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1. INTRODUCTION

Birth—death processes with immigration and emigration are major models for the
study of the population process of biological and ecological systanstheir tran-
sient analysis is important in the understanding of the structural behavior of such
systemgsee e.g., Keyfitz [14]). However analytic transient solutions for such sys-
tems have been derived only for some special césssse.g., Kendall[13], Karlin
and McGregoif11], Bailey [1], Bartlett[2], losifescu and Taut{i7], and Ismalil
Letessierand Valen{ 8], among others In this article we are concerned with the
transient behavior of the general linear birth—death processes with both immigration
and emigration

Transient analysis of birth and death processes has also attracted much interest
because of its connection with queuing modklerse[20] studied thévl/M/1 queue
and obtained the time-dependent probabilities for the number of customers at any
time t (see also Kleinrock15]). Using the spectral measure meth&arlin and
McGregor[10] analyzed the transient solutions of multiple-server queSasty
[26] considered thé1/M/s queue and derived the Laplace transform for the distri-
bution of the number of customers in a system at any ti(eee also Kelton and Law
[12]). Rothkopf and Oref25] studied some generalizédl/M/s queues with time-
dependent arrival or service ratasd they obtained approximation results for tran-
sient solutionsThe spectral function of the continuous time transient solution for
M/M/squeue was studied in van Dodi2i7, Chap 6], and further papers relevant to
transient solution foM/M/s queues include Whif29], Halfin and Whitt[6], and
Pegden and Rosenshifi2l]. All these queuing systems are modeled as and ana-
lyzed using simple birth—death processes

The spectral method has been widely used in the literature in analyzing birth—
death processdsee Karlin and McGregdr1]). In this article we employ an al-
ternative approaghhemethod of characteristi¢$o study birth and death processes
As will be seenin this articlghis method not only provides a unified approach to the
study of birth—death processes with immigration and emigrabanit also yields
explicit solutions that have not been explicitly reported in the literafline method
can be considered as the dual method and it is complementary to the spectral method
of Karlin and McGregof11], further refined in Ismail et a[8]. Karlin and McGre-
gor’'s method is essentially a separation of variables which converts a time-dependent
partial differential equation to a time-independéstationary problem that is the
time variable is removed firstn contrast our method converts a time-dependent
partial differential equation to a set of ordinary differential equations with respect to
time, in which the spatial variabbeis a benign parameté?Put simply our method is
to removex and Karlin and McGregor’s is to remowe Karlin and McGregor’s
eigenvalues and eigenfunctions approach is poweNahetheless our method of
characteristics gives a comprehensive integral representation of solutions for all the
linear birth and death processsge Theorem 1 in Section and yields many ex-
plicit solutions(Section 4. Furthermorethe spectral method requires the compu-
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tation of measures that depend heavily on Laguerre and Meixner polynprhaleas
our method is more elementary

In this article we present a transient analysis for the general linear birth—death
processes with both immigration and emigration by the method of characteristics
Our analysis involves solving partial differential equations for the moment gener-
ating functions of the transient distributidfor the general casee present a \olterra-
type integral equation for the chance of extinctit) (i.e., the probability that the
system is empty at timig and an explicit formula for the-transform of the transient
distribution in terms oPy(t). Furthermorean explicit-form infinite-series solution
can be found folPy(t). These results allow us to obtain explicit solutions for the
transient solutions of several special cases that have not been previously presented
in the literature

This article is organized as followin the following sectionwe present the
transient analysis for the general linear birth—death processes with immigration and
emigration In Section 3we discuss the chance of extinctiBp(t) and its asymp-
totic behaviorin Section 4we present the closed-form solutions for several special
casesWe conclude the article with a discussion in Section 5

2. MODEL AND ANALYSIS

Consider a linear birth—death process with immigration and emigrattenstate of
the system is the population si2®hen the state of the systemnisn=0,1,..., the
immigration rate i/, the emigration rate i8, the birth rate is1A, and the death rate
iS N
LetX(t) be the population size attinteThen {X(t);t =0} is a continuous-time

