �f A ⊆ C∗(π(A) ∪ σ(G)) ⊆ M(G �f A).

Each functional ϕ ∈ (G �f A)∗ then defines a function � : G → A∗ by

〈�(s), a〉 = ϕ(π(a)σs), a ∈ A, s ∈ G. (1)

Let B(G �f A) denote the resulting space of A∗-valued functions on G. An element � ∈
B(G �f A) is positive definite if it arises from a positive linear functional ϕ as above. We
let A(G �f A) denote the subspace of B(G �f A) whose associated functionals ϕ are of
the form

ϕ(x) =
∞∑

n=1

〈ξn, α × λ(x)ηn〉, x ∈ G �f A,

for sequences (ξn) and (ηn) in L2(G, H) with
∑∞

n=1‖ξn‖2 < ∞ and
∑∞

n=1‖ηn‖2 < ∞.
Then A(G �f A) is a norm closed subspace of (G �f A)∗ which can be identified
with ((G � A)′′)∗. Explicitly, the duality is given as follows. Suppose x ∈ (G � A)′′ ⊆
B(L2(G, H)) and � ∈ A(G �f A). Take (ξn), (ηn) in L2(G, H) such that

∑∞
n=1

‖ξn‖2 < ∞,
∑∞

n=1‖ηn‖2 < ∞, and 〈�(s), a〉 = ∑∞
n=1〈ξn, α × λ(π(a)σs)ηn〉 for all s ∈

G, a ∈ A. Then

〈�, x〉 =
∞∑

n=1

〈ξn, xηn〉.
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A function h : G → A is of positive type (with respect to α) if for every n ∈ N, and
s1, . . . , sn ∈ G, we have

[αsi (h(s−1
i sj )] ∈ Mn(A)+.

We let P1(A, G, α) denote the convex set of positive type functions with ‖hi(e)‖ ≤ 1.
Every C∗-dynamical system (A, G, α) admits a unique universal W ∗-dynamical system

(A′′
α , G, α) [26]. We review this construction, taking an L1(G)-module perspective. In

[15], the authors study (A′′
α , G, α) from a different, equivalent perspective.

First, A becomes a right operator L1(G)-module in the canonical fashion by slicing the
corresponding non-degenerate representation

α : A � a �→ (s �→ αs−1(a)) ∈ Cb(G, A) ⊆ L∞(G)⊗A∗∗.

Explicitly, this action is given by

a ∗ f =
∫

G

f (s)αs−1(a) ds

for a ∈ A, f ∈ L1(G). By duality we obtain a left operator L1(G)-module structure on
A∗ via

α∗|L1(G)⊗̂A∗ : L1(G)⊗̂A∗ → A∗,

where ⊗̂ denotes the operator space projective tensor product (see, for example, [12,
1.5.11]). Then G acts in a norm-continuous fashion on the essential submodule

A∗
c := 〈L1(G) ∗ A∗〉,

where 〈·〉 denotes closed linear span. The same argument in [34, Lemma 7.5.1] shows
that A∗

c coincides with the norm-continuous part of A∗ (that is, the set of ϕ ∈ A∗ such
that each map G → A∗, s �→ ϕ ◦ αs is norm continuous), hence the notation. This fact
was also noted by Hamana in [24, Proposition 3.4(i)]. We therefore obtain a point-weak*
continuous action of G on the dual space (A∗

c )
∗ by surjective complete isometries. Clearly

(A∗
c )

∗ ∼= A∗∗/(A∗
c )

⊥ (2)

completely isometrically and weak*-weak* homeomorphically as right L1(G)-modules,
where the canonical L1(G)-module structure on A∗∗ is obtained by slicing the normal
cover of α, which is the normal ∗-homomorphism

α̃ = (α∗|L1(G)⊗̂A∗)∗ : A∗∗ → L∞(G)⊗A∗∗.

Note that α̃|M(A)) is the unique strict extension of α, and is therefore injective [29,
Proposition 2.1]. However, on A∗∗, α̃ can have a large kernel. On the one hand, its
kernel is of the form (1 − z)A∗∗ for some projection z ∈ Z(A∗∗). On the other hand,
by definition of the L1(G)-action on A∗∗, Ker(̃α) = (A∗

c )
⊥. It follows that (A∗

c )
∗ is

completely isometrically weak*-weak* order isomorphic to zA∗∗, where we equip (A∗
c )

∗
with the quotient operator system structure from A∗∗. We can therefore transport the
point-weak* continuous G-action on (A∗

c )
∗ to A′′

α := zA∗∗, yielding a W ∗-dynamical
system (A′′

α , G, α), where α : G → Aut(A′′
α) is given by

αt (zx) = z((αt )
∗∗(x)), x ∈ A∗∗, t ∈ G.
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The associated normal injective ∗-homomorphism

α : A′′
α → L∞(G)⊗A′′

α

is (id ⊗ Ad(z)) ◦ α̃|A′′
α
. Hence, the L1(G)-action on A′′

α satisfies

(zx) ∗ f = (f ⊗ id)α(x) = Ad(z)((f ⊗ id)̃α(x)) = z(x ∗ f ),

for f ∈ L1(G), and x ∈ A∗∗. We emphasize that with this structure A′′
α is not necessarily

an L1(G)-submodule of A∗∗, rather Ad(z) : A∗∗ → A′′
α is an L1(G)-complete quotient

map.
Finally, as α̃|M(A) is an injective ∗-homomorphism, for all x ∈ M(A) we have

‖x‖ = ‖α̃(x)‖ = ‖α̃(zx)‖ = ‖zx‖.

It follows that Ad(z) : M(A) ↪→ A′′
α is a G-equivariant isometry.

2.3. Operator space theory. In §4 below we will freely use several gadgets from
operator space theory. We give a quick review of some of the topics we shall need. See
[16] or [12, Ch. 1] for more details.

For a Hilbert space H , the column Hilbert space Hc is the operator space attained by
equipping H with matrix norms arising from fixing any norm-one η ∈ H and considering
the injection H → B(H), ζ �→ ζ ⊗ η, where ζ ⊗ η is the rank-one operator ξ �→ 〈ξ , η〉ζ .

Given two operator spaces X, Y , the Haagerup tensor product X ⊗h Y is the unique
operator space with following universal property: for every completely bounded bilinear
map u : X × Y → W into an operator space W , there exists a completely bounded linear
map ũ : X ⊗h Y → W such that ‖ũ‖cb = ‖u‖cb and ũ(x ⊗ y) = u(x, y) for all x ∈ X,
y ∈ Y . (See [12, 1.5.4] for the definition of a completely bounded bilinear map.)

We will implicitly use the fact that for a Hilbert space H and any operator space X,
Hc ⊗h X = Hc ⊗min X, where the latter is the operator space minimal, or spatial tensor
product.

Given an operator space X, the operator space dual X∗ is the usual dual Banach space
X∗ equipped with matrix norms from the canonical identification Mn(X

∗) = CB(X, Mn).
For two dual operator spaces X∗, Y ∗, the weak* Haagerup tensor product X∗ ⊗w∗h Y ∗ is
defined to be the operator space dual (X ⊗h Y )∗. It turns out that X∗ ⊗w∗h Y ∗ contains
X∗ ⊗h Y ∗ completely isometrically [12, 1.5.9].

3. Amenable W ∗-dynamical systems
A W ∗-dynamical system (M , G, α) is amenable [2] if there exists a projection of norm
one P : L∞(G)⊗M → M ∼= 1 ⊗ M such that P ◦ (λs ⊗ αs) = αs ◦ P , s ∈ G, where λ

denotes the left translation action on L∞(G). For example, (L∞(G), G, λ) is always
amenable, and G is amenable if and only if the trivial action G � {x0} is amenable, in
which case P becomes a left invariant mean on L∞(G). In this section we first establish
a Reiter property for amenability, and then apply this result to obtain the Herz–Schur
multiplier characterization from Theorem 1.1.
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3.1. A Reiter property. In this subsection we establish a Reiter property for amenable
W ∗-dynamical systems, generalizing [4, Théorème 3.3] from discrete groups to arbitrary
locally compact groups. We require several preparations. The first is a continuous version
of [4, Lemme 3.1].

Given a locally compact Hausdorff space S with positive Radon measure μ, and a von
Neumann algebra M , we let

K+
1 (S, Z(M)c) =

{
g ∈ Cc(S, Z(M)+c ) |

∫
S

g(s) dμ(s) ≤ 1
}

,

where Cc(S, Z(M)+c ) is the space of norm-continuous Z(M)+c -valued functions on S

with compact support. Let BM(L∞(S)⊗M , M) denote the Banach space of bounded
M-bimodule maps from L∞(S)⊗M to M , and let P denote the convex subset of
BM(L∞(S)⊗M , M) given by the positive contractive M-bimodule maps. Every map
P ∈ P is automatically completely positive, so that ‖P ‖ = ‖P(1)‖.

Each g ∈ K+
1 (S, Z(M)c) gives rise to an element Pg ∈ P by means of the formula

〈Pg(F ), ω〉 =
∫

S

〈F(s)g(s), ω〉 dμ(s), F ∈ L∞(S)⊗M , ω ∈ M∗.

The latter expression makes sense irrespective of the choice of representative of F since
it is equal to 〈ω̃(g), F 〉, viewing g ∈ L1(S, M). We will usually shorten the previously
displayed formula by writing Pg(F ) = ∫

S
F (s)g(s) dμ(s) for F ∈ L∞(S)⊗M .

Let PK := {Pg | g ∈ K+
1 (S, Z(M)c)} ⊆ P .

LEMMA 3.1. Let S be a locally compact Hausdorff space with positive Radon measure
μ and let M be a commutative von Neumann algebra. Then PK is dense in P in the
point-weak* topology of B(L∞(S)⊗M , M).

Proof. The majority of the proof follows that of [4, Lemme 3.1], but we include some
details for the convenience of the reader. First,

BM(L∞(S)⊗M , M) = (L∞(S)⊗M ⊗π
M M∗)∗,

where ⊗π
M is the M-bimodule Banach space projective tensor product. By definition of

the projective tensor norm together with the Radon–Nikodym theorem, every element in
(L∞(S)⊗M) ⊗π

M M∗ is the equivalence class of an element of the form F ⊗ ϕ with F ∈
L∞(S)⊗M and ϕ ∈ M+∗ , as shown in [4, Lemme 3.1]. By convexity it suffices to show
that P is contained in the bipolar of PK . Let F0 ∈ L∞(S)⊗M and ϕ ∈ M+∗ be such that

Re〈Pg , F0 ⊗ ϕ〉 = Re ϕ

( ∫
S

F0(s)g(s) dμ(s)

)
≤ 1, g ∈ K+

1 (S, Mc).

If H0 = Re(F0), then

ϕ

( ∫
S

H0(s)g(s) dμ(s)

)
≤ 1, g ∈ K+

1 (S, Mc).

Let C denote the weak* closure of {∫
S

H0(s)g(s) dμ(s) | g ∈ K+
1 (S, Mc)} in M . Given

x1, x2 ∈ C and a projection e ∈ M , we have x1e + x2(1 − e) ∈ C. Indeed, pick nets
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(gi), (fj ) in K+
1 (S, Mc) such that

x1 = w∗ lim
i

∫
S

H0(s)gi(s) dμ(s), x2 = w∗ lim
j

∫
S

H0(s)fj (s) dμ(s).

Without loss of generality, we can assume the nets (gi) and (fj ) have the same index
set. Since Mc is weakly dense in M , by Kaplansky’s density theorem, pick a net (pk) of
positive operators in the unit ball of Mc such that pk → e strongly (and hence weak*, by
boundedness). Then

x1e + x2(1 − e) = w∗ lim
k

w∗ lim
i

∫
S

H0(s)(gi(s)pk + fi(s)(1 − pk)) dμ(s).

Since gi(1 ⊗ pk) + fi(1 ⊗ (1 − pk)) ∈ K+
1 (S, Mc), combining the iterated limit into a

single net, we see that x1e + x2(1 − e) ∈ C. Then C is closed under finite suprema using
the Stonian structure of the spectrum of M , as in [4, Lemme 3.1].

Now, fix a ∗-monomorphism ρ : L∞(S, μ) → �∞(S, μ), satisfying q ◦ ρ = idL∞(S,μ),
where �∞(S, μ) is the C∗-algebra of bounded μ-measurable functions on S, and q :
�∞(S, μ) → L∞(S, μ) is the canonical quotient map. Such a lifting exists by [27,
Corollary 2]. For s ∈ S, es := evs ◦ ρ ∈ L∞(S, μ)∗ is a state on L∞(S, μ).

