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1. INTRODUCTION

Birth–death processes with immigration and emigration are major models for the
study of the population process of biological and ecological systems, and their tran-
sient analysis is important in the understanding of the structural behavior of such
systems~see, e+g+, Keyfitz @14# !+However, analytic transient solutions for such sys-
tems have been derived only for some special cases~see, e+g+, Kendall@13# , Karlin
and McGregor@11# , Bailey @1# , Bartlett @2# , Iosifescu and Tautu@7# , and Ismail,
Letessier, and Valent@8# , among others!+ In this article, we are concerned with the
transient behavior of the general linear birth–death processes with both immigration
and emigration+

Transient analysis of birth and death processes has also attracted much interest
because of its connection with queuing models+Morse@20# studied theM0M01 queue
and obtained the time-dependent probabilities for the number of customers at any
time t ~see also Kleinrock@15# !+ Using the spectral measure method, Karlin and
McGregor@10# analyzed the transient solutions of multiple-server queues+ Saaty
@26# considered theM0M0s queue and derived the Laplace transform for the distri-
bution of the number of customers in a system at any timet ~see also Kelton and Law
@12# !+ Rothkopf and Oren@25# studied some generalizedM0M0s queues with time-
dependent arrival or service rates, and they obtained approximation results for tran-
sient solutions+ The spectral function of the continuous time transient solution for
M0M0squeue was studied in van Doorn@27,Chap+ 6# , and further papers relevant to
transient solution forM0M0s queues include Whitt@29# , Halfin and Whitt@6# , and
Pegden and Rosenshine@21# + All these queuing systems are modeled as and ana-
lyzed using simple birth–death processes+

The spectral method has been widely used in the literature in analyzing birth–
death processes~see Karlin and McGregor@11# !+ In this article, we employ an al-
ternative approach, themethod of characteristics, to study birth and death processes+
As will be seen in this article, this method not only provides a unified approach to the
study of birth–death processes with immigration and emigration, but it also yields
explicit solutions that have not been explicitly reported in the literature+The method
can be considered as the dual method and it is complementary to the spectral method
of Karlin and McGregor@11# , further refined in Ismail et al+ @8# + Karlin and McGre-
gor’s method is essentially a separation of variables which converts a time-dependent
partial differential equation to a time-independent~stationary! problem; that is, the
time variable is removed first+ In contrast, our method converts a time-dependent
partial differential equation to a set of ordinary differential equations with respect to
time, in which the spatial variablex is a benign parameter+ Put simply, our method is
to removex and Karlin and McGregor’s is to removet+ Karlin and McGregor’s
eigenvalues and eigenfunctions approach is powerful+ Nonetheless our method of
characteristics gives a comprehensive integral representation of solutions for all the
linear birth and death processes~see Theorem 1 in Section 2! and yields many ex-
plicit solutions~Section 4!+ Furthermore, the spectral method requires the compu-
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tation of measures that depend heavily on Laguerre and Meixner polynomials,whereas
our method is more elementary+

In this article, we present a transient analysis for the general linear birth–death
processes with both immigration and emigration by the method of characteristics+
Our analysis involves solving partial differential equations for the moment gener-
ating functions of the transient distribution+For the general case,we present a Volterra-
type integral equation for the chance of extinctionP0~t ! ~i+e+, the probability that the
system is empty at timet ! and an explicit formula for thez-transform of the transient
distribution in terms ofP0~t !+ Furthermore, an explicit-form infinite-series solution
can be found forP0~t !+ These results allow us to obtain explicit solutions for the
transient solutions of several special cases that have not been previously presented
in the literature+

This article is organized as follows+ In the following section, we present the
transient analysis for the general linear birth–death processes with immigration and
emigration+ In Section 3, we discuss the chance of extinctionP0~t ! and its asymp-
totic behavior+ In Section 4,we present the closed-form solutions for several special
cases+We conclude the article with a discussion in Section 5+

2. MODEL AND ANALYSIS

Consider a linear birth–death process with immigration and emigration+The state of
the system is the population size+When the state of the system isn, n5 0,1, + + + , the
immigration rate isn, the emigration rate isu, the birth rate isnl, and the death rate
is nµ+

