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In frontier analysis, most of the nonparametric approaches~free disposal hull
@FDH# , data envelopment analysis@DEA# ! are based on envelopment ideas, and
their statistical theory is now mostly available+ However, by construction, they
are very sensitive to outliers+ Recently, a robust nonparametric estimator has been
suggested by Cazals, Florens, and Simar~2002, Journal of Econometrics1, 1–25!+
In place of estimating the full frontier, they propose rather to estimate an expected
frontier of orderm+ Similarly, we construct a new nonparametric estimator of the
efficient frontier+ It is based on conditional quantiles of an appropriate distribu-
tion associated with the production process+ We show how these quantiles are
interesting in efficiency analysis+We provide the statistical theory of the obtained
estimators+We illustrate with some simulated examples and a frontier analysis of
French post offices, showing the advantage of our estimators compared with the
estimators of the expected maximal output frontiers of orderm+

1. INTRODUCTION

An important problem in productivity and efficiency analysis is to characterize
and to estimate the production frontier, i+e+, the set of the most efficient produc-
tion process+ The idea is to analyze how firms combine their inputs to produce
in an efficient way the output+We are then interested in the production frontier
because it represents a reasonable benchmark value or reference frontier+ Let
us introduce the basic concepts and notation+

According to economic theory~Koopmans, 1951; Debreu, 1951; Shephard,
1970!, the production set, where the activity is described through a set ofp
inputsx [ R1

p used to produce an univariate outputy [ R1, is defined as the
set of physically attainable points~x, y!:

C 5 $~x, y! [ R1
p116 x can producey%+
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This set can be described mathematically by its sectionsY~x! 5 $ y [ R16
~x, y! [ C% where, for any level of inputsx, the requirement setY~x! repre-
sents the set of all outputs that a firm can produce usingx as inputs+ Assuming
that C is compact, the maximal achievable level of output for a given level of
inputsx defines the output-efficient function]Y~x! 5 maxY~x!+ From an eco-
nomic point of view, this function is supposed monotone nondecreasing, and it
is then called the production function and its graph, which represents the effi-
cient boundary ofC, is called the production frontier+ Other different assump-
tions can be assumed onC, such as free disposability, i+e+, if ~x, y! [ C then
~x ', y'! [ C for any x ' $ x andy' # y; or convexity, i+e+, every convex com-
bination of feasible production plans is also feasible; or no free lunch, i+e+, for
all y . 0 we havey Ó Y~0! ~see, e+g+, Shephard, 1970!+

The production process, which generates observationsxn 5 $~Xi ,Yi !6 i 5
1, + + + ,n% is defined, e+g+, through the joint distribution of a random vector~X,Y!
on R1

p 3 R1, whereX represents the inputs andY is the output+ In the case
whereC is equal to the support of the distribution of~X,Y!, another way to
define the production frontier is given as follows+ The production function, which
we denote from now on byw, is characterized for a given level of inputsx by
the upper boundary of the support of the conditional distribution ofY given
X # x, i+e+,

w~x! 5 sup$ y [ R1 6 F~ y0x! , 1%, (1)

whereF~{0x! 5 F~x,{!0FX~x! is the conditional distribution function ofY given
X # x, with F being the joint distribution function of~X,Y! and FX the mar-
ginal distribution function ofX+ It is supposed here thatFX~x! . 0 or thatx is
an interior point of the support of the distribution ofX+ The inequalityX # x
has to be understood componentwise+ As a matter of fact, the functionw is the
smallest monotone nondecreasing function that is larger than or equal to the
output-efficient function]Y~+!+ Its graph defines the production frontier+ If
the efficient boundary ofC is monotone nondecreasing~a quite reasonable
assumption in practice!, it coincides with the production frontier+ So, we have,
in some sense, just reparametrized the definition of the efficient frontier ofC+
This new formulation of the production frontier is due to Cazals, Florens, and
Simar~2002!+