Given F ∈ L∞(S)⊗M , define Fρ : S → M by

〈Fρ(s), ω〉 = 〈es , (id ⊗ ω)F 〉, s ∈ G, ω ∈ M∗,

We claim that Fρ represents F . First, by definition, 〈Fρ(s), ω〉 = ρ((id ⊗ ω)F)(s) for
every ω ∈ M∗, hence the function s �→ Fρ(s) is weak* measurable as ρ((id ⊗ ω)F) ∈
�∞(S, μ). It follows that, for any simple tensor g ∈ L1(S, M∗) = L1(S, μ) ⊗π M∗, the
function ϕg : s �→ 〈Fρ(s), g(s)〉 is measurable as ϕg is a product of measurable functions.
Since a pointwise a.e. limit of measurable functions is measurable, it follows that ϕg is
measurable for any g ∈ L1(S, M∗). Next, if g ∈ L1(S, μ) and ω ∈ M∗,∫

S

g(s)〈Fρ(s), ω〉dμ(s) =
∫

S

g(s)ρ((id ⊗ ω)F)(s) dμ(s)

=
∫

S

g(s)q(ρ((id ⊗ ω)F))(s) dμ(s)

= 〈g, (id ⊗ ω)F 〉
= 〈g ⊗ ω, F 〉,

where the second equality uses the fact that integration only depends on a.e. equivalence
classes. The formula 〈F , g〉 = ∫

S
〈Fρ(s), g(s)〉 dμ(s) is proved for general g ∈ L1(S, M∗)

using the observation that Fρ is bounded.
Let (gs

i ) be a net of states in L1(S, μ) approximating es weak*. By a further
approximation using norm density of Cc(S) in L1(S, μ), we may take each gs

i ∈ Cc(S)+
with

∫
S

gs
i (t) dμ(t) ≤ 1. Viewing gs

i ∈ K+
1 (S, Mc) in the canonical way (Mc is unital),

for every F ∈ L∞(S)⊗M , it follows that

Fρ(s) = w∗ lim
i

∫
S

gs
i (t)F (t) dμ(t) = w∗ lim

i
Pgs

i
(F ).
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Since (H0)ρ(s) ∈ C, we have (H0)ρ(s)+ = (H0)ρ(s) ∨ 0 ∈ C. Define m = sups∈S(H0)ρ

(s)+ ∈ M . Then, by normality of ϕ, we have ϕ(m) ≤ 1. Since (H0)ρ(s) ≤ m in M for
all s, it follows that H0 ≤ 1 ⊗ m in L∞(S)⊗M . Indeed, if g ∈ L1(S, M∗)+ is a positive
normal functional on L∞(S)⊗M , then

〈H0, g〉 =
∫

S

〈(H0)ρ(s), g(s)〉 dμ(s) ≤
∫

S

〈m, g(s)〉 dμ(s) = 〈1 ⊗ m, g〉.

Thus, for every P ∈ P we have

P(H0) ≤ P(1 ⊗ m) = mP(1) ≤ m,

so that

Re〈P , F0 ⊗ ϕ〉 = ϕ(P (H0)) ≤ ϕ(m) ≤ 1.

Hence, P belongs to the bipolar of PK .

Remark 3.2. In the special case where M = L∞(X, ν) and (X, ν) and (S, μ) are both
σ -finite, the conclusion of Lemma 3.1 follows from [7, Lemma 1.2.6].

Similarly to [4], we consider the following two locally convex topologies on the Bochner
space L1(S, M), where S and M are as in Lemma 3.1. The first, denoted by τn, is generated
by the family of semi-norms {pω | ω ∈ M+∗ }, where

pω(g) =
〈
ω,

∫
S

|g(s)| dμ(s)

〉
=

∫
S

〈|g(s)|, ω〉 dμ(s).

This is indeed well defined since s �→ |g(s)| is Bochner integrable whenever g is. The
second, denoted by τF , is generated by the family of semi-norms

{pF ,ω | F ∈ L∞(S)⊗M , ω ∈ M+∗ } where pF ,ω(g) =
∣∣∣∣
∫

S

〈g(s)F (s), ω〉 dμ(s)

∣∣∣∣.
To see that this is well defined, define ω̃(g) : S → M∗ by 〈x, ω̃(g)(s)〉 = 〈g(s)x, ω〉 for
x ∈ M . Then, by Lemma 2.1, ω̃(g) ∈ L1(S, M∗). A routine argument then shows that
s �→ 〈F(s), ω̃(g)(s)〉 = 〈g(s)F (s), ω〉 is measurable, and integrability of this function is
easy to check.

Since pF ,ω(g) ≤ ‖F‖pω(g), it follows that τn is stronger than τF .

LEMMA 3.3. Let V be a convex subset of L1(S, M) such that every function in V is
supported on a σ -finite subset. Then V

τF = V
τn .

Proof. Since τn is stronger than τF , it suffices to show that V
τF ⊆ V

τn . Let (gi) be a net
in V converging to zero with respect to τF . Then, by definition of τF , ω̃(gi) → 0 weakly
in L1(S, M∗) for all ω ∈ M+∗ . By Mazur’s theorem, there exists a net (gK ,ε) in V indexed
by finite subsets K of M+∗ and ε > 0 such that

‖ω̃(gK ,ε)‖L1(S,M∗) < ε, ω ∈ K .
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For (an a.e. representative of) g ∈ L1(S, M) and s ∈ S, let g(s) = us |g(s)| be the polar
decomposition in M . Then, since

〈ω, |g(s)|〉 = |〈ω̃(g)(s), u∗
s 〉| ≤ sup{|〈ω̃(g)(s), x〉| : x ∈ M‖·‖≤1} = ‖ω̃(g)(s)‖M∗

for all ω ∈ M+∗ and s ∈ S, we have

pω(g) =
∫

S

〈ω, u∗
s g(s)〉 dμ(s) ≤

∫
S

‖ω̃(g)(s)‖M∗ dμ(s) = ‖ω̃(g)‖L1(S,M∗)

for all g ∈ L1(S, M). It follows that gK ,ε → 0 with respect to τn.

The next lemma will be used to upgrade pointwise asymptotic G-invariance in Reiter’s
property to uniform asymptotic G-invariance on compacta. This is a generalization of the
equivalence of the classical finite and compact Reiter’s properties. Our proof generally
follows that of [35, Proposition 6.10].

First, we record a useful, simple lemma, the proof of which is omitted.

LEMMA 3.4. Suppose X is a Banach space and (ϕt ) is a bounded net in X∗. Then ϕt → ϕ

weak* in X∗ if and only if ϕt (x) → ϕ(x) uniformly on compact subsets of X.

LEMMA 3.5. Let (M , G, α) be a commutative W ∗-dynamical system. The following
conditions are equivalent.
(1) There exists a net (gi) in K+

1 (G, Mc) satisfying w∗ limi

∫
G

gi(s) ds = 1 such that

w∗ lim
i

∫
G

|gi(s) − (λt ⊗ αt )(gi)(s)| ds = 0 for all t ∈ G.

(2) There exists a net (gi) in K+
1 (G, Mc) satisfying w∗ limi

∫
G

gi(s) ds = 1 such that

w∗ lim
i

∫
G

|gi(s) − (λt ⊗ αt )(gi)(s)| ds = 0 uniformly on compact subsets of G.

Proof. Since (2) clearly implies (1), we only need to show (1) implies (2). In preparation,
note that Cc(G, Mc) is a left module over the algebra Mc(G) of compactly supported
Radon measures on G via the action

μ � g(s) =
∫

G

(λt ⊗ αt )(g)(s) dμ(t) =
∫

G

αt (g(t−1s)) dμ(t),

for μ ∈ Mc(G), g ∈ Cc(G, Mc), and s ∈ G. (In fact, this action extends to give the
injective Banach space tensor product L1(G) ⊗ε Mc a left Banach M(G)-module action,
but we will not need this.) Note also that for g ∈ Cc(G, Mc), μ ∈ Mc(G), and ω ∈ M+∗ ,〈

ω,
∫

G

|μ � g(s)| ds

〉
=

∫
G

〈
ω,

∣∣∣∣
∫

G

αt (g(t−1s)) dμ(t)

∣∣∣∣
〉

ds

≤
∫

G

〈
ω,

∫
G

|αt (g(t−1s))| d|μ|(t)
〉

ds

=
∫

G

∫
G

〈ω, |αt (g(t−1s))|〉 ds d|μ|(t)
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=
∫

G

∫
G

〈ω, αt (|g(s)|)〉 ds d|μ|(t)

=
∫

G

∫
G

〈(αt )∗(ω), |g(s)|〉 ds d|μ|(t)

=
∫

G

〈
(αt )∗(ω),

∫
G

|g(s)| ds

〉
d|μ|(t) (3)

≤ ‖ω‖‖μ‖
∥∥∥∥

∫
G

|g(s)| ds

∥∥∥∥. (4)

(Note that commutativity of Mc is used in the first inequality.)
Let (gi) be a net as in (1), and fix f ∈ Cc(G)+ with

∫
G

f (s) ds = 1. We will show
that (f � gi) satisfies (2). It is immediate that f � gi ∈ Cc(G, M+

c ), and the inequality∫
G

f � gi(s) ds ≤ 1 is straightforward to check. Now let ω ∈ M∗. Since (
∫
G

gi(s) ds) is a
bounded net in M converging weak* to 1, and {(αt )∗(ω) | t ∈ supp(f )} is norm compact
in M∗ by norm continuity of the action G � M∗, we have, by Lemma 3.4,∫

G

〈ω, f � gi(s)〉 ds =
∫

G

f (t)

∫
G

〈(αt )∗(ω), gi(t
−1s)〉 ds dt

=
∫

G

f (t)

∫
G

〈(αt )∗(ω), gi(s)〉 ds dt

→
∫

G

f (t)〈(αt )∗(ω), 1〉 dt

=
∫

G

f (t)〈ω, 1〉 dt

= 〈ω, 1〉,

so that
∫
G

f � gi(s) ds → 1 weak* in M .
The remainder of the proof closely follows that of [35, Proposition 6.10]. Let C ⊆ G

be compact, ω ∈ (M∗)+‖·‖=1, and ε > 0. Put C1 = C ∪ {e} and δ = ε/6. There exists a
neighborhood U of e such that ‖λyf − f ‖L1(G) < δ, whenever y ∈ U (by [25, 20.4]).
Since C1 is compact, there exists a compact neighborhood V of e such that t−1V t ⊆ U for
every t ∈ C1 (by [25, 4.9]). Hence, for every r ∈ V and t ∈ C1, ‖λt−1rt f − f ‖L1(G) < δ.
Let h = |V |−1χV . Then, for t ∈ C1, we have

‖h ∗ (λt f ) − λt f ‖L1(G) =
∫

G

∣∣∣∣
∫

G

h(r)f (t−1r−1s) dr −
∫

G

h(r)f (t−1s) dr

∣∣∣∣ ds

≤
∫

G

h(r)

( ∫
G

|f (t−1r−1ts) − f (s)| ds

)
dr

=
∫

V

h(r)‖λt−1rtf − f ‖L1(G) dr < δ. (5)

Let C′ = C1 supp(f ). Then C′ is compact, and for every t ∈ C1,∫
G\C′

f (t−1s) ds = 0. (6)

https://doi.org/10.1017/etds.2021.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.57


Amenable dynamical systems over locally compact groups 2481

Pick a compact neighborhood W of e such that ‖h ∗ δt − h‖L1(G) = ‖λt−1h∗ −
h∗‖L1(G) < δ for every t ∈ W (by [25, 20.4] again). Then there is an open neighborhood
W ′ of e for which W ′W ′−1 ⊆ W . As C′ is compact, there are c1, . . . , cm ∈ C′ such
that C′ ⊆ ∪m

i=1W
′ci . Since each W ′ci satisfies W ′ci(W

′ci)
−1 ⊆ W , there exists a finite

partition {Bj | j = 1, . . . , n} for C′ consisting of non-empty Borel sets such that
BjB

−1
j ⊆ W for all j . For every j = 1, . . . , n, choose bj ∈ Bj . Then, for all t ∈ Bj ,

‖h ∗ δt − h ∗ δbj
‖L1(G) = ‖h ∗ δ

tb−1
j

− h‖L1(G) < δ. (7)

Now, using norm compactness of {(αt )∗(ω) | t ∈ V } and Lemma 3.4 again, condition
(1) implies that, for some index value i0,

〈(αt )∗(ω),
∫

G

|gi(s) − (δbj
� gi)(s)| ds〉 < δ,

for every i ≥ i0, j = 1, . . . , n and t ∈ V . To simplify notation for the following calcu-
lations, fix g = gi for i ≥ i0. Then, for j = 1, . . . , n, it follows by inequality (3) above
that〈
ω,

∫
G

|h � δbj
� g(s) − h � g(s)| ds

〉
≤

∫
G

h(t)

〈
(αt )∗(ω),

∫
G

|(δbj
� g − g)(s)| ds

〉
dt

<

∫
G

h(t)δ dt

= δ. (8)

Now, for t ∈ C1, we have, by inequalities (4) and (5),∫
G

〈ω, |(λt f ) � g(s) − h � (λt f ) � g(s)|〉 ds =
∫

G

〈ω, |(λt f − h ∗ (λt f )) � g(s)|〉 ds

≤ ‖ω‖‖λt f − h ∗ (λt f )‖
∥∥∥∥

∫
G

|g(s)| ds

∥∥∥∥
< δ. (9)

Also, if f ′ = λt f for t ∈ C1, then f ′ is a state and, applying (6), (7), (8), and (4), we see
that ∫

G

〈ω, |(h � f ′ � g − h � g)(s)|〉 ds

≤
∫

G

∫
G

f ′(r)〈ω, |(h � δr � g − h � g)(s)|〉 dr ds

=
∫

G

∫
C′

f ′(r)〈ω, |(h � δr � g − h � g)(s)|〉 dr ds

≤
∫

G

( n∑
j=1

∫
Bj

f ′(r)〈ω, |((h ∗ δr − h ∗ δbj
) � g)(s)|〉 dr

+
n∑

j=1

∫
Bj

f ′(r)〈ω, |(h � δbj
� g − h � g)(s)|〉 dr

)
ds
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=
n∑

j=1

∫
Bj

f ′(r)
∫

G

〈ω, |((h ∗ δr − h ∗ δbj
) � g)(s)|〉 ds dr

+
n∑

j=1

∫
Bj

f ′(r)
∫

G

〈ω, |(h � δbj
� g − h � g)(s)|〉 ds dr

< 2δ. (10)

Finally, let t ∈ C. Since t ∈ C1 and e ∈ C1, by (9) and (10) we have∫
G

〈ω, |(δt � (f � g) − f � g)(s)|〉 ds

≤
∫

G

〈ω, |(f ′ � g − h � (f ′ � g))(s)|〉 ds +
∫

G

〈ω, |(h � (f ′ � g) − h � g)(s)|〉 ds

+
∫

G

〈ω, |(h � g − h � f � g)(s)|〉 ds +
∫

G

〈ω, |(h � f � g − f � g)(s)|〉 ds

< δ + 2δ + 2δ + δ = ε.