LetX~t ! be the population size at timet+Then, $X~t !; t $ 0% is a continuous-time
Markov process with transition rates

q~n, n 1 1! 5 n 1 nl, n $ 0

q~n, n 2 1! 5 nµ1 u, n $ 1+

We are concerned with the probability distribution of the population size at any
time t $ 0 @i+e+, of X~t !# + Assume that the initial population distribution is

P~X~0! 5 n! 5 hn, n 5 0,1, + + + , (1)

and let

h~z! 5 (
n50

`

hn zn+

Note that if the system is initially empty, thenh~z! [ 1+
Let

Pn~t ! 5 P~X~t ! 5 n!, n 5 0,1, + + + ,
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then the Kolmogorov forward differential equation forPn~t ! is ~see, e+g+, Ross@24#
and Bailey@1# !

Pn
' ~t ! 5 ~~n 2 1!l 1 n!Pn21~t ! 1 ~~n 1 1!µ1 u!Pn11~t !

2 ~nl 1 nµ1 n 1 u!Pn~t !, n 5 1,2, + + + ,

P0
' ~t ! 5 ~µ1 u!P1~t ! 2 nP0~t !+ (2)

The initial condition for these differential equations isPn~0! 5 hn, n 5 0,1, + + + +
Let

P~t, z! 5 (
n50

`

Pn~t !zn

be thez-transform ofPn~t !, n $ 0, then it follows from~2! thatP~t, z! satisfies the
partial differential equation~PDE!

]P~t, z!

]t
5 ~lz2 2 ~l 1 µ!z1 µ!

]P~t, z!

]z

1 Snz2 n 2 u 1
u

z
DP~t, z! 1 uS12

1

z
DP~t,0!, (3)

with initial-boundary conditions

P~t,1! 5 1, P~0, z! 5 h~z!+ (4)

Thus, the problem boils down to solving the PDE~3! with initial condition~4!+
We remark that the appearance of the boundary termP~t,0! in the equation makes
the problem unusual from the view point of standard PDEs+ Thus, a key step is to
determineP~t,0! [ P0~t !, which is the probability that the population size at timet
is zero+

To solve the differential equation, we first study its characteristics+ The charac-
teristic equation is~see, e+g+, John@9# !

dz

dt
5 2~lz2 2 ~l 1 µ!z1 µ!, z~0! 5 z0+

We note that this characteristic equation is the same as that studied in Chao and
Zheng@3# + Solving this simple ordinary differential equation gives the characteris-
tics of PDE~3!:

z~t ! 5 511 e2~l2µ!tS2
1

12 z0

1
l

l 2 µ
~12 e2~l2µ!t !D21

for l Þ µ,

11 S2
1

12 z0

1 ltD21

for l 5 µ+

+ (5)
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See Chao and Zheng@3, Figs+ 1–5# for the different scenarios of the characteristic
curve+ Some characteristic curves intersect thet-axis if and only ifµ . 0+We will
assumeµ . 0 in this article+

Along any characteristic curve, the PDE becomes an ordinary differential equa-
tion ~ODE!:

dP~t, z~t !!

dt
5 Snz~t ! 2 n 2 u 1

u

z~t !
DP~t, z~t !! 1 u

z~t ! 2 1

z~t !
P~t,0!+

For convenience, we let

a~t ! 5 P~t,0!+

We now introduce the integration factor

L~t;z0! 5 expS2E
0

tSnz~z! 2 n 2 u 1
u

z~z!D dzD, (6)

wheret . 0 andz0 [ @0,1# are two independent variables and the functionz~z!
depends onz0+ Then, the solution of the ODE can be expressed implicitly as

P~t, z~t !! 5
1

L~t;z0! Sh~z0! 1 uE
0

t z~t! 2 1

z~t!
a~t!L~t;z0! dtD+ (7)

where the parameterz0 is an arbitrary number in@0,1# andz~0! 5 z0+
To obtainP~t, z! at a given point~t, z!, we letz~t ! 5 z in ~5! and solve forz0 to

obtain

z0 5 11 e~l2µ!tS2
1

12 z
1

l

l 2 µ
~12 e~l2µ!t !D21

(8)

for l Þ µ and

z0 5 12 Slt 1
1

12 z
D21

(9)

for l 5 µ+ Thus, thez-transformP~t, z! is given by

P~t, z! 5
1

L~t;z0! Sh~z0! 1 uE
0

t z~t! 2 1

z~t!
a~t!L~t;z0! dtD, (10)

wherez0 is given by~8! for lÞµand by~9! for l5µ, andz~t! is given by~5! ~where
t is replaced byt!, with z0 as just defined+ The remaining key issue is to obtaina~t !+