Markov process with transition rates

g(n,n+1) = v+ nj, n=0

g(n,n—1) = nu+ 6, n=1

We are concerned with the probability distribution of the population size at any
timet = O[i.e, of X(t)]. Assume that the initial population distribution is

P(X(0) =n)=h,, n=01,..., (1)
and let

h(z) = > h,z"
n=0

Note that if the system is initially emptthenh(z) = 1.
Let

P,(t) =P(X(t)=n), n=01,...,
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then the Kolmogorov forward differential equation fey(t) is (see e.g., Ross[24]
and Bailey[1])

Pit) = (N=DA+»)P, 1(t) + (n+ D+ 0)P,. (1)
— (NA + nu+ v + 0)P, (1), n=12,...,
Po(t) = (L+ 0)Py(t) — vPy(1). (2)
The initial condition for these differential equationdFg0) = h,, n=0,1,....
Let
P(t,2) = X P.(t)z"
n=0

be thez-transform ofP,(t), n = 0, then it follows from(2) thatP(t, z) satisfies the
partial differential equatioPDE)

JP(t, ) ) dP(t, 2)
—_— = —(A+pz+
p Az = (A +Wz+p P
0 1
+ <VZ—V—(9+E)P(t,z)-ﬁ-@(l—;)P(t,O), 3)
with initial-boundary conditions
Pt1l) =1 P02 =h(2). 4

Thus the problem boils down to solving the P8 with initial condition (4).
We remark that the appearance of the boundary ®¢f0) in the equation makes
the problem unusual from the view point of standard PDHgIs a key step is to
determineP(t,0) = Py(t), which is the probability that the population size at titne
is zera

To solve the differential equatiowe first study its characteristicghe charac-
teristic equation igsee e.g., John[9])

dz

g - -tz 20 =2

We note that this characteristic equation is the same as that studied in Chao and
Zheng[3]. Solving this simple ordinary differential equation gives the characteris-
tics of PDE(3):

1 A -1
1+e At — + —— (1—e ¥ for A # 1,
1-zp A—p

z(t) = (5

1 -1
1+(— +/\t> forA =
1_20
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See Chao and Zhen@, Figs 1-5] for the different scenarios of the characteristic
curve Some characteristic curves intersect ttaxis if and only ifyu > 0. We will
assumael > 0 in this article

Along any characteristic curythe PDE becomes an ordinary differential equa-
tion (ODE):

dP(t, z(t))
o ( 2(t) =

z(t) -1
z(t)

v—0+ i) P(t,z(t)) + 6 P(t,0).

(1)
For conveniencewe let
a(t) = P(t,0).

We now introduce the integration factor

A(T;29) = exp(— fOT<vz(§) -—v—0+ (—§)> ) (6)

wherer > 0 andz, € [0,1] are two independent variables and the funczéd)
depends o1zy. Then the solution of the ODE can be expressed implicitly as

()—

P(t, z(t)) = ! 20) <h(zo) + Bf a(r)A(r;20) dr) (7)

where the parametey, is an arbitrary number if0,1] andz(0) = z,.
To obtainP(t, z) at a given pointt, z), we letz(t) = zin (5) and solve forzy to
obtain

zy= 1+l W <—i + A (1- e“““”))l (8)
1-z A—yp

for A # pand

_1< L)l 9
Zo=1-At+ 9)

for A = W Thus the z-transformP(t, z) is given by

1 —
P(t2) = T O)<h( )+of ()

wherez,is given by(8) for A # pand by(9) for A =y, andz(7) is given by(5) (where
tis replaced by), with z, as just definedThe remaining key issue is to obtaift).