It follows that the net (f � gi) satisfies

w∗ lim
i

∫
G

|f � gi(s) − (λt ⊗ αt )(f � gi)(s)| ds = 0,

uniformly for t in compact subsets of G.

We are now in a position to generalize [4, Théorème 3.3] to locally compact groups. The
equivalences in the next theorem were independently obtained for exact locally compact
groups using different techniques by Buss, Echterhoff and Willett in the recent work [15].

THEOREM 3.6. Let (M , G, α) be a W ∗-dynamical system. The following conditions are
equivalent.
(1) There exists a net (hi) of positive type functions in Cc(G, Z(M)c) such that:

(a) hi(e) ≤ 1 for all i;
(b) limi hi(t) = 1 weak*, uniformly on compact subsets.

(2) There exists a net (ξi) in Cc(G, Z(M)c) such that:
(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) 〈ξi , (λt ⊗ αt )ξi〉 → 1 weak*, uniformly on compact subsets.

(3) There exists a net (gi) in K+
1 (G, Z(M)c) such that:

(a)
∫
G

gi(s) ds → 1 weak*;
(b)

∫
G

|(λt ⊗ αt )gi(s) − gi(s)| ds → 0 weak*, uniformly on compact subsets.
(4) There exists a G-equivariant projection of norm one from L∞(G)⊗M onto M .
(5) There exists a G-equivariant projection of norm one from L∞(G)⊗Z(M) onto

Z(M).

Proof. (2) ⇒ (1) is obvious by taking hi(t) = 〈ξi , (λt ⊗ αt )ξi〉 (noting that the compact
support of ξi implies that the range of hi indeed lies in the norm-closed subalgebra
Z(M)c).
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(1) ⇒ (2): By [4, Proposition 2.5] there exists a net (ξi) in L2(G, Z(M)c) satisfying
properties (2)(a) and (2)(b). By norm density of Cc(G, Z(M)c) in L2(G, Z(M)c), a
further approximation yields the desired net in Cc(G, Z(M)c).

(2) ⇔ (3) follows more or less immediately from [4, Lemme 3.2] applied to the
commutative C∗-dynamical system (Z(M)c, G, α).

(3) ⇒ (4): Suppose there exists a net (gi) in K+
1 (G, Z(M)c) satisfying condition (3)

above. By the properties of (gi), each Pgi
is a positive contractive M-bimodule

map. Passing to a subnet, we may assume that (Pgi
) converges weak* to some P in

B(L∞(G)⊗M , M), which is necessarily a projection of norm one from property (3)(a).
Fix t ∈ G, F ∈ (L∞(G)⊗M)+, and ω ∈ M+∗ . Choose a representation for F with

values in M+. Then

〈P(λt ⊗ αt (F )), ω〉 = lim
i

∫
G

〈gi(s)(λt ⊗ αt )(F )(s), ω〉 ds

= lim
i

∫
G

〈αt (αt−1(gi(s))F (t−1s)), ω〉 ds

= lim
i

∫
G

〈αt−1(gi(s))F (t−1s), (αt )∗(ω)〉 ds

= lim
i

∫
G

〈αt−1(gi(ts))F (s), (αt )∗(ω)〉 ds

= lim
i

∫
G

〈((λt−1 ⊗ αt−1)gi)(s)F (s), (αt )∗(ω)〉 ds.

Since (λt ⊗ αt )gi(s) − gi(s) ∈ Z(M)c is self-adjoint for each s ∈ G, we have

〈((λt−1 ⊗ αt−1)gi − gi)(s)F (s), (αt )∗(ω)〉
= 〈√F(s)((λt−1 ⊗ αt−1)gi − gi)(s)

√
F(s), (αt )∗(ω)〉

≤ 〈√F(s)|((λt−1 ⊗ αt−1)gi − gi)(s)|
√

F(s), (αt )∗(ω)〉
= 〈|((λt−1 ⊗ αt−1)gi − gi)(s)|F(s), (αt )∗(ω)〉
≤ ‖F‖〈|((λt−1 ⊗ αt−1)gi − gi)(s)|, (αt )∗(ω)〉,

for every s, t ∈ G. Property (3) of (gi) then implies that

〈P(λt ⊗ αt (F )), ω〉 = lim
i

∫
G

〈gi(s)F (s), (αt )∗(ω)〉 = 〈αt (P (F )), ω〉,

which yields (4).
(4) ⇒ (5) is obvious by restriction, using the 1 ⊗ M − M-bimodule property of

projections of norm one L∞(G)⊗M → M .
(5) ⇒ (3) is all that remains. Let P : L∞(G)⊗Z(M) → Z(M) be a G-equivariant

projection of norm one. By Lemma 3.1 applied to the commutative von Neumann algebra
Z(M), P lies in the point-weak* closure of PK . Hence, there is a net (gi) of functions in
K+

1 (G, Z(M)c) satisfying

P(F) = w∗ lim
i

Pgi
(F ) = w∗ lim

i

∫
G

gi(s)F (s) ds, F ∈ L∞(G)⊗Z(M).
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In particular, 1 = w∗ limi

∫
G

gi(s) ds. The G-equivariance of P implies that

lim
i

∫
G

〈gi(s)(λt ⊗ αt )(F )(s), ω〉ds = lim
i

∫
G

〈gi(s)F (s), (αt )∗(ω)〉 ds

for all F ∈ L∞(G)⊗Z(M), ω ∈ Z(M)∗ and t ∈ G. But∫
G

〈gi(s)(λt ⊗ αt )(F )(s), ω〉 ds =
∫

G

〈(λt−1 ⊗ αt−1)(gi)(s)F (s), (αt )∗(ω)〉 ds,

as shown above, so it follows that ((λt ⊗ αt )(gi) − gi) → 0 with respect to τF (on
L1(G, Z(M))) for all t ∈ G. Just as in [4, pp. 307], one can use Lemma 3.3 applied
to V = K+

1 (G, Z(M)c) and an argument involving direct sums of Z(M) with copies
of L1(G, Z(M)) to show the existence of a net (gj ) in K+

1 (G, Z(M)c) such that
((λt ⊗ αt )(gj ) − gj ) → 0 with respect to τn for all t ∈ G, which implies a pointwise

version of (3)(b), and
∫
G

gj (s) ds
w∗−→ 1 in Z(M), which is property (3)(a). Property (3)(b)

then follows from Lemma 3.5.

As a corollary to Theorem 3.6 (and its proof), we obtain a different proof of the fact that
a W ∗-dynamical system (M , G, α) over an arbitrary locally compact group G is amenable
if and only if the restricted action (Z(M), G, α) is amenable [3, Corollaire 3.6].

For actions of second countable locally compact groups G on standard Borel spaces
(X, μ) with a quasi-invariant measure μ, amenability of (L∞(X, μ), G, α) implies that
πX is weakly contained in λ [6, Corollary 3.2.2], where πX is the associated unitary
representation of G on L2(X, μ). As a corollary to Theorem 3.6, we obtain a generalization
of this fact to arbitrary (M , G, α).

COROLLARY 3.7. Let (π , u) be a normal covariant representation of a W ∗-dynamical
system (M , G, α). If (M , G, α) is amenable then u is weakly contained in λ.

Proof. Let (ξi) be as in Theorem 3.6 (2). Fix v ∈ H , and define ηi : G → H by ηi(t) =
u(t−1)ξi(t)v. Then ηi ∈ L2(G, H), and a calculation similar to one in the proof of [5,
Theorem 5.3] gives

〈ηi , λsηi〉 = 〈v, 〈ξi , (αs ⊗ λs)ξi〉usv〉 → 〈v, usv〉
uniformly on compact subsets of G.

3.2. Herz–Schur multipliers. The theory of Herz–Schur multipliers has recently been
generalized to the setting of dynamical systems [9, 10, 30, 31]. In this subsection we
build on this work by providing an explicit representation of Herz–Schur multipliers
arising from compactly supported positive type functions for arbitrary (M , G, α), along
with a multiplier characterization of amenability. We begin with preliminaries on Hilbert
C∗-modules associated to dynamical systems.

Let (A, G, α) be a C∗-dynamical system. We let L2(G, A) be the right Hilbert
A-module given by the completion of Cc(G, A) under ‖ξ‖ = ‖〈ξ , ξ〉‖1/2

A , where

〈ξ , ζ 〉 =
∫

G

ξ(s)∗ζ(s) ds, ξ · a(s) = ξ(s)a, ξ , ζ ∈ Cc(G, A), a ∈ A.
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To simplify notation we let α̃t ∈ B(L2(G, A)) denote the isometry

α̃t ξ(s) := (λt ⊗ αt )ξ(s) = αt (ξ(t−1s)), ξ ∈ Cc(G, A).

By left invariance of the Haar measure and continuity of the action, it follows that

〈̃αtξ , α̃t ζ 〉 = αt (〈ξ , ζ 〉), ξ , ζ ∈ L2(G, A), t ∈ G.

We assume throughout that A ⊆ B(H) non-degenerately. Then α : A → Cb(G, A) ⊆
B(L2(G, H)) is a strict ∗-homomorphism, and, viewing L2(G, H) as a right Hilbert
C∗-module over C, we may form the interior tensor product L2(G, A) ⊗α L2(G, H)

[29, Proposition 4.5]. This becomes a Hilbert space with inner product given on simple
tensors by

〈ξ1 ⊗α η1, ξ2 ⊗α η2〉 = 〈η1, α(〈ξ1, ξ2〉)η2〉.
Letting π : A � a �→ 1 ⊗ a ∈ B(L2(G, H)), we also implicitly use the interior tensor
product L2(G, A) ⊗π L2(G, H), which is a Hilbert space under the inner product

〈ξ1 ⊗π η1, ξ2 ⊗π η2〉 = 〈η1, (1 ⊗ 〈ξ1, ξ2〉)η2〉.
The map

L2(G, A) ⊗π L2(G, H) � ξ ⊗π η �→ ξ · η ∈ L2(G × G, H)

extends to a unitary operator, where

ξ · η(s, t) = ξ(s)η(t), s, t ∈ G.

Indeed, for any ξ1, . . . , ξn ∈ Cc(G, A) and η1, . . . , ηn ∈ Cc(G, H),∥∥∥∥
n∑

i=1

ξi · ηi

∥∥∥∥
2

L2(G×G,H)

=
∫ ∫ n∑

i,j=1

〈ξi(s)ηi(t), ξj (s)ηj (t)〉H ds dt

=
n∑

i,j=1

∫ ∫
〈ηi(t), ξi(s)

∗ξj (s)ηj (t)〉H ds dt

=
n∑

i,j=1

∫
〈ηi(t), 〈ξi , ξj 〉ηj (t)〉H dt

=
n∑

i,j=1

〈ηi , (1 ⊗ 〈ξi , ξj 〉)ηj 〉L2(G,H)

=
n∑

i,j=1

〈ξi ⊗π ηi , ξj ⊗π ηj 〉

=
∥∥∥∥

n∑
i=1

ξi ⊗π ηi

∥∥∥∥
2

. (11)

The map is therefore an isometry. That it also has dense range follows from non-degeneracy
of A ⊆ B(H) using a bounded approximate identity (bai) for A.
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We let Wα : L2(G, A) ⊗α L2(G, H) → L2(G × G, H) be the map determined by

Wα(ξ ⊗ η)(s, t) = (̃αt−1ξ)(s)η(t) = αt−1(ξ(ts))η(t), ξ ∈ Cc(G, A), η ∈ Cc(G, H).