A large amount of literature is devoted to the estimation of the production
frontier from a random sample of production unitsxn+ Two different approaches
have been mainly developed: the deterministic frontier models, which suppose
that with probability one, all the observations inxn belong toC, and the sto-
chastic frontier models, where random noise allows some observations to be
outside ofC+

In deterministic frontier models, there are mainly two nonparametric meth-
ods based on envelopment techniques: the free disposal hull~FDH! and the
data envelopment analysis~DEA!+ The FDH estimator was introduced by
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Deprins, Simar, and Tulkens~1984! and relies only on the free disposability
assumption onC+ The DEA estimator, which was initiated by Farrell~1957! and
popularized as a linear programming estimator by Charnes, Cooper, and Rhodes
~1978!, requires stronger assumptions: it relies on the free disposability assump-
tion and the convexity ofC+ Note that the convexity assumption is widely used
in economics but it is not always valid+ The production set might admit increas-
ing returns to scale, i+e+, the output increases faster than the inputs, or there might
be lumpy goods, i+e+, fractional values of inputs or outputs do not exist+ Hence,
the FDH is a more general estimator than the DEA+ The asymptotic distribution
of the FDH estimator was derived by Park, Simar, and Weiner~2000! in the case
of multivariate input and output, and the asymptotic distribution of the DEA
estimator was derived by Gijbels, Mammen, Park, and Simar~1999! in the uni-
variate case+ The statistical theory of these estimators is now mostly available+
See Simar and Wilson~2000! for a recent survey of the available results+

In stochastic frontier models, where noise is allowed, only parametric restric-
tions on the shape of the frontier and on the data generating process allow iden-
tification of the noise from the efficiency frontier and estimation of this frontier+
Aigner, Lovell, and Schmidt~1977!, Meeusen and van den Broek~1977!, Olsen,
Schmidt, and Waldman~1980!, Stevenson~1980!, and Battese and Coelli~1988!
specified a model for the production function and a specific distributional form
for the error and then used maximum likelihood methods to estimate the param-
eters of the production function+ These methods may lack robustness if the
assumed distributional form does not hold+ In particular, outliers in the data
may unduly affect the estimate of the frontier function, or, it may be biased if
the error structure is not correctly specified+ Furthermore, as illustrated by Cau-
dill , Ford, and Groper~1995!, heteroskedasticity in the error term, if not prop-
erly accounted for, can lead to significant biases when estimating the production
frontier+

Nonparametric deterministic frontier models are very appealing because they
rely on very few assumptions, but, by construction, they are very sensitive to
extreme values and to outliers+ Recently, a robust nonparametric envelopment
estimator of the production frontier has been suggested by Cazals et al+ ~2002!+
They introduce the concept of expected maximal output frontier of order
m [ N*, whereN* denotes the set of all integersm $ 1+ It is defined as the
expected maximum achievable level of output amongm firms drawn in the
population of firms using less than a given level of inputs+ Formally, for a fixed
integerm [ N* and a given level of inputsx, the frontier function of orderm is
defined as

wm~x! 5 E @max~Y1, + + + ,Ym!# 5E
0

`

~12 @F~ y0x!# m! dy,

where~Y1, + + + ,Ym! arem independent identically distributed random variables
generated by the distribution ofY given X # x+ Its nonparametric estimator is
defined by
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[wm, n~x! 5E
0

`

~12 @ ZF~ y0x!# m! dy,

where ZF~ y0x! 5 ZF~x, y!0 ZFX~x! is the empirical version ofF~ y0x!, with

ZF~x, y! 5
1

n (
i51

n

1~Xi # x,Yi # y! and ZFX~x! 5
1

n (
i51

n

1~Xi # x!+

As pointed out in Cazals et al+ ~2002!, the FDH estimator of the production
function can be viewed as a plug-in estimator ofw~x!, where the unknown
F~ y0x! in the formulas~1! has been replaced by its empirical analogueZF~ y0x!+
It is given by