If we letz0 . 0 be less than bothµ0l and 1, then the characteristic curve starting
atz0 must intersect thet axis at a finite time+ See Figure 1+Denote this finite time by
t *+ By settingz~t ! 5 0 in the characteristic solution~5!, we find that
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t * 5 52
1

l 2 µ
lnF 1

µSl 2
l 2 µ

12 z0
DG if l Þ µ,

z0

l~12 z0!
if l 5 µ

and that

z~t ! 5 2µ~t 2 t * ! 1 o~1!~t 2 t * !

ast r t *+ Thus, the integration factor~6! satisfies

L~t;z0! 5 expS2E
0

tSnz~z! 2 n 2 u 1
u

z~z!D dzDr 0

as t r t * ~assumingu . 0!+ SinceP~t, z~t !! is expected to approachP~t *,0! as
t r t *, we conclude that the second factor in~10! must approach zero forz0 [
@0,min$1,µ0l%!; that is,

h~z0! 1 uE
0

t * z~t! 2 1

z~t!
a~t!L~t;z0! dt 5 0+ (11)

This is the equation that determinesa~t !,which is a key observation in our derivation+
The following is the main result of this section+ The reader is referred to@5# ,

@22# , and@23# for the concept of Volterra integral equations~IEs!+

Theorem 1: Suppose µ. 0 andu . 0. Then, the following hold:

(a) The solution P~t, z! of PDE (3) is given by (10) with z~t ! given by (5),
L~t;x! given by (6), z0 given by (8) and (9), and P~t,0! [ a~t ! given by
integral equation (11).

Figure 1. Characteristics connecting the two axes+
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(b) The integral equation (11) can be simplified to a singular Volterra integral
equation of the first kind

H~ y! 5
u

µ
E

0

y

A~s!~11 µy2 ls!2n0l~ y 2 s!u0µ21 ds (12)

for 0 # y , 10~l 2 µ!1, where~l 2 µ!1 5 max$l 2 µ,0%,

H~ y! 5 hS µy

11 µy
Dyu0µ~11 µy!2n0l (13)

for y $ 0 and H~ y! 5 0 for y , 0,

a~t ! 5 A~s~t !!,

and

s 5 s~t ! 5
12 e2~l2µ!t

l 2 µ
for l Þ µ and s~t ! 5 t for l 5 µ+ (14)

(c) Once A~s! is obtained from Volterra integral equation (12), the solution
P~t, z! of PDE (3) given in (10) can be simplified to

P~t, z! 5
u

µ
E

0

1

ASs1
zy~12 sl 1 sµ!

µ~12 z!
D

3 S12
lzy

µ
D2n0l

~12 y!~u0µ!21 dy, (15)

where s5 s~t ! is given in (14).

Proof:

~a! Our earlier analysis has shown that any continuous solutionP~t, z! with a
finite P~t,0! yields a solution of the integral equation~11!+ Conversely, a
finite solution of the integral equation means that the second factor of~10!
vanishes ast r t *+ Since the integral factor~6! goes to zero ast r t *, we
can use L’Hôpital’s rule on the ratio of the second factor over the integral
factor, which yields that the right-hand side of~10! approaches the value
P~t *,0!, which shows thatP~t, z! is continuous up to the boundaryz5 0+
The problem is trivial whenz. 0+ The proof of part~a! is thus completed+

~b! We first simplify ~11!+We use the substitutions5 s~t ! defined in~14!+ The
inverse formula is

t 5 2
ln~12 ~l 2 µ!s!

l 2 µ
if l Þ µ

LINEAR BIRTH–DEATH PROCESSES 147

https://doi.org/10.1017/S0269964804182016 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804182016


andt 5 s if l 5 µ+ The differential relation isds5 ~12 ~l 2 µ!s! dt+ From
the formula fort *, we find the correspondings* :

s* 5
z0

µ~12 z0!
+

We can express the characteristic curves in the new variables as

z~t~s!! 5 11
~12 ~l 2 µ!s!~12 z0!