If we letz, > 0 be less than botl/A and 1 then the characteristic curve starting
atzy mustintersect theaxis at a finite timeSee Figure 1Denote this finite time by
t*. By settingz(t) = 0 in the characteristic solutiofs), we find that

a(T)A(T Zo) dT) (10)
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r*

z, WA 1

Ficure 1. Characteristics connecting the two axes

1 1 A—U )
- In| —(A— if A# Y,
A—H M 1-2

if A=

and that
z(t) = —p(t—t*) + o((t —t7)

ast — t*. Thus the integration facto(6) satisfies

t 6
A(t;zo) = exp(—f()(uz({) —v—0+ T()) d{) -0

ast — t* (assumingd > 0). SinceP(t, z(t)) is expected to approadh(t*,0) as
t — t*, we conclude that the second factor(tD) must approach zero fa, €
[0,min{1, u/A}); that is

h(zg) + 0J: Z(ZT; ! a(r)A(7;2y) dr = 0. (12)

Thisis the equation that determireg$), which is a key observation in our derivation
The following is the main result of this sectiohhe reader is referred {&],
[22], and[23] for the concept of Volterra integral equatiofigs).

THEOREM 1: Suppose = 0 and# > 0. Then, the following hold:

(a) The solution Pt, z) of PDE (3) is given by (10) with(z) given by (5),
A(t;x) given by (6), g given by (8) and (9), and ®,0) = a(t) given by
integral equation (11).
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(b) The integral equation (11) can be simplified to a singular Volterra integral

(€)

PROOF:

(a

(b)

equation of the first kind

0 y
H(y) = m f A(S)(1+ puy— As) Ay — )" 1 ds (12)
0
forO=y<1/(A—w*, where(A — p)*™ = max{A — 0},

Ky
1+ py

HW)=h< )W”ﬂ+uwﬂ“ (13)

fory=0and H(y) = 0fory <0,

a(t) = A(s(t)),
and

1— e (At

S:S(t):Tu forA #pand €t) =tfor A = . (24)

Once As) is obtained from Volterra integral equation (12), the solution
P(t, z) of PDE (3) given in (10) can be simplified to

0 1 zy(1— s\ + s
PGJ)_HJ;AG+ u(l1-2) )

)\ —v/A
x (1- %) (L—y) oy, (15)

where s= s(t) is given in (14).

Our earlier analysis has shown that any continuous soluRidyz) with a
finite P(t,0) yields a solution of the integral equatidhl). Converselya
finite solution of the integral equation means that the second factd:Opf
vanishes as— t*. Since the integral factq6) goes to zero as— t*, we

can use L'Hopital’s rule on the ratio of the second factor over the integral
factor, which yields that the right-hand side (£0) approaches the value
P(t*,0), which shows thaP(t, z) is continuous up to the boundazy= 0.

The problem is trivial whez > 0. The proof of par{a) is thus completed

We first simplify (11). We use the substitutios= s(t) defined in(14). The
inverse formula is

In(1— (A -
(= DRI ey
A—q
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andt = sif A = W The differential relation isls= (1 — (A — Y)s) dt. From
the formula fort*, we find the corresponding:
— Zo
R 20)
We can express the characteristic curves in the new varssdsde

(g — 14 LW 20)

S*

—1+2As(1—z,)
z(t(s) -1  1-(A—ps
2ds) | Ws-s) (4o
Thus we find
f( (2t —1) — g 2V = 1) dt
o\ 2(t)

e z(t(s)) — 1 ds
- fo <V(Z(t(s)) D) ) 1-(A—pWs
=2 - (- _f <1—S(T)> 17
= - A= zos() — n(1- 7 ). an

where of course s(7) is as defined ir{14). With the above simplification
the integral factor becomes

: s(r)
A(7320) = (1= M1 = Z5)s8(r)) ™" (1 - —) (18)
and the integral equatioril) becomes
h(zy) + Gft* Z(;—()T; ! a(r)(1— A(1—zp)s(7)) A <1 — ?)Wu dr

=0.
Substitutingr into s of (14) we obtain

. 0 s* i s \0/u-1
h(zy)s* = EL a(7(s))(1—A(1—zp)9) <1— ;) ds

Finally, let us apply the change of variables

TP
so that
Wy
ZO_ .
1+ py

https://doi.org/10.1017/50269964804182016 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804182016

LINEAR BIRTH-DEATH PROCESSES 149

Notice that the range® z, < min{1, u/A} correspondsto &y < 1/(A — )
for A > porally =0 for A = W For this range of, the IE transforms to the
pivotal equation(12).

