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Abstract In this paper, we investigate the distribution of the maximum of partial sums of certain cubic

exponential sums, commonly known as ‘Birch sums’. Our main theorem gives upper and lower bounds
(of nearly the same order of magnitude) for the distribution of large values of this maximum, that hold

in a wide uniform range. This improves a recent result of Kowalski and Sawin. The proofs use a blend

of probabilistic methods, harmonic analysis techniques, and deep tools from algebraic geometry. The
results can also be generalized to other types of `-adic trace functions. In particular, the lower bound of

our result also holds for partial sums of Kloosterman sums. As an application, we show that there exist

x ∈ [1, p] and a ∈ F×p such that |
∑

n6x exp(2π i(n3
+ an)/p)| > (2/π + o(1))

√
p log log p. The uniformity of

our results suggests that this bound is optimal, up to the value of the constant.

Keywords: Birch sums; Exponential sums; Sato–Tate distribution; l-adic trace functions; Riemann

hypothesis over finite fields
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1. Introduction

Let p > 3 be a prime number, and E be the elliptic curve over Fp given by the Weierstrass

equation y2
= x3

+ bx + c. If we put ap = p+ 1− |E(Fp)|, then we have

ap =
∑
n6p

χp(n3
+ bn+ c), (1.1)

where χp is the Legendre symbol modulo p. Furthermore, we have the Hasse bound

|ap| 6 2
√

p. In [1], Birch proved the ‘vertical’ Sato–Tate law for the ap’s, which states that

as E varies over all elliptic curves over Fp, the quantity ap/
√

p becomes equidistributed
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1260 Y. Lamzouri

in [−2, 2] with respect to the Sato–Tate measure

µST =
1
π

√
1−

x2

4
dx,

as p→∞. In analogy with the multiplicative character sum (1.1), Birch [1] also

conjectured that a similar result should hold for the normalized cubic exponential sum,

defined for a ∈ Fp by

Bip(a) :=
1
√

p

∑
n∈Fp

ep(n3
+ an), (1.2)

where here and throughout we let e(z) := exp(2π i z), and ep(z) := e(z/p) is the standard

additive character modulo p. The sums Bip(a) are commonly known as Birch sums. In

this case, Weil’s bound for exponential sums gives

|Bip(a)| 6 2 for all a ∈ Fp. (1.3)

Birch’s conjecture asserts that as a varies in F×p , Bip(a) becomes equidistributed in [−2, 2]
with respect to the Sato–Tate measure. This conjecture was subsequently proved by Livné

in [13].

Recently, Kowalski and Sawin [11] investigated the distribution of the polygonal paths

formed by linearly interpolating the partial sums

1
√

p

∑
06n6x

ep(n3
+ an), (1.4)

for 0 6 x 6 p− 1. Let

Mp(a) =MBip (a) := max
x<p

1
√

p

∣∣∣∣∣∣
∑

06n6x

ep(n3
+ an)

∣∣∣∣∣∣ .
Among their results, Kowalski and Sawin proved that as a varies in F×p and p→∞, the

quantity Mp(a) converges in law to the random variable

M = max
α∈[0,1)

∣∣∣∣∣∣αX(0)+
∑
h 6=0

e(αh)− 1
2π ih

X(h)

∣∣∣∣∣∣ , (1.5)

where {X(h)}h∈Z is a sequence of independent random variables with Sato–Tate

distributions on [−2, 2]. The proof uses deep results of Deligne, Katz, Laumon and others

concerning the ramification and monodromy groups of certain sheaves associated to Birch

sums. The origin of the probabilistic model (1.5) comes from the following identity, which

is an immediate consequence of the discrete Plancherel formula

1
√

p

∑
06n6x

ep(n3
+ an) =

1
√

p

∑
|h|<p/2

γp(h; x)Bip(a− h), (1.6)
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where

γp(h; x) :=
1
√

p

∑
06m6x

ep (mh)

are the Fourier coefficients modulo p of the characteristic function of the interval [0, x].
Furthermore, one has the elementary estimate (see [11, p. 13])

1
√

p
γp(h; x) =

ep (xh)− 1
2π ih

+ O
(

1
p

)
, (1.7)

which holds uniformly for 1 6 |h| < p/2. This shows that M is a good model for Mp(a) if

we assume that the Birch sums Bip(a− h) behave ‘independently’ for different shifts h and

are all Sato–Tate distributed on [−2, 2]. This assumption indeed holds (see Lemma 2.1),

if the number of shifts is � log p.

For a positive real number V , we define

8p(V ) :=
1

p− 1
|{a ∈ F×p :Mp(a) > V }|.

Kowalski and Sawin [11] proved that the limiting distribution of 8p(V ) is double

exponentially decreasing. More precisely, they showed that there exists a constant c > 0
such that

c−1 exp(−exp(cV ))) 6 P(M > V ) = lim
p→∞

8p(V ) 6 c exp(−exp(c−1V )). (1.8)

When V is fixed and p is sufficiently large, (1.8) implies that 8p(V ) satisfies the same

bounds (with a different constant c), and hence is double exponentially decreasing in

V . In this paper, we establish upper and lower bounds (of nearly the same order of

magnitude) for 8p(V ) in a large uniform range of V in terms of p. As an application, we

exhibit large values of Mp(a), as a varies in F×p , that we believe are best possible. Our

main result is the following theorem which substantially improves the estimate (1.8).

Theorem 1.1. Let p be a large prime. For all real numbers 1 6 V 6 (2/π) log log p−
2 log log log p we have

exp
(
−A0 exp

(π
2

V
)
(1+ O(

√
V e−πV/4))

)
6 8p(V ) 6 exp

(
−C exp

((π
2
− δ

)
V
))

for some positive constant C, where

δ =
4π −π2

2π + 8
= 0.18880 . . . , and A0 = exp

(
−γ − 1−

1
2

∫
∞

0

f (u)
u2 du

)
= 0.6846 . . . ,

where γ is the Euler–Mascheroni constant, and f : [0,∞)→ R is defined by

f (t) :=

logE(etX) if 0 6 t < 1,

logE(etX)− 2t if t > 1,
(1.9)

where X is a random variable with Sato–Tate distribution µST .
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Remark 1.2. The upper bound of Theorem 1.1 is valid in the extended range 1 6 V 6
(log log p)/(π/2− δ)− 2 log log log p. It would be interesting to obtain a more precise

estimate for 8p(V ). The analogy with character sums (see the discussion below) lead

us to believe that the true order of magnitude of 8p(V ) is perhaps closer to the lower

bound of Theorem 1.1. It is also curious to note that the constant 1
2

∫
∞

0
f (u)
u2 du appears

in an asymptotic estimate of Liu–Royer–Wu [14], for the distribution function of large

(or small) values of L-functions attached to holomorphic cusp forms at s = 1.

Kowalski and Sawin also investigated the polygonal paths formed by the linear

interpolation of partial sums of Kloosterman sums and obtained a similar result to (1.8)

in this case. The lower bound of Theorem 1.1 holds verbatim for the maximum of partial

sums of Kloosterman sums, but the proof of the upper bound does not carry over to

this case. Indeed, one of the main ingredients in this proof are strong bounds for short

sums of cubic exponential sums, which are not currently known for Kloosterman sums.