2 11 ls~12 z0!
,

z~t~s!! 2 1

z~t~s!!
5

12 ~l 2 µ!s

µ~s2 s* !
+ (16)

Thus, we find

E
0

tSn~z~t ! 2 1! 2 u
z~t ! 2 1

z~t !
D dt

5E
0

s~t!Sn~z~t~s!! 2 1! 2 u
z~t~s!! 2 1

z~t~s!!
D ds

12 ~l 2 µ!s

5
n

l
ln~12 l~12 z0!s~t!! 2

u

µ
lnS12

s~t!

s*
D, (17)

where, of course, s~t! is as defined in~14!+With the above simplification,
the integral factor becomes

L~t;z0! 5 ~12 l~12 z0!s~t!!2n0lS12
s~t!

s*
Du0µ

(18)

and the integral equation~11! becomes

h~z0! 1 uE
0

t * z~t! 2 1

z~t!
a~t!~12 l~12 z0!s~t!!2n0lS12

s~t!

s*
Du0µ

dt

5 0+

Substitutingt into s of ~14! we obtain

h~z0!s* 5
u

µ
E

0

s*

a~t~s!!~12 l~12 z0!s!2n0lS12
s

s*
Du0µ21

ds+

Finally, let us apply the change of variables

y 5
z0

µ~12 z0!
,

so that

z0 5
µy

11 µy
+
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Notice that the range 0# z0 , min$1,µ0l% corresponds to 0# y, 10~l2µ!
for l . µ or all y $ 0 for l # µ+ For this range ofy, the IE transforms to the
pivotal equation~12!+

~c! Assume thatA~s! has been obtained from the Volterra integral equation
~12!+ For any given~t, z!, we letz~t ! 5 z in ~5!, from which we solve forz0

to obtain~8! and~9!+ Using thisz0, we find ~10! in which a~t ! 5 A~s~t !!+
Using~11! in ~10! to eliminateh~z0!, we find

P~t, z! 5
u

L~t;z0!
E

t

t *

a~t!
12 z~t!

z~t!
L~t;z0! dt+ (19)

From the expression of the integral factor~18! and~16!, we do a change of
variable to find

P~t, z! 5
u

L~t;z0!
E

s~t !

s*

a~t~w!!~12 l~12 z0!w!2n0l

3 S12
w

s*
Du0µ dw

µ~s* 2 w!
+ (20)

It follows from ~8! and~9! that

z0 5
J

11 J
whereJ 5 sµ1

z~12 sl 1 sµ!

12 z
,

12 z0

z0

5
1

µs*
5

12 z

sµ1 z2 slz
,

12
s

s*
5

z~12 sl 1 sµ!

sµ1 z2 slz
,

sµ1 z2 slz 5 Ssµ1
z

12 z
~12 sl 1 sµ!D~12 z!+

Thus,

L~t;z0! 5 S12
ls~t !

11 J
D2n0lS z~12 sl 1 sµ!

~12 z!J
Du0µ

+

Let the integral in~20! be denoted byL,

L 5E
s~t !

s*

a~t~w!!~12 l~12 z0!w!2n0lS12
w

s*
Du0µ dw

µ~s* 2 w!
+

Then, we have

L 5E
s~t !

J0µ

A~w!S12
lw

11 J
D2n0l

~J 2 µw!~u0µ!21J2u0µ dw+
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Transforming the variablew r y,

w 5 s~t ! 1
z~12 sl 1 sµ!

µ~12 z!
y,

we further find

L 5E
0

1

ASs1
z~12 sl 1 sµ!

µ~12 z!
yD

3 S12
lµs~12 z! 1 lz~12 sl 1 sµ!y

µ~12 z!~11 J!
D2n0l

3 ~12 y!~u0µ!21S z~12 sl 1 sµ!

