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One tends to think of the study of pure number as an esoteric pursuit. But for the ancient 
Maya, particularly when it came to temporal matters, numbers were more than mere 
devices to tally units of time. In stark contrast to the Western calendar, in the Maya realm 
of timekeeping the duration between ritual events seems to have mattered as much as the 
times when the events themselves occurred. Moreover, the manner in which the daykeepers 
of the Maya codices sequenced the intervals followed well-defined patterns, which reveal 
an array of motives for the Maya way of structuring time. Among these motives were the 
need to: a) arrive at or avoid particular lucky or unlucky days; b) accommodate changing 
seasonal or other astronomical events; and c) set up numerological mirror symmetries, a 
characteristic that resonates with the Pythagorean philosophy of number. Thus the long-
neglected study of Maya number offers insight into the chronological structure underlying 

ritual process, which finds parallels in contemporary Maya culture.

The Maya ontology of number

When Galileo refuted the Pythagorean notion that the 
human mind partakes of divinity because it compre-
hends numbers, he was credited by historians with 
paving the way toward our contemporary scientific 
understanding of nature. Wrote Galileo,

I feel no compulsion to grant that the number three is 
a perfect number, nor that it has a faculty of confer-
ring perfection upon its possessors …; neither do I 
conceive the number four to be any imperfection in 
the elements, nor that they would be more perfect 
if they were three; … it would have been better for 
him to prove his point by rigorous demonstrations 
such as are suitable to make in the demonstrative 
sciences; …these mysteries which caused Pythagoras 
and his sect to have such veneration for the science 
of numbers are the follies that abound in the sayings 
and writings of the vulgar. (Drake 1967, 11) (author’s 
italics)

One of the central problems in ethnoscience and 
ethno mathematics lies in our attraction to concepts 
and ideas that resemble our own (cf. e.g. Ascher 2002, 
1–4). We tend to seek the roots of our way of know-
ing not only in the history of our own culture, but 
also in that of the Other. We do this at the expense 
of paying too little attention to indigenous concepts 
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that deal with quantitative knowledge of the natural 
world, largely because we do not tend to regard such 
know ledge as being related to science, a hallmark of 
Western culture. The study of ancient Maya docu-
ments offers an ideal example of this neglect. Our 
attraction to them is motivated in some measure 
by the passion Maya chronologists seem to have 
exhibited for precise, predictive astronomy and the 
detailed mathematical calculation that accompanied 
it. We search out aspects of our own approach to such 
enterprises in their past not only as a way of attempt-
ing to identify cultural universals but also, perhaps, 
to bolster the validity of the Western, rational outlook 
on nature which, in some measure, the Maya seem to 
have shared with us. This may be why close to half 
of what has been written on the some 300 so-called 
almanacs in the surviving Maya codices has focused 
largely on two of them: the Eclipse Table and the 
Venus Table, both in the Dresden Codex.

The extant scholarship concerning these predic-
tive instruments deals with how they operate and 
especially on how Maya astronomers managed to 
arrive at the minuscule corrections necessary to link 
canonic to observed celestial events. Scholars have 
given particular attention to the determination of entry 
dates into various almanacs and the kinds of empiri-
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cal data upon which they might have been based (for 
an updated bibliography see Bricker & Bricker 2011).

Thanks in part to Galileo having helped condi-
tion those of us who focus on the history of Western 
science and ethnoscience, scholars have paid little 
attention to what we would term metaphysical prin-
ciples that might have played a role in structuring the 
various instruments that make up the codices. Like 
the eminent dean of twentieth-century historians of 
science, George Sarton, who once labelled astrology 
‘so much superstitious flotsam of the Near East, and 
consequently not worthy of our attention’ (for a full 
discussion, see Neugebauer 1983, 3), most research-
ers might be led to think the pursuit of such matters 
a waste of time. 

I hypothesize that the Maya partook of the 
divinatory procedures implied in the texts of the 
codices in part because of the way they understood 
numbers. I shall test this idea by seeking a numerically 
based metastructure in Maya temporal tabulations, for 
it is almost exclusively in the realm of time that the 
Maya made use of number in these documents.1 But 
lack of scholarly attention is not the only reason for 
opening the case, for if considerations of pure number 
entered into the way Maya scribes and daykeepers 
structured the codices, then those of us who study the 
Maya ought to know about it. Such an investigation 
could shed light on the divinatory procedures linked 
to Maya timekeeping of which it was a part, just as 
astrology is both a part of Western religion and sci-
ence (cf. e.g. Campion 2009). While I cannot lay claim 
to having discovered the fundamental principles of 
Maya numerology, here I argue that a number of case 
studies offer strong support for my hypothesis.

Numerology, or the metaphysical use of number, 
in the Western perspective derives from gematria, the 
art of number magic. Examples include the Hebrew 
tradition in which one assigns a numerical value to 
each letter by virtue of its place in the alphabet. The 
sum of the values of the letters of a word make up 
its total number value. This form of numerology was 
employed in medieval times to interpret passages 
from the Talmud (Chrisomalis 2010, 159; Ifrah 1998, 
250–56). Another form of number magic, largely 
derived from the Hindu tradition, attached numerical 
value to a set of words that yielded a relevant date 
(Chrisomalis 2010, 210). Thus, the non-practical use 
of number, often motivated by a need for secrecy, 
exhibits cross-cultural precedents.

That numbers were held in high esteem by the 
Maya can be gleaned from the various media, such 
as monumental inscriptions, ceramics and codices, 
through which they are presented and the vast quan-
tity of inscriptional space devoted to them. Among 

the most revealing examples are the carved stone 
stelae that display head-variant and full-figure glyphs 
of the various numbers. Of the monumental images 
that reflect the Maya way of understanding time and 
number, few are more starkly revealing than Stela D 
of Copán (Fig. 1).

Standing erect in front of a stairway at the north 
end of a three-hundred-metre long plaza occupied by 
a dozen similar monuments, this larger than human-
size monolith is dedicated to rituals conducted at the 
juncture of a series of seminal Maya time cycles. Eight 
squared-off images carved in high relief confront 
the eye at the top of the monument. Each depicts a 
humanoid figure that appears to be engaged in some 
sort of wrestling match with an animal — a bird in 
frames 1 and 2, a toad in 4, a long-snouted creature in 
3, a simian-faced humanoid in 5, an amorphous mass 
(probably the pelt of a jaguar) in 7, and so on. A closer 
look reveals that the action is more akin to carrying. 
Each figure seems to be acting as a porter pictured 
in the act of transporting his burden. The men in 
frames 1 and 7 employ tump lines, common devices 
used by Maya peasants today for carrying a load of 
wood or a sack of citrus by tying their packs to a band 
that presses tightly about the forehead, thus leaving 
the arms to swing free and perform other tasks. The 
porter in frame 3, lying prone, cradles his conveyance 
in his left arm, bearing most of the weight on the left 
shoulder. The youthful carrier in frame 5 grips his 
load by its ultra-long left limb, while the old man in 
2 almost seems to be making love to his avian cargo.

These porters represent numbers and the bur-
dens they bear are packets of time. Thus, number nine 
(frame 1) is distinguished by the markings on that 
god’s youthful chin. He wears a jaguar claw for an 
earplug. His freight is the heavy load of baktuns of time, 
144,000-day periods consisting of 20 × 20 × 360 days.2 
As in our number-word system, teens imitate their 
cardinals. Thus, the god of number 15, shown in frame 
2, resembles its cardinal 5, which appears in frame 3, 
with the exception that the former’s jaw is bone, i.e. 
unfleshed. Both wear a button-cap year sign in their 
turbans and each sports a single tooth. Number fifteen 
hauls katuns (scores of 360-day periods) while tuns or 
360-day years are the burden of the number five. The 
pair of zero deities in frames 4 and 5, recognizable 
by the hand held over the jaw, likely derived from a 
gesture denoting ‘completion’ that preceded writing, 
tote uinals or 20-day months (uinals) and days (k’in), 
respectively. 

Fully translated, the introductory portion of Stela 
D reads: ‘It was after the completion of nine baktuns, 
fifteen katuns, five tuns, zero uinals and zero kin, 
reckoned since the first day of the current era, that (...).’ 
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Figure 1. Number gods adorn a Maya monument (Stela D, Copán). Each anthropomorphic figure (the left half of each 
compound hieroglyph) represents one of the twenty numerals, thus: 1) nine; 2) fifteen; 3) five; 4) and 5) zero. (Maudslay 
1889–1902, I, pl. 48)
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(author’s translation). This interval — written 9.15.5.0.0 
by epigraphers, which works out to 1,405,800 days, or 
approximately 3849 of our seasonal years since the 
zero point in the Maya Long Count calendar (akin to a 
day in our Julian Day calendar)3 — is thought to have 
been borne across eternity as if in a relay race by deified 
numbers who serve as the great bearers of vigesimally-
based packets of time. One can think of Stela D, then, 
as the resting place of these animated numbers at the 
end of their long journey. Here the number gods finally 
lay down their burden. But only some of them can 
rest, for there are other burdens of time that need to be 
borne. Thus, while number five will be replaced by six 
in the next cycle, number fifteen must persist for five 
more rounds of katuns and number nine for four more 
rounds of baktuns before the odometre of time releases 
them from their awesome duty. 

We apprehend two additional seminal qualities 
about the meaning of time from the dynastic histories 
that comprise these number-laden time capsules 
wrought in stone. First, one has the sense that while 
the arrow of time points toward the future, it is very 
much pushed from behind rather than being tugged 
forward. The Maya preoccupation with intervals 
in calendric notation, a major focus of this study, 
incorporates the notion that the beginning of a cycle 
is as important as the end. These points in time are 
noted precisely and they are connected. These Maya 
attributes of time stand in stark contrast to the tele-
ological or purposive forward pull of time embedded 
in the Judeo-Christian tradition. For the Maya, circum-
stances in the past, even before the beginning of the 
present era, had set the number gods on their journey. 
Second, it was those events, enacted in the realm of 
the ancestor gods, that would direct the future course 
of human history, the creation of the lineage and the 
journey of the founders of modern Maya culture to 
the proper places to build their cities. 

The backward focus of Maya time thus emanates 
from a desire to link events of primordial with histori-
cal time in an effort to aggrandize the actions of the 
rulers by likening them to their ancestors; thus the 
journey of the Maya people parallels in space the long 
arduous track along the road of time undertaken by 
the number gods who bear their weighty freight. The 
Popul Vuh, the sacred book of creation of the Quiché 
Maya, states that the ancient word is the potential and 
the source for all that is done in the present world. 
‘How should it be sown, how should it dawn?’ (D. Tedlock 
1985, 73), the gods ask themselves as they contemplate 
the creative act. Events that took place in the temporal 
realm of our creators, our founders, our so-called 
mother-fathers, are responsible for setting time on its 
course toward the present.

Post-conquest documents attest to the pre-
Columbian concept of time travel writ large on Stela D. 
For example, Thompson (1950, 60) cites several exam-
ples of the idea of the year as a road travelled, and the 
so-called katun prophecies from post-conquest texts 
repeatedly refer to time as a burden: ‘This is the removal 
of his burden ... fire is his burden ... (In reference to the fifth 
katun ...’; the burden is attached to its bearer: ‘On the 
day of the binding of the burden of Lord 5 Ahau ... . Writes 
one chronicler: ‘According to what [the Indians] say [these 
four first days] are those which take the road and bear the 
load of the month, changing in time.’ Time appears to be 
conceived as some sort of essence carried along an 
eternal cyclic roadway, finally seated or brought to rest 
at various stopping points: ‘Heaven Born Merida was the 
seat of the katun (3 Ahau)’ (Edmonson 1982, 113); ‘This 
katun, which is 5 Muluc, the time of his taking his road ...’ 
(Edmonson 1982, 78).

In the codices the Maya road of time is some-
times portrayed as a series of footsteps. For example, 
on pages 75 and 76 of the Madrid Codex (M.75–6) 
the toes of the feet point inward toward the centre 
of a quadripartite cosmogram as they parallel the 
count of 20 groups of 13, the tzolkin or ‘sacred round’ 
of 260 days, that circumscribes the figure (Fig. 2)4 
(hereinafter D and M will represent, respectively, the 
Dresden and Madrid codices). 

We know that the contemporary Poptí Maya 
have long conceived of the measurement of time as 
a pacing-off of duration ‘in feet’ (cf. Milbrath 1999, 
60, 71). The basic subdivision of their year is 40 days, 
which they call ‘one foot of the year’ and which they 
term yoc habil, or oc, meaning ‘foot, footprint, or track’ 
in the Poptí Mayan language. In The Book of Chilam 
Balam of Chumayel (Roys 1967, 116–17), we learn of the 
creation of the uinal by the first priest:

‘What shall we say when we see man on the road?’ 
These were the words as they marched along, when 
there was no man <as yet>. Then they arrived there in 
the east and began to speak. ‘Who has passed here? 
Here are footprints. Measure it off with your foot.’ So 
spoke the mistress of the world. Then he measured 
the footstep of our Lord, God, the Father. This was 
the reason it was called counting off the whole earth, 
lahca (12) Oc. This was the count, after it had been 
created by <the day> 13 Oc, after his feet were joined 
evenly, after they had departed there in the east.