More precisely, in order to carry out the proof of the upper bound of Theorem 1.1 to this

setting one needs the following bound∑
n∈I

ep(an+ bn)� |I |1−ε, (1.10)

for any interval I ⊂ [1, p] of length p1/2+ε/2 for some ε > 0, where x is the multiplicative

inverse of x modulo p. In contrast, Kowalski and Sawin only needed an average form of

(1.10) (over (a, b) ∈ F×p ×F×p , see the proof of [11, Theorem 1.5]), to obtain the analogue

of (1.8) for the maximum of partial sums of Kloosterman sums.

Our result should be compared with the recent work of Bober, Goldmakher, Granville

and Koukoulopoulos [3] concerning the distribution of the maximum of character sums.

The proof of the upper bound of Theorem 1.1 follows the same strategy as [3] but uses

several different ingredients, while the proof of the lower bound is completely different.

This is mainly due to the lack of multiplicativity in our case which plays a central

role for character sums. In particular, the analogue of the lower bound of Theorem 1.1

in [3] follows readily by relating character sums to values of Dirichlet L-functions and

using the work of Granville–Soundararajan [8] on the distribution of L(1, χ). Another

crucial difference in our case is the fact that the Birch sums Bip(a− h) and Bip(a+ h)
behave independently, while this is clearly not the case for the values χ(−h) and

χ(h) where χ is a Dirichlet character. This makes the analysis of the exponential

sum
∑
|h|6H

e(αh)−1
h Bip(a− h) more complicated in our case, which explains why our

Theorem 1.1 is less precise than [3, Theorem 1.1]. However, our probabilistic model is

easier to work with, due to the fact that the X(h) are independent (in the case of character

sums, the X(h) are multiplicative random variables such that the X(p)’s are independent

for different primes p). This is exploited in the proof of the lower bound of Theorem 1.1

through relating the Laplace transform of the sum Im 1
√

p
∑

n6p/2 ep(n3
+ an) to that of

its corresponding random model, and using the saddle-point method to obtain precise

estimates for the distribution of its large values (see Section 7).

The Birch sums (1.2) are examples of `-adic trace functions over finite fields. These trace

functions have been extensively studied in a series of recent works by Fouvry, Kowalski,

https://doi.org/10.1017/S1474748018000385 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000385


On the distribution of the maximum of cubic exponential sums 1263

and Michel [4–6], Fouvry, Kowalski, Michel, Raju, Rivat, and Soundararajan [7], Kowalski

and Sawin [11, 12], and Perret-Gentil [16, 17]. Our results can be generalized to other

types of trace functions that are attached to certain coherent families of `-adic sheaves

(in the sense given by Perret-Gentil [16]), if their short sums satisfy a bound similar

to (1.10). The precise definition of a coherent family is technical (see [16]), but roughly

speaking, these are geometrically irreducible sheaves of Q`-modules over Fp for which

the ‘conductor’ is bounded independently of p, the arithmetic and geometric monodromy

groups are equal and of fixed classical type, and the sheaves formed by additive shifts

are ‘independent’. As an example, Theorem 1.1 can be generalized for the partial sums

of the exponential sum
1
√

p

∑
n∈Fp

ep (an+ f (n)) , (1.11)

where f ∈ Z[t] is an odd polynomial of degree n > 3 with n 6= 7, 9. In this case the sums

(1.11) are real valued, and the monodromy group of the associate sheaf is Spn−1(C).
As a corollary of the lower bound of Theorem 1.1 (more precisely of Theorem 7.1), we

exhibit large values of partial sums of Birch sums. The same result also holds for partial

sums of Kloosterman sums.

Corollary 1.3. Let p be a large prime. There exist at least p1−1/ log log p points a ∈ F×p
such that ∣∣∣∣∣∣

∑
n6p/2

ep(n3
+ an)

∣∣∣∣∣∣ >
(

2
π
+ o(1)

)
√

p log log p.

Remark 1.4. Using a completely different method, Bonolis [2] independently proved that

maxx<p

∣∣∣∑n6x ep(n3
+ an)

∣∣∣ > c
√

p log log p for at least p1−ε points a ∈ F×p , though with

a smaller positive constant c. He also obtained the same result for partial sums of

Kloosterman sums.

Inserting the estimates (1.3) and (1.7) in the identity (1.6) gives the analogue of the

Pólya–Vinogradov inequality for Mp(a), namely that

max
x<p

∣∣∣∣∣∣
∑
n6x

ep(n3
+ an)

∣∣∣∣∣∣� √p log p, (1.12)

uniformly for a ∈ F×p . The double exponential decay of the distribution 8p(V ) and the

uniformity of Theorem 1.1 lead us to formulate the following stronger conjecture, which

is optimal up to the value of the constant by Corollary 1.3.

Conjecture 1.5. There exists a positive constant C0, such that for all primes p > 3 and

all 1 < x 6 p we have ∣∣∣∣∣∣
∑
n6x

ep(n3
+ an)

∣∣∣∣∣∣ 6 C0
√

p log log p.
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Montgomery and Vaughan [15] proved the analogue of this conjecture for character

sums assuming the generalized Riemann hypothesis (GRH) for Dirichlet L functions. It

would be interesting to prove Conjecture 1.5 conditionally on some unproven but widely

believed hypotheses such as the GRH.

The paper is organized as follows: In Section 2 we investigate the moments of sums

of Birch sums using ingredients from algebraic geometry. In Section 3 we estimate the

moments and the Laplace transform of sums of independent random variables that are

Sato–Tate distributed. In Section 4 we give an outline and present the main ingredients

of the proof of the upper bound of Theorem 1.1. In Section 5 we use harmonic analysis

techniques to obtain a non-trivial bound for a ‘random’ exponential sum. The proof of

the upper bound of Theorem 1.1 will then be completed in Section 6. Finally, in Section 7

we prove the lower bound of Theorem 1.1.

2. Moments of sums of Birch sums and ingredients from algebraic geometry

In this section we shall investigate the 2kth moment of sums of Birch sums∑
y6|h|<z

c(h)Bip(a− h), (2.1)

where 1 6 y < z < p/2 are real numbers and {c(h)}h∈Z is a sequence of complex

numbers. For k fixed, these moments were computed by Kowalski and Sawin [11]

using deep tools from algebraic geometry, namely Deligne’s equidistribution theorem,

the Goursat–Kolchin–Ribet criterion of Katz, as well as Katz’s computations for the

monodromy groups of a certain sheaf attached to the exponential sums Bip(a) (see

[10]). However, in our case we need asymptotic formulas for these moments that hold

uniformly in the region k 6 (log p)1−o(1). To this end, we shall use a uniform version of

[11, Lemma 2.5], which we extract from the recent work of Perret-Gentil [16] on `-adic

trace functions over finite fields.

Lemma 2.1. Let p > 7 be prime. For all positive integers 1 6 k 6 (log p)/2, and all

h1, . . . , hk ∈ Fp we have

1
p− 1

∑
a∈F×p

Bip(a− h1) · · ·Bip(a− hk) = E(X(h1) · · ·X(hk))+ O
(

2kk
√

p

)
,

where {X(h)}h∈Z is a sequence of independent random variables with Sato–Tate

distributions on [−2, 2], and the implied constant is absolute.