Since

Wα(ξ · a ⊗ η)(s, t) = αt−1(ξ(ts)a)η(t) = αt−1(ξ(ts))αt−1(a)η(t)

= αt−1(ξ(ts))(α(a)η)(t)

= Wα(ξ ⊗ α(a)η)(s, t),

it follows that Wα induces a unitary Wα : L2(G, A) ⊗α L2(G, H) → L2(G × G, H),
since

∥∥∥∥Wα

( n∑
i=1

ξi ⊗α ηi

)∥∥∥∥
2

=
∫ ∫ ∥∥∥∥

n∑
i=1

Wα(ξi ⊗α ηi)(s, t)

∥∥∥∥
2

H

ds dt

=
∫ ∫ ∥∥∥∥

n∑
i=1

α̃t−1ξi(s)ηi(t)

∥∥∥∥
2

H

ds dt

=
∫ ∫ n∑

i,j=1

〈̃αt−1ξi(s)ηi(t), α̃t−1ξj (s)ηj (t)〉H ds dt

=
∫ ∫ n∑

i,j=1

〈ηi(t), α̃t−1ξi(s)
∗α̃t−1ξj (s)ηj (t)〉H ds dt

=
∫ n∑

i,j=1

〈ηi(t), 〈̃αt−1ξi , α̃t−1ξj 〉ηj (t)〉H dt

=
∫ n∑

i,j=1

〈ηi(t), αt−1(〈ξi , ξj 〉)ηj (t)〉H dt

=
n∑

i,j=1

〈ηi , α(〈ξi , ξj 〉)ηj 〉L2(G,H)

=
n∑

i,j=1

〈ξi ⊗α ηi , ξj ⊗α ηj 〉

=
∥∥∥∥

n∑
i=1

ξi ⊗α ηi

∥∥∥∥
2

.

This fact was observed for discrete dynamical systems in [9, Lemma 4.9]. By covariance of
(α, λ ⊗ 1), one easily sees that α̃t ⊗ (λt ⊗ 1) induces an invertible map on L2(G, A) ⊗α

L2(G, H), and the standard argument shows that

W ∗
α (1 ⊗ (λt ⊗ 1))Wα = α̃t ⊗ (λt ⊗ 1), t ∈ G. (12)
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Also, whenever a ∈ A commutes with the range of ξ ∈ L2(G, A), in particular when ξ ∈
L2(G, Z(A)), we have

Wα(ξ ⊗α α(a)η)(s, t) = Wα(ξ · a ⊗ η)(s, t)

= αt−1(ξ · a(ts))η(t)

= αt−1(aξ(ts))η(t)

= αt−1(a)αt−1(ξ(ts))η(t)

= (1 ⊗ α(a))(Wα(ξ ⊗α η))(s, t).

Thus,

Wα(ξ ⊗α α(a)η) = (1 ⊗ α(a))Wα(ξ ⊗α η). (13)

When (A, G, α) = (C, G, trivial), Wα is simply the fundamental unitary of the quan-
tum group V N(G).

The following are special cases of [31, Definitions 3.1,3.3] when F is assumed bounded
and continuous.

Definition 3.8. [31, Definitions 3.1,3.3] Let (A, G, α) be a C∗-dynamical system, and let
CB(A) denote the space of completely bounded maps ϕ : A → A with the completely
bounded norm ‖ϕ‖cb = supn ‖ϕn‖, where ϕn : Mn(A) → Mn(A) is the map [aij ] �→
[ϕ(aij )], and Mn(A) has its canonical C∗-algebra norm.

A bounded continuous function F : G → CB(A) is:
(1) a (completely positive) Herz–Schur (A, G, α)-multiplier if the map

�(F)(α × λ)(f ) = (α × λ)(F · f ), f ∈ Cc(G, A),

extends to a completely (positive) bounded map on G � A, where F · f (s) =
F(s)(f (s)), s ∈ G.

(2) a (completely positive) Herz–Schur multiplier if the map

�(F)(α(a)(λs ⊗ 1)) = α(F (s)(a))(λs ⊗ 1), a ∈ A, s ∈ G,

extends to a normal completely (positive) bounded map on (G � A)′′ (the weak*
closure of G � A in B(L2(G, H))).

By [31, Remark 3.4], when A is separable, a Herz–Schur multiplier is automatically
a Herz–Schur (A, G, α)-multiplier. Their argument (for continuous F and f ∈ Cc(G, A))
extends verbatim to arbitrary (A, G, α). As mentioned on [31, pp. 403], when A = C, both
conditions are equivalent to F defining a completely bounded multiplier of the Fourier
algebra A(G), as in that case, the associated maps on C∗

λ(G) admit canonical weak*
continuous extensions to V N(G). Such an extension is not ensured to exist in general,
hence the two definitions.

We now show that any element ξ ∈ Cc(G, A) defines a completely positive Herz–Schur
multiplier via hξ (s)(a) = 〈ξ , (1 ⊗ a)(λs ⊗ αs)ξ〉. For discrete dynamical systems, this
latter fact follows from [30, Theorem 2.8] and/or [9, Theorem 4.8].
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PROPOSITION 3.9. Let (A, G, α) be a C∗-dynamical system. For each ξ ∈ Cc(G, A), the
function h : G → CB(A) given by

h(s)(a) = 〈ξ , (1 ⊗ a)(λs ⊗ αs)ξ〉, s ∈ G, a ∈ A,

defines a normal completely positive map �(h) on (G � A)′′ satisfying ‖�(h)‖cb =
‖h(e)‖,

�(h)(α(a)(λs ⊗ 1)) = α(h(s)(a))(λs ⊗ 1), a ∈ A, s ∈ G, (14)

and

�(h)(α × λ(f )) = α × λ(h · f ), f ∈ Cc(G, A). (15)

When (A, G, α) = (Mc, G, α) for a W ∗-dynamical system (M , G, α), we have that

�(h)(α(x)(λs ⊗ 1)) = α(h(s)(x))(λs ⊗ 1), x ∈ M , s ∈ G. (16)

Proof. We first consider the map at the level of B(G �f A). Let � ∈ B(G �f A)+, and
let ϕ, σ be as in equation (1) in §2.2. We claim that h∗ · � ∈ B(G �f A)+, where

h∗ · � � G � s �→ h(s)∗(�(s)) ∈ A∗.

By [34, Proposition 7.6.8], it suffices to show

n∑
j ,k=1

〈(h∗ · �)(t−1
j tk), α

t−1
j

(a∗
j ak)〉 ≥ 0

for any t1, . . . , tn ∈ G and a1, . . . , an ∈ A. We compute

n∑
j ,k=1

〈(h∗ · �)(t−1
j tk), α

t−1
j

(a∗
j ak)〉 =

n∑
j ,k=1

〈�(t−1
j tk), h(t−1

j tk)(αt−1
j

(a∗
j ak))〉

=
n∑

j ,k=1

〈�(t−1
j tk), 〈ξ , (1 ⊗ α

t−1
j

(a∗
j ak))(λt−1

j tk
⊗ α

t−1
j tk

)ξ〉〉

=
n∑

j ,k=1

〈�(t−1
j tk), 〈(1 ⊗ α

t−1
j

(aj ))(λtj ⊗ 1)ξ , (1 ⊗ α
t−1
j

(ak))(λtk ⊗ α
t−1
j tk

)ξ〉〉

=
n∑

j ,k=1

〈�(t−1
j tk), α

t−1
j

(〈(1 ⊗ aj )(λtj ⊗ αtj )ξ , (1 ⊗ ak)λtk ⊗ αtk ξ〉)〉

=
∫

G

n∑
j ,k=1

〈�(t−1
j tk), α

t−1
j

(αtj (ξ(t−1
j s))∗a∗

j akαtk (ξ(t−1
k s)))〉 ds

=
∫

G

n∑
j ,k=1

〈ϕ, π(α
t−1
j

(αtj (ξ(t−1
j s))∗a∗

j akαtk (ξ(t−1
k s))))σ (t−1

j tk)〉 ds

=
∫

G

n∑
j ,k=1

〈ϕ, σ(t−1
j )π(αtj (ξ(t−1

j s))∗a∗
j akαtk (ξ(t−1

k s)))σ (tk)〉 ds
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=
∫

G

ϕ

(( n∑
j=1

ajαtj (ξ(t−1
j s))σ (tj )

)∗( n∑
k=1

akαtk (ξ(t−1
k s))σ (tk)

))〉
ds

≥ 0.

We therefore obtain a well-defined linear map on B(G �f A) = spanB(G �f A)+ by the
Jordan decomposition.

Since (Mn(C) ⊗ A, G, idMn ⊗ α) is a C∗-dynamical system satisfying Mn(C) ⊗
(G �f A) ∼= G �f (Mn(C) ⊗ A) canonically (by [44, Lemma 2.75]), and since [34,
Proposition 7.6.8] applies to any C∗-dynamical system, the matricial analogue of the
above argument together with the previous identification shows that the linear map

h∗ : B(G �f A) � � �→ h∗ · � ∈ B(G �f A)

is completely positive. Moreover, since h is compactly supported and compactly supported
elements of B(G �f A)+ lie in A(G �f A)+ [34, Lemma 7.7.6], it follows that

h∗ : B(G �f A) � � �→ h∗ · � ∈ A(G �f A)

Since A(G �f A) ⊆ B(G �f A) and A(G �f A) = (G � A)′′∗ ⊆ (G � A)∗, by restric-
tion, h∗ induces a completely positive map on A(G �f A), whose adjoint �(h) is
normal and completely positive on (G � A)′′ . Moreover, for each a ∈ A, s ∈ G, and
v ∈ A(G �f A),

〈�(h)(α(a)(λs ⊗ 1)), v〉 = 〈α(a)(λs ⊗ 1), h∗(v)〉
= 〈a, h(s)∗(v(s))〉
= 〈h(s)(a), v(s)〉
= 〈α(h(s)(a))(λs ⊗ 1), v〉.

Hence, �(h) satisfies equation (14). A similar argument shows that

�(h)(α × λ(f )) = α × λ(h · f ), f ∈ Cc(G, A),

where h · f (s) = h(s)(f (s)), s ∈ G. Taking a bai (ai) for A which converges strictly (and
hence weak*) to the identity of the non-degenerate representation space H of A, we have

�(h)(1(G�A)′′) = w∗ lim
i

�(h)(α(ai)) = w∗ lim
i

α(h(e)(ai)) = α(〈ξ , ξ〉).
By complete positivity,

‖�(h)‖cb = ‖�(h)(1)‖ = ‖〈ξ , ξ〉‖ = ‖h(e)‖.

When (A, G, α) = (Mc, G, α) for a W ∗-dynamical system (M , G, α), equation (16)
follows from (14), weak* density of Mc in M and normality of �(h) and α. Note that in
this case we view

h(s)(x) = 〈ξ , (1 ⊗ x)(λs ⊗ αs)ξ〉 ∈ M

in the obvious way as ξ ∈ L2(G, Mc) ⊆ L2(G, M).

Remark 3.10. For ξ ∈ Cc(G, �2(A)), the function h(s)(a) = 〈ξ , (1 ⊗ 1 ⊗ a)(λs ⊗ 1 ⊗
αs)ξ〉 also satisfies the conclusions of Proposition 3.9. This may be seen by applying
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Proposition 3.9 to the functions hk associated to ξk = Pk ◦ ξ , where Pk : �2(A) → A is the
canonical kth coordinate projection. Then h(s) = ∑∞

k=1 hk(s) and �(h) = ∑∞
k=1 �(hk).

If the range of ξ in Lemma 3.9 lies in Z(A), then �(h) admits an explicit representation
in terms of the fundamental unitary Wα , which we now show. It is not clear whether this
particular representation is valid for all ξ ∈ Cc(G, A), although related representations are
known to exist at the level of equivariant representations of discrete dynamical systems
(see the proof of [9, Theorem 4.8]).

In the following, ωξ ⊗α id denotes the map B(L2(G, A) ⊗α L2(G, H)) → B(L2

(G, H)), defined so that, for T ∈ B(L2(G, A) ⊗α L2(G, H)), (ωξ ⊗α id)(T ) is the oper-
ator in B(L2(G, H)) determined by the sesquilinear form (η1, η2) �→ 〈ξ ⊗α η1, T (ξ ⊗α

η2)〉.
PROPOSITION 3.11. Let (A, G, α) be a C∗-dynamical system. Let ξ ∈ Cc(G, Z(A)) and

h(s) = 〈ξ , (λs ⊗ αs)ξ〉, s ∈ G,

be the associated positive type function. Viewing h : G → CB(A) via multiplication,
h(s)(a) = h(s)a, the Herz–Schur multiplier �(h) satisfies

�(h)(x) = (ωξ ⊗α id)(W ∗
α (1 ⊗ x)Wα), x ∈ (G � A)′′. (17)

Proof. By equation (15),

�(h)(α × λ(f )) =
∫

G

α(h(s)f (s))(λs ⊗ 1) ds, f ∈ Cc(G, A).