Other pages of the codices further underline the Maya 
fascination with number; for example, M.8 (Fig. 3) 
depicts piles of dots and bars in an arboreal arrange-
ment borne on the back of a deity. These so-called 
‘number trees’ also appear in the carved inscriptions, 
for example, among the basement sculptures that line 
the east side of the courtyard of the Palace Group at 
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Palenque. Also, painted Maya ceramics lacking prov-
enience but generally att ributed to the Precolumbian 
Maya, depict scribes gleefully playing with numbers 
on devices resembling abaci, and writing down dots 
(ones) and bars (fi ves) in their codices. 

Maya interest in very large numbers is evident 
in both the codices and the monumental inscriptions. 
Thus, on D.69, long notations known as the Serpent 
Numbers (Fig. 4), because the body of a serpent 
appears to be intertwined about them, translate to 
millions of years. The inscription on Coba Stela 1 (Fig. 
5) begins with a series of nineteen places of thirteen 
multiples of twenty before it enters the fi ve-place Long 
Count cycle, which itself exceeds fi ve millennia. The 

resulting number exceeds the passage of time since 
our modern Big Bang version of the creation of the 
universe, 13.7 billion years ago. Possible reasons for 
writing such long numbers are wanting. 

Spurred by a taste for commensuration, the Maya 
also expressed a penchant for contriving numbers. I 
defi ne the Maya ‘principle of commensuration’ as 
the formulation of long cyclic intervals made up of 
whole multiples of smaller ones, or, alternatively, the 
latt er via remainderless division into the former. The 
most celebrated example of a contrived large number 
obeying this principle is Lounsbury’s (1978, 786–7) so-
called ‘long reckoning’5 ‘super number’ of the Maya 
codices, 9.9.16.0.0, on the introductory page to the 

Figure 2. M.75–6, one of several examples of footprints (circled) representing the passage of time in the codices. 
(Villacorta and Villacorta 1976). Unless otherwise noted all other fi gures are derived from this source.
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Figure 3. M.8, a mountain or tree of numbers is 
carried on the back of a hunched-over deity.

Figure 4. Ultra-long serpent 
numbers on D.69 exceed the 
customary five place Long Count.

Figure 5. Coba Stela 1 
exhibits a vast number 
17 orders above the 
baktun count. (FAMSI) 

Venus Table, which appears on D.24. This remarkable 
number turns out to be a whole multiple of a host of 
important astronomical and ritual time cycles; thus 

9.9.16.0.0   1 Ahau 18 Kayab = 5256 × 260 (tzolkin, or 13 × 20 day 
sacred round)

= 3744 × 365 (haab, or 365-day year)
=  584 × 2340 (the commensuration 

of the tzolkin, and 
the number of Lords 
of the night (9), and 
possibly the period of 
Mercury (117 days).

= 468 × 2920 (five Venus periods)
= 72 × 18,980 (the calendar round)
= 36 × 37,960 (the length of the 

Venus Table in the 
Dresden Codex (D.24, 
46–50))

Note further that 
   2340 = 9 × 260 = 20 × 117
   2920 = 5 × 584
18,980 = 52 × 365 = 73 × 260
37,960 = 65 × 584 = 5 × 13 × 584

(For further details on Maya numerology pertaining to astronomy, 
see Carlson (1979).)

Often interpreted erroneously to mark a heliacal rising 
(first pre-dawn appearance) of Venus, the Long Count 
number 9.9.9.16.0, derived from the long-reckoning 
interval, is the closest date (by 16 days) that precedes 
a heliacal rise that also allows for commensuration 
between the long reckoning number and the afore-
mentioned cycles.6 The commensuration principle is 
important when it comes to the interpretation of num-
bers in the codices, for it emphasizes the constraints 
that numerical manipulation places upon empirical 
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astronomy in Maya calendrics. In a spatial context, this 
sort of mental outlook can be likened to Aristarchus’ 
geometrical proof of the relative distances of the 
sun and moon from the earth, wherein the fourth-
century bc Greek mathematician and philosopher 
distorts empirical astronomical data for the sake of 
creating a geometrically elegant diagram of the solar 
system (see Aveni 1993, 56–7 for details). Given the 
tension between the demands of nature and those of 
number, which will constitute a central theme in the 
forthcoming sections of this article, one can begin to 
appreciate the vast amount of skilled mental labour 
that must have gone into the serious business of Maya 
time reckoning.

Dates and intervals in the codices

If numbers are the floorboards, then duration is surely 
the support beam in the framework of the Maya house 
of time. Dates are reached by intervallic reckoning via 
so-called ‘distance numbers’ (DN); for example, in the 
monumental inscriptions, a portion of the text on the 
Tablet of the Cross at Palenque reads; ‘It was 3 days, 10 
uinals, and 13 tuns (since) (Akul-Ah Nab I) was seated’ 
(on) 5 Ahau 3 Tzec…; and later ‘…(it was) 7 uinals and 
5 tuns, 1 katun after K’an Hok Chitam was seated on 
(date)…’. (Mathews 1991, 152). This is part of a lengthy 
lineage statement which traces the royal ancestry of 
the individual who built the temple that houses the 
inscription. Each phrase is based on a forward move-
ment of time beginning with an event located at the 
start of the text, to which DNs are added to arrive at 
later events. The first half of each statement gives the 
interval in the vigesimally ordered Long Count sys-
tem (cf. note 2), while the second half states the point 
in time, or the date, reckoned in a 18,980-day cycle 
(which commensurates the 260- and 365-day cycles); 
e.g. 5 Ahau 3 Tzec, from which the next event in the 
sequence is to be reckoned. This chain-link method of 
keeping track of events is shared by chronologies of 
other world cultures, for example in Sumerian time 
reckoning (see the discussion in Aveni et al. 1995; 
hereinafter AMP I)

In the codices the conventional term ‘almanac’ 
has been employed to describe each of the temporal 
instruments that comprise the pages of these folded-
screen, painted-bark documents.7 Almanacs in our 
culture are thought of as compilations of useful 
information, most of it adapted to local space-time. 
One usually finds a calendar for each month that gives 
all the holidays one might ever care to know about; 
there is also astronomical information, such as times 
of sunrise/sunset, moon-phase tables, and eclipses 
for the current year, coupled with meteorological 

information and the schedule of tides for major local 
harbours. Data concerning weather predictions and 
positions of the planetary bodies in the signs of the 
zodiac are also given. Add to all of this, information 
on season-based food recipes and proverbs and the 
‘farmer’s almanac’, updated and altered slightly from 
year to year, becomes a handy folk/scientific compen-
dium that amuses and instructs us in practical matters 
and even advises us on personal behaviour.

Maya almanacs also incorporated many of these 
aspects. An eminent Mayanist of the last generation 
described the content of the almanacs in the Maya 
codices as both invocations and divinations that deal 
with the weather, agriculture, drilling with sticks, 
disease and medicine, in addition to the fates and 
ceremonies. Their purpose, in relation to the tzolkin, 
was ‘… to bring all celestial and human activities into 
relationship with the sacred almanac by multiplying 
the span they were interested in until that figure was a 
multiple of 260’ (Thompson 1972, 27). As in the monu-
mental inscriptions, the rhyme and metre are parsed 
out in durational sequences, with one important 
distinction: while in the monumental inscriptions the 
DN represents a means of reaching a specific historical 
date based in the Long Count, intervals in the codices 
take on the added role of representing a time span 
within which events might be anticipated. Such an 
arrangement accommodates not only phenomena in 
historical time, such as an eclipse or the scheduling of 
a rain-bringing ritual, but also a kind of numerological 
patterning that seems to have fascinated the Maya 
and with which we will deal with below.8 This format 
for representing time stands in stark contrast to our 
calendar, wherein dates rather than intervals between 
dates receive emphasis (just look at any wall, desk or 
computer calendar).9

For the benefit of readers less acquainted with 
the codices, a brief descent into detail concerning 
how almanacs are structured and how they operate 
will be necessary before proceeding. Consider the 
simple almanac that appears on 17c–18c of the Dres-
den Codex (Fig. 6). This is a 5 × 52-day almanac, each 
52-day cycle of which begins on one of the numbered 
and named tzolkin entry and reentry points into the 
almanac, which are listed in the vertical column at the 
left. Moving horizontally to the right one can read the 
DN intervals between the temporal stops or stations 
in the almanac. These are written in bar (five)-dot 
(one) notation in black, one to each station or resting 
point, usually indicated by a picture compartment; 
thus, 15 (three bars), 33 (written kal (20) + 13 (two bars, 
three dots)), and 4 (four dots). The intervals sum to 
52, which reckons the number of days contained in a 
single row of the almanac. Five such runs, or cycles, 
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constitute the full 260-day round, after which the last 
interval in the last line returns the user to the begin-
ning. The coefficients of the 20 tzolkin day names, 
which can range from 1 to 13 for each station in the 
figures are given in red (6, 13 and 4; these appear as 
white in the black and white renditions herein). The 
arrangement of dates and intervals in various alma-
nacs varies considerably. In the present example one 
proceeds horizontally from left to right, with one red 
number assigned per station, along with one black 
interval between them.

Read as a cycle of time, the D.17c–18c almanac 
begins with the tzolkin entry date into the almanac, 
4 Ahau, Ahau being the uppermost of the five (out of 
twenty possible) day names that appear in the vertical 
column at the extreme left. The omen or rite depicted 
in each of the stations resembles the imagery on Stela 
D of Copán. Each station shows a woman carrying 
some sort of burden on her back; for example in the 
first station, beginning on 4 Ahau, she carries a death 
god. To arrive at the second station (6 Men) the user is 
instructed to add 15 days to 4 Ahau. Then one adds 33 
days to get to the third station (13 Lamat); then 4 days 
to 4 Eb, which begins a second 52-day run through the 
three stations. As usual, the Men and Lamat signs are 
not recorded, though they are clearly implied if one 
follows the ordered sequence of twenty named days.

At this point one proceeds to reuse all of the 
black intervals, beginning the second passage with  
4 Eb (the re-entry date that commences the second 
cycle) + 15 = 6 (Manik) + 33 = 13 (Ahau) +4 = 4 (Kan); 

etc.; the second cycle of 52 days, which leads to 4 Kan, 
thus the third re-entry point. Continuing likewise 
through the third, fourth and fifth lines of the table, 
one uses up all five entry dates, having arrived at 
each of the pictured events five times, finally recycling 
back to 4 Ahau, where the 5 × 52 = 260-day count 
had originally commenced. With few variations, the 
almanacs in the codices operate cyclically as explained 
above for Dresden 17c–18c. Every one of them could 
well have been designed to function endlessly and 
without change.10

The glyphs, usually four in number, that appear 
above the pictures offer clues regarding the meaning 
of each of the dated stations. Their reading order and 
general character will not be dealt with here for want 
of space, except to remark that generally three of 
them usually give verb, object and subject relating to 
the picture, while the fourth usually concerns omens 
and appropriate offerings on the dated occasion. In 
the present example, however, the verbs are absent. 
Thus, D.17c, first station: ‘death is the burden of the 
moon goddess — bad winds’ (Schele & Grube 1997), 
or ‘dead person’ (Vail & Hernandez 2005). Though 
most almanacs, like D.17c–18c, are linear in structure, 
with black and red numbers arranged across the page 
reading from left to right, there are also cross-over 
almanacs in which the intervallic sequence crosses 
back and forth between paired pictorials (cf. e.g. D.9c: 
Fig. 7), or where it directs the flow of time about an 
image, the numbers appearing in close proximity to 
particular portions of it (e.g. M.30b (Fig. 8), and the 

Figure 6. D.17c–18c, a simple almanac depicting the arrangements of dates (white dot and bar numerals) and intervals 
in between (black).
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Figure 7. Unusually structured almanac (D.9c) in 
which time’s numbers follow a cross-over, or zig-zag 
patt ern.

Figure 8. Unusually structured almanac (M.30b) in 
which time’s numbers move about an image.

Figure 9. Unusually structured almanac (M.27a–28a) in which time’s numbers pursue a linear course with an 
embedded vertical structure.
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Deer-trapping almanacs to be discussed below). In 
some examples different types of patterning are com-
bined; thus in M.27a–28a (Fig. 9) the number sequence 
runs upward along the body of each deity occupying 
a given station before passing linearly on to the next 
one (see added lines in these figures).

A brief survey of the types of almanacs that make 
up the Dresden and Madrid Codices is given in Table 
1.11 The table offers a census of different numerical 
subdivisions of almanacs, the percentage of the total of 
each kind being given in parentheses. Note the central 
role of the number 260.

