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Keller and Kindler recently established a quantitative version of the famous Benjamini–Kalai–
Schramm theorem on the noise sensitivity of Boolean functions. Their result was extended to the
continuous Gaussian setting by Keller, Mossel and Sen by means of a Central Limit Theorem ar-
gument. In this work we present a unified approach to these results, in both discrete and continuous
settings. The proof relies on semigroup decompositions together with a suitable cut-off argument,
allowing for the efficient use of the classical hypercontractivity tool behind these results. It extends
to further models of interest such as families of log-concave measures and Cayley and Schreier
graphs. In particular we obtain a quantitative version of the Benjamini–Kalai–Schramm theorem
for the slices of the Boolean cube.
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1. Introduction

The notion of influences of variables on Boolean functions has been extensively studied over the
last twenty years, with applications in various areas such as combinatorics, statistical physics
and theoretical computer science, in particular cryptography and computational lower bounds
(see e.g. the survey [13]). Similarly, the noise sensitivity of a Boolean function is a measure of
how its values are likely to change under a slightly perturbed input. Noise sensitivity has become
an important concept which is useful in many fields, for instance percolation, in which field it
was originally defined in [6]. For an overview of the topic, see e.g. the book [11], in which the
noise sensitivity concept and the results of [6] are presented in the context of percolation theory.

Noise sensitivity and influences are closely related. In this work, we will be concerned with
recent connections between influences and asymptotic noise sensitivity. To start with, let us recall
these two important concepts on the discrete cube {−1,1}n. Rather than noise sensitivity, we
describe the related notion of noise stability. Throughout this paper, let νp denote the product
measure (pδ−1 +(1− p)δ1)

⊗n on {−1,1}n, where p ∈ (0,1).
Let A ⊂ {−1,1}n. For x = (x1, . . . ,xn) ∈ {−1,1}n and i = 1, . . . ,n, let τix ∈ {−1,1}n be the

vector obtained from x by changing xi in −xi and leaving the other coordinates unchanged. The
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influence of the ith coordinate on a function f : {−1,1}n → R is given by

Ii( f ) = ‖ f (x)− f (τix)‖L1(νp)
.

Similarly, for sets A ⊂ {−1,1}n, the influence of the ith coordinate is defined using characteristic
functions by Ii(A) = Ii(1A). Notice then that in the uniform case (p = 1/2), if we denote the
shifted set in the ith direction by τi(A) = {x ∈ {−1,1}n, τix ∈ A}, we obtain

Ii(A) =
1
2n

|AΔτi(A)|,

where Δ denotes the symmetric difference between two sets.
Turning to noise stability, let η ∈ (0,1) and let X = (X1, . . . ,Xn) be distributed according to

ν on {−1,1}n. Let Xη = (Xη
1
, . . . ,Xη

n ) be a (1−η)-correlated copy of X , that is, Xη
j

= Xj with
probability 1−η and Xη

j
= X ′

j with probability η where X ′ is an independent copy of X . For a
function f : {−1,1}n → R, following the notations of [16], define its noise stability as

Sc
η( f ) = Eν [ f (X) f (Xη)]−Eν [ f (X)]2.

Similarly, for a subset B ⊂ {−1,1}n, define its noise stability by Sc
η(B) := Sc

η(1B). Thus, the
noise stability of a function Sc

η( f ) is a measure of the sensitivity of f to a small noise η in its
input. A sequence of functions/sets ( fn�

)n�
,(Bn�

)n�
over {−1,1}n� , � ∈ N, where n� ↗ ∞, is said

to be (asymptotically) noise sensitive if its noise stability tends to 0 as � tends to ∞, that is,

lim
�→∞

Sc
η( fn�

) = 0

or

lim
�→∞

Sc
η(Bn�

) = 0,

for each η ∈ (0,1) (keeping in mind η small but fixed).
The first connection between noise sensitivity and influences was established by Benjamini,

Kalai and Schramm [6]. They gave a criterion for a sequence of sets to be noise sensitive in
terms of the sum of squares of the influences. More precisely, one of the main results of [6] is the
following theorem.

Theorem 1.1. Let B� ⊂ {−1,1}n� , � ∈ N. If

lim
�→∞

n�

∑
i=1

Ii(B�)
2 = 0, (1.1)

then (B�)�∈N
is asymptotically noise sensitive.

In fact, Benjamini, Kalai and Schramm only proved this theorem for the uniform measure (i.e.
in the case p = 1/2). The general result, including the case of biased measure (assuming the
bias p does not depend on n), was proved recently by Keller and Kindler [14], who moreover
established a quantitative version of this result. The proof of this quantitative bound uses the
Fourier–Walsh expansion of functions of the discrete cube – and the expression of the noise
stability in the Fourier–Walsh basis (see Section 2.2). Then, hypercontractivity is used to control
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the Fourier weights of a function in terms of the sum of the square of its influences (hypercon-
tractivity is also at the root of the asymptotic Theorem 1.1). The result is stated below as (1.2),
but first we present the analogous continuous version which has a similar form.

The quantitative version of [14] was extended to the continuous Gaussian setting by Keller,
Mossel and Sen [16]. To state the result, we need to introduce the corresponding definitions. Let

dμ(x) = e−|x|2/2 dx

(2π)n/2

be the canonical Gaussian measure on R
n. For W,W ′ independent with distribution μ , and η > 0,

set

W η =
√

1−η2 W +ηW ′,

so that (W,W η) is a
√

1−η2-correlated Gaussian vector. For f : R
n → R, if ‖ f (W )‖L2(μ) < ∞,

define the Gaussian noise stability of f as

SG
η ( f ) = Eμ [ f (W ) f (W η)]−Eμ [ f (W )]2.

Similarly, for a (Borel measurable) subset A ⊂ R
n, set

SG
η (A) = SG

η (1A).

In order to discuss the analogue of Theorem 1.1 in the Gaussian case, it is necessary to define
the influence of the ith coordinate on a subset A ⊂ R

n in this context. To this end, in a continuous
setting, Keller, Mossel and Sen [16] introduce the notion of geometric influence defined by

IGi (A) = Ex[μ+(Ax
i )].

In the latter expression, Ax
i ⊂ R is the restriction of A along the fibre of x = (x1, . . . ,xn) ∈ R

n,
that is,

Ax
i = {y ∈ R, (x1, . . . ,xi−1,y,xi+1, . . . ,xn) ∈ A},

and μ+ denotes the lower Minkowski content, that is, for any Borel measurable set D ⊂ R,

μ+(D) = liminf
r→0

μ(D+[−r,r])−μ(D)
r

(where μ is the standard Gaussian distribution on R).
From a more intuitive point of view, for each i ∈ {1, . . . ,n}, IGi (A) is obtained as a limit of

‖∂i fεk
‖L1(μ) for a sequence of smooth functions ( fεk

)εk�0 such that limεk→0 fεk
= 1A.

We refer the reader to [15, 16] for further developments on geometric influences and their
applications.

In both the cube (with bias p) and Gaussian settings, the quantitative noise sensitivity bounds
of [14] and [16] may then be expressed in the following form: for any sets A ⊂ {−1,1}n, and any
η ∈ (0,1),

Sc
η(A) � 20

( n

∑
i=1

Ii(A)2

)C(p)η

(1.2)
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for the discrete cube where C(p) > 0 depends only on p, and for any sets A ⊂ R
n and any

η ∈ (0,1),

SG
η (A) � 80

( n

∑
i=1

(IGi (A))2

)η2/10

(1.3)

for the Gaussian space (the numerical constants are not sharp). These results are actually proved
in their functional forms, that is, for any bounded (by 1) function f defined respectively in the
discrete cube and in the Gaussian space (C1 smooth in the latter case), we have

Sc
η( f ) � 20

( n

∑
i=1

Ii( f )2

)C(p)η

and SG
η ( f ) � 80

( n

∑
i=1

‖∂i f‖2
1

)η2/10

.