Proof. First, we write∑
a∈F×p

Bip(a− h1) · · ·Bip(a− hk) =
∑

a∈F×p

Bip(a− j1)b1 · · ·Bip(a− jm)bm ,

where j1, . . . , jm are distinct, and b1+ · · ·+ bm = k.
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Let S be the rank 2 lisse Q`-sheaf on A1
Fp

parameterizing the Birch sums Bip(a) (see

Katz [10] for a reference on these sheaves and their monodromy groups). Katz (see [10,

Theorem 19 and Corollary 20]) showed that the geometric and arithmetic monodromy

groups of the sheaf S are both equal to SL2(C) for p > 7. Furthermore, it follows from the

discussion in the beginning of [11, p. 15] that for τ 6= 0, there is no geometric isomorphism

[+τ ]∗S ' S ⊗L,

where L is a rank 1 Q`-sheaf on A1
Fp

. Thus, we can apply [16, Proposition 4.2] which

gives

1
p− 1

∑
a∈F×p

Bip(a− j1)b1 · · ·Bip(a− jm)bm =

m∏
i=1

mult1(Std⊗bi )+ O
(

2kk
√

p

)
, (2.2)

where mult1(Std⊗b) is the multiplicity of the trivial representation of SU2 in the bth

tensor power of its standard 2-dimensional representation. Finally, it follows from the

representation theory of SU2 that

mult1(Std⊗b) = E(Yb),

for any random variable Y with Sato–Tate distribution µST . Thus, we deduce from (2.2)

that

1
p− 1

∑
a∈F×p

Bip(a− j1)b1 · · ·Bip(a− jm)bm = E(X( j1)b1 · · ·X( jm)bm )+ O
(

2kk
√

p

)
,

where X( j1), . . . ,X( jm) are independent random variables with Sato–Tate distributions

on [−2, 2]. This completes the proof.

Using this result we prove the following proposition, which shows that the moments

of sums of Birch sums are very close to those of their corresponding probabilistic model.

The moments of this random model will then be investigated in the next section.

Proposition 2.2. Let p be a large prime and {c(h)}h∈Z be a sequence of complex numbers.

Let 0 6 y < z 6 p/2 be real numbers and k, ` 6 (log p)/4 be positive integers. Then, we

have

1
p− 1

∑
a∈F×p

 ∑
y6|h|<z

c(h)Bip(a− h)

k  ∑
y6|h|<z

c(h)Bip(a− h)

`

= E


 ∑

y6|h|<z

c(h)X(h)

k  ∑
y6|h|<z

c(h)X(h)

`
+ O

p−1/2

4
∑

y6|h|<z

|c(h)|

k+`
 ,

where {X(h)}h∈Z is a sequence of independent random variables with Sato–Tate

distributions on [−2, 2].
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Proof. It follows from Lemma 2.1 that

1
p− 1

∑
a∈F×p

 ∑
y6|h|<z

c(h)Bip(a− h)

k  ∑
y6|h|<z

c(h)Bip(a− h)

`

=

∑
y6|h1|,...,|hk |<z
y6|r1|,...,|r`|<z

c(h1) · · · c(hk)c(r1) · · · c(r`)
1

p− 1

∑
a∈F×p

k∏
u=1

Bip(a− hu)
∏̀
v=1

Bip(a− rv)

=

∑
y6|h1|,...,|hk |<z
y6|r1|,...,|r`|<z

c(h1) · · · c(hk)c(r1) · · · c(r`)E

( k∏
u=1

X(hu)
∏̀
v=1

X(rv)

)
+ Ek,`(y, z),

where the error term satisfies

Ek,`(y, z)�
2k+`(k+ `)
√

p

 ∑
y6|h|<z

|c(h)|

k+`

� p−1/2

4
∑

y6|h|<z

|c(h)|

k+`

.

The result follows upon noting that

∑
y6|h1|,...,|hk |<z
y6|r1|,...,|r`|<z

c(h1) · · · c(hk)c(r1) · · · c(r`) E

( k∏
u=1

X(hu)
∏̀
v=1

X(rv)

)

= E


 ∑

y6|h|<z

c(h)X(h)

k  ∑
y6|h|<z

c(h)X(h)

`
 . (2.3)

3. Estimates for the moments and the Laplace transform of the probabilistic

random model

Let {X(h)}h∈Z be a sequence of independent random variables with Sato–Tate

distributions on [−2, 2]. We start this section by first proving uniform bounds for the
moments of the sum of random variables

∑
y6|h|<z c(h)X(h), where c(h) are complex

numbers that satisfy c(h)� 1/|h| for |h| > 1. These bounds will be used in the proofs of

the lower and upper bounds of Theorem 1.1.

Lemma 3.1. Let {c(h)}h∈Z be a sequence of complex numbers such that |c(h)| 6 c0/|h|
for |h| > 1, where c0 is a positive constant. Let 1 6 y < z be real numbers. Then, for all

positive integers k we have

E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
k
 6

(
8c2

0k
y

)k/2

. (3.1)
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Moreover, if k > y then

E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
k
 6 (15c0 log k)k . (3.2)

Proof. We first prove (3.1) when k = 2m is even. By (2.3) we have

E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
2m
 6 c2m

0

∑
y6|h1|,...,|h2m |<z

|E (X(h1) · · ·X(h2m))|

|h1 · · · h2m |
. (3.3)

Recall that if X is a random variable with Sato–Tate distribution µST and ` is a positive

integer then

E(X`) =


1

n+ 1

(2n
n

)
if ` = 2n is even,

0 if ` is odd.

Hence, we obtain∑
y6|h1|,...,|h2m |<z

|E (X(h1) · · ·X(h2m))|

|h1 · · · h2m |

=

2m∑
`=1

∑
j1<···< j`

y6| j1|,...,| j`|<z

∑
n1,...,n`>1

n1+···+n`=2m

(
2m

n1, . . . , n`

)
|E(X( j1)n1)| · · · |E(X( j`)n`)|

| jn1
1 · · · jn`

` |

6
2m∑
`=1

∑
j1<···< j`

y6| j1|,...,| j`|<z

∑
r1,...,r`>1

r1+···+r`=m

(
2m

2r1, . . . , 2r`

)(2r1
r1

)
· · ·
(2r`

r`

)
j2r1
1 · · · j2r`

`

6
(2m)!

m!

 ∑
y6| j |<z

1
j2

m

, (3.4)

since (
2m

2r1, . . . , 2r`

)(
2r1

r1

)
· · ·

(
2r`
r`

)
6
(2m)!

m!

(
m

r1, . . . , r`

)
.

Thus, combining the estimates (3.3) and (3.4), together with the elementary inequalities

(2m)!/m! 6 (2m)m and
∑

y6| j |<z 1/j2 6 4/y we obtain

E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
2m
 6

(
8c2

0m
y

)m

. (3.5)
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We now establish (3.1) when k is odd. By the Cauchy–Schwarz inequality and (3.5) we

have

E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
k
 6 E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
2k−2


1/2

E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
2


1/2

6

(
8c2

0k
y

)k/2

,

as desired.

We now prove (3.2). By (3.1) and Minkowski’s inequality we have

E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
k


1/k

6 E


∣∣∣∣∣∣
∑

y6|h|<k

c(h)X(h)

∣∣∣∣∣∣
k


1/k

+E


∣∣∣∣∣∣
∑

k6|h|<z

c(h)X(h)

∣∣∣∣∣∣
k


1/k

6 2c0
∑

y6|h|<k

1
|h|
+
√

8c0.