Table 1. Distribution of almanac types in the codices.
Length (days) Dresden Madrid
10 × 26 = 260 7 (9%) 43 (19%)
5 × 52 = 260 43 (57%) 130 (58%)
4 × 65 (‘burner’) = 260 14 (19%) 48 (21%)
All Other
1 × 260

(15%)
2

(2%)
1

2 × 260 1 1
3 × 260 1 1
4 × 260 1 0
7 × 260 2 1
9 × 260 1 0
4 × 13 × 65 = 73 × 260 0 1
4 × 91 = 364 (non-260) 1 0
7 × 13 = 91 (non-260) 1 0
54 × 13 = 702 (non-260) 1 0
Total 75 226

It should be noted that while the Madrid Codex, the 
lengthier of the two documents, contains a greater 
number of almanacs, the Dresden exhibits both a 
greater variety and a larger number of almanacs made 
up of multiples of 260 days. Moreover, the Dresden 
Codex also contains the well-known Venus, Mars and 
Lunar Tables as well as instruments that reckon the 
seasonal year. However, recent studies reveal that the 
Madrid is not devoid of information on seasonal and 
astronomical matters (for details, see Vail & Aveni 
(2004) and Bricker & Bricker (2011)).

Intervallic patterning

In practically all of the 301 almanacs that make up the 
two codices, the intervals (black numbers) employed 
to reach successive dates (red numbers) that mark the 
stations exhibit at least three basic types of patterned 
structure related to the manner in which they are 
arranged to sum to 26, 52 and 65, the number of days 
that make up one run through most of the tables.12 

These are:

A. Equal intervals of 13 (or 26)

Table 2. Distribution of almanacs containing equal intervals of 13.
Length (days) Dresden Madrid
2 × 13 = 26 0 1
4 × 13 = 52 5 23
5 × 13 = 65 1 10
2 × 26 = 52 2 8
Total 8 (13%) 42 (19%)

B. Nearly equal intervals, the last in the intervallic 
sequence usually being the deviant number 
Nineteen such examples (30 per cent of total) appear in 
the Dresden, 47 (21 per cent) in the Madrid. Herewith 
a few representative examples:

8-8-8-8-8-8-17 = 65 (D.42c–45c)
10-10-10-10-3-9 = 52 (D.40c–41c)
10-10-10-10-12 = 52 (M.7a, 49c–50c)
6-6-6-6-6-6-6-(4)-6 = 52 (M.98b–99b)
16-16-16-18 = 65 (M.20d–21d)
12-14 = 26 (D.15c)
2-4-3-2-4-2-2-4-2-2-2-4-2-3-2-3-2-3-2-2 = 52 (D.4a–10a)

For further examples of nearly equal intervallic 
sequences, see AMP I (1995).13

C. Alternating intervals that often sum to 20 or 13 (5 per 
cent in the Dresden; 9 per cent in the Madrid)
Examples include:

12-8-12-8-12 = 52 (D.10a–12a)
6-7-6-7-6-7-6-7 = 52 (M.19a, 53c)
15(11)-15-(11) = 52 (M.108c–109c)
9-4-8-5-9-4-8-5-9-4-8-5-9-4-8-5-9-4-8-5 = 130 (M.73a–74a)
20-19-20-19-20-19-20-19 (M.26c–27c)

Cross-over almanacs, in which the intervallic positions 
alternate left-right or up-down etc., often display this 
characteristic. 

Interestingly, each of the three categories of interval-
lic sequences (A, B and C) also appears in the Borgia 
group of codices from central Mexico, wherein 
numerical place-holders often replace stations. For 
example, in addition to several almanacs consisting 
of multiples of 13 (e.g. 4 × 13, Borgia, or B.22), the 
nearly equal interval category is reflected in the 7-7-
7-7-7-7-5-5 intervallic sequence on B.18–28 and the 
8-8-8-8-1-19 sequence in B.57. B.75, which exhibits 
a 7-6-7-6-7-6-7-6 sequence, offers an example of an 
almanac with alternating intervals containing sub-
intervals that add to 13. Since recent scholarship has 
established other structural connections between the 
Maya and central Mexican codices (cf. Vail & Aveni 
2004), this should come as no surprise. 
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Because details of each of the three categories 
in the taxonomy of intervallic sequencing mentioned 
above may yield clues regarding the motives of the 
daykeeper/scribes to produce such patterns in the 
almanacs, it becomes important to discuss each cat-
egory in detail. 

One motive for creating equal intervals in alma-
nacs is easy to account for. In most of the 4 × 13 cases, 
the iconography and glyphic text seem to be couched 
in the framework of the quadripartition of time com-
mon in Mesoamerican thought (for examples see 
Aveni 2001, fig 60, and Fig. 2 this article). Groups of 
days are doled out equally to each of the four sides 
of the world (north (up), south (down), east and 
west). From a calendrical standpoint, if one wished 
to subdivide equally the most significant period in all 
of Maya timekeeping, 260, into portions assigned to 
the principal regions of space, the number 13 would 
loom as a very prominent interval; that it appears so 
frequently in the almanacs, therefore, is not unan-
ticipated. A similar rationale can be applied to the 5 
× 13-day almanacs, wherein the centre is often added 
as a fifth section of space. Moreover, a black 13 guar-
antees an endless return to the same coefficient in the 
tzolkin count; thus 1 Ahau +13 = 1 Ben + 13 = 1 Cimi 
+… . Celebrating rites at constant regular intervals is 
a common trait in many world religions. Examples 
of the periodic reenactment of sacred rites practised 
in our own culture might include attending church 
on Sunday or synagogue on the Sabbath. Like the 
13 that appears as the common factor in each of the 
aforementioned Maya time divisions, the 7-day cycle 
punctuates the Western schedule of religious worship.

The equipartition scheme also makes use of each 
of the 20-day names only once, prior to recycling. The 
day order regresses by one unit every three positions; 
thus 1,14,7,20,13,6,19,12,5,18,11,4,17,10,3,16,9,2,15,8,- - 

- - - , wherein numbers stand for day-name positions.
Related to the almanacs composed of equal num-

bers of 13 are a fairly large number of cases (55 in the 
Madrid and 19 in the Dresden) in which sub-intervals 
can be summed sequentially to make 13. To cite a few 
simple examples (cf. AMP I for others):

5-8-5-8-5-8-5-8-5-8 (M.110b and elsewhere)
9-4-8-5-9-4-8-5-9-4-8-5-9-4-8-5 (M.27a–28a and elsewhere)
6-7-6-7-6-7-6-7 (M.19a and elsewhere)

Each example returns the user to the same coeffi-
cient every other interval. Thus, the 9-4-8-5 sequence 
entering on 13 Chuen (day number 11), modulo 
13: 13,9,13,8,13,9,13,8,13,9,13,8…, yields three coef-
ficients, 8, 9 and 13 in an a,b,a,c,a…rhythm. On 
the other hand there appears to be no pattern in 

the sequence of day names generated by inter-
vallic sequences, e.g. same example, modulo 20:  
20,4,12,17,6,10,18,3,12,16,4,9,18,2,10,15,4,8,16,1,…. . But 
such a sequence does have the effect of generating 
repeating day names every other 20-day cycle. Thus, if 
a scribe who utilized 13-day sequences wished a day 
name to repeat in the next 20-day cycle, one way to 
achieve that end would be to split the interval 13 into 
a 7-6-7-6- - - - sequence. This is because 7 + 6 + 7 = 20. 
An 8-5-8-5- - - - split would repeat a day name every 
third 20-day sequence, because 8 + 5 + 8 + 5 + 8 + 5 + 8 
+ 5 + 8 = 60. Likewise, a 9-4 split yields a repeated day 
name every fifth, a 10-3 split every seventh, an 11-2 split 
every ninth, and a 12-1 split every eleventh multiple of 
twenty. That such a motive of frequent repeatability of 
day name may have played an influence in intervallic 
sequencing is supported by the fact that the 7-6 and 
8-5 subdivisions of 13 are by far the most common in 
the codices (cf. AMP I (1995), table 2). Another way to 
achieve repetition of a day name every other 20-day 
cycle would be to seek a subset that added to 40 days. 
The 9-4-8-5 sequence offers a way to accomplish this 
task because 5 + 9 + 4 + 8 +5 + 9 = 40. (Alternatives would 
be 12-1-12-1 and 8-5-7-6; however these are not found 
in the codices.) In sum, there are only a few options for 
a split 13-sequence via sinusoidal repetition to accom-
modate repeated day names every other cycle.14

More complex examples in which longer 
sequences of sub-intervals add to 13 include:

4-9-4-5-4 (M.83a–84a) 
3-2-2-6-2-2-2-7 (D.42–44a)
1-3-4-2-3-11-2 (M.45b)
1-2-5-3-2-11-2 (M.49c)
8-5-4-3-6 (M.79a)
6-4-3-5-8 (M 87a)
7-3-3-13 (D.13c–14c) 
1-2-6-4-4-9 (M.46c) 

Finally, and at a still more complex level, sub-
sums of 13, or whole multiples thereof, can be arrived 
at by (a) commencing the tally at a different point () 
in the intervallic sequence, (b) slightly rearranging the 
sequence, or (c) slightly altering the value of one or 
more of the intervals; thus

127-6-21-6 (D.41b–43b)
93-10-2-2 (M.26d–27d)
93-10-2-2 (M.26d–27d)
313-10 (M.96a)
1-2-2-5-2-410 (M.46b)
4-46-4-3-3-4-5-4-3-3-3-6 (M.39c)
      (this resolves to 13-12-13-14)
7-77-6-(8)-5-5-7 (M.99b–100b)
      (this resolves to 13-13-12-14)
8-5-9-3-10-3-11-3-8-5 (M.103a)
13-5-8-12-14 (M.82a–83a)
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There are far too many examples of these subtle 
intervallic permutations and combinations to attribute 
them to pure coincidence. More likely the daykeeper 
deliberately altered sequences to arrive at such pat-
terns. In practically all of the aforementioned cases 
there appears to be no obvious relationship between 
intervallic structure and either type or content of the 
almanac (The Deer-trapping almanacs and the Bee-
keeping almanacs, to be dealt with below, constitute 
an exception.) For example, the almost identical 
sequences (in reverse) in M.79a (8-5-4-3-6) and M.87a 
(6-4-3-5-8) refer in the former case to a circular alma-
nac consisting of a scorpion deity, while the latter is a 
linear almanac illustrating episodes of blinding and 
capture (however, these almanacs do share an Ahau 
entry date). 

Two of the most interesting instruments in the 
category of nearly equal intervals are D.43b–45b 
(The Mars Table) and D.51–58 (The Lunar Eclipse 
Table), both of which have been accorded the status of 
‘table’ to suggest that they are ephemerides designed 
to reckon specific astronomical events, rather than 
simply mechanisms for delineating repeatable time 
cycles, which traditionally has been regarded as the 
function of an almanac, such as the so-called Moon 
Goddess Almanac in D.17c–18c discussed above 
(Thompson 1972). The Brickers’ (1992; 2011) studies of 
astronomy in the codices, however, ask us to rethink 
the extant definitions of ‘table’ and ‘almanac’. They 
have demonstrated that many of the so-called alma-
nacs depict seasonal and other astronomical events 
in real or historical time. The Brickers distinguish 
between almanacs and tables via the following criteria: 
almanacs have briefer prefaces or none at all. They 
consist of one or more columns of day signs and their 
coefficients cannot be tied directly to an initial series 
date. It is the presence or absence of dates that can be 
related unambiguously to the zero point date in the 
Long Count that distinguishes tables from almanacs.15 

For M.43b–45b and D.51–58, respectively, the interval-
lic sequences are 19-19-19-21 and 177-177-177-148 - - -, 
both of which belong to our category B (nearly equal 
intervals). One pass through the Mars Table tallies 
one tenth of the Mars synodic period of 780 days, but 
it is not clear, based on astronomical principles, why 
the period of 78 (= 19 + 19 + 19 + 21) days should be 
so subdivided.

The Lunar Table, which served as an eclipse 
warning table (Bricker & Bricker 1983), separates 
eclipse stations by intervals consisting of multiples 
of six lunar synodic months (177 days) followed by a 
single interval of five lunar months (148 days), then 
a picture; however, real eclipses do not regularly fol-
low such a pattern. Thus, if an astronomical function 

for these instruments is accepted, one must allow for 
the possibility that numerological dictates also may 
have played a role in constructing them. The same 
conclusion holds with the layout of D.65b–72b, 73b, 
the so-called seasonal table, to be discussed below.