The results in [14] and [16] in fact extend to functions in L2(μ). Indeed, the proof of the
Gaussian result in [16] relies on the result proved in [14] for the discrete cube together with
an appropriate Central Limit Theorem argument. Close inspection of the arguments from [14]
reveals that the Fourier–Walsh decomposition approach may be adapted to a Fourier–Hermite
decomposition in the Gaussian case to yield the same conclusion. Therefore, the boundedness of
the functions can be weakened to obtain the same result for functions in L2(μ).

The Fourier decomposition approach, however, is somewhat limited to the examples of the
discrete cube and the Gaussian space. Indeed, a key property is the fact that the elements of
the orthogonal basis of the underlying space are eigenvectors of the corresponding semigroup.
Spaces satisfying such a property have been characterized in [19].

In this paper we develop a new, simpler proof of the quantitative relationships (1.2) and (1.3),
which moreover applies to more general examples. Once again, the main ingredient will be
hypercontractivity, as in [6, 14, 16]. The starting point of the proof follows closely the work
of [8], which generalizes Talagrand’s inequality of [22] for more general models. The framework
of [8] applies in a rather general context where hypercontractivity holds together with specific
commutation properties. It covers the product of (strictly) log-concave probability measures and
discrete examples as well, including the biased discrete cube or, more generally, Schreier or
Cayley graphs.

In this framework, we will establish quantitative relationships between noise stability and in-
fluences, thereby strengthening the results of [6, 14, 16], under furthermore weaker assumptions.
The proposed simpler and more efficient proof relies on semigroup decompositions and cut-off
arguments.

The general setting contains two main illustrations: probability measures on finite state spaces
that are invariant for some Markov kernel, and continuous product probability measures on R

n

where each measure is of the form dμ(x) = e−V (x)dx for V a smooth potential. The following
is a sample illustration of the results of this work (in the continuous setting). More complete
statements will be presented during the course of the paper.

Theorem 1.2. Let (Rn,μ⊗n), with μ a probability measure on R of the form dμ(x) = e−v(x)dx,
where v′′ � c uniformly for some c > 0. Let Sη denote the noise stability with respect to η in
this context. Then, for any η ∈ [0,1), and any Borel measurable set A ∈ R

n, there exist positive
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constants C,c1 depending only on c such that

Sη(A) � C

( n

∑
i=1

(IGi (A))2

)c1η2

μ⊗n(A)2−2c1η2
.

The generalized definition of the noise stability in this context will be given in the next section.
In particular, for the standard Gaussian measure, Sη =SG

η , so we recover the quantitative estimate
(1.3) established by Keller, Mossel and Sen.

With a common scheme of proof, an analogous statement is established for discrete models
covering in particular the discrete cube endowed with any biased measure (pδ−1 +(1− p)δ1)

⊗n.
The precise setting and the corresponding notion of influence will be presented in Section 2.3.

Theorem 1.3. Let (Ω,μ) = (Ω1 × ·· · × Ωn,μ1 ⊗ ·· · ⊗ μn) be a Cartesian product of finite
probability spaces. Let Sη denote the noise stability with respect to η in this context. Then,
for any η ∈ [0,1), and any set A ⊂ Ω, and some absolute constants C,c1 > 0,

Sη(A) � C

( n

∑
i=1

(Ii(A))2

)c1(ρ/λ )η

μ(A)2−2(ρ/λ )c1η ,

where λ and ρ are respectively the spectral gap and the Sobolev logarithmic constants of the
product graph Ω.

The definitions of λ and ρ as well as Sη in this general context will be given in Sections 2.4
and 2.5. In particular, if Ω = {−1,1}n, μ = νp, Sη = Sc

η and we will see that λ = 1 and

ρ = 2
log p− log(1− p)

2p−1
.

Therefore, the above theorem extends the quantitative estimate (1.2) of Keller and Kindler.
This paper is organized as follows. In Section 2, we first describe a convenient abstract frame-

work and recall some basic facts about Markov semigroups that will be used in the proofs of
our results. Then, in Sections 2.1, 2.2 and 2.3, after developing the examples of the Gaussian
space and the discrete cube, we present the general setting into which our results fall. Then, we
present our generalized definition of noise stability in Section 2.4, and in Section 2.5 we describe
further tools required in the proofs of our results, in particular the hypercontractive property. In
Section 3 we establish our main result on (Rn, dμ(x) =

⊗m
i=1 e−Vi(x)dx) when the potentials Vi are

convex, which represents a generalization of Theorem 1.2. Section 4 is devoted to the discrete
case. Firstly, we focus on product spaces, proving Theorem 1.3 once again in a slightly more
general form, and then we turn to the case of Cayley or Schreier graphs. In particular, we prove
that the analogous result holds for the slices of the Boolean cube. We then briefly conclude in the
last section with a similar inequality on the Euclidean spheres.

2. A general framework

This section presents the framework and the main tools that will be required in the proofs. The
setting emphasized here is quite general, but for the sake of clarity, we discuss in Sections 2.1
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and 2.2 the two main cases that formed the starting point of this investigation, namely the
Gaussian space and the discrete cube endowed with measures νp, p ∈ (0,1).

Let (Ω,A,μ) be a probability space. For a function f : Ω → R in L2(μ), denote its variance
with respect to μ by

Varμ( f ) =
∫

Ω
f 2 dμ −

(∫
Ω

f dμ
)2

.

In the same way, if f � 0, provided it is well defined, we denote its entropy with respect to μ by

Entμ( f ) =
∫

Ω
f log f dμ −

∫
Ω

f dμ log

(∫
Ω

f dμ
)

.

The main argument of the proof will be based on interpolation along a Markov semigroup
with invariant measure μ . We refer to the general references [1, 2, 4] for background on Markov
semigroups. For the reader’s convenience, we briefly recall a few basic aspects, illustrated next
for the two basic model examples.

A family (Pt)t�0 of operators acting on a domain D of functions on Ω is said to be a semigroup
if P0 = Id and, for all s, t � 0, Pt+s = Pt ◦Ps. The semigroup (Pt)t�0 is said to be Markov if, for
all t � 0, Pt1 = 1. The infinitesimal generator L of (Pt)t�0 is defined by

∀ f ∈ D2(L), L f := lim
t→0

Pt f − f
t

,

where the Dirichlet domain D2(L) ⊂D is the set of all functions f in L2(μ) for which the above
limit exists. Conversely, L and D2(L) completely determine (Pt)t�0. From the definition and the
semigroup property, it follows that ∂tPt f = LPt f and P0 f = f , justifying the intuitive notation
Pt = etL.

Given such a Markov semigroup (Pt)t�0, the measure μ is said to be reversible with respect to
(Pt)t�0 if

∀ f ,g ∈ L2(μ),
∫

Ω
f Lgdμ =

∫
Ω

gL f dμ ,

and invariant with respect to (Pt)t�0 if

∀ f ∈ L1(μ),
∫

Ω
Pt f dμ =

∫
Ω

f dμ .