6 15c0 log k.

This completes the proof.

Next, we shall compute the Laplace transform of the probabilistic random model

corresponding to the imaginary part of the partial Birch sum (1.4) when x = p/2. This

will be a key ingredient in the proof of the lower bound of Theorem 1.1. By (1.6) we have

1
√

p
Im

∑
06n6p/2

ep(n3
+ an) =

∑
|h|<p/2

γp(h)Bip(a− h), (3.6)

where

γp(h) :=
1
√

p
Im(γp(h; p/2)).

We prove

Proposition 3.2. Let p be a large prime and 2 6 s 6 (log p)2 be a real number. Then we

have

E

exp

s ·
∑
|h|<p/2

γp(h)X(h)

 = exp
(

2
π

s log s+ B0s+ O(log s)
)
,

where

B0 =
2
π

(
γ + log 2− logπ +

1
2

∫
∞

0

f (u)
u2 du

)
.

First, note that γp(0) = 0, and for |h| > 1 we have

γp(h) =
1
p

Im
∑

06m6p/2

ep(mh) = Im

(
ep(h(p+ 1)/2)− 1

p(ep(h)− 1)

)
.
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Therefore, for 1 6 |h| < p/2 we obtain

|γp(h)| 6
1

p| sin(πh/p)|
6

1
2|h|

, (3.7)

since sin(πα) > 2α for 0 6 α 6 1/2. Furthermore, by (1.7) we have in this case

γp(h) = Im

(
eπ ih
− 1

2π ih

)
+ O

(
1
p

)
=


O
(

1
p

)
if h is even,

1
πh
+ O

(
1
p

)
if h is odd.

(3.8)

To prove Proposition 3.2 we need the following elementary lemma, which follows from

[14, Lemma 3.3].

Lemma 3.3 [14, Lemma 3.3]. Let f : [0,∞)→ R be the function defined in (1.9). Then

we have the following estimates

f (t)�

t2 if 0 6 t < 1,

log(2t) if t > 1,

and

f ′(t)�

t if 0 < t < 1,

t−1 if t > 1.

Proof of Proposition 3.2. By the independence of the X(h) we have

logE

exp

s ·
∑
|h|<p/2

γp(h)X(h)

 = ∑
|h|<p/2

logE(exp(s · γp(h)X(h))).

Using the estimate (3.8) and Lemma 3.3 we obtain

∑
|h|<p/2
h even

logE(exp(s · γp(h)X(h)))�
∑
|h|<p/2
h even

s2

p2 �
(log p)4

p
.

We now restrict ourselves to the case h = 2k+ 1 is odd. First, it follows from (3.7) and

Lemma 3.3 that ∑
|k|>s2

logE(exp(s · γp(2k+ 1)X(2k+ 1)))�
∑
|k|>s2

s2

k2 � 1.

Moreover, when |k| 6 s2 we use (3.8) and Lemma 3.3 to get

logE(exp(s · γp(2k+ 1)X(2k+ 1))) = logE
(

exp
(

s
(2k+ 1)π

X(2k+ 1)
))
+ O

(
s
p

)
.
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Combining these estimates, and using Lemma 3.3 we obtain

logE

exp

s ·
∑
|h|<p/2

γp(h)X(h)

 = 4s
π

∑
2k+16s/π

1
2k+ 1

+ 2
∑

06k<s2

f
(

s
(2k+ 1)π

)
+ O(1)

(3.9)

since X(h) and −X(h) have the same distribution. Next, we observe that∑
2k+16s/π

1
2k+ 1

=
1
2

∑
16k6s/2π

1
k
+ log 2+ O

(
1
s

)
=

log s
2
+

1
2
(γ + log 2− logπ)+ O

(
1
s

)
.

Furthermore, by partial summation and Lemma 3.3 we get

∑
06k<s2

f
(

s
(2k+ 1)π

)
=

∫ s2

0
f
(

s
(2u+ 1)π

)
du+ O(log s).

Finally, making the change of variables v = s/((2u+ 1)π), the integral on the right hand

side of this estimate becomes

s
2π

∫ s/π

s/((2s2+1)π)

f (v)
v2 dv =

s
2π

∫
∞

0

f (v)
v2 dv+ O(log s),

by Lemma 3.3. Inserting these estimates in (3.9) completes the proof.

4. Proof of the upper bound in Theorem 1.1: Strategy and key ingredients

First, combining equations (1.6) and (1.7) we obtain

Mp(a) =
1

2π
max

16x6p

∣∣∣∣∣∣
∑

16|h|<p/2

ep (xh)− 1
h

Bip(a− h)

∣∣∣∣∣∣+ O(1). (4.1)

In order to bound the distribution function of Mp(a), a standard approach is to bound

the moments of max16x6p |
∑

16|h|<p/2
ep(xh)−1

h Bip(a− h)|. However, it turns out that a

more efficient method is to truncate this sum at a parameter 1 6 H < p/2, and treat

the terms Bip(a− h) for 1 6 |h| 6 H as random points in [−2, 2] (see Remark 4.3). This

gives

Mp(a) 6
G(H)

2π
+

1
2π

max
16x6p

∣∣∣∣∣∣
∑

H<|h|<p/2

ep (xh)− 1
h

Bip(a− h)

∣∣∣∣∣∣+ O(1), (4.2)

where

G(H) := max
α∈[0,1)

max
(y−H ,...y−1,y1,...,yH )∈[−2,2]2H

∣∣∣∣∣∣
∑

16|h|6H

e(αh)− 1
h

yh

∣∣∣∣∣∣ .
In Section 5, we will investigate the quantity G(H) and obtain a non-trivial upper bound

for it. More precisely, we shall prove
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Theorem 4.1. Let H be a positive integer. Then, we have

G(H) 6
(

2+
8
π

)
log H + O(1).

It remains now to bound the moments of the ‘tail’

max
16x6p

∣∣∣∣∣∣
∑

H<|h|<p/2

ep (xh)− 1
h

Bip(a− h)

∣∣∣∣∣∣ . (4.3)

Using results from Sections 2 and 3, we shall establish the following theorem in Section 6.

Theorem 4.2. Let p be a large prime, and k be a large positive integer such that

k 6 (log p)/(100 log log p). Let S be a non-empty subset of [0, 1) such that |S| 6
√

p,

and put y = 105k. Then we have

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

� e−2k
+
|S|(4 log p)10k

√
p

.

Remark 4.3. If we proceed to directly bound the moments of Mp(a) using the techniques

of the proof of Theorem 4.2 (without truncating the sum at H and appealing to

Theorem 4.1), we will obtain that the 2kth moment of Mp(a) is bounded by (B log k)2k

for some large constant B. This constant will not be optimal, due to the use of Hölder’s

and Minkowski’s inequalities in several places of the argument. This bound will then

imply the bound exp(−C exp(V/(B+ ε))) for the distribution function 8p(V ), which is

much weaker than what we obtain in Theorem 1.1.