[wn~x! 5 sup$ y $ 06 ZF~ y0x! , 1% 5 max
i 6Xi#x

Yi +

Because of the trimming nature of the order-m frontier, the estimator [wm, n~x!
does not envelop all the data points, and so it is more robust to extreme values
than the FDH estimator[wn~x!+ By choosingm appropriately as a function of
the sample sizen, [wm, n~x! estimates the production functionw~x! itself while
keeping the asymptotic properties of the FDH estimator+

Hendricks and Koenker~1992, p+ 58! stated, “In the econometric literature
on the estimation of production technologies, there has been considerable inter-
est in estimating so called frontier production models that correspond closely
to models for extreme quantiles of a stochastic production surface+” The present
paper can be viewed as the first work to actually implement the idea of Hen-
dricks and Koenker: we construct a new nonparametric estimator of the pro-
duction frontier that is more robust to extreme values than the standard DEA0
FDH estimators and than the nonparametric estimator of Cazals et al+ It is based
on extreme quantiles of the conditional distribution ofY given X # x+ These
nonstandard conditional quantiles define a natural concept of a partial produc-
tion frontier in place of them-trimmed frontier+ The idea is nice and attractive,
because here the “trimming” is continuous in terms of the order-a quantile where
a [ @0,1# + Quantile methods are known for their robustness+ More precisely,
conditional quantiles are not very sensitive to large observations in the output
direction+We show that our new partial frontier and its resulting estimator share
most of the properties of the order-m frontier and its estimator+

The paper follows the structure of Cazals et al+ ~2002! initially very closely,
adapting their technique to the output oriented case and extending their basic
ideas, thus sharing similar comments+ It is organized as follows+ Section 2 moti-
vates our concept of quantile-frontier of ordera and investigates its properties
and its relation to the order-m frontier and to the true production frontier+ In
Section 3, we define a nonparametric estimator of our order-a frontier, which
is very easy to derive, very fast to compute, and does not envelop all the observed
data points+ In Section 4, we show that this estimator converges at the rateMn
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and is asymptotically normally distributed+We also derive a nonparametric esti-
mator of the efficient production frontier and analyze its asymptotic distribu-
tion+ In Section 5, a numerical illustration is proposed with some simulated
examples and a data set on labor~as input! and mail volumes~as output! about
10,000 French post offices+ We show how resistant to outliers our estimators
are compared with the estimators of the expected maximal output frontiers of
orderm+ Section 6 concludes the paper+ The proofs appear in the Appendix+

2. A NEW CONCEPT OF PRODUCTION FRONTIER

Let ~V,A,P! be the probability space on which the vector of inputsX and the
output variableY are defined+ In this approach, we define the attainable setC
to be the support of the joint distribution of~X,Y!, and we will concentrate on
the setC* 5 $~x, y! [ C6FX~x! . 0% , which contains the interior ofC+

From its definition, w~x!, the value of the production function coincides with
the order one quantile of the law ofY given X # x,

q1~x! 5 inf $ y $ 06F~ y0x! 5 1%+

This suggests introducing a concept of production function of continuous order
a [ @0,1# , as the quantile function of ordera of the law ofY given thatX does
not exceed a given level of inputs+ This function takes, for a given level of
inputsx, the value

qa~x! :5 F21~a0x! 5 inf $ y $ 06F~ y0x! $ a%+

This conditional quantile is the production threshold exceeded by 100~12 a!%
of firms that use less than the levelx as inputs+ The functionF21~+0x! is the
so-called generalized inverse ofF~{0x!+ If the distribution functionF~{0x! is
strictly increasing, its inverse coincides with the generalized inverseF21~+0x!+
Using this property, we easily obtain the following result+

PROPOSITION 2+1+ Assume that for every x such that FX~x! . 0, the con-
ditional distribution function F~{0x! is strictly increasing on the support
@0,w~x!# . Then,

∀~x, y! [ C* we have y5 qa~x! with a 5 F~ y0x!+ (2)