(c) Assume thatA(s) has been obtained from the Volterra integral equation
(12). For any given(t, z), we letz(t) = zin (5), from which we solve foz,
to obtain(8) and(9). Using thisz,, we find (10) in which a(t) = A(s(1)).
Using(11) in (10) to eliminateh(zy), we find

0 t 1-z(7
P(t,2) = A(t_Z)J a(r) Z(ig ) A(ri20) . (19)

From the expression of the integral fact@B) and(16), we do a change of
variable to find

5*

P(t,2) = AN670) o a(r(w)(1— A(1— zg)w) 4
w\/m dw
X (1— ?) o (20)
It follows from (8) and(9) that
J z(1—sA +sp)
Zo= 173 whereJ = s+ 1=y
1- 1z 1 1-2z
z—0 N us* N SU+z—sAZ

s z(l—sA+sp
s* Su+z—saz’

z
SU+z—sAz= <5p+ 1Tz(l— SA + s@)(l— ).

Thus
As(t) \ 7 (z(1— sA + sp) \7m
Atzo) = <1_ 1+(j> ( : 1-2)J P)> '
Let the integral in20) be denoted by,
L= f a(r(w) (1 — A(1— zo)w) (1— ﬂ)“ _ W
s®) '/ H(s"—w)

Then we have

J/u AW\
L= f A(w) (1— —) (J — pw) W13~ dwy,
s(t) 1 + J
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Transforming the variables — y,

z(1—sx + sy

w=s(t) + n1-2) A

we further find

[t z(1—sx+sp
L= J;) A<S+ —p(l— 2 y>
< AS(1—2) + Az(1—sA + sp)y)—u/A
X (1-
H1l-2)(1+J)

X (1 —_ y)(e/u)fl <w>ﬁ/Ll ﬁ dy

1-2J
Now, we use
1—sA+su
1+J—-sA= ———,
1-2z
thus

B AUS(1—z) + Az(1 — sA + spy
H1-2)(1+J)

1

1 Az(1—sA+s
:_<1+J—S/\—M>
14 Hl-2)
1 1—5/\+su<1 A_zy)
S 1+d 1-z A

With these we find

0 1 Z(1—sA +sp _Azy\ A
P(t’z)_ufoA<s+ u(l-2) y><1 u)

X (1- y)(e/u)fl dy.

This completes the proof of Theorem 1 |

It follows from Theorem 1 that the solutid?(t, z) is obtained once we solve the
singular Volterra integral equatidi2). From the theory of integral equationse
know that the singular integral equati¢t2) can be reduced to a regular equation
and this first-kind equation can be brought to the second kamavhich the iteration
method can be used to construct an infinite-series solufiba details will not be
given here and the reader is referred3, [22], or [23].
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In the following sectionswve consider the asymptotic behavior of the solution to
this equation and we also consider several cases for which we are able to find closed-
form solutions to this equation

Remark 1: The probabilityPy(t) = a(t) is determined by11). OncePy(t) is ob-
tained recursive formulas can be developedRft), n=1,2,..., using(2), which

can then be used for calculating explicit numerical soluti¢t@®wvever for many
other purposesve prefer to obtain a closed-form explicit formula fy(t), which,
among other thingshows more explicitly its dependencies on the systems param-
eters Indeed very few stochastic systems possess closed-form solutions for tran-
sient probabilitiesand in Section 4we focus on finding closed-form solutions for
the process

3. CHANCE OF EXTINCTION

The probability that the population size is zero at tityiee., Py(t), is referred to as
the chance of extinctiofiKendall [13]). In this section we apply Theorem 1 to
analyze the limiting behavior &¥(t) as time tends to infinity

THEOREM 2: As time tends to infinity, we have the following:

(@) Py(t) > 0if A =pandv/A = 0/p.