Theorem 4.2 gives a non-trivial bound for the 2kth moment of the maximum over α ∈ S
of the sum |

∑
y6|h|<p/2

e(αh)−1
h Bip(a− h)| only when the set S satisfies |S| 6 p1/2−ε for

some ε > 0. However, our original problem of bounding the moments of (4.3) involves

the set S = {x/p : 1 6 x 6 p} which has size p. One can easily reduce this to a set of

size p1/2+ε using the standard Pólya–Vinogradov type inequality (1.12). This was indeed

sufficient to treat the distribution of the maximum of character sums in the work of

Bober–Goldmakher–Granville–Koukoulopoulos [3], but is not enough in our case. The

main difference comes from the quality of the orthogonality relations, which are exact in

the case of character sums, but contain an error term of size p−1/2 for Birch sums (and

other `-adic trace functions), coming from the application of Deligne’s equidistribution

theorem in Lemma 2.1. To overcome this difficulty, we need strong bounds for short

exponential sums (similar to (1.10)). For cubic exponential sums, such bounds follow

from Weyl’s differencing method. Indeed, [9, Lemma 20.3] gives∑
n∈I

ep(n3
+ an)�ε |I |1/4+ε p1/4, (4.4)

for any interval I ⊂ [1, p]. We prove the following lemma.
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Lemma 4.4. Let p be a large prime and L = bp1/8
c. There exists a set S ⊂ [0, 1) with

|S| = L such that for all a ∈ F×p we have

Mp(a) =
1

2π
max
α∈S

∣∣∣∣∣∣
∑

16|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣+ O(1).

Proof. By (4.1), the implicit lower bound is trivial, so it remains to prove the implicit

upper bound. We split the interval [1, p] into L intervals I` := [x`, x`+1] where x0 := 1,

xL := p, and for 1 6 ` 6 L − 1, we define

x` :=
`p
L
. (4.5)

For each a ∈ F×p let j (a) be that integer in [1, p] for which

Mp(a) =
1
√

p

∣∣∣∣∣∣
∑

06n6 j (a)

ep(n3
+ an)

∣∣∣∣∣∣ .
Then j (a) ∈ I` for some 0 6 ` 6 L − 1, and hence we have

Mp(a) 6
1
√

p

∣∣∣∣∣∣
∑

06n6x`

ep(n3
+ an)

∣∣∣∣∣∣+ 1
√

p

∣∣∣∣∣∣
∑

x`6n6 j (a)

ep(n3
+ an)

∣∣∣∣∣∣ . (4.6)

Now, we use the bound (4.4) to obtain

1
√

p

∣∣∣∣∣∣
∑

x`6n6 j (a)

ep(n3
+ an)

∣∣∣∣∣∣�ε p−1/4
|I`|1/4+ε � p−1/50.

Inserting this estimate in (4.6) gives

Mp(a) 6 max
06`6L−1

1
√

p

∣∣∣∣∣∣
∑

06n6x`

ep(n3
+ an)

∣∣∣∣∣∣+ O
(

p−1/50
)
.

Finally, choosing S = {x`/p : 0 6 ` 6 L − 1} and using (1.6) and (1.7) we deduce

Mp(a) 6
1

2π
max
α∈S

∣∣∣∣∣∣
∑

16|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣+ O(1)

as desired.

With Theorems 4.1 and 4.2 now in place, we are ready to prove the upper bound of

Theorem 1.1.

Proof of the upper bound of Theorem 1.1. Let S be the set in the statement of

Lemma 4.4. Let k 6 (log p)/(100 log log p) be a large positive integer to be chosen, and

put y = 105k. Then, it follows from Lemma 4.4 and Theorem 4.1 that

Mp(a) 6
(

1
π
+

4
π2

)
log k+

1
2π

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣+C0,
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for some positive constant C0. Note that 1/(1/π + 4/π2)) = π/2− δ. The result trivially

holds when V is small, so we might assume that V is sufficiently large and choose

k = [C1 exp((π/2− δ)V )], where C1 = exp(−(π2 − δ)(C0+
1

2π )). Then, it follows from

Theorem 4.2 that

8p(V ) 6
1

p− 1

∣∣∣∣∣∣
a ∈ F×p : max

α∈S

∣∣∣∣∣∣
∑

y6|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣ > 1


∣∣∣∣∣∣

6
1

p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

� e−2k
+
(4 log p)10k

p3/8 � exp
(
−C1 exp

((π
2
− δ

)
V
))
,

which completes the proof.

5. A non-trivial upper bound for G(H): proof of Theorem 4.1

Recall that

G(H) = max
α∈[0,1)

max
(y−H ,...y−1,y1,...,yH )∈[−2,2]2H

∣∣∣∣∣∣
∑

16|h|6H

e(αh)− 1
h

yh

∣∣∣∣∣∣ .
One can easily derive the following ‘trivial’ bounds

4 log H + O(1) 6 G(H) 6 8 log H + O(1), (5.1)

where the lower bound is obtained by taking α = 1/2, and the upper bound follows from

the fact that |(e(αh)− 1)yh | 6 4. It is an interesting problem to obtain an asymptotic

formula for G(H) as H →∞. The purpose of this section is to prove Theorem 4.1, which

gives a non-trivial upper bound for G(H). We start with the following lemma.

Lemma 5.1. Let H be a positive integer. Then, we have

G(H) 6 4 max
α∈[0,1)

∑
16h6H

g(2παh)
h

,

where g is the 2π-periodic non-negative continuous function defined on [0, 2π ] by

g(t) :=


sin(t) if 0 6 t 6 π/2,

1− cos(t) if π/2 < t < 3π/2,

−sin(t) if 3π/2 6 t 6 2π.
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Proof. Let α ∈ [0, 1) and (y−H , . . . y−1, y1, . . . , yH ) ∈ [−2, 2]2H . Then, we have∣∣∣∣∣∣
∑

16|h|6H

e(αh)− 1
h

yh

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

16h6H

(
e(αh)− 1

h
yh +

1− e(−αh)
h

y−h

)∣∣∣∣∣∣
6

∑
16h6H

| f2παh(yh, y−h)|

h
, (5.2)

where

fβ(x, y) = (eiβ
− 1)x + (1− e−iβ)y,

for β ∈ R and (x, y) ∈ [−2, 2]2. Moreover, we note that

| fβ(x, y)|2 = (cos(β)− 1)2(x − y)2+ sin(β)2(x + y)2

= 2(x2
+ y2)(1− cos(β))+ 4xy cos(β)(1− cos(β)).

Therefore, if (x, y) ∈ [−2, 2]2 and cos(β) > 0 then

| fβ(x, y)|2 6 16(1− cos(β))+ 16 cos(β)(1− cos(β)) = 16 sin(β)2,

while if cos(β) < 0, then

| fβ(x, y)|2 6 16(1− cos(β))− 16 cos(β)(1− cos(β)) = 16(1− cos(β))2.

Thus, in both cases we deduce that | fβ(x, y)| 6 4g(β) for all (x, y) ∈ [−2, 2]. Inserting

this bound in (5.2) completes the proof.

To estimate the sum on the right hand side of Lemma 5.1 we shall use the Fourier

series expansion of the function g. Let an , bn be the Fourier coefficients of g, defined by

an :=
1
π

∫ π

−π

g(t) cos(nt) dt for n > 0,

and

bn :=
1
π

∫ π

−π

g(t) sin(nt) dt for n > 1.