From property~2!, we see that any production unit~x, y! in C* belongs to
somea-order quantile curve+ Then unit~x, y! produces more than 100a% of
all production units using inputs smaller than or equal tox and produces less
than the 100~1 2 a!% remaining units+ Thus the quantile functionqa~x! quan-
tifies the production efficiency of unit~x, y! by comparing it with all units that
use the same level of inputsx and also with those that use strictly less thanx+
This motivates our interest in the distribution ofY given X # x+
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But the most attractive property of this quantile function is that it can be
easily nonparametrically estimated without the drawbacks of the methods try-
ing to estimate the frontier function itself: it will be less sensitive to noise,
extreme values, or outliers+ This is developed in the next section+

As it is shown by property~2!, the quantile curves$~x,qa~x!!6FX~x! . 0%
cover the whole production setC*+ As can be seen in the next proposition, this
does not hold for expected order-m frontiers of Cazals et al+ ~2002!
$~x,wm~x!!6FX~x! . 0% +

PROPOSITION 2+2+ Under the assumption of Proposition 2.1 and if we
assume furthermore the free disposability of outputs, i.e.,

y [ Y~x! and y' # y n y' [ Y~x!,

then the functionswm do not satisfy the following property:

∀~x, y! [ C*, ∃m [ N* s.t. y5 wm~x!+

Let us compare how the expected maximal production function and the quan-
tile function can be useful in terms of practical efficiency analysis+ Suppose a
production unit uses a quantity of inputsx0 and produces an outputy0; wm~x0!
gives the expected maximum production among a fixed number ofm firms using
less thanx0 as inputs+ This value indicates how efficient the unit~x0, y0! is,
compared with thesem units+ This is achieved by comparing its levely0 with
the value ofwm~x0!+ For this particular unit, we know that it belongs to a quan-
tile frontier+ The order of this frontier, which is known, gives the proportion of
units that produce less thany0 among all firms using less thanx0+ Hence the
quantile function gives a clearer indication on the production performance, and
it can be viewed as a reasonable benchmark value+

We can, however, establish an asymptotic relationship between the two fam-
ilies of production functionswm and qa+ Namely, we can state the following
proposition+

PROPOSITION 2+3+ For every x such that the conditional distribution func-
tion F~{0x! is twice differentiable with first derivative f~+0x! strictly positive on
the support@0,w~x!# , we have as mr ` and a r 1,

wm~x! 2 qa~x! 5 H 1

f ~w~x!0x!
1 ~a 2 1!@cx

'~a! 1 o~a!#J
3 O~m2304~ log m!102~ log logm!104! 1 o~a!, (3)

wherecx
'~a! 5 2F ''~qa~x!0x!0f 3~qa~x!0x!.

From its definition, it is clear that for any fixedx such thatFX~x! . 0, qa~x!
is a monotone nondecreasing function ofa+ The limiting case whena r 1 is
of particular interest+ It converges to the efficient frontier: by letting m tend to
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infinity in ~3! and using limmr`wm~x! 5 w~x!, we obtainw~x! 2 qa~x! 5 o~a!
whena r 1+We can prove this property directly by using the monotonicity of
quantilesqa~x! with respect toa as indicated by the next proposition+ Even
more strongly it is shown, under some regularity conditions, that the order-a
production functionqa converges uniformly to the true production functionw+

PROPOSITION 2+4+

(i) For any fixed value of x such that FX~x! . 0, we havelimar1 ; qa~x! 5
w~x!.

(ii) Assume that for everya [ @0,1# , the quantile function qa~+! is continu-
ous on the interior of the support of X. Then for any compact K interior
to the support of X,

sup
x[K
6qa~x! 2 w~x!6r 0 asa ; 1+

The functionqa converges to a monotone nondecreasing functionw asa r 1,
but it is not monotone nondecreasing itself unless we add the following
assumption:

∀y $ 0, ∀x1 # x2 s+t+ FX~x1! . 0, we haveF~ y0x1! $ F~ y0x2!+ (4)

This assumption is not needed for all the results of this paper except for the
next proposition, but it appears to be quite reasonable: it says that the chance
of producing less than a valuey decreases if a firm uses more inputs+ This
assumption is necessary and also sufficient+

PROPOSITION 2+5+ The quantile function x° qa~x! is monotone nonde-
creasing on the set$x [ R1

p 6FX~x! . 0% for every ordera [ @0,1# if and only
if the function x ° F ~ y0x! is monotone nonincreasing on the set$x [

R1
p 6FX~x! . 0% for any output y[ R1.