~12 z!J
Du0µ 1

µ
dy+

Now, we use

11 J 2 sl 5
12 sl 1 sµ

12 z
,

thus

12
lµs~12 z! 1 lz~12 sl 1 sµ!y

µ~12 z!~11 J!

5
1

11 J
S11 J 2 sl 2

lz~12 sl 1 sµ!y

µ~12 z!
D

5
1

11 J

12 sl 1 sµ

12 z
S12

lzy

µ
D+

With these, we find

P~t, z! 5
u

µ
E

0

1

ASs1
z~12 sl 1 sµ!

µ~12 z!
yDS12

lzy

µ
D2n0l

3 ~12 y!~u0µ!21 dy+

This completes the proof of Theorem 1+ n

It follows from Theorem 1 that the solutionP~t, z! is obtained once we solve the
singular Volterra integral equation~12!+ From the theory of integral equations, we
know that the singular integral equation~12! can be reduced to a regular equation
and this first-kind equation can be brought to the second kind, for which the iteration
method can be used to construct an infinite-series solution+ The details will not be
given here and the reader is referred to@5# , @22# , or @23# +
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In the following sections,we consider the asymptotic behavior of the solution to
this equation and we also consider several cases for which we are able to find closed-
form solutions to this equation+

Remark 1:The probabilityP0~t ! 5 a~t ! is determined by~11!+ OnceP0~t ! is ob-
tained, recursive formulas can be developed forPn~t !, n51,2, + + + , using~2!, which
can then be used for calculating explicit numerical solutions+ However, for many
other purposes, we prefer to obtain a closed-form explicit formula forPn~t !, which,
among other things, shows more explicitly its dependencies on the systems param-
eters+ Indeed, very few stochastic systems possess closed-form solutions for tran-
sient probabilities, and in Section 4, we focus on finding closed-form solutions for
the process+

3. CHANCE OF EXTINCTION

The probability that the population size is zero at timet, i+e+, P0~t !, is referred to as
the chance of extinction~Kendall @13# !+ In this section we apply Theorem 1 to
analyze the limiting behavior ofP0~t ! as time tends to infinity+

Theorem 2: As time tends to infinity, we have the following:

(a) P0~t ! r 0 if l $ µ andn0l $ u0µ.
(b) P0~t ! r ~u 2 n!0u for the casel 5 µ and0 # n , u.
(c) P0~t ! r ~µ0u!@*0

1~12 ls0µ!2n0l~12 s!~u0µ!21 ds#21 [ ~0,1! for l , µ and
n . 0.

(d) P0~t ! r 1 for l , µ andn 5 0.

Proof: We notice that~12! can be written as

hS µy

11 µy
D~11 µy!2n0l 5

u

µ
E

0

1

A~sy!~11 µy2 lsy!2n0l~12 s!~u0µ!21 ds+

(21)

For the casel . µ, we lety r 10~l 2 µ! in ~21! to find

hS µ

l
D 5

u

µ
E

0

1

AS s

l 2 µ
D~12 s!2~n0l!1~u0µ!21 ds+ (22)

If n0l $ u0µ, the term ~1 2 s!2n0l1u0µ21 is not integrable on@0,1# + Thus,
A~s0~l 2 µ!! must vanish assr 1; hence, A~10~l 2 µ!! 5 0+ In this case, we have

a~t ! 5 P0~t ! r A~10~l 2 µ!! 5 0+

This proves the first half of part~a!+
If l 5 µ, we lety r ` in ~21! and useh~1! 5 1 to find

1 5
u

µ
E

0

1

A~`!~12 s!2n0l1u0µ21 ds+ (23)
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This impliesA~`! 5 0 if n $ u andA~`! 5 ~u 2 n!0u if n , u+ This proves part~b!
and completes part~a!+

If l , µ, we similarly lety r ` in ~21! and useh~1! 5 1 to find

1 5
u

µ
E

0

1

A~`!S12
ls

µ
D2n0l

~12 s!u0µ21 ds+ (24)

Thus,

A~`! 5
µ

u FE0

1S12
ls

µ D2n0l

~12 s!u0µ21 dsG21

+ (25)

If n 5 0,we findA~`! 51+Otherwise, it is a number between zero and one since the
factor~12 ls0µ!2n0l is greater than one+ This proves parts~c! and~d!+ The proof of
Theorem 2 is complete+ n