Represent A ⊆ B(H) non-degenerately and view G � A ⊆ B(L2(G) ⊗ H). Fix η ∈
Cc(G, H). Then, for any f ∈ Cc(G, A), the commutation relations (12) and (13) imply
that

〈η, �(h)((α × λ)(f ))η〉=
∫

G

〈η, α(h(s)f (s))(λs ⊗ 1)η〉 ds

=
∫

G

〈η, α(〈ξ , α̃sξ〉)α(f (s))(λs ⊗ 1)η〉 ds

=
∫

G

〈ξ ⊗α η, (̃αsξ) ⊗α (α(f (s))(λs ⊗ 1)η)〉 ds

=
∫

G

〈ξ ⊗α η, (̃αsξ) ⊗α (λs ⊗ 1)(α(αs−1(f (s)))η)〉 ds

=
∫

G

〈ξ ⊗α η, (̃αs ⊗α (λs ⊗ 1))(ξ ⊗α (α(αs−1(f (s)))η)〉 ds

=
∫

G

〈ξ ⊗α η, W ∗
α (1 ⊗ (λs ⊗ 1))Wα(ξ ⊗α α(αs−1(f (s)))η)〉 ds

=
∫

G

〈Wα(ξ ⊗α η), (1 ⊗ (λs ⊗ 1)α(αs−1(f (s))))Wα(ξ ⊗α η)〉 ds

=
∫

G

〈Wα(ξ ⊗α η), (1 ⊗ α(f (s))(λs ⊗ 1))Wα(ξ ⊗α η)〉 ds

=〈Wα(ξ ⊗α η), (1 ⊗ (α × λ)(f ))Wα(ξ ⊗α η)〉
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=〈ξ ⊗α η, W ∗
α (1 ⊗ (α × λ)(f ))Wα(ξ ⊗α η)〉

=〈η, (ωξ ⊗α id)(W ∗
α (1 ⊗ (α × λ)(f ))Wα)η〉.

It follows that

�(h)(x) = (ωξ ⊗α id)(W ∗
α (1 ⊗ x)Wα), x ∈ G � A.

By normality, the above representation extends to all x ∈ (G � A)′′.

Using the ‘fundamental unitary’ Wα associated to the C∗-dynamical system (Mc, G, α),
we now rephrase the convergence in Theorem 3.6 (2) at a Hilbert space level. This charac-
terization is a dynamical systems analogue of the fundamental unitary characterization of
(co)amenability of locally compact (quantum) groups, and it leads to an approximation of
the identity of G�̄M by completely positive Herz–Schur multipliers.

For the following theorem, fix a non-degenerate normal representation M ⊆ B(H).

THEOREM 3.12. Let (M , G, α) be a W ∗-dynamical system. The following conditions are
equivalent.
(1) (M , G, α) is amenable.
(2) There exists a net (ξi) in Cc(G, Z(M)c) such that:

(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) 〈ξi , ξi〉 → 1 weak*;
(c) ‖Wα(ξi ⊗α η) − ξi · η‖L2(G×G,H) → 0, η ∈ L2(G, H).

(3) There exists a net (ξi) in Cc(G, Mc) such that:
(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) �(hξi

) → idG�̄M point weak*.

Proof. (1) ⇒ (2): If (M , G, α) is amenable, by Theorem 3.6 there exists a net (ξi) in
Cc(G, Z(M)c) such that 〈ξi , ξi〉 ≤ 1 for all i and 〈ξi , α̃t ξi〉 → 1 weak*, uniformly on
compact subsets. Let η = η1 ⊗ η2 with η1 ∈ Cc(G) and η2 ∈ H . Let ωη2 be the associated
vector functional on B(H). By norm continuity of the action G � M∗ and Lemma 3.4, it
follows that

ωη2(〈̃αt−1ξi − ξi , α̃t−1ξi − ξi〉) = ωη2(αt−1(〈ξi , ξi〉) − 2Re〈ξi , α̃t−1ξi〉 + 〈ξi , ξi〉) → 0

uniformly on compact subsets of G. Hence,

‖Wα(ξi ⊗α η) − ξi · η‖2
L2(G×G,H)

=
∫ ∫

‖(̃αt−1ξi(s) − ξi(s))η(t)‖2
H ds dt

=
∫ ∫

|η1(t)|2‖(̃αt−1ξi(s) − ξi(s))η2‖2
H ds dt

=
∫ ∫

|η1(t)|2〈η2, (̃αt−1ξi(s) − ξi(s))
∗(̃αt−1ξi(s) − ξi(s))η2〉H ds dt

=
∫

|η1(t)|2〈η2, 〈̃αt−1ξi − ξi , α̃t−1ξi − ξi〉η2〉H dt

→ 0.
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Since linear combinations of simple tensors η1 ⊗ η2 with η1 ∈ Cc(G) and η2 ∈ H are
dense in L2(G, H), boundedness of Wα and (ξi), together with the inequality ‖ξ · η‖ ≤
‖ξ‖‖η‖ (which follows from (11)), shows that

‖Wα(ξ ⊗α η) − ξ · η‖L2(G×G,H) → 0,

for all η ∈ L2(G, H).
(2) ⇒ (3): Pick a net (ξi) in Cc(G, Z(M)c) satisfying (2). If (hi) denotes the

corresponding positive type functions in Cc(G, Z(M)c), then Propositions 3.9 and 3.11
applied to the C∗-dynamical system (Mc, G, α) imply that

�(hi)(x) = (ωξi
⊗α id)(W ∗

α (1 ⊗ x)Wα), x ∈ G�̄M ,

and ‖�(hi)‖cb = ‖〈ξi , ξi〉‖ ≤ 1.
By boundedness of (�(hi)), it suffices to show that, for any x ∈ G�̄M and η ∈

Cc(G, H),

|〈η, �(hi)(x)η〉 − 〈η, xη〉| → 0.

To show this, first note that by the representation (17),

〈η, �(hi)(x)η〉 = 〈Wα(ξi ⊗α η), (1 ⊗ x)Wα(ξi ⊗α η)〉,
so condition (2)(c) implies that

|〈η, �(hi)(x)η〉 − 〈ξi · η, (1 ⊗ x)ξi · η〉| → 0. (18)

Second, since the range of each ξi belongs to Z(M)c, for any y ∈ Mc and r , s, t ∈ G, we
have

((1 ⊗ α(y)(λr ⊗ 1))(ξi · η))(s, t) = αt−1(y)((λr ⊗ 1)(ξi · η)(s, t))

= αt−1(y)((ξi · η)(s, r−1t))

= αt−1(y)(ξi(s)η(r−1t))

= ξi(s)αt−1(y)η(r−1t)

= ξi(s)α(y)(η(r−1t))

= ξi(s)(α(y)(λr ⊗ 1)η(t))

= ξi · (α(y)(λr ⊗ 1)η)(s, t).

Thus, ξi · (x0η) = (1 ⊗ x0)ξi · η for any x0 ∈ span{α(y)(λr ⊗ 1) | y ∈ Mc, r ∈ G}. Since
this space is strong operator topology dense in G�̄M , and the · operation is separately
norm continuous (again from (11)), it follows that ξi · (xη) = (1 ⊗ x)ξi · η. Hence,
condition (2)(b) implies

〈ξi · η, (1 ⊗ x)ξi · η〉 = 〈ξi · η, ξi · (xη)〉
= 〈η, (1 ⊗ 〈ξi , ξi〉)xη〉
→ 〈η, xη〉.

Combining this limit with (18) yields the desired conclusion.
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(3) ⇒ (1): By property (3), there exists a net (ξi) in Cc(G, Mc) with 〈ξi , ξi〉 ≤ 1
whose corresponding Herz–Schur multipliers �(hξi

) converge to idG�̄M point weak*. By
Proposition 3.9 applied to (Mc, G, α), it follows that

α(hξi
(s)(x))(λs ⊗ 1) = �(hξi

)(α(x)(λs ⊗ 1))
w∗−→ α(x)(λs ⊗ 1),

and therefore α(hξi
(s)(x)) → α(x) weak*, for each x ∈ M and s ∈ G. Since α : M →

L∞(G)⊗M is a weak*-weak* homeomorphism onto its range, it follows that

〈ξi , (1 ⊗ x)(λs ⊗ αs)ξi〉 = hξi
(s)(x)

w∗−→ x, x ∈ M , s ∈ G.

Hence, (ξi) satisfies condition (7) of [15, Proposition 3.10]. Since the implication
(7) ⇒ (8) of [15, Proposition 3.10] is valid for arbitrary locally compact groups, it follows
that (M , G, α) is amenable.

4. Amenable C∗-dynamical systems
In their recent study of amenability and weak containment for C∗-dynamical systems [15],
Buss, Echterhoff and Willett introduced the following definitions.

Definition 4.1. [15] Let (A, G, α) be a C∗-dynamical system. Then (A, G, α) is:
• von Neumann amenable if the universal W ∗-dynamical system (A′′

α , G, α) is
amenable;

• amenable if there exists a net of norm-continuous, compactly supported, positive type
functions hi : G → Z(A′′

α) such that ‖hi(e)‖ ≤ 1 for all i, and hi(s) → 1 weak* in
A′′

α , uniformly for s in compact subsets of G;
• strongly amenable if there exists a net (hi) ∈ P1(Z(M(A)), G, α) ∩ Cc(G, Z(M(A)))

such that hi(s) → 1 strictly, uniformly on compact subsets of G.

It was shown in [15, Proposition 3.10] that amenability always implies von Neumann
amenability and that the conditions are equivalent when G is exact. It follows from
Theorem 3.6 that amenability and von Neumann amenability coincide for arbitrary
C∗-dynamical systems.

Strong amenability always implies amenability [15, Remark 3.6]; however, results of
Suzuki [40] imply that, for non-commutative A, amenability is, in general, strictly weaker
than strong amenability. For commutative A and discrete G, strong amenability coincides
with amenability by [4, Théorème 4.9]. We show in Corollary 4.14 that the two notions
coincide for arbitrary commutative C∗-dynamical systems.

Another approach to amenability is through Exel’s approximation property of Fell bun-
dles over discrete groups [18]. This property was later generalized by Exel and Ng in [19]
to Fell bundles over locally compact groups. Specializing to the case of crossed products
of C∗-dynamical systems, they defined the C-approximation property of (A, G, α) to be
the existence of nets (ξi) and (ηi) in Cc(G, A) for which ‖〈ξi , ξi〉‖‖〈ηi , ηi〉‖ ≤ C and, for
any f ∈ Cc(G, A) ∫

G

ξi(t)
∗f (s)αs(ηi(s

−1t)) dt → f (s)

https://doi.org/10.1017/etds.2021.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.57


2494 A. Bearden and J. Crann

in norm, uniformly in (s, f (s)). If one can take ηi = ξi , then (A, G, α) has the C-positive
approximation property. Exel and Ng showed that when A is nuclear and G is discrete, the
approximation property implies amenability of (A, G, α), and conversely, the two notions
are equivalent whenever G is discrete and A is commutative or finite-dimensional (see [19,
§4]).

In [8], Bédos and Conti generalized this notion by defining the C-weak approximation
property as the existence of an equivariant representation (ρ, v) of (A, G, α) on a Hilbert
A-module E (see, for example, [9, pp. 40]), and nets (ξi) and (ηi) in Cc(G, E) for which
‖〈ξi , ξi〉‖‖〈ηi , ηi〉‖ ≤ C and

〈ξi , ρ(a)v(s)ηi〉 → a, a ∈ A,

uniformly for s in compact subsets of G. (This property was defined for discrete dynamical
systems in [8], the definition above being the natural generalization.) Again, if one can
take ξi = ηi , then (A, G, α) has the C-positive weak approximation property. For discrete
dynamical systems with A unital, Bédos and Conti showed that the weak approximation
property implies that the full and reduced crossed products coincide [10, Theorem 4.32].

By [15, Theorem 3.25], it follows that the C-positive approximation property implies
amenability. Below we establish a partial converse, showing the equivalence of amenability
and a particular case of the 1-positive weak approximation property of Bédos and
Conti, when E = �2(A). When A is commutative, or, more generally, when Z(A∗∗) =
Z(A)∗∗, we can take E = A, in which case amenability is equivalent to the 1-positive
approximation property. This is a consequence of the following theorem, our main result
of this section.

To explain some of the notation below, for a C∗-dynamical system (A, G, α) and Hilbert
A-module E, there is a canonical A-valued inner product on Cc(G, E) given by

〈ξ , η〉 =
∫

G

〈ξ(s), η(s)〉 ds, ξ , η ∈ Cc(G, E).

We use this notation below in the case when E = �2(A) with the A-valued inner product
〈(an), (bn)〉 = ∑

n a∗
nbn.

THEOREM 4.2. Let (A, G, α) be a C∗-dynamical system. The following conditions are
equivalent.
(1) (A, G, α) is amenable.
(2) There exists a net (ξi) in Cc(G, �2(A)) such that:

(a) 〈ξi , ξi〉 ≤ 1 for all i;
(b) hξi

(e) → idA in the point norm topology;
(c) �(hξi

) → idG�A in the point norm topology,
where hξi

(s)(a) = 〈ξi , (1 ⊗ 1 ⊗ a)(λs ⊗ 1 ⊗ αs)ξi〉 are the associated completely
positive Herz–Schur multipliers.