The Dirichlet form associated with (L,μ) is the bilinear symmetric operator

E( f ,g) =
∫

Ω
f (−Lg)dμ

on suitable real-valued functions f ,g in the Dirichlet domain.
Finally, it will be assumed moreover that (Pt)t�0 is ergodic with respect to μ , which means

that μ a.e., Pt f →
∫

Ω f dμ as t → ∞. We then notice – as a basic starting point of the future
investigation – that the variance of function f with respect to μ can be represented via the
semigroup as

Varμ( f ) =
∫

Ω
f 2 dμ −

(∫
Ω

f dμ
)2

= lim
t→∞

(∫
Ω
(P0 f )2 dμ −

∫
Ω
(Pt f )2 dμ

)
.
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The following paragraphs aim to illustrate this general set-up by examples of interest. The first
one discusses the Gaussian model, and its extension to log-concave measures. The next ones deal
with the discrete cube and more general discrete models attached to Markov chains.

2.1. The Gaussian space and continuous setting
Let

dμ(x) = e−|x|2/2 dx

(2π)n/2

be the standard Gaussian measure on Ω = R
n, and consider the Ornstein–Uhlenbeck semigroup

acting of suitable functions f : R
n → R as

Ut f (x) =
∫

Rn
f (e−t x+

√
1− e−2t y)dμ(y), t � 0, x ∈ R

n.

As is classical (see e.g. [2, p. 4]), the generator of the Ornstein–Uhlenbeck semigroup (Pt)t�0 is
given by L = Δ− x ·∇. The Ornstein–Uhlenbeck semigroup (Ut)t�0 is invariant and symmetric
with respect to μ , and ergodic (as is easily checked on the previous integral representation). The
associated Dirichlet domain contains L2(μ)∩C2(Rn), and it follows from integration by parts
that for C2 functions f ,g on R

n,

E( f ,g) =
∫

Rn
f (−Lg)dμ =

∫
Rn

∇ f ·∇gdμ .

In particular, we have the following decomposition of the Dirichlet form along directions:

E( f , f ) =
∫

Rn
|∇ f |2 dμ =

n

∑
i=1

∫
Rn

(∂i f )2 dμ . (2.1)

According to these properties, it is immediately checked that the (Gaussian) noise stability
SG

η ( f ) of a function f : R
n → R as described in the Introduction may be reinterpreted in terms of

the semigroup in the following way.

Lemma 2.1. For f : R
n → R and η > 0,

SG
η ( f ) = Varμ(Ut/2 f ),

with e−t =
√

1−η2.

The preceding Gaussian example may be amplified along the same lines to cover families of
log-concave measures on R

n. Indeed, let dμ(x) = e−V (x)dx be a probability measure on the Borel
sets of R

n where V : R
n → R is a smooth potential, invariant and symmetric with respect to the

second-order diffusion operator L = Δ−∇V ·∇ with associated semigroup Pt = etL, t � 0. As in
the Gaussian case, integration by parts yields, for smooth functions f ,g on R

n,

E( f ,g) =
∫

Rn
f (−Lg)dμ =

∫
Rn

∇ f ·∇gdμ ,

and we therefore obtain a similar decomposition of the Dirichlet form E( f , f ).
We will be concerned more generally with products of such measures, namely μ =

⊗m
i=1 μi on

R
n = R

n1 ×·· ·×R
nm where, for i = 1, . . . ,m, dμi(x) is of the form e−Vi(x)dx with Vi : R

ni → R
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some smooth potential. The product generator L of the Li is given by

L =
m

∑
i=1

Id
R

n1
⊗·· ·⊗ Id

R
ni−1

⊗Li ⊗ Id
R

ni+1
⊗·· ·⊗ Id

Rnm

with associated (product) semigroup (Pt)t�0. Setting ∇i for the gradient in the direction R
ni , the

Dirichlet form is decomposed into

E( f , f ) =
∫

Rn
|∇ f |2 dμ =

m

∑
i=1

∫
Rn
|∇i f |2 dμ .

In this context, we may then state the classical decomposition of the variance (and accordingly
of noise stability) along the semigroup which will be the starting point of our investigation.

Lemma 2.2. For every smooth f : R
n → R and every t � 0,

Varμ(Pt f ) = 2
∫ ∞

t

m

∑
i=1

∫
Rn
|∇iPs f |2 dμ ds. (2.2)

Proof. By ergodicity and the fundamental theorem of calculus,

Varμ(Pt f ) =
∫

Rn
(Pt f )2 dμ −

(∫
Rn

f dμ
)2

= −
∫ ∞

t

d
ds

∫
Rn

(Ps f )2 dμ ds

= −2
∫ ∞

t

∫
Rn

Ps f L(Ps f )dμ ds.

Then, after integration by parts,

Varμ(Pt f )1 = 2
∫ ∞

t
E(Ps f ,Ps f )ds = 2

∫ ∞

t

m

∑
i=1

∫
Rn
|∇iPs f |2 dμ ds

from which the lemma follows.

2.2. The discrete cube
Denote the discrete cube {−1,1}n by Cn, endowed with the measure νp = (pδ−1 +qδ1)

⊗n, where
p+q = 1. L2(Cn,νp) is a Euclidean space with respect to the standard scalar product 〈·, ·〉L2(νp)

.

We will use the standard notation [n] for {1, . . . ,n}.
As described in [22], there is an orthonormal basis, called the Fourier–Walsh basis (ωS)S⊂[n],

given by (∏i∈S ωi)S⊂[n], where

ωi =
xi − (q− p)

2
√

pq
.

Notice that ωi = −
√

q/p if xi = −1 and
√

p/q if xi = 1. Each function defined on Cn can then
be decomposed into multilinear polynomials as

f = ∑
S⊂[n]

f̂ (S)ωS, with f̂ (S) = 〈 f ,ωS〉L2(νp)
.
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Define the operator L by

L f =
n

∑
i=1

Li f =
n

∑
i=1

(∫
{−1,1}

f ν (i)
p − f

)
,

where for all i ∈ [n], ν (i)
p denotes the integration with respect to the ith coordinate. It is classical

that L acts diagonally on the Fourier–Walsh basis. Indeed, it is immediate that if i /∈ S, LiωS = 0.
If i ∈ S, then

LiωS =
(

∏
j∈S, j �=i

ω j

)(
−p

√
q
p

+q
√

p
q
−ωi

)
= −ωS,

so that for all S ⊂ [n], LωS = −|S|ωS.
Now we define the family of semigroups (T p

t )t�0 generated by L, which acts on functions
f : Cn → R via

T p
t f = ∑

S⊂[n]
e−t|S| f̂ (S)ωS, t � 0.

In the uniform case p = 1/2, this semigroup is classically referred to as the Bonami–Beckner
semigroup. For all p ∈ (0,1) it follows from the definition that (T p

t )t�0 is a Markov semigroup,
and by orthogonality of the basis (ωS)S⊂[n] it is immediately checked that νp is its invariant and
reversible probability measure. Further, (T p

t )t�0 is ergodic with respect to νp.
With this background, as in the Gaussian space, the noise stability may be expressed in terms

of the semigroup (T p
t )t�0.

Lemma 2.3. For f : Cn → R and η > 0,

Sc
η( f ) = Varν(T p

t/2
f ),

with e−t = 1−η .

Proof. Expressed in the Fourier–Walsh basis, it follows from the above properties that

Varν(T p
t/2

f ) = ∑
S⊂[n],S �= /0

e−t|S|( f̂ (S))2 = ∑
S⊂[n],S �= /0

(1−η)|S|( f̂ (S))2.