Remark 2:The limit of P0~t ! for the casel . µ andn0l , u0µ is generally depen-
dent on the initial conditionh~z!+ For example, a~t ! r 1 if h~z! [ 1 for the case
l . µ, n 5 0, anyu . 0, andµ . 0+ However, a~t ! r 12 ~~l 2 µ!0l!2 if h~z! 5 z
for the casel . µ, n 5 0, andu 5 µ+ These results can be obtained from the explicit
formulas of Corollaries 3 and 4 of the next section+

Remark 3: It follows from parts~b! and~d! of Theorem 2 that ifl # µ andn 5 0,
then limtr`P0~t ! 51; that is, the population is “almost certain” to die out for linear
birth–death process with emigration whenl # µ+ This result was proved in Kendall
@13# for the special casen 5 u 5 0+

4. CLOSED-FORM SOLUTIONS

Birth and death processes have been extensively studied in the literature and some
cases have been solved explicitly a long time ago+ For example,whenl 5 µ5 0,we
obtain anM0M01 queue and its transient solution can be found, for example, in
Kleinrock @15#+ The casel 5 0 andu 5 0 is equivalent to anM0M0` queue and its
transient solution can also be found in many texts on stochastic processes~e+g+,
Example 4+5 of Cox and Miller@4# and Massey and Whitt@19# !+ The casen 5 0 and
u 5 0 is the typical linear birth–death process and the caseu 5 0 is a linear birth–
death process with immigration, also referred to as the Kendall process~Kendall
@13# !+ The transient solutions to all of these cases have been solved in closed forms
~see, e+g+, Bailey @1# !+

Based on the analysis in Section 2, we present in this section the closed-form
transient solutions for four cases+Our first case is covered by Ismail et al+ @8# , but we
choose to include it here since our presentation is simple and more elementary+ The
transient solutions to the other cases appear to be new+

We first consider the casel5µ+ In this case, the integral equation~12! becomes

H~ y! 5
u

µ
E

0

y

a~s!~11 µ~ y 2 s!!2n0l~ y 2 s!u0µ21 ds+
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We recognize that the right-hand side of this equation is a convolution+ In what
follows, we usef * g to represent the convolution off andg+ Let

K1~s! 5
u

µ
~11 µs!2n0ls211~u0µ!, s . 0; (26)

then,

H~ y! 5 ~a * K1!~ y! [ E
0

y

a~s!K1~ y 2 s! ds+

By using the Laplace transformL, we have

a~s! 5 L21S L~H !

L~K1!D, s$ 0+ (27)

This analysis yields the following result+

Corollary 1: The integral equation (12) has closed-form solutions ifl5µ. In this
case, a~t ! 5 A~t ! is given by (27) via Laplace transform, and the solution is

P~t, z! 5
u

µ
E

0

1

aSt 1
zy

µ~12 z!
D~12 zy!2n0µ~12 y!~u0µ!21 dy+

We next consider the casen 5 0, resulting in a linear birth–death process with
emigration+ In this case, the integral equation~12! becomes

H~ y! 5
u

µ
E

0

y

A~s!~ y 2 s!u0µ21 ds, (28)

where 0# y , 10~l 2 µ!1+We note that sincen 5 0, we can assume that~28! holds
for all y $ 0 ~in this case, the term~11 µy2 ls!2n0l is not present!+

Note that the right-hand side of the IE~28! is also a convolution+ Let

K2~s! 5
u

µ
s211~u0µ!, s . 0+

Then

H~ y! 5 ~A * K2!~ y!+

Using the Laplace transformL, we have

A~s! 5 L21S L~H !

L~K2!D+ (29)
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More specifically, we find

L~K2! 5
u

µ
GS u

µ
Ds2u0µ,

whereG is the gamma function+ UsingaG~a! 5 G~a 1 1!, we have

A~s! 5 L21~su0µL~H !!0GS u

µ
1 1D+

If u0µ5 m is a positive integer, then

A~s! 5
1

m!
H ~m! ~s!, a~t ! 5 A~s~t !! (30)

sinceH ~n!~0! 5 0 for all n5 0,1,2, + + + ,m21+ If u0µ5 m1 a, wherem is a nonneg-
ative integer anda [ ~0,1!, then

sm1aL~H ! 5
1

s12a
L~H ~m11! ! 5

L~s2a !L~H ~m11! !