Note that the results established in Proposition 2+4 are very similar to those
obtained for the order-m frontier+ Indeedwm~x! converges simply and uni-
formly to w~x! as m r `+ However for Proposition 2+5, Cazals et al+ ~2002,
Theorem A+3! only prove that if assumption~4! holds thenwm~x! is monotone
nondecreasing inx+

3. NONPARAMETRIC ESTIMATION

To estimate the conditional quantileqa~x!, it is natural to use the conditional
empirical quantile obtained by inverting the conditional empirical distribution
function ZF~{0x!,

[qa, n~x! :5 ZF21~a0x! 5 inf $ y6 ZF~ y0x! $ a%+

364 Y. ARAGON ET AL.

https://doi.org/10.1017/S0266466605050206 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050206


This estimator may be computed explicitly as follows+ Let Nx be the number of
observationsXi smaller than or equal tox, i+e+, Nx 5 ( i51

n 1~Xi # x!, and, for
j 5 1, + + + ,Nx, denote byY~i j ! the j th order statistic of the observationsYi such
that Xi # x: Y~i1! # Y~i2! # {{{ # Y~iNx! + We have, for x such thatNx Þ 0,

ZF~ y0x! 5

(
i 6Xi#x

1~Yi # y!

Nx

5

(
j51

Nx

1~Y~i j ! # y!

Nx

+

Hence,

ZF~ y0x! 5 5
0 if y , Y~i1!

k0Nx if Y~ik! # y , Y~i$k11% ! , 1 # k # Nx 2 1+

1 if y $ Y~iNx!

Therefore, we obtain for everya . 0,

[wn~x! 5 Y~iNx! 5 max
i 6Xi#x

Yi , [qa, n~x! 5 HY~i$aNx% ! if aNx [ N*

Y~i$@aNx#11% ! otherwise,
(5)

where@aNx# denotes the integral part ofaNx: the largest integer less than or
equal toaNx+ The conditional empirical quantile[qa, n~x! is thus computed very
easily as being the simple empirical quantile of observationsyi such thatxi # x+

For comparison, note that an exact formula is available to compute[wm, n~x!+
It is as simple as the formula~5! but is restricted to the case of no ties among
the inputs+ The nonparametric estimator[wm, n~x! can also be approximated in
practice by using a Monte-Carlo algorithm, even in the full multivariate case
~several inputs and several outputs!, which we do not treat in our paper+ For
instance, in the univariate output case, the Monte-Carlo method can be described
as follows+ For a givenx, draw a random sample of sizem with replacement
among theseyi such thatxi # x and denote this sample by~ yb

1, + + + , yb
m!+ Then

compute Jwb,m~x! 5 maxi51, + + + ,m~ yb
i !+ Redo this forb 5 1, + + + ,B where B is

large+ Finally, we have

Jwm, n~x! '
1

B (
i51

B

Jwb,m~x!,

where the quality of the approximation can be tuned by the choice ofB+
Note also that the relation between the order-m frontier and the true frontier

remains valid with their estimators[wm,n~x! and [wn~x!, i+e+, limmr` ; [wm,n~x! 5
[wn~x!+ Similarly it is easily seen, for any fixed value of inputsx for which the

estimator [qa, n~x! is well defined for every ordera [ @0,1# , that [qa, n~x! is a
monotone nondecreasing function ofa, and thus
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lim
ar1