Since the basis is orthonormal, it suffices to check that for any non-empty subset S ⊂ [n],

Sc
η(ωS) = Eνp(ωS(X)ωS(X

η))− (Eνp ωS)
2 = Eνp(ωS(X)ωS(X

η)) = (1−η)|S|.

This is immediate since (X ,Xη) is (1−η)-correlated.

In addition, as an important fact for further purposes, the Dirichlet form E takes the form

E( f , f ) =
n

∑
i=1

∫
Cn

|Li( f )|2dνp.

Indeed, since for each i ∈ [n],
∫
{−1,1}(Li f )ν (i)

p = 0, by the product structure and Fubini’s theorem,

∫
Cn

(∫
{−1,1}

f ν (i)
p

)
(−Li f )dνp =

∫
C(i)

n

(∫
{−1,1}

f ν (i)
p

)(∫
{−1,1}

(−Li f )ν (i)
p

)
dν ([n]\i)

p = 0,
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so ∫
Cn

f (−Li f )dνp =
∫

Cn

|Li( f )|2dνp.

To make the connection with influences, let Di be the ith derivative of f : Cn → R defined by
Di( f )(x) = f (τix)− f (x), with x = (x1, . . . ,xn) and τix as in the Introduction.

It is easily seen that for each r � 1,∫
Cn

|Li f |rdνp = (pqr + prq)
∫

Cn

|Di( f )|rdνp,

so

‖Li f‖1 = 2pq‖Di f‖1 = 2pqIi( f )

according to the definition given in the Introduction.
Thus, for both the uniform and biased measure on the cube, the decomposition of the variance

along the semigroup is similar to the one emphasized in the continuous setting in Lemma 2.2.

Lemma 2.4. For every f : Cn → R, every t � 0, and every p ∈ (0,1),

Varνp(T
p

t f ) = 2
∫ ∞

t

n

∑
i=1

∫
Cn
|LiT

p
s f |2 dν ds = 2pq

∫ ∞

t

n

∑
i=1

∫
Cn
|DiT

p
s f |2 dν ds. (2.3)

2.3. General discrete case
In this subsection we discuss extensions of the discrete cube model to general discrete spaces,
which we assume to be finite (as will be the case in all of our applications).

Let Ω be a finite space with probability measure μ on which there is a Markov kernel K,
invariant and reversible with respect to μ , i.e. such that

∀(x,y) ∈ Ω2, ∑
x∈Ω

K(x,y)μ(x) = μ(y) and K(x,y)μ(x) = K(y,x)μ(y).

Define L by L = K−Id, generator of the semigroup Pt = etL, t � 0. The associated Dirichlet form
is given by

E( f ,g) =
∫

Ω
f (−Lg)dμ =

1
2 ∑

x,y∈Ω
( f (x)− f (y))(g(x)−g(y))K(x,y)μ(y)

for functions f ,g on Ω.
The discrete cube model enters this setting by a suitable choice of the kernel K. Consider the

operator given by L f =
∫

Ω f dμ − f , that is, K f =
∫

Ω f dμ , or K = diag(μ(x))x∈Ω. In particular,
a simple computation shows that

Varμ( f ) =
∫

Ω
f (−L f )dμ = E( f , f ).

An interesting instance of the preceding setting, extending the case of the Boolean cube, is
given by product spaces with product measures,

Ω = Ω1 ×·· ·×Ωn with μ = μ1 ⊗·· ·⊗μn,

https://doi.org/10.1017/S0963548318000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000044


344 R. Bouyrie

when we take the product of the Markov operators. That is, for each i = 1, . . . ,n, and f : Ω → R,
set Li f =

∫
Ωi

f dμi − f and consider the generator on the product space given by

L f =
n

∑
i=1

Li f .

In this case, by an argument similar to that described in the previous subsection, the Dirichlet
form E may be decomposed as

E( f , f ) =
n

∑
i=1

∫
Ω

f (−Li f )dμ =
n

∑
i=1

∫
Ω

Li( f )2 dμ . (2.4)

We will refer to this setting as a discrete product structure, which covers the cube with Ω1 =
· · ·= Ωn = {−1,1}, where each is equipped with the measure pδ−1 +qδ1. Among other relevant
examples, one can take Ωi = Z/qZ, for any q � 3, endowed with the uniform measure. In
this context, the influence of the ith coordinate is naturally defined as ‖Li f‖1 (notice that both
definitions over the Boolean cube agree up to a constant depending on the bias p).

The above discussion can be extended to more general Cayley or Schreier graphs (see [8, 21]),
therefore covering non-product examples. Let G be a (finite) group for which there is a finite
set of generators S that is symmetric, i.e. S−1 = S, and stable by conjugacy. Assume that G
is acting transitively on a finite set Ω and let xg denote the action of g on x, for each g ∈ G,
x ∈ Ω. The associated Schreier graph is the graph of vertices Ω and edges (x,y) if and only if
there exists an s ∈ S such that y = xs. A Cayley graph corresponds to the particular case G = Ω,
consisting therefore of the set of vertices (g)g∈G with edges (g,gs)g∈G,s∈S. One basic example is
the symmetric group Sn with generating set transpositions Tn.

Given a Cayley or Schreier graph G, consider the transition kernel K given by

K(g1,g2) =
1
|S|1S(g1g−1

2 ), g1,g2 ∈ G,

corresponding to the random walk to nearest neighbour and the uniform measure μ on G. Again,
it generates the family of semigroups (Pt = etL)t�0, with L = K − Id. The associated Dirichlet
forms E can be written as

E( f , f ) =
1

2|S| ∑
g∈G

∑
s∈S

[ f (gs)− f (g)]2μ(g) =
1

2|S| ∑s∈S

‖Ds f‖2
L2(G)

where Ds f : g �→ f (gs)− f (g) in the Cayley graph case, and

E( f , f ) =
1

2|S| ∑
x∈Ω

∑
s∈S

[ f (xs)− f (x)]2μ(x) =
1

2|S| ∑s∈S

‖Ds f‖2
L2(Ω)

where Ds f : x �→ f (xs)− f (x) in the Schreier graph case.
Note finally that the influence of a generator element s ∈ S on a function f is then naturally

defined in this context by ‖Ds f‖1.

2.4. The generalized version of noise stability
In this subsection we extend the definition of noise stability to the various models presented in
the preceding subsections.
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Consider therefore the preceding setting of a probability space (Ω,A,μ) equipped with a
semigroup (Pt)t�0 with generator L and Dirichlet form E , invariant and symmetric with respect
to μ .

We say that the pair (L,μ) satisfies a spectral gap (or Poincaré) inequality whenever there
exists λ > 0 such that

λVarμ( f ) � E( f , f ) (2.5)

for every function f of the Dirichlet domain. The spectral gap constant is the largest λ such that
(2.5) holds. It is equivalent to the fact that for every function f in L2(μ), and every t > 0,

Varμ(Pt f ) � e−2λ tVarμ( f ). (2.6)

This follows immediately from Gronwall’s lemma since

d
dt

Varμ(Pt f ) =
d
dt
‖Pt f‖2

2 = −2E(Pt f ,Pt f ).

For further purposes, it is then not hard to check (see [8]), that the spectral gap inequality with
constant λ is equivalent to the fact that for every centred function f (i.e.