G~12 a!

sinceH ~n!~0! 5 0 for all n 5 0,1,2, + + + ,m+ Using the convolution formula, we find

A~s! 5 FGS u

µ
1 1DG~12 a!G21E

0

s 1

ta
H ~m11! ~s2 t! dt+ (31)

We note that~31! is valid even fora 5 0; thus, ~31! includes~30! as a special case+
We comment in passing that the equation forA~s! for the caseu0µ5 a [ ~0,1!

is an Abel’s equation; see@5# , @22# , @23#, or @28# + In particular, if u0µ5 1
2
_ , then we

have

A~s! 5
2

p
E

0

s H '~s2 t!

Mt dt+

Corollary 2: If n 5 0, µ5 l, andu 5 mµ for some positive integer m, we have

a~t ! 5
1

m!
G~m! ~lt ! 5

1

m!
H ~m! ~t !,

where

G~ y! 5 hS y

11 y
Dym (32)

and

P~t, z! 5 S12 z

z DmFGSlt 1
z

12 zD2 (
k50

m21 1

k!
G~k! ~lt !S z

12 zDkG
5 (

k50

` 1

~k 1 m!!
G~k1m! ~lt !S z

12 z
Dk

, (33)
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with

Pn~t ! 5 (
k51

n ~n 2 1!!

~n 2 k!!~k 2 1!!~k 1 m!!
G~k1m! ~lt !, n $ 1+

We remark that the functionG~ y! is very similar toH~ y!+We prefer to useG~ y!
here+ Also, the notationG~k!~lt ! denotes thekth derivative ofG~ y! with respect to
the generic variabley at lt+ One can see thatl and t appear as a product in the
formula, which is consistent with the equation+

Proof: The functiona~t ! follows from ~30! and a simple change of variable+ From
~15!, we obtain that

P~t, z! 5 mE
0

1

aSt 1
zy0µ

12 z
D~12 y!m21 dy+ (34)

Through Taylor expansion and the beta function, we find

P~t, z! 5 m (
k50

` 1

k!
a~k! ~t !S z0µ

12 z
Dk k!~m2 1!!

~k 1 m!!
+ (35)

That simplifies to

P~t, z! 5 (
k50

` 1

~k 1 m!!
G~k1m! ~lt !S z

12 z
Dk

+

Using the expansion

~12 z!2k 5 (
l50

` 1

l!
k~k 1 1!{{{~k 1 l 2 1!zl,

we find for all n $ 1 that

Pn~t ! 5 (
l1k5n

k~k 1 1!{{{~k 1 l 2 1!

l!~k 1 m!!
G~k1m! ~lt !,

where the sum is over allk$1 such thatl 1 k5 n, and it simplifies to yield the result
stated in Corollary 2+ The expressions in~33! can be verified easily through either
integration by parts on~34! or inspection of their Taylor expansion+ n

Corollary 3: For the casen 5 0, µÞ l, andu 5 mµ for some positive integer m,
we have

a~t ! 5
1

m!
G~m! ~µs~t !!,
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where G~ y! 5 h~y0~11 y!!ym is the same as in (32), and

P~t, z! 5 S 12 z

z~12 ls1 µs!
Dm

3 FGSµs1
z~12 ls1 µs!

12 z D2 (
k50

m21 1

k!
G~k! ~µs!S z~12 ls1 µs!

12 z DkG
5 (

k50

` 1

~k 1 m!!
G~k1m! ~µs!S z~12 ls1 µs!

12 z
Dk

,

where s5 s~t ! is defined in (14), with

Pn~t ! 5 (
k51

n ~n 2 1!!