; [qa, n~x! 5 [wn~x!+

Note that even for large values ofa , 1, the estimator [qa, n~x! is less sensi-
tive to extreme values than the FDH estimator[wn~x!, which by construction
envelops all the observations+ The asymptotic theory is discussed in Section 4+
Note also that [qa, n~x! is not necessarily monotone nondecreasing with respect
to x+ Indeed, even if assumption~4! is assumed for the true conditional distri-
bution function, it could happen that its empirical counterpart does not satisfy
it+ Of course we know that for large sample sizen, it will mostly be the case+

Another property that [qa, n~x! shares with [wm, n~x! lies in the fact that both
the nonparametric partial frontiers underestimate the full frontierw~x!, for every
order+ In our case, for any value of inputsx for which w~x! and [qa, n~x! are well
defined for any ordera [ @0,1# , we have

[qa, n~x! # [wn~x! # w~x! a+s, ∀a [ @0,1# +

Indeed, because the production functionw~{! is monotone nondecreasing and
greater than or equal to the efficient-output function]Y~+!, for eachi such that
Xi # x we have almost surelyYi # ]Y~Xi ! # w~Xi ! # w~x!+ Therefore [wn~x! 5
max$Yi 6Xi # x% # w~x! a+s+ On the other hand we have[qa, n~x! # [q1~x! 5
[wn~x! for everya [ @0,1# +

4. ASYMPTOTIC PROPERTIES

For the unconditional case whereja denotes the order-a quantile of a distribu-
tion functionFZ of a random variableZ, and Zja denotes the empirical quantile
of a sample~Z1, + + + , Zn! of Z, if FZ is differentiable inja and such that
FZ
'~ja! . 0, the Bahadur representation theorem gives

Mn~ Zja 2 ja! D
&& NS0,

a~12 a!

@FZ
'~ja!# 2D asn r `+

The direct application of this result to the distribution functionFZ~{! 5 F~{0x!
does not serve our purpose because our data do not yield a sample from this
distribution+ However, as for unconditional quantilesja, we focus here on pairs
~x,a! that satisfy the following property:

F~{0x! is differentiable atqa~x! s+t+ F '~qa~x!0x! . 0+ (6)

As a consequence of this property, F~{0x! is a bijective transformation from a
neighborhood ofqa~x! onto a neighborhood ofa+ In particular the generalized
inverseF21~{0x! is equal to the inverse ofF~{0x! in the neighborhood ofa+
This property will be used in the proof of the following theorem, which sum-
marizes the asymptotic properties of our estimator[qa, n~x!+
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THEOREM 4+1+ Let a [ ~0,1! be a fixed order and let x be a fixed value
such that FX~x! . 0. Assume that the conditional distribution function F~{0x!
is differentiable at qa~x! with derivative f~qa~x!0x! . 0. Then,

(i) [qa, n~x! P
&& qa~x! as nr `;

(ii) Mn~ [qa, n~x! 2 qa~x!! D
&& N~0,s2~x,a!! as nr `,

where

s2~x,a! 5 a~12 a!0~ f 2~qa~x!0x!FX~x!!+

It is important to note that here, also, the equivalent properties hold with the
nonparametric estimator of the order-m frontier+ Indeed it is easy to see that
[wm, n~x! converges at the rateMn and is asymptotically unbiased and normally

distributed: L~Mn~ [wm, n~x! 2 wm~x!!! r N~0,s2~x,m!!, where s2~x,m! 5
E @Gm

2~x,X,Y!# , with

Gm~x,X,Y! 5
m

FX~x!
1~Xi # x!E

0

1`

F m21~ y0x!@F~ y0x! 2 1~Yi # y!# dy+

Moreover for a vector~ [wm, n~x1!, + + + , [wm, n~xr !!, the asymptoticr-variate nor-
mal distribution is obtained with asymptotic covariances given bySm~xk, xl ! 5
E @Gm~xk,X,Y!Gm~xl,X,Y!# + Similarly we have the following more general result
for the estimator of the conditional quantile frontier function+

THEOREM 4+2+ Let x1, + + + , xr be r levels of the input X that satisfy the
assumption of Theorem 4.1 for a given ordera [ ~0,1!. Then,