One motive for the creation of nearly equal interval 
almanacs could have derived from the inability to 
equally partition time into units of a prescribed mag-
nitude. For example, 65 cannot be divided into two 
equal parts; this might account for why the intervals in 
the almanac on D.9b display near-equal 33 and 32-day 
intervals. The most nearly equal way of splitting 65 
into four parts would be via the intervallic set 16, 16, 
16, 17. This could have been the scribe’s intention in 
the almanac on D.29c–30c, as well as that on M.20d–
21d. However, this strategy does not readily account 
for why a calendrical scribe would choose to divide 
intervals that can easily be equipartitioned, such as 
52 days, into unequal periods of 27 and 25, as was 
done on D.12a. There are occasions in our Western 
calendar when the simultaneous occurrence of a pair 
of religious observations results in shifting one of the 
rites to an adjacent date. For example, when Christmas 
falls on a Sunday one celebrates it from a civic stand-
point the next day, a Monday. This also responds to 
the contemporary desire to lengthen sacred time (the 
weekend). Boxing Day in Great Britain and Presidents’ 
Day and Memorial Day in the U.S. offer additional 
examples of such celebratory postponement. But 
the 20-number chain of 3±1 that spans six pages of 
the D.4a–10.a, along with the seven-interval runs 
8,7,7,7,7,8,8 and 7,7,7,9,7,8,7 (each totalling 52) that 
appear in M.23b and M.83c, respectively, are more 
difficult to explain. Could the problem have consisted 
of an attempt to divide a 52-unit almanac into seven 
more or less equal increments? 

A host of other bipartite almanacs are made up of 
very unequal divisions (e.g. 34 and 18, 21 and 31, 10 
and 16). Might it be that evenness or oddness of the 
intervals or avoidance/preference of particular day 
names played a role in setting up these patterns? If 
we think carefully, there are examples where a kind 
of interval-averaging process occurs in timekeeping 
systems with which we are already familiar. Once 
again we need only turn to the sequence of the number 
of days in the months in the Western calendar, a 
derivative of the Roman reform of the calendar. The 
sequence handed down to us, which began with 
March, the month that contained the spring equinox:  
31,30,31,30,31,31,30,31,30,31,31,28 (or 29), reflects an 
attempt to fit the cycle of lunar phases (the synodic 
month) into the seasonal 365+-day year by adding 
a day or two to each of the months. The original 
rhythmic sequence, a pure 31,30,31,30,31,…, was 
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interrupted when Augustus Caesar borrowed a day 
from the last month in the cycle (February), so that the 
month named after him, which followed that of his 
famous martyred predecessor, Julius Caesar, would 
not be shortchanged. It is not difficult, then, to account 
for chains of nearly equal intervals in a durational 
sequence if we invoke some sort of perturbation (in 
this case a politically motivated one) that alters a pre-
existing simpler mechanism, thus throwing off the 
patterns of more or less equal divisions of time. One 
wonders whether this also might have accounted for 
some of the splitting of 13 into sub-intervals discussed 
above. 

The concept of ‘equals plus leftovers’ exhibited 
in the ‘nearly equal’ category also surfaces in other 
examples of timekeeping around the world; for 
example, our 12 days of Christmas likely resulted 
from the uneven fit between a 12-lunar month period 
(approximately 354 days) and the length of the sea-
sonal year. A second example is the Maya month count, 
where ‘bodysfull’, or twenties (the number of fingers 
and toes), rather than ‘moonsfull’, serve as the basic 
temporal unit. The Maya 365-day year consists of 18 
months, each of 20 days, with a 5-day month tacked 
on at the end to round out the count. In like manner 
the Egyptians chose 12 x 30 + 5.

Another excellent example of nearly equal inter-
vallic sequences appears in a table on pp. 24c–25c of 
the Madrid Codex. Variants can be found on M.111c 
(20-20-5-7), 3a–6a (20-20-(6)-(19)), 99d (20-10-10-12), 
and 22a–23a (10-10-10-10-10-10-5). The sequence 
20-20-20-5 would appear to be a logical Maya way 
to split up a 65-day period in that it mimics in mini-
ature the framework of the Maya month count in the 
seasonal year. After the Spanish arrived in Yucatan, 
this way of reckoning so called ‘burner periods’ was 
evidently carried over into calendars of the Colonial 
period, even in the same slightly altered form we 
find in the pre-Columbian almanacs. Table 3 repro-
duces the intervals counted between 65-day periods 
recorded (along with other events of significance) in 
the listing of days of the year in the post-Conquest 
Book of Chilam Balam of Mani (Craine & Reindorp 
1979). We shall return to this table later to raise some 
questions about the relationship between contempo-
rary and ancient indigenous Maya timekeeping and 
divination. For the present it is worth pointing out that 
such a way of partitioning time possesses enormous 
advantages in the Maya way of thinking: not only 
does it preserve the convenient 5 and 20 hand- and 
body-based count from pre-Classic times, but also it is 
in perfect accord with the habit of quadripartitioning 
the basic temporal unit of 65. 

Table 3. Intervals counted between ‘Burner Days’ in the Book 
of Chilam Balam of Mani. (After Craine & Reindorp 1979, 20–49, 
144–54.)

20 20 5 20 20 20 5 60 5 20 20
25 20 20 20 5 20 40 / 20 20 5 20
20 25 20 20 20 5 19 21 20 5 20
20 20 5 20 20 20 /

20 20 5 20 20 20 5 20 20 20 5
20 20 20 5 20 20 20 5 20 20 20 /

One of the seminal Maya divisions of time 
consisted of the quartering of the 260-day cycle into 
65-day ‘burner periods’. On the days marking the last 
of these periods ‘the burner quenches the fire’ and a 
rain inducing ritual is conducted. Thus, Bishop Landa 
(Tozzer 1941, 162–3) describes a ceremony in which 
a large fire is lit and hearts of sacrificed animals or 
copal incense in zoomorphic shapes are cast into the 
fire. The Chacs (rain gods) then pour water from their 
jugs to extinguish the fire. Several of the post-conquest 
Books of Chilam Balam speak of certain days of the cycle 
connected with putting out and lighting the fire, pro-
ceeding in alternating cardinal directions (Thompson 
1950, 99–101). As in the case of year-bearer calculations, 
because 65 divided by 20 yields a remainder of 5, 
there can be only four day names in the set of 20 that 
would be assigned to the lighting and extinguishing 
of the burner.

As has already been established, the rhythmic 
quality of alternating intervallic sequences may have 
been devised to set up a pattern of repetition in either 
the coefficient or day name in the 260-day cycle; thus 
the sequence 12-8-12-8-12 in the 5 × 52-day table on 
D.10a–12a, entry 10 Lamat, yields (modulo 20) only 
Lamat and Ahau day names for the representative 
stations, thus: 8,20,8,20,8,20,… . The coefficients 
reached are 3,4,9,(10), and 11, in the following order 
(mod 13): 10,9,4,3,11,10,9,… . The zig-zag sequence on 
M.33a: 5-1-5-1-5-1-5-1-5-1-5-1-5-1-5-1-17 = 65, a curious 
combination of our alternating (C) and nearly equal 
interval (B) categories also generates (slightly more 
complex) patterns; thus, entering on 13 Caban (Day 
17), the sequences run, modulo 13: 5,6,11,12,4,5,10,11, 
3,4,9,19,2,3,8,9,13,… ; and modulo 20: 2,3,8,9,14,15, 
20,1,6,7,12,13,18,19,4,5,… . 

To sum up the present section, we have estab-
lished that there are three well-defined patterns of 
intervallic sequences in the almanacs in the codices: 
equal intervals, nearly equal intervals with a remain-
der tacked on at the end, and alternating equal 
intervals. Practical motives underlying the invention 
of such patterns include a mandate to set up quadri-
partite almanacs, the need to install day names that 
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repeat at regular intervals, and a general aesthetic 
desire for rhythmic patterning. The last motive falls 
under what we might term numerology or ‘number 
mysticism’. Before returning to a more general con-
sideration of attempts to further explain intervallic 
number patterning in the codices, we next examine, as 
promised, two specific case-study examples in which 
content appears to be related to choice of intervallic 
number. These are the Deer-trapping almanacs, and 
the Burner almanacs.

Deer-trapping almanacs (Fig. 10)

The almanacs that comprise much of Madrid pages 39, 
42, and 44–49 show deer being variously snared. Vail 
(1997) has connected them with Burner ceremonies 
and the Maya half-year, and von Nagy (1997) has 
related them to instruments that deal with subsist-
ence animals in general. But little attention has been 
devoted to the numerical structure of these almanacs.

Our analysis will be concerned with the 14 
almanacs on the aforementioned Madrid pages that 
exhibit a 10 × 26-day format. These were chosen 
because, from the point of view of calendrics and 
numeration, they seem to be structured according 
to a handful of simple, easily discernible rules. The 
intervallic sequences proceed in a generally circular 
course about the image of the snared deer, with the 
black number count usually beginning at the head of 
the animal, which is usually the closest portion of its 
anatomy to the glyphic entry column at the left side 
of each almanac. Ahau (25 per cent), Caban (11 per 
cent), and Oc (9 per cent) are the most common entry 
points into the sequence (Ahau was the day name 
attached to the start of the Long Count of the present 
cycle). The almanacs usually contain 6 (6 examples) or 
7 (5 examples) stations; three of them consist of 8 and 
one of 5 stations. The most common intervals, with 
percentages, are listed in Table 4.

From the viewpoint of simple gesture as a way 
of expressing number, it may be significant that 83 
per cent of the tabulated intervals can be counted on 
the fingers of a single hand. When black intervals 
between 10 and 13 do appear, they are generally 
ultimate (7 cases out of 15) or penultimate (5 cases) 
in the sequence; thus the latter belong to our nearly 
equal interval category (B).

The count generally proceeds clockwise, with 
black numbers one and two generally positioned 
at the nose and ears of the animal, where the count 
usually begins (M.44b (Fig. 10c), 44c, and 48c are the 
exceptions; in each case a second animal is involved). 
Sometimes (e.g. M.47b, 48b, and 46c (Fig. 10g)) the 
two black dots are placed one above each ear, as if to 

count them. Threes and fours are generally positioned 
across the back of the animal, while the large numbers 
are positioned near the hoof, where the count usually 
ends. In some instances (e.g. M.49a (Fig. 10b), 45b (Fig. 
10d), 46b (Fig. 10e), 49b (Fig. 10f), and 46c (Fig. 10g)) 
there is an iconic playfulness exhibited in the way 
black numbers, particularly twos, threes and fours 
are arranged about the rear end of the animal, as if 
intended to mimic droppings or testes. 

Whenever an interval clearly does not add cor-
rectly to the previous station to give the next one in 
the text, or when a station arrived at by the addition of 
an inscribed number is not the same as that in the text, 
epigraphers often tend to attribute the discrepancy to 
‘scribal error’. A number of such cases appear in these 
almanacs; they are listed in Table 5.

Some of the ‘errors’ in these almanacs are so strik-
ing that one must question whether the scribes who 
committed them were merely ignorant or inattentive 
copyists. Could it be that what seems incorrect to us 
may have been perfectly justifiable in the mind of the 
scribe? Having already suspected that the repetition 
of certain day numbers was a factor in altering the 
structure of almanacs, one can find precedence for 

Table 4. Intervals appearing in Deer-trapping almanacs.
INT %

1 12
2 27
3 17
4 15
5 12

6–8 5 
9 3

10–13 9
>13 0

Note: There are no sevens.

Table 5. So-called scribal errors in Deer-trapping almanacs.
Should be Reads Black/Red Reference Figure no.

10 9 B 44b,46b 10c, 10e
10 9 R 45a not shown
8 9 B 48b not shown
8 9 R 46c 10g
5 4 B 47b not shown
5 4 R 47b not shown
4 3 B 45b 10d
4 3 R 48c not shown
2 1 R 45a not shown
6 8 R 48b not shown

11 10 R 46b 10e
8 7 R 45c not shown

The number most commonly avoided is 8, and that most stressed 
is 9 (5 cases).
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Figure 10. Selected Deer-trapping almanacs: a) M.44a, b) 49a, c) 44b, d) 45b, e) 46b, f) 49b, g) 46c, h) 39b.
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this sort of behaviour in the ethnographic record. For 
example, deified days carrying the coefficient nine are 
regarded as tribal ancestors among the Jacalteca and 
Cakchiquel Maya, while the Ixil chose a day with the 
coefficient nine or thirteen to send one’s nagual (ani-
mal spirit) into another person. A Chumayel novice 
reported that ‘On the ninth day and on the thirteenth 
day: it is to Bolon-ti-Ku [the nine lords of the under-
world] and Oxlahun-ti Citbil [thirteen sky gods] that I 
count on my beads’ (Thompson 1950, 54). Also, nine, 
or Bolon, means ‘uncontaminated’ (Thompson 1950, 
54). Thompson thought it also conveyed the idea of 
the superlative (Thompson 1950, after Redfield & Villa 
Rojas 1934). Used in conjunction with certain nouns, 
the number nine connotes good luck or success; thus, 
Ah Bolon Makap means ‘great hunter’(Thompson 1950, 
54). Finally, Thompson (1950, 93) cites examples from 
the monumental inscriptions in which he posits that 
the number nine was deliberately chosen because 
of its lucky aspect. He remarked on the recurrence 
of this number more than any other in Long Count 
dates on stelae, e.g. the aforementioned ‘super number’ 
9.9.16.0.0 and 9.9.9.9.18 (Uxul, Altar 2), and it is also 
the most frequently occurring day coefficient on the 
monuments. Thompson further noted that in the 
inscriptions 9 avoids Imix, Caban, Kan and Ahau, thus 
supporting the notion that there may be certain date/
number taboos in the divinatory process. A detailed 
breakdown of the relative occurrence of day names 
and numbers in the monumental and codical inscrip-
tions is presented in the Appendix of this article.