(b) Py(t) > (6 — v)/6 for the case = pand0=» < 6.

(©) Po(t) = (WO)[[3(L— As/p)~"A(1—9)@W-1ds]* € (0,1) for A < pand
v > 0.

(d) Py(t) > 1for A <pandv =0.

Proor: We notice that12) can be written as

Hy 0 (*
h( )(14— A = — f A(sy)(1+ py— Asy) A(1—s)@W1ds
1+ py Hy) A Y, Hy — Asy, )

(21)
For the cas& > |, we lety — 1/(A — W) in (21) to find

0 (? s
h(E) = — f A(—)(l — S)f(v/x\>+(9/u)fl ds (22)
A H Jo A—H

If /A = 0/l the term (1 — s)~"/AT94=1 is not integrable orf0,1]. Thus
A(s/(A — W) must vanish as — 1; hence A(1/(A — W) = 0. In this casewe have

a(t) = Po(t) = A(1/(A — ) =0.

This proves the first half of paks).
If A =p, we lety — oo in (21) and usen(1) = 1 to find

0 1
1= . f A(co) (1 — )~ "A+o/m-1(dg (23)
0
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This impliesA(co) = 0 if » = 6 andA(co) = (0 — v)/0 if v < 0. This proves partb)
and completes pafth).
If A <, we similarly lety — co in (21) and useh(1) =1 to find

1= flA(oo)<1— A—S> - gmds (24)
M Jo M
Thus
1 —v/A -1
A(0) = g[fo (1— f) (1—s)w1 ds} . (25)

If v =0, we find A(c0) = 1. Otherwiseit is a number between zero and one since the
factor(1— As/p) /A is greater than ondhis proves partéc) and(d). The proof of
Theorem 2 is complete |

Remark 2: The limit of Py(t) for the caser > pandv/A < 6/uis generally depen-
dent on the initial conditiom(z). For examplea(t) — 1 if h(z) =1 for the case
A> W, v=0,anyd > 0, andu > 0. Howevera(t) = 1 — (A — w/A)2if h(z) =z

for the case\ >, v = 0, andd = L. These results can be obtained from the explicit
formulas of Corollaries 3 and 4 of the next section

Remark 3: It follows from parts(b) and(d) of Theorem 2 that i = pandy = 0,
then lim_, ., Po(t) = 1; that is the population is “almost certain” to die out for linear
birth—death process with emigration whers p. This result was proved in Kendall
[13] for the special case = 6 = 0.

4. CLOSED-FORM SOLUTIONS

Birth and death processes have been extensively studied in the literature and some
cases have been solved explicitly a long time.d&gw examplewhenA = u= 0, we

obtain anM/M/1 queue and its transient solution can be fquiod example in
Kleinrock[15]. The casel = 0 andd = 0 is equivalent to aiM/M/co queue and its
transient solution can also be found in many texts on stochastic prooesges
Example 45 of Cox and Millerf4] and Massey and WhiftL9]). The caser = 0 and

0 = 0 is the typical linear birth—death process and the dasd is a linear birth—

death process with immigratipalso referred to as the Kendall procégendall

[13]). The transient solutions to all of these cases have been solved in closed forms
(see e.g., Bailey[1]).

Based on the analysis in Sectionv#e present in this section the closed-form
transient solutions for four case3ur first case is covered by Ismail et @8], but we
choose to include it here since our presentation is simple and more elem@hiry
transient solutions to the other cases appear to be new

We first consider the case= . In this casethe integral equatiofi2) becomes

H(y) = o fya(s)(l+ H(y — 9)""A(y — s)”"1ds
M Jo
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We recognize that the right-hand side of this equation is a convoluitiowhat
follows, we usef * g to represent the convolution 6andg. Let

0
Ky(s) = " (1+pg) A HHOM 5> 0 (26)

then

y
H(y) = (ax Ky (y) = f a(s)Ky(y — s)ds

0

By using the Laplace transforif), we have

=Lt £H) =0 27
a(s) = <L‘(K1)>’ s=0. (27)

This analysis yields the following result

CoroLLARY 1: Theintegral equation (12) has closed-form solutionssf . In this
case, dt) = A(t) is given by (27) via Laplace transform, and the solution is

_o 2y N s
P(t’z)_ufoa<t+u(1—z))(1 zy) "MLy dy.