(3) There exists a net (ξi) in Cc(G, �2(A)) such that 〈ξi , ξi〉 ≤ 1 for all i and

‖hξi
(s)(f (s)) − f (s)‖ → 0, f ∈ Cc(G, A),

uniformly for s in compact subsets of G.

https://doi.org/10.1017/etds.2021.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.57


Amenable dynamical systems over locally compact groups 2495

(4) (A, G, α) is von Neumann amenable.
Moreover, when Z(A∗∗)=Z(A)∗∗, the net (ξi) can be chosen in Cc(G, Z(A))‖·‖

L2(G,Z(A))
≤1,

in which case hi(s)(a) = a〈ξi , (λs ⊗ αs)ξi〉, s ∈ G, a ∈ A.

The outline of the proof is as follows. We first use the Kaplansky density theorem for
Hilbert modules to obtain a C∗-Reiter type property from amenability, which is then used
to deduce the Herz–Schur multiplier convergence (Proposition 4.6). The equivalence of
(2) and (3) follows from a more general equivalence at the level of compactly supported
completely positive multipliers (Theorem 4.10). The final step uses the techniques from [1,
Lemma 6.5] to deduce von Neumann amenability from the weak approximation property
in (3), at which point amenability follows from Theorem 3.6.

We begin with the following estimate, which will be used several times in the sequel.

LEMMA 4.3. Let A be a C∗-algebra and E be an inner product A-module. Then, for any
state μ ∈ A∗ and ξ , ξ ′, η, η′ ∈ E,

|μ(〈ξ , ξ ′〉 − 〈η, η′〉)| ≤ ‖〈ξ , ξ〉‖1/2μ(〈ξ ′ − η′, ξ ′ − η′〉)1/2

+ ‖〈η′, η′〉‖1/2μ(〈ξ − η, ξ − η〉)1/2.

Proof. By the Schwarz inequality for completely positive maps, for any a ∈ A we have
|μ(a)|2 ≤ μ(a∗a), μ(aa∗). Combining this with the Cauchy–Schwarz inequality [29,
Proposition 1.1] for E, we have

|μ(〈ξ , ξ ′〉 − 〈η, η′〉)| = |μ(〈ξ , ξ ′ − η′〉 + 〈ξ − η, η′〉)|
≤ μ(〈ξ ′ − η′, ξ〉〈ξ , ξ ′ − η′〉)1/2 + μ(〈ξ − η, η′〉〈η′, ξ − η〉)1/2

≤ ‖〈ξ , ξ〉‖1/2μ(〈ξ ′ − η′, ξ ′ − η′〉)1/2

+ ‖〈η′, η′〉‖1/2μ(〈ξ − η, ξ − η〉)1/2.

The next lemma is known; we include a proof for completeness.

LEMMA 4.4. Let G be a locally compact group and A be a C∗-algebra. Then L2(G, A) ∼=
L2(G)c ⊗h A completely isometrically.

Proof. Let (ei)i∈I be an orthonormal basis of L2(G). Given ξ1, . . . , ξn ∈ L2(G) and
a1, . . . , an ∈ A, for each i, let bi = ∑n

k=1〈ei , ξk〉ak . Then, on the one hand,∥∥∥∥
n∑

k=1

ξk ⊗ ak

∥∥∥∥
h

=
∥∥∥∥ ∑

i∈I

n∑
k=1

〈ei , ξk〉ei ⊗ ak

∥∥∥∥
h

=
∥∥∥∥ ∑

i∈I

ei ⊗ bi

∥∥∥∥
h

=
∥∥∥∥ ∑

i∈I

b∗
i bi

∥∥∥∥1/2

.

On the other hand,∥∥∥∥
n∑

k=1

ξk ⊗ ak

∥∥∥∥
L2(G,A)

=
∥∥∥∥

n∑
k,l=1

〈ξk , ξl〉a∗
k al

∥∥∥∥
1/2

=
∥∥∥∥ ∑

i∈I

n∑
k,l=1

〈ξk , ei〉〈ei , ξl〉a∗
k al

∥∥∥∥
1/2

=
∥∥∥∥ ∑

i∈I

b∗
i bi

∥∥∥∥1/2

.
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Thus there is an isometric isomorphism θ : L2(G)c ⊗h A → L2(G, A) acting as the iden-
tity on simple tensors. Equipping the space L2(G)c ⊗h A with the canonical C∗-A-module
structure (see [12, Theorem 8.2.11]), standard calculations show that θ is an A-module map
satisfying θ(x〈y, z〉) = θ(x)〈θ(y), θ(z)〉 for all x, y, z ∈ L2(G)c ⊗h A. Thus, if we equip
L2(G, A) with its canonical operator space structure (see [12, Section 8.2]), it follows by
[12, Lemma 8.3.2] that θ is completely isometric.

Let A be a C∗-algebra. The self-dual completion of a Hilbert A-module E is the space
E′′ := BA(E, A∗∗) of bounded A-module maps from E into A∗∗. By [33, Corollary 4.3]
(see also [45, Proposition 2.2]) there is a Hilbert A∗∗-module structure on E′′, whose norm
coincides with the operator norm induced from BA(E, A∗∗).

LEMMA 4.5. Let G be a locally compact group and A be a C∗-algebra. The map

j : L2(G, A∗∗) � ξ �→
(

η �→ 〈ξ , η〉A∗∗ =
∫

G

ξ(s)∗η(s) ds

)
∈ L2(G, A)′′

is an isometric A∗∗-module map.

Proof. Fix ξ ∈ Cc(G, A∗∗). Then

‖j (ξ)‖L2(G,A)′′ = sup{‖〈ξ , η〉A∗∗‖ | η ∈ L2(G, A), ‖η‖ ≤ 1}
≤ sup{‖〈ξ , η〉A∗∗‖ | η ∈ L2(G, A∗∗), ‖η‖ ≤ 1}
= ‖ξ‖L2(G,A∗∗).

For the reverse inequality, first note that by self-duality of the Haagerup tensor product [13,
Corollary 3.4], the canonical inclusion

L2(G)c ⊗h A∗∗ = L2(G)∗∗
c ⊗h A∗∗ ↪→ L2(G)∗∗

c ⊗w∗h A∗∗

is a complete isometry. Further, by [17, Theorem 5.7], the canonical injection

L2(G)∗∗
c ⊗w∗h A∗∗ ↪→ (L2(G)∗c ⊗w∗h A∗)∗ = (L2(G)c ⊗h A)∗∗

is a complete isometry. Hence, L2(G)c ⊗h A∗∗ ⊆ (L2(G)c ⊗h A)∗∗, canonically. Let
(ξi) be a net in (L2(G)c ⊗h A)‖·‖≤‖ξ‖ which converges to ξ in the weak* topology of
(L2(G)∗c ⊗w∗h A∗)∗. Then, for every χ ∈ L2(G) and μ ∈ A∗, we have

〈ξ , χ ⊗ μ〉 = lim
i

∫
G

〈ξi(s), μ〉χ(s) ds,

uniformly for μ in compact subsets of A∗ (by Lemma 3.4). Let χ = χsupp(ξ) ∈ L2(G).
Then for every μ ∈ A∗, the set {μ · ξ(s)∗ | s ∈ G} is norm compact in A∗, so that

μ(〈ξ , ξi〉A∗∗) =
∫

G

〈ξ(s)∗ξi(s), μ〉χ(s) ds

=
∫

G

〈ξi(s), μ · ξ(s)∗〉χ(s) ds
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→
∫

G

〈ξ(s), μ · ξ(s)∗〉χ(s) ds

= μ(〈ξ , ξ〉A∗∗).

Hence, 〈ξ , ξi〉A∗∗ → 〈ξ , ξ〉A∗∗ weak* in A∗∗, and so

‖〈ξ , ξ〉A∗∗‖ ≤ lim sup
i

‖〈ξ , ξi〉A∗∗‖ ≤ lim sup
i

‖j (ξ)‖L2(G,A)′′ ‖ξi‖L2(G,A)

≤ ‖j (ξ)‖L2(G,A)′′ ‖ξ‖L2(G,A∗∗),

which implies that ‖ξ‖L2(G,A∗∗) ≤ ‖j (ξ)‖L2(G,A)′′ .

PROPOSITION 4.6. Let (A, G, α) be an amenable C∗-dynamical system. Then there exists
a net (hi) of continuous compactly supported completely positive Herz–Schur multipliers
satisfying:
(1) ‖hi(e)‖cb ≤ 1 for all i;
(2) hi(e) → idA in the point norm topology;
(3) �(hi) → idG�A in the point norm topology;
(4) hi(s)(a) = 〈ξi , (1 ⊗ 1 ⊗ a)(λs ⊗ 1 ⊗ αs)ξi〉A, for a contractive net (ξi) in

Cc(G, �2(A)).
When Z(A∗∗) = Z(A)∗∗, the net (ξi) can be chosen in Cc(G, Z(A)), in which case
hi(s)(a) = a〈ξi , (λs ⊗ αs)ξi〉, s ∈ G, a ∈ A.

Proof. By Theorem 3.6, amenability of (A, G, α) implies the existence a net (ξi) in
Cc(G, Z(A′′

α)c) whose corresponding positive type functions hi(s) = 〈ξi , (λs ⊗ αs)ξi〉
satisfy hi(e) = 〈ξi , ξi〉 ≤ 1 for all i, limi hi(s) = 1 weak*, uniformly on compact subsets.

Pick η ∈ Cc(G)‖·‖2=1 and let ξ ′
i = (1 ⊗ z)ξi + η ⊗ (1 − z) ∈ Cc(G, Z(A∗∗)). Then

〈ξ ′
i , ξ ′

i 〉 =
∫

G

zξi(s)
∗ξ(s) + |η(s)|2(1 − z) ds = z〈ξi , ξi〉 + ‖η‖2(1 − z) ≤ 1.

By Lemma 4.5, (j (ξ ′
i )) is a net in the unit ball of L2(G, A)′′. By the Kaplansky density

theorem for Hilbert C∗-modules [45, Corollary 2.7], for each i, there exists a net (ξi,j ) in
Cc(G, A)‖·‖

L2(G,A)
≤1 such that

μ(〈j (ξ ′
i ) − j (ξi,j ), j (ξ ′

i ) − j (ξi,j )〉L2(G,A)′′)
1/2 = μ(〈ξ ′

i − ξi,j , ξ ′
i − ξi,j 〉A∗∗)1/2

→ 0, μ ∈ (A∗)+,

where the equality uses that j is an isometric A∗∗-module map (Lemma 4.5). We now
observe two consequences of this approximation which will be combined into a single
convexity argument to yield the desired properties (2)–(4) (property (1) being automatic).

First, for any state μ ∈ A∗, applying Lemma 4.3 to the inner product A∗∗-module E =
Cc(G, A∗∗), we have

μ(1 − 〈ξi,j , ξi,j 〉) = μ(〈ξ ′
i , ξ ′

i 〉 − 〈ξi,j , ξi,j 〉)
≤ ‖〈ξ ′

i , ξ ′
i 〉‖μ(〈ξ ′

i − ξi,j , ξ ′
i − ξi,j 〉)1/2

+ ‖〈ξi,j , ξi,j 〉‖μ(〈ξ ′
i − ξi,j , ξ ′

i − ξi,j 〉)1/2
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≤ 2μ(〈ξ ′
i − ξi,j , ξ ′

i − ξi,j 〉)1/2

j−→ 0.

Thus, 〈ξi,j , ξi,j 〉 → 1 weak* in A∗∗, where we are considering the doubly indexed net as
in [28, pp. 69]. Then, for each i and any state μ ∈ A∗,

μ(〈(1 ⊗ a)(ξi,j − ξ ′
i ), (1 ⊗ a)(ξi,j − ξ ′

i )〉)1/2 ≤ ‖a‖μ(〈ξi,j − ξ ′
i , ξi,j − ξ ′

i 〉)1/2 j−→ 0

and, similarly,

μ(〈(ξi,j − ξ ′
i )(1 ⊗ a), (ξi,j − ξ ′

i )(1 ⊗ a)〉)1/2 = (a · μ · a∗)(〈ξi,j − ξ ′
i , ξi,j − ξ ′

i 〉)1/2 j−→ 0.

In addition, as ξ ′
i takes values in Z(A∗∗), we have (1 ⊗ a)ξ ′

i = ξ ′
i (1 ⊗ a) for each i and

each a ∈ A. Using this, and applying similar estimates from the proof of Lemma 4.3, for
any state μ and a ∈ A,

μ(〈ξi,j , (1 ⊗ a∗)ξi,j 〉 − a∗〈ξi,j , ξi,j 〉)
= μ(〈(1 ⊗ a)ξi,j , ξi,j 〉 − 〈ξi,j (1 ⊗ a), ξi,j 〉)
= μ(〈(1 ⊗ a)(ξi,j − ξ ′

i ), ξi,j 〉 + 〈(ξ ′
i − ξi,j )(1 ⊗ a), ξi,j 〉)

≤ ‖〈ξi,j , ξi,j 〉‖1/2μ(〈(1 ⊗ a)(ξi,j − ξ ′
i ), (1 ⊗ a)(ξi,j − ξ ′

i )〉)1/2

+ ‖〈ξi,j , ξi,j 〉‖1/2μ(〈(ξi,j − ξ ′
i )(1 ⊗ a), (ξi,j − ξ ′

i )(1 ⊗ a)〉)1/2

→ 0,

Thus, 〈ξi,j , (1 ⊗ a)ξi,j 〉 − a〈ξi,j , ξi,j 〉 → 0 weak* in A∗∗, and it follows that 〈ξi,j , (1 ⊗
a)ξi,j 〉 → a weak* in A∗∗ for each a ∈ A.