The role of the lucky/unlucky numbers prompts 
mention of the interesting case of D.4a–10a, a 20-sta-
tion almanac referred to above. This 5 × 52-day table 
consists of the intervallic sequence 2-4-3-2-4-2-2-4-2-
2-2-4-2-3-2-3-2-3-2-2. Of the good/ill-fortuned omens 
that can be read, the interval of 4, mentioned four 
times in the table, always precedes a good omen, 
while the interval 2, mentioned twelve times, usually 
precedes a bad omen.

Lucky and unlucky numbers are ubiquitous 
in contemporary Maya daykeeping, e.g. in Chocolá 
(highland) Guatemala (cf. e.g. Weeks et al. 2009, esp. 
app. 1). There practically everyone has something to 
say about his (her) unlucky numbers and days. Accord-
ing to Weeks et al. (table A1.5), the one and eight days 
emerge as the best, with 8 Batz leading the way. 8 Batz 
also emerges as the biggest day for church donations.

Returning to the Deer-trapping almanacs, black 
number sequences, as mentioned earlier, can be 
regarded as degenerated forms of equal interval 
almanacs, e.g. 13-13. Inexplicably, however, in 13 out 
of the 14 examples in the Deer-trapping almanacs, the 
clustering fits a 12-14 pattern (see Table 6). 

In one of these cases (M.39b: Fig. 10h) quadri-
partition seems to have played a role in the selection 
and positioning of intervals. The four black fives 
are positioned at the locations of the hooves of a 
splayed-out animal. The direction of the time count 
is as follows: 5 (left rear)-5 (left front)-2 (nose)-5 (right 
front)-5 (right rear), ending on 4 at the bottom of the 
figure of a second animal pierced by a dagger attached 
to a scorpion’s tail attached to the dorsal portion of 
the animal.

To summarize this section, the choice of small 
numbers applied in the Deer-trapping almanacs in 
the Madrid Codex is non-random. Unanticipated 
numbers that we might attribute to scribal error were 
more likely deliberate alterations. Such was the power 
of pure number that it interfered with the operation of 
the calendar. But even if the calendrics are rendered 
non-functional as read, any chronologist would have 
been able mentally to correct the sequence. Numerical 
alteration may have been influenced by considerations 
of good and bad luck. In some instances, as we shall 
see elsewhere, details in the accompanying icono-
graphy may have affected intervallic choices as well.

Linking past and present: the burner almanacs

In addition to relating almanac content to number, 
the Burner almanacs also provide a connection 
between ancient and contemporary Maya ritual 
practice. Landa (Tozzer 1941, 136, n.632 & 162, 
n.848) tells of a burner ritual in which four rain dei-
ties (Chaacs), each assigned a side of space, put out 
fires after the slash-and-burn agricultural practice. 
This is one of four associated actions: one takes the 
fire, begins the fire, gives scope to (or runs with) the fire 
and puts out the fire.16 Landa also tells us that when 
the fire is lit, ‘hearts of sacrificial animals are cast 

Table 6. Breakdown of intervallic sequences in Deer-trapping almanacs 
( indicates where to begin the count).
5-5-25-5-4 M.39b
2-4-2-2-25-9 M.44a
1-24-4-411 M.49a
41-2-3-5-110 M.44b
13-4-2-311-2 M.45b
1-2-2-5-24-10 M.46b
2-2-85-9 M.47b
1-23-3-2-48-3 M.48b
13-5-1-1-3-3 M.49b (the single exception to 12-14)
12-6-44-9 M.46c
21-3-812 M.47c
3-3-4-410-2 M.44c
2-3-2-3-25-6-3 M.48c
12-5-3-211-2 M.49c
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into it, priests extinguish the fire with water from 
their jugs, …’. The ceremonies were conducted, he 
says, in order to ensure copious rains. ‘There were 
two ceremonies, one in the dry season, the other 
when rains begin.’17 

The Book of Chilam Balam of Mani refers to several 
65-day sequences arranged intervallically 20-20-20-5 
(cf. also Table 3); thus

3 Chicchan, ‘the burner takes the fire,’
 [forward 20 days to]
10 Chicchan, ‘the burner begins the fire,’
 [forward 20 days to]
4 Chicchan, ‘the burner gives scope to the fire,’
 [forward 20 days to]
11 Chicchan, ‘the burner puts out the fire,’
 [forward 5 days to]
3 Oc, ‘the burner takes the fire.’… .

Burner almanacs in the codices are represented 
as 4 × 65 = 260-day quadripartite layouts; for example, 
the one on D.33c–39c (Fig. 11) displays most of the 
elements of the 20-20-20-5 structure and most of the 
intervals begin on burner days. Another such almanac 
appears on D.30b–31b, the quadrants of which begin 
on burner days (cf. Bricker & Bricker 2011, ch. 6).

Number alterations in the D.33c–39c Burner 
almanac are evident. This almanac has been dated by 
the Brickers (1992, 76–8) to ad 1517. It exhibits five 
rather than (the usual) four intervals: 9-11-20-10-15. 
According to the Brickers, pictures in the first, third, 
fourth and fifth intervals refer to the four steps in 
the ritual cited above. The second picture contains 
dates that are not part of the usual burner sequence. 
These are 9 Muluc, Ix, Cauac, Kan (as opposed to 
Ahau, Chicchan, Oc, Men). The Brickers conclude 
that, in addition to functioning as a burner almanac, 
‘a secondary function of the almanacs was to correlate 
burner stations with the summer solstice and eclipse 
seasons’ (Bricker & Bricker 2011, 78). They cite glyphic 
and iconographic evidence (in the second and third 
stations) to support the case. Thus, it may be that an 
almanac with a more orderly 10-10-20-10-15 intervallic 
structure was altered in the first two places to accom-
modate this dual function. 

In the realm of contemporary Momostecan 
daykeeping, B. Tedlock (1983, 62ff.) describes a set 
of burner rituals in highland Guatemala that offer 
a motive for the same kind of intervallic patterning 
we find in the codices. In these rituals, the ‘burner’ 
is ‘a man or woman who may approach the outdoor 
community altars in order to burn incense and make 
offerings to the ancestors or deities’. The novices 
who undergo the necessary training to enact these 
rituals are termed ‘burdens’ during the 65-day period 

known as the ‘washing for work service.’ On the day 
1 Cawuk the teacher arrives at the shrine named ‘In 
the Water’, which is located in a stream at the west 
end of Momostenango. There he begins the ‘back of 
the path’, a general term for the commencement of 
a set of calendrically timed rituals in which he asks 
the gods/ancestors for permission to train the novice. 
Thirteen days later (on the day 1E) he returns to the 
same place and begins the instruction process with 
the novice. The process described by Tedlock involves 
‘instruction in time reckoning, cosmology, observation 
of the sun, moon, and stars, herbal and shamanic 
curing, etc.’; then follows an intriguing account of 
intervallic alternation owing, in part, to a number 
of factors relating to the geographic environment in 
which the rites take place:

Now the rhythm of his visits to the shrines speeds 
up to 7- and 6-day intervals in order to intercalate 
or insert the 8-day series (wajxakibal) and the #1-day 
series (junabal) that was started first. With the #8-day, 
8 Cawuk, there is also a shift of locale to Ch’uti Sabal, 
‘Little Declaration Place’, which is a shrine located 
on a hilltop half a kilometre due west of Paja’. Six 
days later on 1 Can the teacher returns to the low 
shrine at Paja’.

This series of 1- and 8-day intervals [see Tedlock, fig. 
1] rotates back and forth at 7- and 6-day intervals to 
produce the following metre: 1 Cawuk + 13 = 1 E + 7 

= 8 Cawuk + 6 days = 1 Can + 7 days = 8 E + 6 days = 
1 Batź + 7 days = 8 Tijax + 6 = 1 C’at. Expressed in the 
language of Western music, this 65-day ‘back of the 
path’ time period opens with a 13/65 time signature, 
in which the right-hand figure (65) indicates the unit 
of measurement (1/65 of the total time period under 
construction), and the left-hand figure (13) indicates 
the number of such units in each measure. In this 
ritual series, however, after only one measure the 
metre speeds up and alternates back and forth four 
times from 7/65 to 6/65 through eight measures, thus 
producing an irregular multimetre. This multimetre 
resolves itself and achieves an exciting asymmetrical 
balance through the principle of dialectical comple-
mentarity, in which the distinctions (7 and 6) are 
simultaneously in an alternating relationship to 
each other — 7, 6, 7, 6, 7, 6, 7, 6 — and in dialectical 
completion of each other – the original 13 is matched 
with 7 + 6 = 13, repeated four times. A third type 
of dialectical complementarity, known as direct 
opposition, is present in the spatial dimension of 
the rituals, in the shift from low to high place (Paja’/
Ch’uti Sabal); low to high number (1/8); east to west; 
and wet to dry (Tedlock 1983, 62–3).

This important lengthy quote clearly demonstrates 
that the set of intervals comprising the 65-day burner 
period is 13-7-6-7-6-7-6-7-6, a pattern which is present 
in a host of almanacs in the codices. 
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Now, once these rites have been concluded and 
the novice has become a ‘burner’, he may go on to 
achieve the status of ‘daykeeper’ by completing a 
second 65-day ‘back of the path’ period known as the 
‘washing for the mixing pointing’. This begins on the 
day 1 Quej at the same Paja′ shrine and alternates via 
the same intervallic set 13-7-6-7-6-7-6-7-6; however, 
the second set falls earlier in the 260-day count than 
the first. Moreover, the two 65-day periods overlap, 
so that the first two days of the ‘work service’ cycle 
fall on the third-to-last and final days of the ‘mixing 
and pointing’ service. Thus, concludes Tedlock, ‘the 
teacher completes the chronologically later 65-day 
period (work service) first and then waits nearly 250 
days to begin the earlier (mixing and pointing) 65-day 
period’ (Tedlock 1983, 64; see Table 7).

The alternation of the day names one and eight 
in this dualistic wet/dry, high/low, east/west system 
are obvious; but note also the rhythm in the sequence 
of day names, thus:

A B A C B D C E D F, 

or more figuratively expressed:

A B A C B D C E D F .

Such an arrangement calls to mind other sets of inter-
vals in the equal intervals of 13 (category A) almanacs, 
such as 8,5,8,5…, 9,4,9,4,… etc. One wonders, therefore, 
whether iconographic/glyphic indicators might be 
present in these almanacs to support the argument 
for a sequential, alternating process of setting up 
intervals in burner rituals. The 4 × 65-day almanacs 
with such sequences would be the obvious target of 
such a future investigation.

Tedlock (1983) has further noted that the contem-
porary double-timed scheduling of mixing-pointing/
work service rituals in Momostenango described 
above is also replicated in scheduled rituals accom-
modated to the solar year via division into 65 + 65 + 
52 days = 182 days (1/2 solar year ), repeated twice 
consecutively (364 days total). She tells us, for example, 
that in 1976 they overlapped in a 65 + 13 + 65 + 52 days 

= 195-day schedule; thus: (13 + 7 + 6 + 7 + 6 + 7 + 6 + 7 + 
6) + 13 + (7 + 6 + 7 + 6 + 7 + 6 + 7 + 6 + 7 + 6) + 13 + (7 + 6 
+ 7 + 6 + 7 + 6 + 7 + 6 + 7 + 6) = 195. The point relevant 
to our study of numerology in the codices is that the 
intervallic structure was altered from the straightfor-
ward 13-13- - - - pattern to a combination of sevens 
and sixes (and 13) in order to accommodate a solar 
(i.e. an astronomically based) schedule, which also 
seems to have been the case in the Burner Almanac 
on M.33c–39c discussed above.

Having cited an excellent example of intervallic 
patterning in contemporary ritual that resonates with 
that in the codices, we return to the general theme of 
numerical alteration in almanacs. We next visit an 
interesting set of like-in-kind, or cognate instruments 
that offer further clues concerning why intervallic pat-
terns in the codices might have been altered.