∫
Ω f dμ = 0),

∀t > 0, Varμ( f ) � 1
1− e−2λ t

(‖ f‖2
2 −‖Pt f‖2

2). (2.7)

As standard examples, λ = 1 for the standard Gaussian measure on R
n and similarly for the

discrete cube equipped with any biased measure ν . As a result, from Lemmas 2.1 and 2.3, the
spectral gap inequality in its formulation (2.6) implies

Sc
η( f ) � (1−η)‖ f‖2

2 (resp. SG
η ( f ) �

√
1−η2‖ f‖2

2)

for (centred) functions of the discrete cube (resp. the Gaussian space). Thus, for a sequence
of (centred) functions ( fn)n�0 defined on the discrete cube or on the Gaussian space such that
infn�0 ‖ fn‖2 > 0, the spectral gap inequality does not determine whether or not it is a noise
sensitive sequence.

We then extend the definition of noise stability of sets/functions in our both discrete and
continuous setting in order to preserve this property.

Turning to log-concave measures, we give the following definition.

Definition 1. Let (Rn,μ), where μ is a (product) log-concave probability measures, with spec-
tral gap constant λ and underlying semigroup (Pt)t�0. For a measurable function f in L2(μ), we
define its noise stability with parameter η ∈ [0,1) by

Sη( f ) = Varμ(Pt f ),

where e−2λ t =
√

1−η2, and similarly for Borel sets A ⊂ R
n, Sη(A) = Sη(1A).

In the context of Section 2.3, extending the case of the Boolean cube, the definition of noise
stability is as follows (once again λ is the spectral gap constant and (Pt)t�0 the underlying
semigroup).
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Definition 2. Let Ω be a finite Schreier graph. For a function f : Ω → R, we define its noise
stability with parameter η ∈ [0,1) by

Sη( f ) = Varμ(Pt f ),

where e−2λ t = 1−η , and similarly for sets A ⊂ Ω, Sη(A) = Sη(1A).

In the case of Schreier graphs, the noise stability can be interpreted in more probabilistic terms.
Indeed, since (Pt)t�0 = (e−t etK)t�0 and by symmetry of (Pt)t�0 with respect to μ ,

Sη( f ) = Eμ⊗μ( f (x) f (y))− (Eμ f )2.

In the above equation, y is obtained from x by acting randomly on m elements of the generating
set S, where m is a Poisson random variable with mean 2t, and t = t(η) satisfies e−2λ t = 1−η .

From Section 2.2, the last definition agrees with Sc
η in the case of the Boolean cube. Moreover,

in this general case the spectral gap inequality (2.6) can be similarly rewritten as

Sη( f ) � (1−η)Varμ( f ).

Thus, with this normalization, for each fixed noise η , the spectral gap inequality does not bring
any information about the sensitivity of a sequence of functions ( fn)n�0 of fixed variance. A
quantitative relationship given by the generalization of Theorem 1.3, as developed in Section 4,
therefore represents an improvement upon the spectral gap inequality similar to that in previous
work [14].

2.5. The hypercontractive tool and the decomposition along ‘directions’
In this subsection we present the main tool used in the proof of the results of this work, that is,
hypercontractivity of the underlying semigroups. First proposed by Nelson [20], it has turned
out to be a very useful property, known to be equivalent to the so-called logarithmic Sobolev
inequalities. We also present, in a fairly abstract setting, the common decomposition of the
Dirichlet form along ‘directions’ with the associated influences with respect to these directions.

Say that (L,μ) satisfies a logarithmic Sobolev inequality whenever there exists ρ > 0 such that

ρ Entμ( f 2) � 2E( f , f ) (2.8)

for every function f on the Dirichlet domain. The logarithmic Sobolev constant is the largest
ρ > 0 such that (2.8) holds. Since the work of Gross [12] in the continuous setting (see e.g.
[1, 2, 4]) and Diaconis and Saloff-Coste [9] in the discrete setting, it is known that a logarithmic
Sobolev inequality is equivalent to hypercontractivity of the semigroup (Pt)t�0 in the sense that
for every f ∈ Lp(μ), t > 0 and 1 < p < q < ∞ with p � 1+(q−1)e−2ρt ,

‖Pt f‖q � ‖ f‖p. (2.9)

As a result, the Sobolev logarithmic constant is often also referred to as the hypercontractive
constant. It is classical that ρ is smaller than the spectral gap constant λ . It is also a main feature
of these inequalities that both spectral gap and logarithmic Sobolev constants of a product space
are the minimum of the spectral gap and logarithmic Sobolev constants of each factor in the
product. Recall that λ = ρ = 1 for the standard Gaussian measure on R

n and similarly for the
uniform measure on the discrete cube. For future purposes, it is known that if dμ(x) = e−V (x)dx
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on R
n is such that the Hessian of the potential V satisfies Hess(V ) � c > 0 (uniformly, as

symmetric matrices), then λ � ρ � c. This very classical fact follows from the pioneering work
of Bakry and Émery [3] on hypercontractive diffusions.

In each class of examples of the above subsections, a key property is the decomposition of the
Dirichlet form along ‘directions’. We will be interested in situations in which these directions
commute in an appropriate sense with derivation. This may be expressed in the following abstract
formulation, which immediately applies to the various examples of interest. Namely, assume that
there is a decomposition of the Dirichlet form E along ‘directions’ i for some operators Γi such
that, for any suitable f on Ω,

E( f , f ) =
m

∑
i=1

∫
Ω

Γi( f )2 dμ , (2.10)

where the operators Γi commute with the semigroup in a sense that there exists a real constant κ
such that, for every i = 1, . . . ,m and t � 0,

Γi(Pt f ) � eκtPt(Γi( f )). (2.11)

To illustrate this rather formal property, consider the example of the Gaussian space (Rn,μ)
and its Ornstein–Uhlenbeck semigroup (Ut)t�0. Recall the decomposition (2.1), and observe that
∂iUt f = e−tUt(∂i f ) so that (2.11) holds with m = n, Γi( f ) = |∂i f | and κ =−1. In the framework
of a log-concave measure dμ(x) = e−V (x)dx, it is known (see e.g. [2, 4]) that whenever the
Hessian of the potential V satisfies Hess(V ) � c where c ∈ R, for every smooth f : R

n → R

and every t � 0,

|∇Pt f | � e−ctPt(|∇ f |). (2.12)

Therefore, a product of log-concave measures dμi(x) = e−Vi(x)dx, i = 1, . . . ,m, for which each
potential Vi satisfies Hess(Vi) � ci with ci ∈ R, is another instance of the decomposition (2.10)
with Γi( f ) = |∇i f | and κ = −minci.

In the discrete product setting, we may take Γi = Li. Then it follows immediately from the
definition that for each i = 1, . . . ,m, LiL = LLi so that LiPt = PtLi for every t � 0. These equalities
ensure the suitable commutation (2.11) with κ = 0.

Such general decompositions were emphasized in [8] in connection with the study of in-
fluences and the extension of Talagrand’s inequality. The starting point of [8] is the variance
representation along the semigroup. We proceed in the same manner. Indeed, by ergodicity and
the decomposition (2.10), we may express both Lemma 2.2 and 2.4 in a general form. Namely,
the noise stability can be decomposed as

Sη( f ) = Varμ(Pt f ) = 2
m

∑
i=1

∫ ∞

t

∫
Ω

Γi(Ps f )2 dμ ds,

where t = t(η) is given as in Definition 1 in the continuous case or Definition 2 in the discrete
case. Together with hypercontractivity, this decomposition will be at the root of our main conclu-
sions. As well as the above illustrations, another example of interest given by Euclidean spheres
will be presented in Section 5 below.
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To conclude this section, it is worthwhile mentioning that the content of our statements are
invariant under translation of the functions by a constant. Therefore, for the remainder of the
paper, it will be implicitly assumed that all functions are centred.