We next consider the cage= 0, resulting in a linear birth—death process with
emigration In this casethe integral equatiofil2) becomes

Hy = = [ Asy -9 tas (28)
H Jo

where 0=y < 1/(A — W)*. We note that since = 0, we can assume th&28) holds
for all y = 0 (in this casethe term(1 + py — As)~*/* is not present
Note that the right-hand side of the (E8) is also a convolutionLet

0
Ka(s) = " s M s> 0.

Then
H(y) = (A% Ky)(y).

Using the Laplace transforii, we have

(29)

A(s) = £1< £(H) )

L(K>)
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More specificallywe find
0 (6
L(Ky) = — F(—) S
Moo
wherer is the gamma functiarUsingal' («) = T'(a + 1), we have
0
A(s) = ﬁ%s”“ﬁ(H))/l‘(E + 1>.
If 6/u= mis a positive integetthen
1
Als) = o H™(s),  a(t) = A(s(t)) (30)

sinceH™(0)=0foralln=0,1,2,...,m—1.If §/u=m+ «a, wheremis a nonneg-
ative integer and € (0,1), then

oo L(sT)L(H™)
sla LHMD) = rl-a)

sinceH ™ (0) = 0 for alln = 0,1,2, ..., m. Using the convolution formulave find

s™eL(H) =

A(s) = [F(fH)r(l—a)]lfi Hm D (s— ) dr (31)
u e :

We note that31) is valid even fore = 0; thus (31) includes(30) as a special case
We comment in passing that the equationAgs) for the cas#/u= a € (0,1)
is an Abel's equationsee]5], [22], [23], or [28]. In particular if §/p= 3, then we

have
_E SH'(s—1)
A(s)—ﬂfo—\/; dr.

CoRrOLLARY 2: If v =0, p= A, and€ = mp for some positive integer m, we have

a(t) — i G(m)(/\t) — i H(m)(t)
mi m! ’

where
o = (7% )yr 2
and
= () folus 12) - 5 evan(2,)]
- kio (k +1m)! G(Hm)(’\t)(l%Z)k’ )
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with

— S (n_l)l k+m -
P = 2 i Drkr my & AD N =L

We remark that the functioB(y) is very similar toH (y). We prefer to us&(y)
here Also, the notationG (At) denotes théth derivative ofG(y) with respect to
the generic variablg at At. One can see that andt appear as a product in the
formula which is consistent with the equation

Proor: The functiona(t) follows from (30) and a simple change of variabfrom
(15), we obtain that

P(t,2) = m J <t+1ﬂ>(1 y)™ 1 dy. (34)

Through Taylor expansion and the beta functiwe find

zZ/u >k kl(m—1)!
—-z) (k+m) "’

[e’e}

1
P(t,z) = > 1 a<k)(t)<

(35)

That simplifies to

-~ 1 (k+m) z X\
P(t,2) = kgo (K m)! G (At) 1)

Using the expansion
=1
(1-2k= 2 —k(k+1)---(k+1—-1)Z,

= !

we find for alln = 1 that

b= 3 KEFDktl-

M (At),
I+k=n I'(k + m)! (A1)

where the sum is over afl= 1 such that + k= n, and it simplifies to yield the result
stated in Corollary 2The expressions if83) can be verified easily through either
integration by parts ofB4) or inspection of their Taylor expansion u

CoroLLARY 3: Forthe caser =0, p# A, andé = mu for some positive integer m,
we have

1
a(t) = o G™(ps(t)),
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where Qy) = h(y/(1+y))y™is the same as in (32), and

B(t %L)’“
t2) = z(1— As+ s

><{G<Ms+z(1—/\s+us)> ”‘21 G(k>(“)<z(l—)\s+us))k]

1-z =o k! 1-z
& Z(1— As+ U )k
(k+m) _—~ - ==
g(ker)'G (us)( 1-z ’

where s= s(t) is defined in (14), with

n (n—21)!