Second, since (1 ⊗ z)ξ ′
i is equal to the original ξi ∈ Cc(G, Z(A′′

α)c), for any μ ∈
(A′′

α)+∗ = z(A∗)+, we have

μ(〈ξi − zξi,j , ξi − zξi,j 〉A′′
α
)1/2 = μ(〈ξ ′

i − ξi,j , ξ ′
i − ξi,j 〉A∗∗)1/2 → 0,

where zξi,j is shorthand for (1 ⊗ z)ξi,j . Fix a state μ ∈ (A′′
α)+∗ , a ∈ A, and let ηi =

(1 ⊗ a)∗ξi and ηi,j = (1 ⊗ a)∗zξi,j . Then, by Lemma 4.3 applied to the inner product
A′′

α-module E = Cc(G, A′′
α),

|μ(〈ξi , (1 ⊗ a)(λt ⊗ αt )ξi〉) − μ(〈zξi,j , (1 ⊗ a)(λt ⊗ αt )zξi,j 〉)|
= |μ(〈ηi , (λt ⊗ αt )ξi〉) − μ(〈ηi,j , (λt ⊗ αt )zξi,j 〉)|
≤ ‖〈ηi , ηi〉‖1/2μ ◦ αt (〈zξi,j − ξi , zξi,j − ξi〉)1/2

+ ‖〈zξi,j , zξi,j 〉‖1/2μ(〈ηi,j − ηi , ηi,j − ηi〉)1/2

= ‖〈(1 ⊗ a)∗ξi , (1 ⊗ a)∗ξi〉‖1/2μ ◦ αt (〈zξi,j − ξi , zξi,j − ξi〉)1/2

+ μ(〈(1 ⊗ a)∗(zξi,j − ξi), (1 ⊗ a)∗(zξi,j − ξi)〉)1/2

≤ ‖a‖μ ◦ αt (〈zξi,j − ξi , zξi,j − ξi〉)1/2

+ ‖a‖μ(〈zξi,j − ξi , zξi,j − ξi〉)1/2.
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Once again using the norm continuity of the predual action G � (A′′
α)∗ and Lemma 3.4,

the above estimates imply that

|μ(〈ξi , (1 ⊗ a)(λt ⊗ αt )ξi〉) − μ(〈zξi,j , (1 ⊗ a)(λt ⊗ αt )zξi,j 〉)| j−→ 0, μ ∈ (A′′
α)∗,

uniformly for t in compact subsets of G, and a in bounded subsets of A. Putting
hi,j (t)(a) = 〈ξi,j , (1 ⊗ a)(λt ⊗ αt )ξi,j 〉, we obtain a net (hi,j ) of compactly supported
completely positive Herz–Schur multipliers satisfying ‖hi,j (e)‖cb ≤ 1 and (recalling that
each ξi takes central values),

|μ(zhi,j (t)(za))−μ(za)|≤ |μ(zhi,j (t)(za))−μ(hi(t)za)|+ |μ(hi(t)za)−μ(za)| i,j−→ 0

for any μ ∈ (A′′
α)∗, uniformly for (t , a) in compact subsets of G × A (the uniformity on

compacta in A coming from the convergence of the second term above).
Fix f ∈ Cc(G, zA). By [20, Lemme 3.2] there exists a linear combination v ∈ A(G) of

positive definite functions in Cc(G) such that v ≡ 1 on supp(f ). It follows that

v · (α × λ)(f ) = (α × λ)(v · f ) = (α × λ)(f ),

where · is the canonical action of A(G) on G � zA via the dual coaction. Given u ∈ (G �

zA)∗ ⊆ B(G �f zA), by [34, Corollary 7.6.9], v · u is a linear combination of compactly
supported positive definite functions in B(G �f zA). Hence, by [34, Lemma 7.7.6],

v · u ∈ A(G �f zA) = (G � zA)′′∗ ∼= (G�̄A′′
α)∗.

Then {v(s)u(s) | s ∈ G} is a norm-compact subset of (A′′
α)∗, so boundedness of ‖hi,j (s)‖,

the identification A(G �f zA) = (G�̄A′′
α)∗, and the weak* convergence zhi,j (s)(za) →

za imply that

〈u, �(zhi,j )(α × λ(f ))〉 = 〈v · u, �(zhi,j )(α × λ(f ))〉
=

∫
G

〈v(s)u(s), zhi,j (s)(f (s))〉 ds

→
∫

G

〈v(s)u(s), f (s)〉 ds

= 〈u, (α × λ)(f )〉.
By boundedness of (�(zhi,j )), it follows that �(zhi,j ) → idG�zA in the point weak
topology. Identifying A with zA ⊆ A′′

α , as well as the C∗-dynamical systems (A, G, α) ∼=
(zA, G, α), it follows that �(hi,j ) → idG�A in the point weak topology.

Now, for every a1, . . . , an ∈ A, x1, . . . , xm ∈ G � A, consider the convex set

C ={(h(e)(a1) − a1, . . . , h(e)(an) − an,

�(h)(x1) − x1, . . . , �(h)(xm) − xm) | h ∈ conv{hi,j }},
viewed inside the locally convex Hausdorff space

(A, w) ⊕ · · · ⊕ (A, w) ⊕ (G � A, w) ⊕ · · · ⊕ (G � A, w),

where w denotes the weak topology. By the above analysis, 0 belongs to the closure of C.
The standard convexity argument then shows that 0 belongs to the closure of C where
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all summands are equipped with the norm topology. It follows that there exists a net (hi)

of continuous compactly supported completely positive Herz–Schur multipliers hi : G →
CB(A) satisfying properties (1)–(3), and each hi ∈ conv{hi,j }. To see that (4) holds, use
hi ∈ conv{hi,j } to write each hi as

hi(s)(a) =
ni∑

k=1

λk〈ξik ,jk
, (1 ⊗ a)(λs ⊗ αs)ξik ,jk

〉

= 〈⊕ni

k=1

√
λkξik ,jk

, (1 ⊗ 1 ⊗ a)(λs ⊗ 1 ⊗ αs)(⊕ni

k=1

√
λkξik ,jk

)〉,

where ξi := ⊕ni

k=1
√

λkξik ,jk
∈ ⊕ni

k=1Cc(G, A) lies in the unit ball of the Hilbert A-module
L2(G, �2(A)).

Finally, when Z(A∗∗) = Z(A)∗∗, inspection of the proof shows that the ξi,j from the
Kaplansky density argument can be taken in Cc(G, Z(A)). In this case, hi,j (s)(a) =
aki,j (s), where ki,j (s) = 〈ξi,j , (λs ⊗ αs)ξi,j 〉 is a continuous compactly supported func-
tion G → Z(A) of positive type. It follows that the hi from the final convexity argument
satisfy hi(s)(a) = aki(s) for some continuous compactly supported function ki : G →
Z(A) of positive type, which, by [4, Proposition 2.5], is necessarily of the form ki(s) =
〈ξi , (λs ⊗ αs)ξi〉 for some contractive net (ξi) ⊆ L2(G, Z(A)). The norm density of
Cc(G, Z(A)) inside L2(G, Z(A)) then yields the claim.

Remark 4.7. Contrary to the well-known group case (A = C), it is not clear whether every
continuous completely positive Herz–Schur multiplier h : G → CB(A) of compact sup-
port is necessarily of the form hi(s)(a) = 〈ξ , (1 ⊗ a)(λs ⊗ αs)ξ〉 for some ξ ∈ L2(G, A).
Indeed, this was already required for discrete dynamical systems in [10, Remark 4.29].
If this were true, then the net (ξi) in the conclusion of Proposition 4.6 can be taken in
Cc(G, A), and it would follow from the proof of Theorem 4.2 (see below) that amenability
is equivalent to the 1-positive approximation property for arbitrary (A, G, α).

The following lemmas will be used to establish Theorem 4.10, which, as a corollary,
entails the equivalence of conditions (2) and (3) of Theorem 4.2. The first is standard, and
the second is surely known, but we include proofs for completeness.

LEMMA 4.8. Let G be a locally compact group, and f ∈ Cc(G). Then λ(f ) ≥ 0 if and
only if �1/2f is positive definite.

Proof. This follows from the identity 〈�1/2f , g∗ ∗ g〉 = 〈λ(f )(�1/2g)∨, (�1/2g)∨〉 for
f , g ∈ Cc(G), where the former pairing is the dual pairing (B(G), C∗(G)), the latter is
the inner product on L2(G), and (�1/2g)∨(t) = √

�(t−1)g(t−1) for t ∈ G.

LEMMA 4.9. Let (A, G, α) be a C∗-dynamical system. Then span{f ∗ � f | f ∈
Cc(G, A)} is norm dense in C0(G, A).

Proof. Let (fi) be a bai for L1(G) consisting of states in Cc(G) whose support goes to
{e}. Let (aj ) be a bai for A, and let fi,j ∈ Cc(G, A) be fi,j (s) = fi(s)αs(aj ). Then (fi,j )

is a bai for the convolution algebra L1(G, A) (see, for example, [36, Proposition 16.4.3]).
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By density of Cc(G) ⊗ A in C0(G, A) and a simple polarization argument, it suffices to
show that fi,j � (g ⊗ a) → (g ⊗ a) uniformly in C0(G, A) for all g ∈ Cc(G) and a ∈ A.

First, g ∈ Cc(G) is uniformly continuous, so

fi ∗ g → g (19)

uniformly, where ∗ denotes convolution in L1(G). Second, by norm continuity of αt (a) at
the identity, the standard argument shows that∫

G

fi(t)‖αt (a) − a‖ dt → 0. (20)

Then (19) and (20), together with the fact that aja → a, imply

‖fi,j � (g ⊗ a)(s) − g ⊗ a(s)‖ =
∥∥∥∥

∫
G

fi(t)(g(t−1s)αt (aj a) − g(s)a) dt

∥∥∥∥
≤

∫
G

|fi(t)g(t−1s)|‖αt (aj a) − αt (a)‖ dt

+
∫

G

|fi(t)g(t−1s)|‖αt (a) − a‖ dt

+
∣∣∣∣
∫

G

fi(t)(g(t−1s) − g(s)) dt

∣∣∣∣‖a‖
≤ ‖fi‖1‖g‖∞‖aja − a‖

+ ‖g‖∞
∫

G

fi(t)‖αt (a) − a‖ dt

+ ‖a‖|fi ∗ g − g|(s)
i,j−→ 0

uniformly in s. Thus, fi,j � (g ⊗ a) → (g ⊗ a) uniformly in C0(G, A), and the claim is
verified.

THEOREM 4.10. Let (A, G, α) be a C∗-dynamical system and let (hi) be a bounded
net of continuous, compactly supported, completely positive Herz–Schur multipliers. The
following conditions are equivalent.
(1) ‖hi(s)(f (s)) − f (s)‖ → 0 for every f ∈ Cc(G, A), uniformly for s in compact

subsets of G.
(2) hi(e) → idA and �(hi) → idG�A in the respective point norm topologies.

Proof. (1) ⇒ (2): First, pick g ∈ Cc(G) with g(e) = 1. Given a ∈ A, applying condition
(1) to f = g ⊗ a at s = e implies that ‖hi(e)(a) − a‖ → 0.

Second, we have

‖α(hi(s)(f (s)))(λs ⊗ 1) − α(f (s))(λs ⊗ 1)‖ = ‖α(hi(s)(f (s)) − f (s))‖
= ‖hi(s)(f (s)) − f (s)‖ → 0
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for every f ∈ Cc(G, A), uniformly for s in compact subsets of G. Hence, by definition of
�(hi), we have

‖�(hi)((α × λ(f ))) − (α × λ(f ))‖ ≤
∫

supp(f)
‖α(hi(s)(f (s)))(λs ⊗ 1)

− α(f (s))(λs ⊗ 1)‖ ds → 0

for every f ∈ Cc(G, A). By boundedness of (hi), it follows that �(hi) → idG�A in the
point norm topology.

(2) ⇒ (1): Identify A with zA ⊆ A′′
α , and identify the C∗-dynamical systems

(A, G, α) ∼= (zA, G, α). We may also assume A′′
α ⊆ B(H) is standardly represented,

so that α(x) = U∗(1 ⊗ x)U , for a unitary U ∈ L∞(G)⊗B(H).
Using the standard implementation U along with the commutation relation U(λs ⊗

1) = (λs ⊗ us)U , for each f ∈ Cc(G, A) we have∫
G

λs ⊗ hi(s)(f (s))us ds =
∫

G

(1 ⊗ hi(s)(f (s)))(λs ⊗ us) ds

=
∫

G

Uα(hi(s)(f (s)))U∗(λs ⊗ us) ds

=
∫

G

Uα(hi(s)(f (s)))(λs ⊗ 1)U∗ ds

= U�(hi)((α × λ)(f ))U∗

→ U(α × λ)(f )U∗

=
∫

G

λs ⊗ f (s)us ds,

where the convergence is in the norm topology of B(L2(G, H)). Consequently, for any
η ∈ H , with ωη denoting the associated vector functional on B(H),∫

G

〈η, hi(s)(f (s))usη〉λs ds = (id ⊗ ωη)

( ∫
G

λs ⊗ hi(s)(f (s))us ds

)

→ (id ⊗ ωη)

( ∫
G

λs ⊗ f (s)us ds

)

=
∫

G

〈η, f (s)usη〉λs ds, (21)

where the convergence is in (C∗
λ(G), ‖·‖) and is uniform for η in bounded subsets of H .