Cognate almanacs

Cognate almanacs comprise those, either within a 
given codex or in separate codices, that exhibit similar 
structure with respect to iconography or calendrical 
content, or both. The present study concentrates on 
numerically cognate almanacs in the Dresden and 
Madrid codices, specifically those that are similar in 
structure and arrangement with respect to intervallic 
sequences. In line with earlier work (Aveni 2006 and 
Aveni et al. 1996, hereafter AMP II), the goal of such 
studies is to discover how almanacs might have been 
altered from hypothetical earlier versions. My work-
ing hypothesis is that the almanacs in the codices, like 
most almanacs we know of in timekeeping systems 
in other cultures, were continually being revised 
and updated to suit contemporary conditions; there-
fore the extant almanacs in the codices might have 
descended from earlier, perhaps simpler, versions. 
The qualifier is added because an ‘entropy of time’ 
usually permeates most calendars; that is, complexity 
often accompanies the process of alteration of basic 

Table 7. Sequence for combined Quiché rituals (after Tedlock 1983, figs. 
1 & 2).

Washing for Mixing and 
Pointing Ritual

Washing for Work  
Service Ritual

Begin on 1 Quej (Low) + 13 =

1 Junajpu (Low) + 7 =
8 Quej (High) + 6 =
1 Aj (Low) + 7 =
8 Junajpu (High) + 6 =
1 Came (Low) + 7 =
1 Aj (High) + 6 =

Begin on 1 Cawuk (Low) + 13 = 1 Cawuk (Low) + 7 =
8 Came (High) + 6 =

1 E (Low) + 7 = End on 1 E (Low)
8 Cawuk (High) + 6 =
1 Can (Low) + 7 = 
8 E (High) + 6 = 
1 Tijax (Low) + 7 = 
8 Can (High) + 6 = 
1 Batź (Low) + 7 = 
8 Tijax (High) + 6 = 

End on 1 C’at (Low)
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structural elements, which process can be influenced 
by astronomical, political, or other exigencies. As men-
tioned above, our own seasonal calendar of jumbled 
30- and 31- (and sometimes 28- or 29-) day months 
offers one historical example (for a more detailed 
discussion, see AMP I). 

Earlier (Aveni 2006) I identified 15 cognate 
pairs of almanacs shared by the Dresden and Madrid 
codices, six of which possessed identical intervallic 
sequences. In most of the cases the starting date, 
icono graphy, and glyphic content of the almanac 
pairs were similar. Differences in starting date were 
not correlated with differences in intervallic structure. 
Those pairs that exhibit slightly different sequences 
are summarized in Table 8, wherein the intervals 
can be arranged to indicate clustering sequences that 
facilitate the recognition of similarities (parentheses 
have been added to suggest where alterations might 
have been made).

In about half the cases the Madrid appears to be 
an expanded version of the Dresden and vice versa. 
Note that in pairs no. 13 and no. 15 one needs to shift 
positions as well as combine successive intervals 
to make the cognates identical. The lengthy linear 
almanacs in cognate pair no. 11 was the focus of a case 
study (Aveni 2006) in which intervallic shifting in the 
later (tenth century ad) Madrid relative to the earlier 
(late eighth century ad) Dresden version of the alma-
nac may have resulted from a need to accommodate 
astronomical events, namely a pattern of eclipses that 
had shifted through time (for details see Aveni 2006, 
158–68). In this pair (Fig. 12) the iconography is nearly 
identical. The third interval in the Madrid (11) loses 
eight days relative to that (3) in the Dresden cognate; 
the difference is made up in the penultimate black 
number (19 vs 11). A lunar reference is further impli-
cated if one combines Dresden intervals that accom-
modate whole and half lunar phase periods, thus:

16 / 8-11-10-1 / 12-6-12 / 11-11-6
(16)     (30)            (30)        (28)
(½)       (1)              (1)          (1) (approx. lunar synodic months).

Such accommodations18 reinforce the distinction 
made earlier between distance numbers in the codices 
as opposed to those in the monuments; namely that 
the former seem to have been regarded as time spans 
designed, and occasionally altered, to accommodate 
a variety of phenomena, rather than devices intended 
to reach a precise historical date, which characterizes 
the way intervals are employed in the monumental 
inscriptions.

One way to explore how intervallic sequences 
might be related to thematic/iconographic contexts 

would be to assess the content of a set of cognate 
almanacs found in abundance in the codices. The bee-
keeping almanacs in the Madrid Codex offer such an 
opportunity. The Madrid contains 30 such almanacs 
that refer to stingless bees (Mellipona beecheii) (Roubik 
1989, 366–70) common in contemporary apiculture in 
Yucatan). The almanacs display beekeeping rituals and 
apparatus related thereto (there are no such almanacs 
in the Dresden). These almanacs also offer an unusual 
abundance of direct and derivative 13-sequences. 

The beekeeping almanacs are listed in Table 9. 
With one exception, they cluster in the last pages (103–
12) of the codex. About half of them are numerically 
cognate by virtue of displaying the equal intervals of 
13 sequence either directly or via simple derivative, 
that is, by addition of sub-intervals. These have been 
placed at the top of Table 9 (cf. the first 20 entries). 
Interestingly, the non-13 sequence almanacs generally 
tend to cluster in the middle of the range of Madrid 
pages 106–8, where the beekeeping almanacs are 
located. Figure 13 shows their placement in the codex.

Seely (2006) has defined four thematic categories 
in these almanacs, which I have reduced to three by 
combining the second and third. The revised catego-
ries are (cf. Fig. 14 for select examples):
1. These almanacs picture hovering bees (almanacs 

1, 3, 4, 8, 10, 15, 30). They tend to cluster on the 
left side of the region of the codex that contains 
the beekeeping almanacs. The stations are highly 
periodic. Four almanacs display the 13-sequence; 
three exhibit simple deviations reducible to the 
13-sequence via a step or two (Example: Fig. 14a).

2. A second set of almanacs includes some form of a 
deity or deities along with the hovering bees (alma-
nacs 2, 5, 6, 11, 12, 13, 20, 29). They tend to cluster 
on the right side of the array of such almanacs. No. 
11 shows a morphed bee and deity; four of the six 

Table 8. Dresden/Madrid cognates displaying intervallic alteration. 
(After Aveni 2006, table 6.5.)
Cognate pair Source Intervallic structure
4 D.17c–18c

M.93d–94d
15-33-4
(7-8)-(8-13-12)-4

5 D.17b–18b
M.94c–95c

11-7-6-16-8-4
(5-5)-7-6-(8-8)-8-4

7 D.40c–41c
M.49c–50c

10-10-10-10-(3-9)
10-10-10-10-(12)

9 D.10a–12a
M83b

(12-(8))-12-(8-12)
20-[12]-20

11 D.38b–41b
M.10a–13a

16-8-11-10-1-[12]-6-12-11-(11-6)
16-8-3-10-1-12-6-12-(19)-(17)

13 D.3a/M.91c 4-(8)-11-15-(14)
[4]-22-11-15

15 D.15a
M.111c
M.96b

34-18
33-19
10-(9-9)-13-11
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are direct 13 sequence; two are slightly deviant. 
Almanac no. 20 appears to be the single exception 
(no. 29 is eroded) (Example: Fig. 14b).

3. In this category the focus is not directly on the 
bees. They are not pictured; but the theme of 
beekeeping is conveyed via some sort of activity 
related to beekeeping, e.g. sweeping or moving 
hives, extracting honey, etc. (7, 9, 16, 17, 18, 19 , 21, 
22, 23, 27, 28); they tend to be grouped toward the 
middle of the array. Intervallically all members of 
this class, with two exceptions (no. 7, which is a 
direct 13-sequence, and no. 9, which exhibits the 
5-8 alternating pattern) either are not reducible 
to the 13-sequence or require more than a simple 
step or two to be converted to that canonic form 
(Example: Fig. 14c).

Seely further noted that the 13-sequences are generally 
represented in the first two categories, while the non-
13-sequences are found in the third. He concluded that 
for the 13-sequence derivatives (e.g. 7-6-7-6) from the 
first two thematic categories, the mathematical steps 
taken to arrive at a 13-sequence are minimal and clean, 
usually consisting of only adding pairs (Seely 2006, 
21). There are approximately seventy sequences in the 
entire Madrid that are either direct 13-sequences or 
simple derivatives of one. These comprise one quarter 
of the total almanac count. If sequence types were ran-
domly distributed across almanac theme families, only 
about four of the 20 indicated in Table 9 (i.e. one fifth) 
would be expected to display intervallic sequences 
with this numerical attribute; therefore, given that 
two-thirds share this attribute, it seems highly unlikely 
that Seely’s correlation is due to mere coincidence. 
Some guiding principle must have been responsible. 
That intervallic sequences irreducible to the basic 

13-sequence dominate a particular iconographic vari-
ant of beekeeping almanacs further implies some sort 
of motive behind the correlation. 

A possible explanation for some of the asym-
metries that appear in Table 9 may be found in Vail’s 
(1994) analysis of the beekeeping almanacs, which 
offers another example of linking a contemporary set 
of rituals with those of the past. Vail was the first to 
note that many of the almanacs possessed identical 
tzolkin entry dates, the day name Caban, the first 
syllable cab meaning honey, being a frequent choice 
(10 of 30, or 33 1/3 per cent). Utilizing ethnographic 
and ethnohistoric sources, Vail developed a model 
for the almanacs assuming all the dates belonged to 
a single 260-day cycle, she found that the best fit of 
the iconography of the almanacs to contemporary 
beekeeping activity corresponded to rituals conducted 
in the Maya 20-day months of Tzec and Mol, which 
in early fifteenth-century Yucatan fell, respectively, 
in late Oct–Nov and Jan–early Feb in the Gregorian 
calendar. Landa’s (Tozzer 1941, 156–7) extended 
discussion of the Tzec ritual, which began the cycle, 
suggests that it was of great importance. The extended 
rites began with strict fasting in the month of Zotz, 
which precedes Tzec. Only then could the ceremonies 
associated with sweeping, offering, etc. take place. 
Vail’s table 3 (1994, 63) gives the order of the rituals 
by tzolkin date. Thus arranged, the almanacs that fall 
at the earliest stage of the ritual process turn out to 
be M105c-106c (no. 3 in Table 9), 111b (13), 107c–108c 
(17), 108c–109c (12), 106b–108b (18), 106a (22), 80b (8), 
111b–112b (20), and 104c–105c (10). All but one of these 
(no. 22) are highly ordered and 13-based. 

Based on Vail’s model, it is of further interest to 
note that the intervals between the starting dates of the 

a

b

c

2                        6                                                  9                     12                   14                    17                  19                   21                   25

1                                                               3                                                                  10                             15                                                    22                   23

4                     5                         7                       8                     11                 13             16                 18              20         24                   26   

M.              80                   103                104                 105                   106                   107                   108                 109                 110                111                 112

(ERODED)

13 sequence (direct or easily reducible)

Non-beekeeping almanac
Figure 13. Location of beekeeping almanacs in the Madrid Codex listed in 
Table 9.
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Table 9. The 26 beekeeping almanacs in the Madrid Codex. (Intervallic sequences are 
given, with hypothetical derivatives in parentheses; after Seely 2006 and Vail 1994.)
No. Madrid 

almanac
Entry date Intervallic sequence Activity

1 103c 9 Cluen 13-13 Bees, offerings
2 104a 1 Caban 13-13-13-13 Extracting honey
3 105c–106c 9 Caban 13-13-13-13-13 Bees, offerings
4 108a effaced 13-13-13-13 Bees, offerings
5 109c–110c 13 Ik 13-13-13-13 Bees, deities, birds 

on heads
6 110a effaced 13-13-13-13 Bees, flowers, deity
7 110c 6 Caban 13-13-13-13 Deities carrying 

bees and hives
8 80b 1 Imix 5-8-5-8-5-8-5-8-5-8

(13-13-13-13)
Bees, offerings

9 110b 9 Imix 5-8-5-8-5-8-5-8-5-8
(13-13-13-13)

Deities, incensarios

10 104c–105c 10 Oc 7-6-7-6
(13-13)

Bees, offerings

11 109a 10 Oc 7-6-7-6
(13-13)

Bees deities, offerings

12 108c–109c 9 Oc 17-9-17-9 
(26-26; 13-13-13-13)

Extracting honey

13 111b 9 Caban 13-13-39
(13-13-13-13-13)

Deity with serpent 
scepter

14 112c 1 Caban 26-26-13
(13-13-13-13-13)

Deities with axes

15 103a 6 Chicchan 8-5-9-3-10-3-11-3-8-5
(13-12-13-14-13)

Bees, offerings

16 106c–107c 9 Eb 20-7-6-13-6-13 Deities moving 
bees/hives

17 107c–108c 9 Caban 20-13-23-9 Deities moving 
bees/hives

18 106b–108b 3 Caban 7-2-3-4-4-1-(5)
(12-14)

Deities, offerings

19 107a 11 Caban 12-10-5-13-8-4
(12-15-13-12)