Since g is even we have bn = 0 for all n > 1, and

an =
2
π

∫ π

0
g(t) cos(nt) dt

=
2
π

∫ π/2

0
sin(t) cos(nt)dt +

2
π

∫ π

π/2
cos(nt)dt −

2
π

∫ π

π/2
cos(t) cos(nt) dt.

When n = 0 we have

a0 =
2
π

∫ π/2

0
sin(t)dt + 1−

2
π

∫ π

π/2
cos(t) dt = 1+

4
π
,
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while for n > 1 we have

an =
1
π

∫ π/2

0
(sin((n+ 1)t)− sin((n− 1)t)) dt −

2 sin(nπ/2)
nπ

−
1
π

∫ π

π/2
(cos((n+ 1)t)+ cos((n− 1)t)) dt.

Hence, an easy calculation shows that a1 = −
1
π
−

1
2 and for n > 2 we have

an =
1− cos((n+ 1)π/2)

(n+ 1)π
−

1− cos((n− 1)π/2)
(n− 1)π

−
2 sin(nπ/2)

nπ

+
sin((n+ 1)π/2)

(n+ 1)π
+

sin((n− 1)π/2)
(n− 1)π

=



−
4

(n2− 1)π
if n ≡ 0 mod 4,

−
2

n(n+ 1)π
if n ≡ 1 mod 4,

0 if n ≡ 2 mod 4,

−
2

n(n− 1)π
if n ≡ 3 mod 4.

(5.3)

Finally, since an � 1/n2 for all n > 1 we have
∑

n>1 |an| <∞, which implies that

uniformly for t ∈ R we have

g(t) =
a0

2
+

∞∑
n=1

an cos(nt). (5.4)

For t ∈ R, let ||t || be the distance from t to the nearest integer. Using the Fourier series

expansion (5.4), we shall obtain an asymptotic estimate for the sum
∑

h6H g(2παh)/h,

which depends on whether α is close to a rational number of small denominator.

Lemma 5.2. Let H be large, and R = log H . Then, for any α ∈ [0, 1) such that rα /∈ Z
for all r 6 R, we have

∑
h6H

g(2παh)
h

=
a0

2
log H −

∑
16r6R

ar log |1− e(rα)| + O

1+
1
H

∑
16r6R

|ar |

||rα||

 , (5.5)

where the ar are defined by (5.3). Furthermore, if α = b/` where (b, `) = 1 and ` 6 R
then∑

h6H

g(2παh)
h

=

a0

2
+

∑
16m6R/`

am`

 log H −
∑

16r6R
`-r

ar log |1− e(rα)| + O(1). (5.6)

Proof. Since an � 1/n2 for all n > 1, we deduce from (5.4) that

g(t) =
a0

2
+

∑
16r6R

ar cos(r t)+ O
(

1
R

)
,

https://doi.org/10.1017/S1474748018000385 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000385


1276 Y. Lamzouri

uniformly for t ∈ R. This gives∑
h6H

g(2παh)
h

=
a0

2
log H +

∑
16r6R

ar
∑
h6H

cos(2πrαh)
h

+ O (1) . (5.7)

Now if rα /∈ N, then for any positive integer N we have∑
h6N

e(rαh) =
e((N + 1)rα)− 1

e(rα)− 1
�

1
||rα||

.

Hence, combining this bound with partial summation we obtain∑
h>H

e(rαh)
h
�

1
||rα||H

.

Thus, if rα /∈ N we deduce that

∑
h6H

cos(2πrαh)
h

= Re

∞∑
h=1

e(rαh)
h
+ O

(
1

||rα||H

)
= −log|1− e(rα)| + O

(
1

||rα||H

)
.

(5.8)

Inserting this estimate in (5.7) completes the proof of (5.5).

Now, suppose that α = b/` where (b, `) = 1 and ` 6 R. If ` | r then∑
h6H

cos(2πrαh)
h

= log H + O(1).

On the other hand if ` - r , then ||rα|| > 1/` > 1/R. Hence, it follows from (5.8) that in

this case we have ∑
h6H

cos(2πrαh)
h

= −log|1− e(rα)| + O
(

log H
H

)
.

The proof of (5.6) follows upon combining these estimates with (5.7).

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma 5.1 it suffices to prove that for all α ∈ [0, 1) we have∑
h6H

g(2παh)
h

6
a0

2
log H + O(1). (5.9)

Let α ∈ [0, 1). By Dirichlet’s approximation theorem, there exists (b, r) = 1 with

0 6 b 6 r and 1 6 r 6 H such that ∣∣∣∣α− b
r

∣∣∣∣ 6 1
r H

. (5.10)

Let R = log H . We say that α lies in a ‘major arc’ if such an approximation exists with

r 6 R, and otherwise α is said to lie in a ‘minor arc’.
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We first prove (5.9) when α lies in a minor arc. In this case we have ||rα|| > 1/H for

all 1 6 r 6 R. Thus, it follows from Lemma 5.2 that∑
h6H

g(2παh)
h

=
a0

2
log H −

∑
16r6R

ar log |1− e(rα)| + O

1+
∑

16r6R

|ar |

 .
Moreover, since ar 6 0 and |ar | � 1/r2 for all r > 1, and log |1− e(rα)| 6 log 2, we deduce

that ∑
h6H

g(2παh)
h

=
a0

2
log H +

∑
16r6R

|ar | log |1− e(rα)| + O(1) 6
a0

2
log H + O(1),

which yields the result in this case.

We now suppose that α lies in a major arc. In this case there exists a rational number

b/r such that (b, r) = 1, 1 6 r 6 R and |α− b/r | 6 1/r H . Since g is continuous and

has a piecewise continuous derivative, we have |g(2παh)− g(2πbh/r)| � h/H. Therefore,

appealing to Lemma 5.2 we obtain

∑
h6H

g(2παh)
h

=

∑
h6H

g
(

2πbh
r

)
h

+ O(1)

=

a0

2
+

∑
16m6R/r

amr

 log H −
∑

16n6R
r-n

an log |1− e(nb/r)| + O(1).

The inequality (5.9) follows in this case upon noting that ar 6 0 and |ar | � 1/r2 for all

r > 1, and log |1− e(nb/r)| 6 log 2. This completes the proof.

6. Completing the proof of the upper bound in Theorem 1.1: Proof of

Theorem 4.2

Let p be a large prime, and k be a large positive integer such that k 6 (log p)/
(100 log log p). Let y 6 k2 be a positive real number. Then, it follows from Minkowski’s

inequality that∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k


1/2k

6

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<k2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k


1/2k

+

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

k26|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k


1/2k

.

Therefore, Theorem 4.2 is an immediate consequence of the following propositions.
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Proposition 6.1. Let p be a large prime, and k be a large positive integer such that

k 6 (log p)/(100 log log p). Let S be a non-empty subset of [0, 1), and put y = 105k. Then

we have

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<k2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

� e−4k .

Proposition 6.2. Let p be a large prime, and k be a large positive integer such that

k 6 (log p)/(100 log log p). Let S be a non-empty subset of [0, 1) such that |S| 6
√

p.

Then we have

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

k26|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

� e−4k
+
|S|(4 log p)8k

√
p

.

In order to prove these results, we shall use the following lemma which follows from

combining Proposition 2.2 and Lemma 3.1.