Pa(t) = Zl (n—K)(k— 1)!(k+ m)!

Proor: Once we make use of the varialdg), the proof will be parallel to that of
Corollary 2 We omit the details u

(1— As+ p9kG* M (us), n=1.

CoROLLARY 4: Supposer = 0, /p=m + «a > 0 for some nonnegative integer m
and0 =« < 1, and p> 0, A > 0, we have

a(t) = A(s(t)),

Aw) = Hg +1>r<1— a>]_lfwia H* (w— 7) d,
u o 7

and
0 (* zy(1—sA +sp)
P(t,2) = —f A(s+ —)(1— )(O/W=1 gy 36
B Jo H(l-12) Y Y (36)
where s= s(t) is given in (14). The corresponding(®) for alln = 1 are
0 n n—1)! 1— s\ + sp\k
Pn(t>=r<—+1>2 e A<k>(s>(—”).
H kl(n—k)!(k—l)!r<k+1+ﬁ> H
PrOOF: Itis a simple consequence of Theorem 1 &Bd). u

We next present an alternative methéd used in(21) in the proof of Theo-
rem 2 we notice that12) can always be written as

1
F(y) = E [ A+ uy— sy sras 37)
0

where we have defined

F(y) = H(y)y "% (38)
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Whenv = 0, we have
0 1
Fy = & [ A9 as (39)
[0]
It follows from (39) that thenth derivative ofF at zero is
0 1
F™(©0) = A™(0) " f s"(1- )" tds
[0]

for all nonnegative integens Thus for all n, we obtainA™(0) as
(W/6)F™(0)
B(n+1,6/w’

whereg is the beta functionThen we find

Al (0) =

[e’e}

Als) =3 iA<n>(0)s

n= 0
Sincea(7(s)) = A(s), we have
o _ a—QA=wt\n
a(t) = A(s(t) = 3 i A (0) <1Ae%> . (40)
n=o N o8

This method can be used to deal with the general.d&secan use Taylor ex-
pansion orF (), A(sy), and(1+ (n— As)y) " aty=0in (37) to derive a recursive
formula forA™(0):

(n) (n)
FP0 6 A (O)ﬁ<n+1,g>

n! poon
00 A0 a(ea—1)---(ea—k+1)
" aZ (n—kK)! Kl

1
X f S"K(H— As)(1— )W 1ds
0

wherea = —v/A. In this way we can find an expression faft); however since it
is very complicategwe choose not to present its formula

5. DISCUSSION

We presented the use of the method of characteristics for a transient analysis of the
linear birth—death processes with immigration and emigraionthe general case

we presented a Volterra-type integral equation for extinction probalfiity) and

an explicit formula foiP(t, z) in terms ofPy(t), which is ready for expansion to yield
P.(t). For several special cases that have not been previously selegaresented
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closed-form solutions foP(t, z) andP,(t) for all n = 0. We also give semiexplicit
closed-form solution®(t, z) andPy(t) for the casel = L

Recentlythere has been several studies that incorporate total catastrophes in the
stochastic systenisege.g., Kumar and Arivudainamiyil6], and Kyriakidig 17,18],
Chao and Zhen[], among others The catastrophes arrive according to a Poisson
process and its arriving effect is to reduce the total population size tolzetrthe
catastrophes arrival rate hethen PDE(3) becomes

oP(t, z) - (14 N JaP(t, z)
o =(Az2 = (A +pz “)—az

+ <vz—v—0+ g —y)P(t,z)+0<1—;)P(t,O)vLy. (41)

It is not hard to see from our analysis that the procedure used in solving(®DE
equally applies to solving PDE1). Thus adding total catastrophes does not add
difficulty in solving the problemThe details will not be given here
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