~n 2 k!!~k 2 1!!~k 1 m!!
~12 ls1 µs!kG~k1m! ~µs!, n $ 1+

Proof: Once we make use of the variables~t !, the proof will be parallel to that of
Corollary 2+We omit the details+ n

Corollary 4: Supposen 5 0, u0µ 5 m1 a . 0 for some nonnegative integer m
and0 # a , 1, and µ. 0, l . 0, we have

a~t ! 5 A~s~t !!,

A~w! 5 FGS u

µ
1 1DG~12 a!G21E

0

w 1

ta
H ~m11! ~w 2 t! dt,

and

P~t, z! 5
u

µ
E

0

1

ASs1
zy~12 sl 1 sµ!

µ~12 z!
D~12 y!~u0µ!21 dy, (36)

where s5 s~t ! is given in (14). The corresponding Pn~t ! for all n $ 1 are

Pn~t ! 5 GS u

µ
1 1D(

k51

n ~n 2 1!!

~n 2 k!!~k 2 1!! GSk 1 1 1
u

µ
D A~k! ~s!S12 sl 1 sµ

µ
Dk

+

Proof: It is a simple consequence of Theorem 1 and~31!+ n

We next present an alternative method+ As used in~21! in the proof of Theo-
rem 2, we notice that~12! can always be written as

F~ y! 5
u

µ
E

0

1

A~sy!~11 µy2 lsy!2n0l~12 s!u0µ21 ds, (37)

where we have defined

F~ y! 5 H~ y!y2u0µ+ (38)
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Whenn 5 0, we have

F~ y! 5
u

µ
E

0

1

A~sy!~12 s!u0µ21 ds+ (39)

It follows from ~39! that thenth derivative ofF at zero is

F ~n! ~0! 5 A~n! ~0!
u

µ
E

0

1

sn~12 s!u0µ21 ds

for all nonnegative integersn+ Thus, for all n, we obtainA~n!~0! as

A~n! ~0! 5
~µ0u!F ~n! ~0!

b~n 1 1,u0µ!
,

whereb is the beta function+ Then, we find

A~s! 5 (
n50

` 1

n!
A~n! ~0!sn+

Sincea~t~s!! 5 A~s!, we have

a~t ! 5 A~s~t !! 5 (
n50

` 1

n!
A~n! ~0!S12 e2~l2µ!t

l 2 µ
Dn

+ (40)

This method can be used to deal with the general case+We can use Taylor ex-
pansion onF~ y!,A~sy!, and~11 ~µ2ls!y!2n0l aty50 in ~37! to derive a recursive
formula forA~n!~0!:

F ~n! ~0!

n!
5

u

µ

A~n! ~0!

n!
bSn 1 1,

u

µ
D

1
u

µ (
k51

n A~n2k! ~0!

~n 2 k!!

a~a 2 1!{{{~a 2 k 1 1!

k!

3 E
0

1

sn2k~µ2 ls!k~12 s!~u0µ!21 ds,

wherea 5 2n0l+ In this way we can find an expression fora~t !; however, since it
is very complicated, we choose not to present its formula+

5. DISCUSSION

We presented the use of the method of characteristics for a transient analysis of the
linear birth–death processes with immigration and emigration+ For the general case,
we presented a Volterra-type integral equation for extinction probabilityP0~t ! and
an explicit formula forP~t, z! in terms ofP0~t !,which is ready for expansion to yield
Pn~t !+ For several special cases that have not been previously solved, we presented
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closed-form solutions forP~t, z! andPn~t ! for all n $ 0+We also give semiexplicit
closed-form solutionsP~t, z! andP0~t ! for the casel 5 µ+

Recently, there has been several studies that incorporate total catastrophes in the
stochastic systems~see, e+g+,Kumar andArivudainambi@16# , and Kyriakidis@17,18# ,
Chao and Zheng@3# , among others!+ The catastrophes arrive according to a Poisson
process and its arriving effect is to reduce the total population size to zero+ Let the
catastrophes arrival rate beg; then PDE~3! becomes

]P~t, z!

]t
5 ~lz2 2 ~l 1 µ!z1 µ!

]P~t, z!

]z

1 Snz2 n 2 u 1
u

z
2 gDP~t, z! 1 uS12

1

z
DP~t,0! 1 g+ (41)

It is not hard to see from our analysis that the procedure used in solving PDE~3!
equally applies to solving PDE~41!+ Thus, adding total catastrophes does not add
difficulty in solving the problem+ The details will not be given here+
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