Lemma 6.3. Let p be a large prime, and 1 6 y < z 6 p/2 be real numbers. Let {c(h)}h∈Z
be a sequence of complex numbers such that |c(h)| 6 c0/|h| for |h| > 1, where c0 is a

positive constant. Then, for all positive integers k 6 (log p)/(5 log log p) we have

1
p− 1

∑
a∈F×p

∣∣∣∣∣∣
∑

y6|h|<z

c(h)Bip(a− h)

∣∣∣∣∣∣
2k

�

(
16c2

0k
y

)k

+
(16c0 log p)2k

p1/2 .

Proof. It follows from Proposition 2.2 that

1
p− 1

∑
a∈F×p

∣∣∣∣∣∣
∑

y6|h|<z

c(h)Bip(a− h)

∣∣∣∣∣∣
2k

= E


∣∣∣∣∣∣
∑

y6|h|<z

c(h)X(h)

∣∣∣∣∣∣
2k


+ O

(
(16c0 log p)2k

p1/2

)
,

since
∑
|h|<z |c(h)| 6 4c0 log p. Using (3.1) completes the proof.

We start by proving Proposition 6.1, since its proof is simpler due to the fact that the

inner sum over |h| is very short.

Proof of Proposition 6.1. Let Ak = {b/k4
: 1 6 b 6 k4

}. Then for all α ∈ S, there exists

βα ∈ Ak such that |α−βα| 6 1/k4. In this case we have e(αh) = e(βαh)+ O(h/k4), and

hence ∑
y6|h|<k2

e (αh)− 1
h

Bip(a− h) =
∑

y6|h|<k2

e(βαh)− 1
h

Bip(a− h)+ O
(

1
k2

)
.
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Therefore, using the simple inequality |x + y|2k 6 (2 max(|x |, |y|))2k 6 22k(|x |2k
+ |y|2k)

we deduce that

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<k2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

6 22k max
α∈Ak

∣∣∣∣∣∣
∑

y6|h|<k2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

+

( c1

k2

)2k

6 22k
∑
α∈Ak

∣∣∣∣∣∣
∑

y6|h|<k2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

+

( c1

k2

)2k
, (6.1)

for some positive constant c1. Thus, it follows from Lemma 6.3 that in this case we have

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

y6|h|<k2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

6 22k
∑
α∈Ak

1
p− 1

∑
a∈F×p

∣∣∣∣∣∣
∑

y6|h|<k2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

+

( c1

k2

)2k

� k422k

((
64k

y

)k

+
(32 log p)2k

√
p

)
+

( c1

k2

)2k
� e−4k, (6.2)

which completes the proof.

Proof of Proposition 6.2. Since the inner sum over h is very long in this case, we shall

split it into dyadic intervals. Let J1 = blog(k2)/ log 2c and J2 = blog(p/2)/ log 2c. We

define z J1 := k2, z J2+1 := p/2, and z j := 2 j for J1+ 1 6 j 6 J2. Then, using Hölder’s

inequality we obtain∣∣∣∣∣∣
∑

k26|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

=

∣∣∣∣∣∣
∑

J16 j6J2

1
j2 ·

 j2
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

6

 ∑
J16 j6J2

1
j4k/(2k−1)

2k−1
 ∑

J16 j6J2

j4k

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k


6

(
c2

log k

)2k+1 ∑
J16 j6J2

j4k

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

, (6.3)

for some constant c2 > 0. Therefore, this reduces the problem to bounding the

corresponding moments over each dyadic interval [z j , z j+1], namely

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

.
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We shall consider two cases, depending on whether j is large in terms of |S|. First, if

4 j > |S| then by Lemma 6.3 we have

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

6
∑
α∈S

1
p− 1

∑
a∈F×p

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

� 4 j
(

64k
2 j

)k

+
|S|(32 log p)2k

√
p

(6.4)

since z j > 2 j for J1 6 j 6 J2. We now suppose that 4 j < |S|, and let B j = {b/4 j
: 1 6

b 6 4 j
}. Then for all α ∈ S there exists βα ∈ B j such that |α−βα| 6 1/4 j . In this case

we have e(αh) = e(βαh)+ O(h/4 j ), and hence we obtain∑
z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h) =
∑

z j6|h|<z j+1

e(βαh)− 1
h

Bip(a− h)+ O
(

1
2 j

)
,

since z j+1 � z j � 2 j . Therefore, similar to (6.1) we derive

max
α∈S

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

6 22k max
α∈B j

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

+

( c3

2 j

)2k
,

for some positive constant c3. Thus, appealing to Lemma 6.3 we get

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

6 22k
∑
α∈B j

1
p− 1

∑
a∈F×p

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

+

( c3

2 j

)2k

� 4 j

(
28k
2 j

)k

+
|S|(64 log p)2k

√
p

, (6.5)

since |B j | = 4 j < |S|. Combining (6.4) and (6.5) we deduce that in all cases we have

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

z j6|h|<z j+1

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

� 4 j

(
28k
2 j

)k

+
|S|(64 log p)2k

√
p

.
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Inserting this bound in (6.3) gives

1
p− 1

∑
a∈F×p

max
α∈S

∣∣∣∣∣∣
∑

k26|h|<p/2

e (αh)− 1
h

Bip(a− h)

∣∣∣∣∣∣
2k

�

(
c4

log k

)2k+1

kk
∑

J16 j6J2

4 j

(
j4

2 j

)k

+
|S|(4 log p)8k

√
p

� e−4k
+
|S|(4 log p)8k

√
p

, (6.6)

for some positive constant c4, since j4 6 2 j/4 for j large enough, and 2J1 � k2. This

completes the proof.

7. Proof of the lower bound of Theorem 1.1

In this section we shall investigate the partial Birch sum (1.4) in the special case

x = p/2. More precisely, we will prove the following result from which the lower bound

of Theorem 1.1 follows.

Theorem 7.1. Let p be a large prime. Uniformly for V in the range 1 6 V 6 2
π

log log p−
2 log log log p we have

1
p− 1

∣∣∣∣∣∣
a ∈ F×p :

1
√

p
Im

∑
06n6p/2

ep(n3
+ an) > V


∣∣∣∣∣∣

= exp
(
−A0 exp

(π
2

V
)
(1+ O(

√
V e−πV/4))

)
.

Furthermore, the same estimate holds for the proportion of a ∈ Fp such that
1
√

p Im
∑

06n6p/2 ep(n3
+ an) < −V , in the same range of V .

Recall from (3.6) that

1
√

p
Im

∑
06n6p/2

ep(n3
+ an) =

∑
|h|<p/2

γp(h)Bip(a− h),

where γp(h) = 1
√

p Im(γp(h; p/2)). In order to prove Theorem 7.1, we will show that the

Laplace transform of the sum
∑
|h|<p/2 γp(h)Bip(a− h) (after removing a ‘small’ set of

‘bad’ points a) is very close to the Laplace transform of the probabilistic random model∑
|h|<p/2 γp(h)X(h), which we already estimated in Proposition 3.2.

Proposition 7.2. Let p be a large prime. There exists a set Ep ⊂ F×p with cardinality

|Ep| 6 p9/10 such that for all complex numbers s with |s| 6 (log p)/(50 log log p)2 we have
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1
p− 1

∑
a∈F×p \Ep

exp

s ·
∑
|h|<p/2

γp(h)Bip(a− h)

 = E

exp

s ·
∑
|h|<p/2

γp(h)X(h)


+ O

(
exp

(
−

log p
20 log log p

))
.