Mn~ [qa, n~x1! 2 qa~x1!, + + + , [qa, n~xr ! 2 qa~xr !! D
&& Nr ~0,Sa! as nr `,

where

Sa~xk, xl ! 5 E @ha~xk,X,Y!ha~xl,X,Y!# ,

with

ha~x,X,Y! 5
a1~X # x! 2 1~X # x,Y# qa~x!!

f ~qa~x!0x!FX~x!
+

In applied work, the variance factorss2~x,a! and Sa~xk, xl ! must be esti-
mated+ For instance, consistent estimators for these factors can be obtained by
plugging in nonparametric estimators for the conditional densityf ~{0x! and the
marginal distribution functionFX~x! and taking the empirical mean for the expec-
tation+ Note that, as for unconditional quantiles, quantiles in the tail of the con-
ditional distribution where the conditional density is low are inherently more
difficult to estimate+
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Note also that Cazals et al+ ~2002! obtained an asymptotic representation for
their nonparametric estimator[wm, n~x! where the error term is uniform inx,
whereas the error term involved in our approach depends onx ~see the proof of
Theorem 4+1!+ This can be explained as follows+ Both [wm, n~x! and [qa, n~x! are
representable as functionals of the empirical distribution functionZF+ The cor-
responding functional for [wm, n~x! is differentiable in the Frechet sense w+r+t+
the sup-norm, whereas that corresponding to[qa, n~x! is only differentiable in
the Gâteaux sense+ The uniformity of the error term allowed Cazals et al+ ~2002,
Appendix B! to improve the convergence results of[wm, n~x! by a functional
limit theorem, which is not the case in our approach+

It is also interesting to compare[qa, n~x! with the estimator of the standard
conditional quantile of the distribution ofY given X 5 x+ First note that this
latter estimate requires a smoothing procedure, which is not the case when the
distribution of Y is conditioned byX # x+ To compare their asymptotic vari-
ance, let us recall that the smooth estimators of the quantilesja~x! of the dis-
tribution function Fx of Y given X 5 x, are obtained by inverting a kernel
estimator ofFx and satisfy the following result:

Mnhn~ Zja~x! 2 ja~x!! D
&& N~0,m2~x,a!!,

wherem2~x,a! 5 a~12 a!R~K !0fx2~ja~x!!, with fx~ y! 5 ~]0]y!Fx~ y!, R~K ! 5
*K 2~u! du, andK andhn are, respectively, a kernel and a bandwidth satisfying
some specific constraints~see, e+g+, Berlinet, Cadre, and Gannoun, 2001; Du-
charme, Gannoun, Guertin, and Jequier, 1995!+

Let us now turn to the convergence to the full frontier functionw~x!+ We
know that the estimator[qa, n~x! converges to the FDH estimator[wn~x! as
a r 1+ We also know from Park et al+ ~2000! that under regularity conditions,
as n r `, the FDH estimator [wn~x! converges to the true unknown frontier
w~x!+ The idea is then to definea as a function ofn such thata~n! r 1 and
[qa~n!, n~x! r w~x! asn r `+ We thus derive an estimator of the true produc-

tion frontier w~x! and show in the next theorem that it converges to the same
asymptotic distribution as the FDH estimator and as the nonparametric enve-
lopment estimator of Cazals et al+ ~2002!+ The rate of convergence of the order
a~n! to 1 is provided+

THEOREM 4+3+ Assume that the joint probability measure of~X,Y! on
the compact supportC provides a strictly positive density on the frontier
$~x,w~x!!6FX~x! . 0% and that the functionw is continuously differentiable.
Then for any x interior to the support of X we have, as nr `,

n10~ p11! ~w~x! 2 [qa~n!, n~x!! D
&& Weibull~mx

p11, p 1 1!,

wheremx is a constant and the ordera~n! is such that

n~ p12!0~ p11! ~12 a~n!! r 0 as nr `+
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The constantmx appearing in the limiting Weibull depends on the slope of
the frontier and the value of the density near the frontier point~x,w~x!!+ A
consistent nonparametric estimator of this unknown constant has been pro-
posed in Park et al+ ~2000!+