3. The Gaussian and log concave settings

This section will be devoted to the proof of Theorem 1.2, in fact in a more general formulation.

Theorem 3.1. Let μ be a probability measure on R
n = R

n1 × ·· ·×R
nm of the form dμ(x) =⊗m

i=1 e−Vi(x)dx with Hess(Vi) � c > 0 for every i = 1, . . . ,m. Let also f : R
n → R be C1-smooth

and in L2(μ). Then, for every η ∈ (0,1),

Sη( f ) � max

(
4,

4
c

)
(1−η2)c/(4λ )

( m

∑
i=1

‖∇i f‖2
1

)α(η)

‖ f‖2−2α(η)
2

where

α(η) =
1− (1−η2)ρ/(4λ )

2
.

Recall that ρ denotes the hypercontractive constant and λ the Poincaré constant, and that in
this setting we have λ � ρ � c.

To compare with the results of [16] in the Gaussian case (corresponding therefore to m = n,
n1 = · · · = nm = 1, and Vi quadratic) for which λ = ρ = c = 1, Theorem 3.1 implies that for all
f : R

n → R and every η ∈ (0,1),

SG
η ( f ) � 4(1−η2)1/4

( n

∑
i=1

‖∂i f‖2
L1(μ)

)(1−(1−η2)1/4)/2

‖ f‖1+(1−η2)1/4

2 .

It may always be assumed that
n

∑
i=1

‖∂i f‖2
L1(μ) � ‖ f‖2

2,

otherwise the above inequality is implied by the spectral gap inequality (in its formulation
SG

η ( f ) �
√

1−η2‖ f‖2
2). As

1− (1−η2)1/4 � η2

4
,

it thus yields the inequality of [16] with C1 = 4 and C2 = 1/8.

Proof of Theorem 3.1. We make the assumption that f is such that
m

∑
i=1

‖∇i f‖2
1 � ‖ f‖2

2,

otherwise there is nothing to prove (again by the spectral gap inequality). We set

t = − log(1−η2)
4λ

,

so that Sη( f ) = Varμ(Pt f ).
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We start with Lemma 2.2, from which

Varμ(Pt f ) = 2
∫ ∞

t

m

∑
i=1

∫
Rn
|∇iPs f |2 dμ ds.

The main step of the proof consists of the following cut-off argument. Namely, for i = 1, . . . ,m
and M > 0,∫

Rn
|∇iPs f |2 dμ =

∫
{|∇iPs f |�M‖∇i f‖1}

|∇iPs f |2 dμ +
∫

{|∇iPs f |>M‖∇i f‖1}

|∇iPs f |2 dμ . (3.1)

The first integral is bounded from above as∫
{|∇iPs f |�M‖∇i f‖1}

|∇iPs f |2 dμ � M‖∇i f‖1

∫
Rn
|∇iPs f |dμ

� M‖∇i f‖1e−cs
∫

Rn
Ps(|∇i f |)dμ ,

where in the last inequality we use the commutation property (2.12), which ensures that |∇iPs f |�
e−csPs(|∇i f |). Since the measure μ is invariant with respect to (Ps)s�0, it follows that

∫
{|∇iPs f |�M‖∇i f‖1}

|∇iPs f |2 dμ � e−csM‖∇i f‖2
1.

After integrating over time and summing over i = 1, . . . ,m, we reach a first bound
m

∑
i=1

∫ ∞

t

∫
{|∇iPs f |�M‖∇i f‖1}

|∇iPs f |2 dμ ds � 1
c

e−ctM
m

∑
i=1

‖∇i f‖2
1. (3.2)

We now focus on bounding from above
m

∑
i=1

∫
{|∇iPs f |>M‖∇i f‖1}

|∇iPs f |2 dμ .

To this end, for every i = 1, . . . ,m, Hölder’s inequality applied to |∇iPs f |2 and 1{|∇iPs f |>M‖∇i f‖1}
yields ∫

{|∇iPs f |>M‖∇i f‖1}

|∇iPs f |2 dμ � μ
{
|∇iPs f | > M‖∇i f‖1

}1/q‖∇iPs f‖2
2p (3.3)

for every p,q � 1 such that 1/p+1/q = 1. However, since Ps f = Ps/2(Ps/2 f ), using (2.12) once
again,

|∇iPs f |2p � e−cps[Ps/2(|∇iPs/2 f |)]2p,

so that by integration

‖∇iPs f‖2
2p � e−cs

∥∥Ps/2(|∇iPs/2 f |)
∥∥2

2p.

Now, the hypercontractive property (2.9) ensures that, if ρ denotes the hypercontractive constant,
for p = p(s) with 2p(s)−1 = eρs,∥∥Ps/2(|∇iPs/2 f |)

∥∥2
2p � ‖∇iPs/2 f‖2

2.
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Putting (3.3) and the last two inequalities together, we infer that
∫

{|∇iPs f |>M‖∇i f‖1}

|∇iPs f |2 dμ � e−csμ
{
|∇iPs f | > M‖∇i f‖1

}1/q(s)‖∇iPs/2 f‖2
2, (3.4)

with

q(s) =
p(s)

p(s)−1
=

eρs +1
eρs −1

.

By Markov’s inequality, we further obtain, using again the commutation (2.12) and the invariant
property of the semigroup, that

μ
{
|∇iPs f | > M‖∇i f‖1

}
� 1

M‖∇i f‖1

∫
Rn
|∇iPs f |dμ � e−cs

M
. (3.5)

The above bounds (3.4) and (3.5) therefore imply

∫ ∞

t

∫
{|∇iPs f |>M‖∇i f‖1}

|∇iPs f |2 dμ ds �
∫ ∞

t

(
e−cs

M

)1/q(s)

e−cs‖∇iPs/2 f‖2
2 ds

� e−ct
∫ ∞

t

1
M1/q(s) ‖∇iPs/2 f‖2

2 ds.

We then notice that the function

s �→ 1
q(s)

= tanh(ρs/2)

is increasing. Hence, for every M � 1,

e−ct
∫ ∞

t

1
M1/q(s) ‖∇iPs/2 f‖2

2 ds � e−ct

M1/q(t)

∫ ∞

t
‖∇iPs/2 f‖2

2 ds.

Summing over i = 1, . . . ,m,

m

∑
i=1

∫ ∞

t

∫
{|∇iPs f |>M‖∇i f‖1}

|∇iPs f |2 dμ ds � e−ct

M1/q(t)

m

∑
i=1

∫ ∞

t
‖∇iPs/2 f‖2

2ds.

By Lemma 2.2 again,

m

∑
i=1

∫ ∞

t
‖∇iPs/2 f‖2

2ds = Varμ(Pt/2 f ) � ‖ f‖2
2

(recall that f is centred), so

m

∑
i=1

∫ ∞

t

∫
{|∇iPs f |>M‖∇i f‖1}

|∇iPs f |2 dμ ds � e−ct

M1/q(t) ‖ f‖2
2. (3.6)

By the decomposition (3.1), the two bounds (3.2) and (3.6) therefore yield

Varμ(Pt f ) � max

(
2,

2
c

)
e−ct

(
M

m

∑
i=1

‖∇i f‖2
1 +

1
M1/q(t) ‖ f‖2

2

)
.
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Here, we recall that M � 1. Given the assumption ‖ f‖2
2 � ∑m

i=1 ‖∇i f‖2
1, we can choose M such

that

M
m

∑
i=1

‖∇i f‖2
1 =

1
M1/q(t) ‖ f‖2

2.