Proof. Let Ep be the set of a ∈ F×p such that∣∣∣∣∣∣
∑
|h|<p/2

γp(h)Bip(a− h)

∣∣∣∣∣∣ > 6 log log p.

Using the bounds (1.3) and (3.7) we get∣∣∣∣∣∣
∑
|h|<p/2

γp(h)Bip(a− h)

∣∣∣∣∣∣ 6
∑

16|h|<(log p)2

1
|h|
+

∣∣∣∣∣∣
∑

(log p)2<|h|<p/2

γp(h)Bip(a− h)

∣∣∣∣∣∣
6 5 log log p+

∣∣∣∣∣∣
∑

(log p)2<|h|<p/2

γp(h)Bip(a− h)

∣∣∣∣∣∣ ,
if p is sufficiently large. Therefore, it follows from Lemma 6.3 that for r =
blog p/(10 log log p)c we have

|Ep| 6

∣∣∣∣∣∣
a ∈ F×p :

∣∣∣∣∣∣
∑

(log p)2<|h|<p/2

γp(h)Bip(a− h)

∣∣∣∣∣∣ > log log p


∣∣∣∣∣∣

6 (log log p)−2r
∑

a∈F×p

∣∣∣∣∣∣
∑

(log p)2<|h|<p/2

γp(h)Bip(a− h)

∣∣∣∣∣∣
2r

� p9/10. (7.1)

Let N = blog p/(20 log log p)c. Then we have

1
p− 1

∑
a∈F×p \Ep

exp

s ·
∑
|h|<p/2

γp(h)Bip(a− h)


=

N∑
k=0

sk

k!
1

p− 1

∑
a∈F×p \Ep

 ∑
|h|<p/2

γp(h)Bip(a− h)

k

+ E1 (7.2)

where

E1 �
∑
k>N

|s|k

k!
(6 log log p)k 6

∑
k>N

(
20|s| log log p

N

)k

� e−N

by Stirling’s formula and our assumption on s. Furthermore, note that∑
|h|<p/2

|γp(h)Bip(a− h)| 6
∑

16|h|<p/2

1
|h|

6 5 log p.
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Therefore, it follows from equation (7.1) and Proposition 2.2 that for all integers

0 6 k 6 N we have

1
p− 1

∑
a∈F×p \Ep

 ∑
|h|<p/2

γp(h)Bip(a− h)

k

=
1

p− 1

∑
a∈F×p

 ∑
|h|<p/2

γp(h)Bip(a− h)

k

+ O
(

p−1/10(5 log p)k
)

= E


 ∑
|h|<p/2

γp(h)X(h)

k
+ O(p−1/25).

Moreover, it follows from equation (3.7), Lemma 3.1 and Stirling’s formula that

∑
k>N

|s|k

k!
E


∣∣∣∣∣∣
∑
|h|<p/2

γp(h)X(h)

∣∣∣∣∣∣
k
�∑

k>N

(
30|s| log k

k

)k

�

∑
k>N

(
30|s| log N

N

)k

� e−N .

Finally, inserting these estimates in (7.2), we derive

1
p− 1

∑
a∈F×p \Ep

exp

s ·
∑
|h|<p/2

γp(h)Bip(a− h)



=

N∑
k=0

sk

k!
E


 ∑
|h|<p/2

γp(h)X(h)

k
+ O

(
e−N
+ p−1/20e|s|

)

= E

exp

s ·
∑
|h|<p/2

γp(h)X(h)

+ O
(

e−N
)
,

as desired.

Using the saddle-point method and Propositions 3.2 and 7.2, we prove Theorem 7.1.

Proof of Theorem 7.1. For a real number t , we define

Np(t) :=
1

p− 1

∣∣∣∣∣∣
a ∈ F×p :

1
√

p
Im

∑
06n6p/2

ep(n3
+ an) > t


∣∣∣∣∣∣ . (7.3)

Let Ep be the set in the statement of Proposition 7.2, and Ñp(t) be the proportion of

a ∈ F×p \ Ep such that
∑
|h|<p/2 γp(h)Bip(a− h) > t . Then, it follows from (3.6) that

Np(t) = Ñp(t)+ O
(

p−1/10
)
.

https://doi.org/10.1017/S1474748018000385 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000385


1284 Y. Lamzouri

Furthermore, it follows from Propositions 7.2 and 3.2 that for all positive real numbers

s such that 2 6 s 6 (log p)/(50 log log p)2 we have∫
∞

−∞

estÑp(t) dt =
1

p− 1

∑
a∈F×p \Ep

∫ ∑
|h|<p/2 γp(h)Bip(a−h)

−∞

est dt

=
1

s(p− 1)

∑
a∈F×p \Ep

exp

s ·
∑
|h|<p/2

γp(h)Bip(a− h)


= exp

(
2
π

s log s+ B0s+ O(log s)
)
. (7.4)

The result trivially holds if V is small, so we might assume that V is a sufficiently large

real number such that V 6 2
π

log log p− 2 log log log p. We shall choose s (the saddle

point) such that(
2
π

s log s+ B0s− sV
)′
= 0⇐⇒ s = exp

(π
2

V −
π

2
B0− 1

)
. (7.5)

Let 0 < δ < 1 be a small parameter to be chosen, and put S = seδ. Then, it follows from

(7.4) that∫
∞

V+2δ/π
estÑp(t)dt 6 exp

(
s(1− eδ)(V + 2δ/π)

) ∫ ∞
V+2δ/π

eStÑp(t)dt

6 exp
(

s(1− eδ)(V + 2δ/π)+
2
π

seδ log s+
2
π

seδδ+ B0seδ + O(log s)
)

= exp
(

2
π

s log s+ B0s+
2
π

s(1+ δ− eδ)+ O(log s)
)
.

Therefore, choosing δ = C0
√
(log s)/s for a suitably large constant C0 and using (7.4) we

obtain ∫
∞

V+2δ/π
estÑp(t) dt 6 e−V

∫
∞

−∞

estÑp(t) dt.

A similar argument shows that∫ V−2δ/π

−∞

estÑp(t) dt 6 e−V
∫
∞

−∞

estÑp(t) dt.

Combining these bounds with (7.4) gives∫ V+2δ/π

V−2δ/π
estÑp(t) dt = exp

(
2
π

s log s+ B0s+ O(log s)
)
. (7.6)

Furthermore, since Ñp(t) is non-increasing as a function of t we can bound the above

integral as follows

esV+O(sδ)Ñp(V + 2δ/π) 6
∫ V+2δ/π

V−2δ/π
estÑp(t)dt 6 esV+O(sδ)Ñp(V − 2δ/π).
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Inserting these bounds in (7.6) and using the definition of s in terms of V , we obtain

Ñp(V + 2δ/π) 6 exp
(
−

2
π

exp
(π

2
V −

π

2
B0− 1

)
(1+ O(δ))

)
6 Ñp(V − 2δ/π),

and thus

Ñp(V ) = exp
(
−

2
π

exp
(π

2
V −

π

2
B0− 1

) (
1+ O

(√
V e−πV/4

)))
as desired.
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