Let f ∈ Cc(G, A) be positive in the sense that f = f ∗
0 � f0 in the convolution algebra

Cc(G, A). Then, by positivity of �(hi),∫
G

λs ⊗ hi(s)(f (s))us ds = U�(hi)((α × λ)(f ))U∗ ≥ 0

so that ∫
G

〈η, hi(s)(f (s))usη〉λs ds = λ(vi,f ,η) ≥ 0,
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where vi,f ,η(s) = 〈η, hi(s)(f (s))usη〉. Similarly,∫
G

〈η, f (s)usη〉λs ds = λ(vf ,η) ≥ 0,

where vf ,η(s) = 〈η, f (s)usη〉. By Lemma 4.8, wi,f ,η := �1/2vi,f ,η and wf ,η := �1/2vf ,η

are positive definite functions on G. Applying the convergence (21) to (�1/2g ⊗ 1)f ∈
Cc(G, A), for g ∈ Cc(G), it follows that

‖λ(wi,f ,ηg) − λ(wf ,ηg)‖ → 0, g ∈ Cc(G),

uniformly for η in bounded subsets of H .
We now show that wi,f ,η → wf ,η weak* in B(G), and that ‖wi,f ,η‖B(G) →

‖wf ,η‖B(G), both uniformly in η. First, observe that (wi,f ,η) is bounded in B(G) =
C∗(G)∗ uniformly in ‖η‖: since wi,f ,η is positive definite, we have

‖wi,f ,η‖B(G) = wi,f ,η(e)

= 〈η, hi(e)(f (e))η〉
≤ ‖hi(e)‖cb‖f (e)‖‖η‖2

Given g ∈ Cc(G), if we pick v ∈ A(G) with v ≡ 1 on supp(g), then

〈wi,f ,η − wf ,η, g〉 = 〈wi,f ,η − wf ,η, vg〉 = 〈λ(wi,f ,ηg) − λ(wf ,ηg), v〉 → 0.

Since the image of Cc(G) under the universal representation of G is dense in C∗(G) and
(wi,f ,η) is bounded in B(G) = C∗(G)∗ (uniformly in ‖η‖), we have wi,f ,η → wf ,η weak*
in B(G), uniformly for η in bounded subsets.

The convergence ‖wi,f ,η‖B(G) → ‖wf ,η‖B(G) and its uniformity in η follow from the
point norm convergence hi(e) → idA:

lim
i

‖wi,f ,η‖B(G) = lim
i

〈η, hi(e)(f (e))η〉 = 〈η, f (e)η〉 = ‖wf ,η‖B(G).

Thus, in the notation of [21], wi,f ,η → wf ,η in (B(G), τnw∗), uniformly for η in bounded
subsets of H . By [21, Theorem A], it follows that wi,f ,η → wf ,η in the A(G)-multiplier
topology, and therefore uniformly on compact sets, and the convergence is uniform for η

in bounded subsets of H . Thus, given K ⊆ G compact and ε > 0, pick iε such that

sup
s∈K

|wi,f ,η(s) − wf ,η(s)| <
ε

sups∈K �−1/2(s)
, i ≥ iε.

Then, for all i ≥ iε,

sup
s∈K

|vi,f ,η(s) − vf ,η(s)| = sup
s∈K

|�−1/2(s)||wi,f ,η(s) − wf ,η(s)| < ε,

and vi,f ,η → vf ,η uniformly on compact sets, uniformly for η in bounded subsets of H . In
particular,

sup
‖η‖≤2

|〈η, (hi(s)(f (s)) − f (s))usη〉| = sup
‖η‖≤2

|〈η, hi(s)(f (s))usη〉 − 〈η, f (s)usη〉| → 0,
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uniformly for s in compact subsets of G. Hence, by polarization,

‖hi(s)(f (s)) − f (s)‖ = ‖(hi(s)(f (s)) − f (s))us‖
= sup

‖η1‖,‖η2‖≤1
|〈η1, (hi(s)(f (s)) − f (s))usη2〉|

≤ 1
4

3∑
k=0

sup
‖η1‖,‖η2‖≤1

|〈(η1 + ikη2), (hi(s)(f (s))

− f (s))us(η1 + ikη2)〉|
→ 0

for each f ∈ Cc(G, A) of the form f ∗
0 � f0, uniformly for s in compact subsets of G. By

boundedness of hi(s) in CB(A), Lemma 4.9 and a standard 3ε-argument, it follows that

‖hi(s)(f (s)) − f (s)‖ → 0, f ∈ Cc(G, A),

uniformly for s in compact subsets of G.

Let (A, G, α) be a C∗-dynamical system. The space L2(G)c ⊗w∗h A′′
α is a Hilbert

W ∗-module over A′′
α in the canonical fashion [11, Theorem 3.1]; see also [11, bottom of

pp. 71], which explains that the tensor product referred to in [11, Theorem 3.1] coincides
with the weak* Haagerup tensor product in this case; that is, L2(G)c ⊗w∗h A′′

α is the
weak*-closure of the (interior or exterior) C∗-module tensor product L2(G) ⊗ A′′

α in
B(H , L2(G, H)), where A′′

α ⊆ B(H) is a faithful normal representation.
The next lemma is used to make sense of the ‘diagonal’ action of L∞(G)⊗A′′

α from
L2(G, A) into L2(G)c ⊗w∗h A′′

α .

LEMMA 4.11. Let G be a locally compact group and let M be a von Neumann algebra.
There exists a contraction

π : L∞(G)⊗M → CB(L2(G)c ⊗w∗h M , L2(G)c ⊗w∗h M)

such that, for every F ∈ L∞(G)⊗M , ξ , η ∈ L2(G), a ∈ M , and μ ∈ M∗,

〈η ⊗ μ, π(F )(ξ ⊗ a)〉 = 〈(ωη,ξ ⊗ id)(F )a, μ〉 =
∫

G

ξ(s)η(s)〈F̃ (s)a, μ〉 ds.

Proof. Fix a faithful normal representation M ⊆ B(H), and view L∞(G)⊗M ⊆
B(L2(G, H)) and L2(G)c ⊗w∗h M ⊆ B(H , L2(G, H)) under the canonical embeddings.
Define π to be the restriction of the map π̃ : B(L2(G, H)) → CB(B(H , L2(G, H)))

defined by π̃(T )(R) = T R. By approximating with elements in Cc(G, M), it is
straightforward to check that π(L∞(G)⊗M)(L2(G)c ⊗w∗h M) ⊆ L2(G)c ⊗w∗h M , and
that the desired formulae in the statement of the lemma hold.

We now possess the ingredients to establish our main result of this section.

Proof of Theorem 4.2. (1) ⇒ (2) follows directly from Proposition 4.6.
(2) ⇔ (3) follows immediately from Theorem 4.10.
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(3) ⇒ (4) follows from the techniques used in the proof of [1, Lemma 6.5], which, as
shown in the proof of (7) ⇒ (8) in [15, Proposition 3.10], extend to the locally compact
case. We outline the construction, referring the reader to the proof of [15, Proposition 3.10]
for details. Throughout the argument we identify A with zA ⊆ A′′

α .
Let (ξi) ⊂ Cc(G, �2(A)) be a net from (3). Note that we may view (ξi) inside �2

c ⊗h

L2(G, A), as

�2
c ⊗h L2(G, A) = �2

c ⊗h (L2(G)c ⊗h A) (Lemma 4.4)

= (�2
c ⊗h L2(G)c) ⊗h A

= (�2 ⊗ L2(G))c ⊗h A [16, Proposition 9.3.5]

= (L2(G) ⊗ �2)c ⊗h A

= L2(G)c ⊗h (�2
c ⊗h A)

= L2(G, �2(A)),

where the Hilbert A-module structure on the latter space is

〈ξ , η〉 =
∫

G

〈ξ(s), η(s)〉 ds, ξ , η ∈ L2(G, �2(A)).

Let � = {a ∈ A | 0 ≤ a ≤ 1}, which forms a bai for A under the natural ordering, and
converges weak* to 1 inside A′′

α . Define Pi,a : L∞(G)⊗A′′
α → A′′

α by

Pi,a(F ) = 〈(1 ⊗ 1 ⊗ a1/2)ξi , (1 ⊗ F)(1 ⊗ 1 ⊗ a1/2)ξi〉, F ∈ L∞(G)⊗A′′
α ,

where we write F for the map π(F ) : L2(G, A) → L2(G)c ⊗w∗h A′′
α from Lemma 4.11.

Then Pi,a is a completely positive contraction.
Suppose A′′

α ⊆ B(H) and let K = ⊕2
a∈�H . Then with Pi := ⊕aPi,a , we obtain a

completely positive contraction from L∞(G)⊗A′′
α into B(K). Passing to a subnet, we may

assume that Pi converges to P in the weak* topology of CB(L∞(G)⊗A′′
α , B(K)). For each

a ∈ �, let Pa : L∞(G)⊗A′′
α → A′′

α be the compression of P to the ath block, and let Qa :
L∞(G)⊗Z(A′′

α) → A′′
α be the restriction of Pa . The same monotonicity argument from [1,

Lemma 6.5] shows that, for each positive F ∈ L∞(G)⊗Z(A′′
α), (Qa(F )) is increasing in

a, and hence by boundedness it converges weak*. Let Q : L∞(G)⊗Z(A′′
α) → A′′

α be the
resulting map. Using the fact that a �→ 1 ⊗ 1 ⊗ a and s �→ 1 ⊗ λs ⊗ αs is an equivariant
representation of (A, G, α) on the direct sum ⊕∞

n=1L
2(G, A) ∼= �2

c ⊗h L2(G, A), it
follows more or less verbatim from the proof of [1, Lemma 6.5] (see also [15, Proposition
3.10]) that Q is a G-equivariant projection of norm one that takes values in Z(A′′

α). Hence,
(A, G, α) is von Neumann amenable.

(4) ⇒ (1) follows immediately from Theorem 3.6.
Finally, when Z(A∗∗) = Z(A)∗∗, the particular conclusion from Proposition 4.6 yields

the claim.

Remark 4.12. In [15, Definition 3.24], Buss, Echterhoff and Willett defined a
C∗-dynamical system (A, G, α) to have the (wAP) if there exists a bounded net
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(ξi) ∈ Cc(G, A) ⊆ L2(G, A) such that, for all μ ∈ A∗
c , and a ∈ A,

μ(〈ξi , (1 ⊗ a)(λs ⊗ αs)ξi〉 − a) → 0,

uniformly on compact subsets of G. This notion is a weakening of Exel and Ng’s positive
approximation property, a priori unrelated to condition (3) of Theorem 4.2, which is
a specific instance of the positive weak approximation property of Bédos and Conti.
However, it was shown that the (wAP) coincides with amenability [15, Theorem 3.25].
Hence, it is equivalent to condition (3) of Theorem 4.2.

COROLLARY 4.13. Let (A, G, α) be a C∗-dynamical system such that Z(A∗∗) = Z(A)∗∗.
Then (A, G, α) is amenable if and only if it has the 1-positive approximation property.

Proof. The forward direction follows immediately from the special case of Theorem 4.2.
The reverse direction is always true, by [15, Theorem 3.25].

COROLLARY 4.14. A commutative C∗-dynamical system (C0(X), G, α) is amenable if
and only if it is strongly amenable.

Proof. Only one direction requires proof. If (C0(X), G, α) is amenable, by the special
case of Theorem 4.2 when Z(A∗∗) = Z(A)∗∗, there exists a net (ξi) in Cc(G, C0(X))

whose corresponding positive type functions hi(s) = 〈ξi , (λs ⊗ αs)ξi〉 satisfy ‖hi(e)‖ ≤ 1
and

‖hi(s)f − f ‖ → 0, f ∈ C0(X),

uniformly for s in compact subsets of G. It follows that hi(s) → 1 strictly in Cb(X),
uniformly on compact subsets of G. Since the strict topology and the topology of
uniform convergence on compacta agree on bounded subsets of Cb(X) [14, Theorem 1],
the associated functions hi : G × X → C converge to 1 uniformly on compact subsets
of G × X. By norm density of Cc(G) ⊗ Cc(X) in L2(G, C0(X)), we may assume
without loss of generality that ξi ∈ Cc(G) ⊗ Cc(X). Then the net (ξi) satisfies the
conditions of [5, Proposition 2.5(2)], hence (G, X) is an amenable transformation
group.

Remark 4.15. After this paper appeared in preprint, Ozawa and Suzuki showed (using
Theorem 1.1) that amenability and the positive approximation property coincide for
arbitrary C∗-dynamical systems [32].
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