We therefore get

M1+1/q(t) =
‖ f‖2

2

∑m
i=1 ‖∇i f‖2

1

,

so that finally

Varμ(Pt f ) � max

(
4,

4
c

)
e−ct

( n

∑
i=1

‖∇i f‖2
1

)1/(1+q(t))

‖ f‖2q(t)/(1+q(t))
2 .

Replacing q(t) with its explicit form, and recalling that t = −log(1−η2)/(4λ ), we obtain the
stated claim. Theorem 3.1 is established.

4. The discrete setting

4.1. The case of the Boolean cube and other discrete product spaces
This section develops the corresponding analysis for the cube and discrete product models.

To deal with the Boolean cube {−1,1}n, consider the discrete product structure as emphasized
in Section 2.3 consisting of a product space Ω = Ω1 ×·· ·×Ωn with product probability measure
μ = μ1⊗·· ·⊗μn, each factor (Ωi,μi) being endowed with the Markov operator Li f =

∫
Ωi

f dμi−
f . We recall that the Dirichlet form E admits the decomposition

E( f , f ) =
n

∑
i=1

∫
Ω

Li( f )2 dμ ,

and that the equality Varμ f = E( f , f ) implies that the spectral gap constant is equal to 1. The
underlying (product) semigroup (Pt)t�0 will be assumed to be hypercontractive with constant ρ
(equivalently, each (Li,μi) is hypercontractive with constant ρ).

Theorem 4.1. Let Ω = Ω1 ×·· ·×Ωn equipped with a product probability measure μ = μ1 ⊗
·· ·⊗μn, and let f : Ω → R. Then, if η ∈ [0,1),

Sη( f ) � 5

( n

∑
i=1

‖Li f‖2
1

)α(η)

‖ f‖2−2α(η)
2 ,

where

α(η) =
1− (1−η)ρ/2

2
� ρ

4
η .

Theorem 4.1 contains the result of [14] for the discrete cube Ω = {−1,1}n with μ = νp =
(pδ−1 +qδ1)

⊗n. To make the connection, note that we can assume that

n

∑
i=1

‖Li f‖2
1 � ‖ f‖2

2,
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otherwise there is nothing to prove. Recall that

‖Li f‖1 = 2pq‖Di f‖1 = 2pqIi( f ).

Thereby, we get

Sc
η( f ) � 5(2pq)ρη/2

( n

∑
i=1

(Ii f )2

)ρη/4

‖ f‖2−ρη/2
2 .

so that, since 4pq � 1,

Sc
η( f ) � 5

( n

∑
i=1

(Ii f )2

)ρη/4

‖ f‖2−ρη/2
2 .

On the other hand, the logarithmic Sobolev constant is equal to

ρ =
2(p−q)

log p− logq
(= 1 if p = q)

(see [9]), which implies the main result of [14] as emphasized in the Introduction. In the uniform
case (i.e. p = q), we have ρ = 1 and the above result is similar to Theorem 4 of [14] with weaker
assumptions on f . In the biased case, the constants are somewhat weaker for small p or q.

It is worth pointing out that the quantitative relationship of Theorem 4.1 yields empty results
when log p is of order logn. In this range, indeed, the Benjamini–Kalai–Schramm relationship
does not hold even qualitatively, since there exist sequences of noise stable functions ( fn)n�0

such that ∑n
i=1 Ii( fn)2 goes to 0 (see [14]).

Proof of Theorem 4.1. The scheme of the proof is almost identical to that developed in the
continuous setting for Theorem 3.1. Nevertheless, since (2.11) holds with κ = 0, there is no
longer an exponential decay in time. Thus, in the decomposition of the variance with respect to
the semigroup of Lemma 2.4, we need an integration over a finite domain [0,T ] for some T > 0.
This is possible thanks to inequality (2.7):

Varμ( f ) � 1
1− e−2T

(‖ f‖2
2 −‖PT f‖2

2).

Since

‖Pt f‖2
2 −‖Pt+T f‖2

2 = −
∫ T+t

t

d
ds

‖Ps f‖2
2 ds

= 2
∫ t+T

t
E(Ps f ,Ps f )ds

= 2
∫ t+T

t

n

∑
i=1

∫
Ω
|LiPs f |2 dμ ds

and Sη( f ) = Varμ(Pt f ) (with e−2t = 1−η), for every T > 0,

Sη( f ) � 2
1− e−2T

∫ t+T

t

n

∑
i=1

∫
Ω
|LiPs f |2 dμ ds.

https://doi.org/10.1017/S0963548318000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000044


On Quantitative Noise Stability and Influences for Discrete and Continuous Models 353

For each i = 1, . . . ,n, we again cut the integral into two parts with M � 1. The same commut-
ation and contraction argument yields∫

{|LiPs f |�M‖Li f‖1}

|LiPs f |2 dμ � M‖Li f‖1

∫
Ω
|LiPs f |dμ � M‖Li f‖2

1.

Therefore

Varμ(Pt f ) � 2T
1− e−2T

(
M

n

∑
i=1

‖Li f‖2
1 +

1
T

∫ t+T

t

n

∑
i=1

∫
{|LiPs f |>M‖Li f‖1}

|LiPs f |2 dμ ds

)
.

Above the truncation level, for each i = 1, . . . ,n, the same argument based on the Hölder and
hypercontractivity inequalities yields∫

{|LiPs f |>M‖Li f‖1}

|LiPs f |2 dμ � μ
{
|LiPs f | > M‖Li f‖1

}1/q‖LiPs f‖2
2p

� ‖LiPs/2 f‖2
2 μ

{
|LiPs f | > M‖Li f‖1

}1/q(s)

� 1
M1/q(s) ‖LiPs/2 f‖2

2,

with

q(s) =
eρs +1
eρs −1

.

Therefore,
∫ t+T

t

n

∑
i=1

∫
{|LiPs f |>M‖Li f‖1}

|LiPs f |2 dμ ds � 1
M1/q(t)

n

∑
i=1

∫ t+T

t
‖LiPs/2 f‖2

2 ds.

Since
n

∑
i=1

∫ t+T

t
‖LiPs/2 f‖2

2 ds �
n

∑
i=1

∫ ∞

0
‖LiPs/2 f‖2

2 ds = ‖ f‖2
2,

we thus get that

Varμ(Pt f ) � 2max(1,T )
1− e−2T

(
M

( n

∑
i=1

‖Li f‖2
1

)
+‖ f‖2

2
1

M1/q(t)

)
.

The theorem then follows as in the conclusion of the proof of Theorem 3.1, using moreover the
fact that

inf
T>0

4max(1,T )
1− e−2T

=
4

1− e−2
� 5.

4.2. The case of more general Schreier graphs and non-product examples
This subsection briefly discusses further examples of interest, basically non-product models, for
which the preceding approach may be developed similarly. The basic ingredients for such exten-
sion are the decomposition of the variance into directional derivatives and hypercontractivity.
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Among discrete examples, the recent work of O’Donnell and Wimmer [21] investigates the
examples of general Schreier or Cayley graphs. In the context of Section 2.2, recall that the
Dirichlet form E takes the form

E( f , f ) =
1

2|S| ∑
x∈Ω

∑
s∈S

[ f (xs)− f (x)]2μ(x) =
1

2|S| ∑s∈S

‖Ds f‖2
L2(Ω).