Deities, honeycomb

20 111b–112b 2 Ik 13-4-11-13-24
(13-15-13-12-12)

Deities, brooms

21 103c–104c 13 Kan 35-10-11-9 Extracting honey
22 106a 10 Caban 7-10-10-10-22-6 Deity with serpent 

scepter
23 108b–109b 8 Akbal 6-9-8-10-5-13 (?) Bee deity, scepter, 

offerings
24 111a 13 Eb 24-11-12-18 Extracting honey
25 111c No.1 13 Ben 20-20-5-7 Deities with broom
26 111c No.2 4 Ahau 33-19 Deities with 

incensarios
27 105a 1 Caban 11-16-(25) Deities with offerings
28 109b–110b 10 Ben 29-18- ( ) Deities burying 

idols
29 112a effaced ( ) Bees, offerings
30 103b–106b 7 Cib (non-

standard 
almanac)

None Deities and bees 
with offerings

Figure 14. Beekeeping almanacs: a) Type 1 
(M.103c), depicting hovering bees; b) Type 2 
(M.104a), with accompanying deities; c) Type 
3 (M.107a), showing apparatus and activity 
connected with beekeeping, in this case a deity 
holding a honeycomb.

a

b

c
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rituals corresponding to the almanac set comprising 
the early part of the cycle also follow a highly ordered 
intervallic pattern. Thus,

(105c–106c, 111b, 107c–108c) + 13 days = (108c–109c) + 7 days 
= (106b–108b) + 20 days = (106a) + 4 days = (80b) + 1 day = 
(111b–112b) + 8 days (104c–105c) +….;

that is, the intervallic pattern that connects the open-
ing rituals is 13-7-20-4-1-8 = 20-20-13. After the initial 
52 (53) days the intervals become totally random: 
3-24-8-7-9-36-7-48-1-4-3-16-6-9-12. No consecutive 
combinations add either to 13, 20, or multiples thereof 
for the remainder of the 260-day round. Though they 
do not explain all the nuances of intervallic structuring 
in the 30 almanac set, these results strongly support 
Vail’s model, which places the highly regulated, fast-
ing portion of the Tzec beekeeping ceremony at the 
beginning of the cycle. One wonders whether a host of 
overlapping rituals, such as the pair discussed earlier 
in the burner almanacs, might have existed.

Having demonstrated the existence of deliberate 
intervallic alteration in a variety of cognate almanacs, 
and having opened a few avenues toward understand-
ing practical motives for such numerical manipulation, 
especially in instances that possess an ethnographic 
parallel, we turn last to a group of almanacs that 
exhibit numerical alteration principles that may be 
attributed less to practical considerations and more to 
matters verging on what we might regard as purely 
esoteric numerological concerns.

Mirror almanacs and other esoterica

A seasonal calendar in use in Java in the nineteenth 
century consisted of the following month lengths 
(Crawfurd 1867):

41 23 24 24 26 41/ 41 26 25 25 23 41

Counted from the middle, the delineation of the day 
count in the second half of the year is almost a mir-
ror image of that in the first half (read backward and 
forward from the ‘/’). The intervals were determined 
by the change in the position of the noon-time shadow 
cast by a vertical gnomon that measured equal spatial 
lengths (rather than equal time intervals) on a dial 
plate. The resulting 12 months are unequal because 
the noonday sun advances from day to day up and 
down the meridian more slowly near the solstices than 
near the equinoxes. The pivot point in the symmetrical 
sequence is marked by the day of the passage of the 
sun through the zenith of the 7°N latitude location 
of the observer. Dutch anthropologists who later 

investigated this unusual way of partitioning the year 
learned that the lengths of the months, so determined, 
were then adjusted slightly to accommodate agricul-
tural timings related to the rice-planting schedule in 
the Javanese calendar (Maass 1924).

Examples of this sort of intervallic mirror sym-
metry are clearly evident in the Maya codices, e.g."

12-8-12-8-12 (D.10a–12a)
13-26-13 (D.12b)
1-1-3-3-6-6-10-10-6-[6] (M.85a)
20-[12]-20 (M.83b)
13-[39]-13 (M.84b)
(1-2)-5-3-2-11-2  (M.49c: symmetric about 11)

and the slightly aberrant sequence, read from the 
interval 6, in D.4b–5b:

4-4-4-3-4-3-4-3-6-3-4-4-3-3

Nitzkin (2002), who continues to pursue both first- and 
higher-order intervallic differences, refers to alterna-
ting patterns of this sort as ‘weaves’. He likens them 
to the Maya idea of ‘weaving the mat’ (of numbers). 
He cites imagery in the codices (e.g. birds with inter-
twined necks) that exhibit this pattern. 

Sequences in categories with which we are 
already familiar also exhibit this mirror-like quality, 
e.g.:

6-7-6-7-6-7-6-7 (M.19a and other examples of split 13s, 
      such as 5-8, 4-9, etc.)
19-19-19-21 (M.43b–45b, the Mars table)
9-9-9-9-9-7 (D.8c and elsewhere)
12-12-9-10-9 (D.18a–19a, symmetric about 10)
9-9-5-5-5-5-5-(6-3) (D.20c)
2-10-(8-5)-13-10-2-2 (M.43b, symmetric about the 13s)

In the example of the Javanese calendar, a rational, 
observationally based motive underlies the mirror-
calendar phenomenon. But the Maya symmetries do 
not appear to be seasonally affected. One wonders 
whether certain ‘rules of number’ might have played 
a role in setting up these curious runs of intervals. 
The number of such cases seems to be too numerous 
to be accidental. 

One of the most curious cases of number 
sequencing occurs in D.65–69, the so-called Seasonal 
Table in the Dresden Codex (Bricker & Bricker 1988). 
The lower portion of this table (D.65b–69b) includes a 
91-day (quarter-year) intervallic sequence, one of two:

9-5-1-10-6-2-11-7-3-12-8-4-13

The 13 entries in the table, which appear below as well 
as above the glyphic captions in the upper portion of 
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the table, exhibit the unusual property that the differ-
ence between each number and the one following is a 
constant (–4 or +9), a fact first pointed out by Förste-
mann (1906, 236). As a result, coefficients of dates 
reached by applying each of the intervals (modulo 13) 
produces a mirror symmetry; thus (beginning with a 
coefficient of one), we have:

1-10-2-3-13-6-8-6-13-3-2-10-1.19

Now, the upper portion of the Seasonal Table 
(D.65a–69a) exhibits (below the glyphic captions) an 
intervallic sequence that is repeated (above the cap-
tions) in the lower portion of the table. The relative 
placement of the two sequences offers another aspect 
of mirroring in the codices.20 This second sequence 
seems to be partially structured on the constant dif-
ference principle (indicated in brackets), except that 
in this case the difference is –2 (+11); thus:

11-[13-11]-1-[8-6-4-2-13]-6-6-8-2

The differences in this example read:

2-11-3-7-11-11-11-11-6-13-2-7-9

Coefficients thus reached (again beginning with one) 
are:

1-12-12-10-11-6-12-3-5-5-11-4-12-1.21

Could a pristine version of the latter half of the 
table have become disordered because of the need 
to accommodate astronomical events? If we locate 
the Brickers’ eclipse/seasonal data in the sequence, it 
turns out that the key dates neatly bracket precisely 
that portion of the Table that retains the constant dif-
ference rhythm, thus:

                    Eclipse                         Solstice  Mars, Eclipse
               –

11 - 13 - 11 - 1 - [ 8 - 6 - 4 - 2 - 13 ] - 6 - 6 - 8 - 2

  Variable     Constant    Variable  

The difficult question of exactly how the applica-
tion of these astronomical data, which surely must 
have perturbed the original rhythmic sequence, 
might have altered the table to read in its extant form 
remains open. 

Conclusions

This study has established the existence of many well-
defined patterns in the intervallic day sequences that 

comprise a multitude of the 301 almanacs that make 
up the Dresden and Madrid codices.22 It also implies 
that the business of constructing the calendar that 
prescribed Maya ritual behaviour must have been 
both complex and rule bound. A multitude of offerings 
needed to be made to the gods at the proper places 
and times and the time spans between ritual events 
needed to be fixed. But did the events determine 
the intervals or did the intervals fix the events in the 
almanacs? Or both?

We noted at the outset that the largest percentage 
of intervals in the almanacs consists of sequences of 13. 
It seems clear that the combination 13-13-13-13 in 5 × 
52-day almanacs emerged as a reflection of the Maya 
penchant for the directional quadripartition of time, 
while the 13-13-13-13-13 set in 4 × 65-day almanacs 
responded to the five-fold or quincunx time/space 
partitioning, which included the centre.

What of the many almanacs that deviate slightly 
from the 13-13- - - pattern by splitting or combining 
13s? A safe (but certainly not exclusive) assumption to 
account for intervallic alteration would be that pristine 
13-base templates were affected by one or more of the 
factors summarized below.

1. There was likely a need to avoid or arrive at a particular 
day or date (e.g. an interval of 20 returns an almanac 
user to a given day name, an interval of 13 to the same 
coefficient) or a lucky or unlucky day for planting, 
burning milpa, fishing, hunting, etc. If almanacs that 
have been altered to record lucky and unlucky days 
for religious, civic and other subsistence activities, as 
indeed the post-conquest and ethnographic sources 
attest (Thompson 1950, 93–6), then we might expect 
certain days in the 260-day count either to surface or to 
be suppressed more than others in the almanacs. When 
we (AMP I) looked at the distribution of day names for 
all dates in the tzolk’in arrived at via the intervals in each 
of the almanacs in the Dresden and Madrid codices, we 
found them to be relatively uniform. On the other hand 
the distribution of the day names associated with entry 
dates was decidedly non-uniform. 

When we examined the distribution of numbers, 
specifically the coefficients 1–13 that accompany the 
day names, we found that in the Dresden the most fre-
quent were 2 and 13, while 4 (the numerical coefficient 
of the zero day in the Long Count), 1 and 13 dominated 
the Madrid. In the Dresden, 13 was by far the most 
common entry number. The most common entry coef-
ficients were 13 for the Dresden, and 4 for the Madrid. 
All three (1, 4 and 13) were frequently paired with 
Ahau (the name of the day that commenced the Long 
Count. On the other hand, numbers in the monumental 
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inscriptions display a more random distribution, which 
supports the view that they were more exclusively 
concerned with historical rather than ritual dates. Their 
scribes, therefore, seem not to have been saddled with 
the problem of numerological constraints evident in the 
codices. (For details consult the Appendix.)

In contemporary divination, year-bearers 
exhibit specific omen-bearing qualities in the year 
in which they rule and, as we suggested, these may 
have played a role in intervallic selection. Based on 
her ethnographic work B. Tedlock writes that Mam 
Quej [Manik] ‘… is a wild year-bearer who likes to 
throw off his cargo, to mount, and also to trample 
people underfoot’. There are many business losses 
and many illnesses during a Quej year. Mam E [Eb] 
‘… is quiet, calm, and enduring. An E year is good for 
business and health. Mam No’j [Caban] … who has 
a good head, and many thoughts, is a creative year, 
both for good and for evil’. Finally, Mam Ik’ ‘… is very 
bravo, bringing violent rainstorms or else no rain at 
all. Many people die from being struck by lightning, 
from drowning, or else from hunger’ (Tedlock 1992, 
100). Perhaps such omens favoured the choice of spe-
cific year-bearers in the almanacs. Certain days may 
have gained popularity because of their prescribed 
outcomes in the past. 

If we compare greatest to least frequently occur-
ring numbers in initial and re-entry dates as opposed 
to stations, we find a drop from 4:1 to 3:1 in the 
Dresden. In the Madrid, except for the overwhelm-
ing occurrence of the coefficient 4, the drop is more 
like 5:1 to 2:1. Comparably, figures for day names 
are 6:1 down to an almost even 7:6 in the Dresden 
and 11:1 down to 6:5 in the Madrid. That is, as one 
passes from initial entry and re-entry date to station, 
day-name selection smoothes out more readily than 
number selection. All of this suggests that intervals 
do not seem, in general, to have been planned or laid 
out in such a way as to lead to a preponderance of 
particular day names, though on some occasions the 
scribes seem to have been concerned with employing/
avoiding certain numbers. This is particularly evident 
in the Deer-trapping almanacs.

2. A second possible motive for altering intervals might 
have emerged from the desire to update an earlier 
version of a calendar to better accommodate real-time 
events. For example, in the Christian calendar the 
occurrence of the equinox, coupled with that of the 
full moon that follows it, fixes Christian Easter holiday 
precisely: it must be the first Sunday after the first full 
moon after the equinox. In this case the resulting inter-
val is determined by two celestial events and it can vary 
between 1 and 37 days after 20 March in our modern 

calendar. On the contrary, Lent is always 40 days long 
regardless of when Ash Wednesday falls, the latter 
being fixed by back calculation from the Paschal date; 
therefore, the interval fixes the date. At a practical (but 
still seasonally influenced) level, in the Andean world 
there are examples of rites celebrated one week later 
than scheduled because people often say that they are 
not ready because they have not yet finished tending 
their crops (Urton 1986). Among the examples dealt 
with here, the seasonal table (D65a–69a) most clearly 
reflects the intrusion of celestial events, which follow 
periods of their own, into what appear to be precon-
ceived base periods in the almanacs.