Therefore, the ‘directions’ are given by the elements of the generating set, and moreover it is
shown in [21] that the commutation (2.11) holds with κ = 0 (see also [8]). As usual, let (Pt)t�0

denote the underlying semigroup attached to this Dirichlet form, and let λ be the spectral gap
constant and ρ the logarithmic Sobolev constant. Noting that

infT>0
max(1,T )
1− e−λT

� 2
λ

,

we get the following theorem from the general proof scheme developed in the preceding
subsection.

Theorem 4.2. Let Ω be a Schreier or Cayley graph and f : Ω → R. Then, for any η ∈ (0,1),

Sη( f ) � 4
λ |S|

(
∑
s∈S

Is( f )2

)α(η)

‖ f‖2−2α(η)
2 ,

with

α(η) =
1− (1−η)ρ/(2λ )

2
� ρ

4λ
η .

Thus, for a sequence of graphs (Ωn)n�0, we see from Theorem 4.2 that the original Benjamini–
Kalai–Schramm criterion holds whenever infn∈N

ρn/λn > 0, since in this case there exists a
universal constant c > 0 such that αn(η) � cη . Theorem 4.2 then represents a quantitative form
similar to (1.2).

Explicit examples with known respective spectral gap and logarithmic Sobolev constants are
given in [21]. Among these, we can cite the discrete tori (Z/mZ)n, m � 2. Then, given the product
structure, both constants λn and ρn are of the same order, so Theorem 4.2 provides a quantitative
Benjamini–Kalai–Schramm relationship. The case of the Boolean cube Cn with uniform measure
can be seen as the Cayley graph (Z/2Z)n generated by its canonical basis S = (ei)1�n. Then the
Dirichlet form is

E( f , f ) =
1

2n

n

∑
i=1

‖Di f‖2
L2(Cn) =

2
n

n

∑
i=1

‖Li f‖2
L2(Cn),

so the spectral gap constant and the hypercontractive constant are both equal to 2/n with this nor-
malization. The above statement is therefore another generalization of the results
of [14].

The main novelty with respect to the previous subsection is that it also covers two non-product
models of graphs, namely the symmetric group and the slices of the Boolean cube. In the case
of the symmetric group Sn, recall its Cayley graph structure with the generating set given by
the subset of the transpositions Tn. The spectral gap λn is equal to 2/(n−1), and the logarithmic
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Sobolev constant ρn is smaller than a/(n logn) for some a > 0 (see [9]). Hence, Theorem 4.2
does not improve upon the spectral gap inequality since ρn/λn goes to 0 as n goes to infinity.
Notice that this conclusion also holds for the inequalities established in [8] and [21] in the case
of the symmetric group.

However, as pointed out in [21], in the case of the slices of the Boolean cube, both the spectral
gap and Sobolev logarithmic constants may be of the same order. For 1 � k < n, the slices (of
order k) of the Boolean cube are defined by

([n]
k

)
= {x ∈ {0,1}n,∑n

i=1 xi = k}. The symmetric

group is acting on
([n]

k

)
by xσ = (xσ(i))1�i�n, so it has a Schreier graph structure. The generators

are given by the transpositions τi j, 1 � i < j � n, with xτi j being obtained from x by switching
i and j. Then, it is a result of Lee and Yau [18] that the spectral gap constant is λ = 1/n and
the logarithmic Sobolev constant ρ satisfies ρ−1 ∼ n logn2/(k(n− k)). In particular when k/n is
bounded away from 0 and 1, both constants are of the same order. We rescale the Dirichlet form
by multiplying by n so that

E′( f , f ) =
1

n−1 ∑
1�i< j�n

‖Dτi j
f‖2

2.

Thus, the spectral gap constant associated with E′ is equal to 1 and the corresponding Sobolev
logarithmic constant ρ ′ satisfies ρ ′−1 ∼ logn2/(k(n− k)). In particular, whenever k/n is bounded
away from 0 and 1, ρ ′ is bounded away from 0. Letting Ss

η = Ssk
η denote the noise stability in

this context, Theorem 4.2 therefore implies that

Ss
η f � 5

(
1

n−1 ∑
1�i< j�n

(Iτi j
f )2

)cη

‖ f‖2−2cη
2 , (4.1)

for some positive constant c. We recall that Iτi j
f is the influence of the transposition τi j on f .

Therefore, the original [6] criterion holds over slices of the Boolean cube of order k ∈ [c′n,(1−
c′)n], for each positive constant c′. That is, if the sequence(

1
n ∑

1�i< j�n

(Iτi j
fn)2

)
n�0

goes to 0 when n goes to infinity, then the sequence ( fn)n�0 is (asymptotically) noise sensitive.
It is worth mentioning that a variant of this qualitative result over the slices has recently been
established by Forsström [10], who uses this result in connection with the notion of exclusion
sensitivity. We point out that (4.1) represents a quantitative version similar to the results of [14,
16]. It would be interesting to provide some application of this quantitative result.

5. The case of the Euclidean spheres

To conclude, we present the continuous model given by the Euclidean spheres in which the
preceding proof scheme applies. That is, a decomposition (2.10) holds with commutation (2.11)
as well as hypercontractivity (2.9) and spectral gap (2.5) (see [8]). Although we could give a
similar definition of noise stability, we will not do so as it does not have a clear meaning.
We will express the results only in terms of the heat semigroup associated with the spherical
Laplacian.
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Let S
n−1 ⊂ R

n (n � 2) denote the (n− 1)-dimensional Euclidean sphere equipped with its
normalized surface measure μ . For i, j ∈ {1, . . . ,n}, consider Di, j = x j∂i − xi∂ j. The Dirichlet
form associated with the spherical Laplacian

Δ =
1
2

n

∑
i, j=1

D2
i, j

takes the form

E( f , f ) =
∫

Sn−1
f (−Δ f )dμ =

1
2

n

∑
i, j=1

∫
Sn−1

(Di, j f )2 dμ .

Since we clearly have ΔDi, j = Di, jΔ, (2.11) holds with κ = 0. Consider again the heat semigroup
(Pt f )t�0 = (etΔ f )t�0 generated by the Laplacian Δ. It is known (see e.g. [2]) that the spectral
gap constant and the logarithmic Sobolev constant are both equal to n−1. Our result can then be
stated as follows.

Theorem 5.1. Let f : S
n−1 → R, where n � 2, be C1-smooth and in L2(μ). Then, for any t � 0,

Varμ(Pt f ) � 5

( n

∑
i, j=1

‖Di, j f‖2
1

)α(t)

‖ f‖2−2α(t)
2 ,

where

α(t) =
1− e−(n−1)t

2
.

Sketch of the proof. The proof follows that of Theorem 3.1, but with the twist emphasized in
the discrete framework of Section 4, that is, restricting to a finite domain of integration in time
[0,T ] for some T � 0 using (2.7) and replacing the logarithmic Sobolev constant by its value
n−1. Then, we simply notice that for every λ � 1

inf
T>0

4max(1,T )
1− e−2λT

=
4

1− e−2λ � 5.

Recall that the Poincaré inequality implies that Varμ(Pt f ) � e−(n−1)tVarμ( f ). Since the log-
arithmic Sobolev constant and the spectral gap constant are equal in this case, Theorem 5.1
provides some non-trivial bound on Varμ(Pt f ) in specific ranges of t (i.e. for t of order 1/n).
To the best of our knowledge, this inequality is new. It would therefore be of interest to exhibit
functions ( fn)n�0 over the spheres such that the sequence (∑n

i, j=1 ‖Di, j fn‖2
1)n�2 goes to 0.
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[1] Ané, C., Blachère, S., Chafaı̈, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G.
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