3. A third motive, perhaps so practical as to escape 
attention, for intervallic alteration likely derives from 
the basic need to save space in a manuscript. Such a 
consideration might involve reducing the number of 
intervals and stations by combining two or more of 
the latter. In the U.S. the conflation of Washington’s 
and Lincoln’s birthdays into a single President’s Day 
offers an example. Conversely, an almanac could 
be expanded by subdividing an interval and conse-
quently adding a station. Examples from the Western 
calendar include tacking on Boxing Day to Christmas 
in Britain or ‘Pascuetta’ (little Easter) to Easter Sunday 
in Italy. The need to save space is clearly evident in 
the cognate pair D.21b and M.90d–92d (Fig. 15). In the 
former, three of the four pictures are absent, though 
the intervallic sequence 7-7-7-5 persists. But there are 
instances in which pairs of pictures and their content 
(a single picture/interval) are subdivided. Compare 
the sequences in the pairs

   11 - 7 - 6 - 16 - 8 - 4 (D.17b–18b)

5 - 5 - 7 - 6 - 8 - 8 - 8 - 4 (M.94c–95c)

and

  15    -    33    -    4 (D.17c–18c)

7 - 8 - 8 - 13 - 12 - 4  (M.93d–94d)

While we have tended to attribute a chronologi-
cal direction of development in which almanacs evolve 
from simple to complex (D.  M.) to these sets, as 
seems to be the case in most world calendars (cf. the 
principle of calendrical entropy referred to earlier), we 
recognize that such an ‘evolutionary’ approach ought 
not be regarded as exclusive.23 

4. Finally there remains, as the ultimate rationale 
considered here for the determination of intervallic 
sets, purely esoteric considerations that derive from 
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so-called ‘rules of number’, such as the need to cre-
ate a particular number of stations, other than the 
most common 2 × 130, 4 × 65, 5 × 52, or 10 × 26, in an 
almanac. For example, D.4a–10a has 20 stations, while 
D.29b–30b uses each of the 20 day names exactly once. 
The latter, a four station 4 × 13 × 5-day almanac, which 
features the rain deity Chaac, employs the coefficient 
3 ahead of each day name (Thompson 1950, 88–93). 
This motive may overlap with the good luck/bad luck 
factor mentioned above. 

Lounsbury (1978, 804) attributes two differ-
ent motives to the Maya way of using number. The 
better-known preoccupation of court arithmetician 
and astronomer lay in employing large numbers as 
a way of tying the lives of the rulers to their mythic 
ancestors of the past, the gods who created the world, 
and to anniversaries of creation events in the future, 
when the rulers themselves would become gods. 
But, Lounsbury notes, there is another type of royal 
numerology that involves smaller numbers, more like 
the kind we have been dealing with in the present 
study, that covers brief intervals and time spans. It 
is here, he suggests, that we discern numbers being 
chosen largely because of the nature of what they are 

(Lounsbury 1978, 804) — the same kinds of choices the 
Pythagorean philosophers made. Interestingly, though 
Lounsbury first opined that these small numbers were 
far more interesting, he never studied them.

The constant difference between the intervals 
and mirror almanacs discussed in the previous section 
fall into this category. Each serves to express a certain 
kind of ‘aesthetic of number’, of which we are able 
to apprehend but a vestige. Nitzkin’s ongoing work, 
which consists of looking for culturally-based meta-
phors (e.g. numbers formatted in the various styles of 
weaving wherein the sequence alternates from right 
to left) that might underlie the structure of almanacs, 
may prove useful in this regard. 

Commensuration, cycles within cycles, 4- and 
5-fold space time, alternation, mirroring — all of these 
characteristics are reflected in the intervallic structure 
of Maya almanacs. But the present study has clearly 
established that the almanacs also are very clearly pat-
terned according to numerological principles which 
are often obscured by deviations from a prescribed 
template both for pragmatic and aesthetic reasons. 
Indeed, the Maya number system is very like their 
writing system in this regard.24

Figure 15. The almanacs a) D.21b, and b) M.90d–92d. Does the intervallic alteration simply reflect the need to save space? 

a

b
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In the Maya mentality there seems to have been 
no such concept as pure laws of astronomy vs pure 
laws of divination: the two were intermingled. As a 
result calendrical and numerological dictates con-
spired to convolute the time structure of the almanacs 
in the codices. In a number of instances the semantic 
values of numbers and day names appear to have been 
elements involved in the manipulation or corruption 
of intervallic sequences, thus creating arrays that look 
complex and unfamiliar to us, but which would have 
made perfect sense to a Maya chronologist.

Appendix: Frequency of occurrence of numbers 
1–13 and (20) day names in the Maya record

The distribution in the percentage of occurrence of the 
coefficients 1–13 in monumental texts compared with 
that in the codices is reflected in Table 10. Note that 
while the number 9 appears most frequently on the 
monuments there are other numbers (e.g. 5 and 6) that 
are only slightly less frequent. In the codices the number 
9 appears only slightly above the level of randomness 
in the Dresden and below that level in the Madrid. It 
is further worth noting that the number 4 occurs with 
triple the frequency of the mean in the Dresden Codex 
(indeed it occurs twelve times more frequently than 
the number 5, seven times more frequently than 6, and 
six times more frequently than 2). This may owe to 
its frequent pairing with the day name Ahau. Thus, 4 
Ahau dates may have been contrived in the almanacs 
to match the anniversary of the tzolkin date of the start 
of the present Long Count era. That the same does 
not hold in the Madrid, where the distribution shows 
fewer deviations from the mean, may imply less inter-
est on the part of those scribes in prescribing particular 
number entries. Moreover, the general absence of Long 
Count dates in the Madrid reflects a lack of interest in 
the Long Count in that work.

There was also some non-uniformity in the dis-
tribution of the 20 name days, especially with regard 
to entry dates. In the Dresden the day name Ahau is 
listed far more frequently — two to one over its nearest 
rival; thus, 25 per cent of the Dresden almanacs open 
with an Ahau entry, and 12 per cent with an Oc, the 
second most frequent entry. Random selection would 
be expected to yield 5 per cent. In the Madrid, the 
figures are 25 per cent and 8 per cent, respectively. At 
the other end of the spectrum, least frequently occur-
ring dates of entry are Lamat, Ben, and Chicchan in 
the Madrid, and Men, Etz’nab, Cimi, Chicchan and 
Kan in the Dresden; each of these occurs about 1 per 
cent of the time. A survey of dates on the monuments 
conducted by Thompson (1950, 90), and incorporated 
in Table 10, also showed Ahau to be by far the most 

frequently mentioned of the 20 day names. This is 
attributable to the fact that so many of them are period 
ending dates. Imix appears in second place, while 
Chicchan, Akbal, Oc, Chuen, Men and Cauac were 
the scarcest. Again, recall that Ahau is the anniversary 
day name of creation. 

There seems to be no preference with respect to 
numerical odd/even-ness, though this matter really 
requires further study. The most frequently chosen 
number and day-name combinations in the Dresden 
are 13 Akbal, Lamat, Ahau, Etz’nab, Manik and Eb, 
which occur three times more frequently than the 
least used combinations. In the Madrid 4 Kan, Cib 
and Ahau are 4:1 choices over a scattering of day 
names preceded by the coefficient 5. Some of these 
choices may have been determined by the year bearers 
(Dresden: Ben, Etz’nab, Akbal, Lamat; Madrid: Cauac, 
Kan, Muluc, Ix).

Notes

1. There are a few exceptions, e.g. the God C pages in the 
Paris Codex (15–18).

2. The Long Count cycle operates on a base-20 system.  
The primary unit of time is a day, or k’in. Each number 
in the notational system represents 20 times the one in 
the lower place. The third place, the tun, or Maya year, 
is an exception. It is made up of only 18 uinals, 20-day 
Maya months, for a total of 360 days, probably because 
360 days is a closer approximation to a solar year than 
400 (though the Mayas used the 400 unit when they 
counted things for trade, such as cacao beans). 20 tuns 
make up a katun, and 20 katuns make up a baktun, or 
about 400 years. Add these to the number of days since 
the last cycle began (11 Aug 3114 bc).

Table 10. Occurrence by percentage of coefficients 1–13 in dates on 
monuments and in codices.

Number Monuments*
Madrid and Dresden Codices

Madrid Dresden
1 8.0 7.1 12.1
2 6.2 11.7 3.7
3 6.9 7.6 6.0
4 7.0 7.1 22.7
5 9.9 8.8 1.9
6 9.9 8.6 3.1
7 9.0 6.4 5.4
8 8.7 7.7 4.7
9 10.7 6.2 9.8
10 4.2 4.3 9.4
11 6.9 8.0 3.9
12 8.7 7.4 5.4
13 4.1 8.9 12.1
Mean 7.7 7.7 7.7

*After Thompson 1950, 91
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3. Following the numbers, a significant event in the life of 
the ruler is portrayed on the reverse side, e.g. marriage, 
accession, or, in the present case, the celebration of a 
cycle ending alleged to belong to the ruler.

4. Footprints are also evident in D.25c–28c, D.29b, D.35a, 
D.39a, D.41c, D.65c, M.11c, M.53c, and M.54c.

5. A ‘distance number applied to [a] pre-zero base’ 
(Lounsbury 1978, 786) used to calculate the base date 
of the table, 9.9.9.16.0 1 Ahau 18 Kayab.

6. V. Bricker (p.c. 1/4/10) notes that a similar situation 
occurs in the Mars Table (D.43b–45b), which begins 78 
days after the base date.

7. Only three such pre-Columbian documents, the 
Dresden, Madrid and Paris codices, have survived the 
extensive book-burning campaign conducted by the 
sixteenth-century Hispanic chroniclers (cf. Tozzer 1941).

8. I am indebted to V. Bricker (pers. comm. 1/4/10) for a 
continuing discussion of the implications of this impor-
tant distinction.

9. ‘Four score and seven years ago…’ is a rare exception.
10. Almanacs with events dated precisely and without 

distance numbers include D.25–28, M.34–37, and pages 
19–20 of the Paris Codex.

11. Except for occasional reference, the badly eroded, 
somewhat aberrant Paris Codex is excluded from the 
present analysis (cf. Love 1994).

12. But see Vail (2004), who argues that some of the alma-
nacs actually tally 365-day years; however, this point is 
not relevant to the discussion of number patterning.

13. In AMP I this class was prematurely, and perhaps 
erroneously, subdivided.

14. I am indebted to Jeffrey Seely (pers. comm. 12/29/09) 
for pointing out a number of these congruences to me.

15. V. and H. Bricker (pers. comm. 1/26/10).
16. Drawing on Landa, Bowditch (1910, 272) writes that on 

days Ahau, Chicchan, Oc, Men, on days 2, 7, 12, 17 of the 
month, a ‘burner’, respectively, takes on or handles the 
fire, begins or ignites the fire, gives it scope, and puts 
out the fire.

17. Cf. also Edmonson (1982, 180) and Long (1923). It was 
Long who worked out the periodicity and significance 
of the four ceremonies, Landa apparently having rec-
ognized only one. For a detailed account of the burner 
ceremonies, see Bricker & Bricker (2011, ch. 6). 

18. Currently V. Bricker and the author are revisiting this 
cognate pair with the intention of exploring alternative 
motives for intervallic alteration.

19. It should be noted that in general any n-station alma-
nac, modulo n, with a constant difference between all 
intervals will produce a mirrored pattern of dates. The 
day names (modulo 20) reached through the application 
of this sequence of intervals exhibit no recognizable 
pattern, thus (beginning with one): 1-10-15-16-6-12-14-
5-12-15-7-15-19-12-1-6-7-17- - - - .

20. I am indebted to H. Bricker (pers. comm. 12/25/09) for 
pointing this out.

21. The day names (modulo 20) exhibit no recognizable 
pattern.

22. Though we have not discussed the heavily effaced 
Paris Codex, there are two almanacs therein that bear a 

resemblance to Madrid almanacs. One of them (P.15b–
18b) consists of a sequence that partially resembles that 
in M.10c–11c (cf. AMP II, S30). 

23. On the matter of saving space, it might be worthwhile to 
develop some sort of metric by which to gauge ‘degree 
of crowdedness’ in various sections of the codices.

24. This analogy, which I attribute to J. Justeson, has 
emerged from our extended discussions on the relation-
ship between writing and numeration (e.g. pers. comm. 
5/1/09).
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