Like the approach of Cazals et al+ ~2002!, here also we lose the
Mn-consistency because we use[qa, n~x! to estimate the full frontierw~x! and
not the partial frontierqa~x!+

5. NUMERICAL ILLUSTRATIONS

In this section, we illustrate our procedure through some numerical examples
with simulated and real data+ In the simulation study, the observations are sim-
ulated according to the same data generating process used in Simar~2003!+

5.1. Example 1

We first consider a situation where the attainable set is convex+ We simulate
a sample ofn 5 500 data points~xi , yi ! according to the Cobb–Douglas
log-linear frontier model given byY 5 X0+5 3 exp~2U !, whereX is uniform
on ~0,1! and U is exponential with mean1

3
_ + The true frontier function is

w~x! 5 x0+5+
Figure 1 illustrates the simulated data and the quantile curves[qa, n and the

expected maximal frontiers[wm, n ~B 5 1,000! for several different values of
a andm+ In the solid lines, the estimates[qa, n ~Figure 1a! with a 5 0+7, 0+97,
0+98, 0+99, 1 are compared with the estimates[wm, n ~Figure 1b! with m5 2, 25,
50, 75, `+ The true frontierw is in dash-dotted lines+ The frontiers are mono-
tone nondecreasing with respect to the order+ For Figure 2, we add in the data
set three outliers, and we plot the same frontiers[qa, n and [wm, n+

From Figures 1 and 2, it is clear that the frontiers[wm, n are more resistant to
the three outliers than the FDH frontier, but they are less resistant to the outli-
ers than the quantile frontiers of ordersa , 1+ Indeed, the quantile frontier
[q0+99, n is influenced by only one outlier, and it comes back down immediately,

whereas the frontiers[wm, n with m 5 25, 50, 75 are attracted by all the outliers
and moreover continue to grow after each jump+ So in this particular example
the frontier [q0+99, n is more robust to the outliers than the three frontiers[wm, n,
whereas it envelops all these frontiers in absence of the three outliers+

5.2. Example 2

We now simulate a sample ofn 5 500 data points~xi , yi ! with a nonconvex
production set+We choose here the modelY5 exp~25 1 10X !0~11 exp~25 1
10X !!exp~2U !, whereX is uniform on~0,1! andU is exponential with mean13

_+
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Figure 3 plots the simulated data and, in the solid lines, the frontiers [qa, n

and [wm, n ~B 5 1,000! with the same orders as in the preceding example and,
in the dash-dotted lines, the true frontierw+ Note that, here also, the frontier
[q0+99, n is above all the frontiers[wm, n+ We again add in the data set three out-

liers, as shown in Figure 4, and we plot the frontiers[qa, n and [wm, n for the
same orders+ It is clear that the quantile curves of ordersa , 1 are more
resistant to the three outliers than the expected maximal output frontiers[wm, n

and the FDH frontier [q1, n+

Figure 1. n 5 500+ Comparison between[qa, n ~a! and [wm, n ~b!, output vs+ input+
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5.3. Example 3

We now test the robustness of both estimators[wm, n and [qa, n for a small sample
size n 5 100+ In Figures 5a and 5b we plot, in the dotted lines, the quantile
frontier of ordera 5 0+93 and, in the solid lines, the frontiers [wm, n ~B 5 1,000!
of ordersm 5 5, 7, 50, 75+ In Figure 5a, the data points are simulated accord-
ing to the same model used in Example 1, and in Figure 5b, they are simulated
according to the same model used in Example 2+ Observe that the quantile fron-

Figure 2. n 5 503+ Comparison between[qa, n ~a! and [wm, n ~b! with three outliers
included, output vs+ input+
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tier [q0+93, n is below the frontiers [wm, n of ordersm 5 50, 75 and is above those
of ordersm 5 5, 7+

In Figure 6 we add to the preceding two data sets the same three outliers
used in Examples 1 and 2, and we plot the same frontiers+ We remark that the
frontiers [wm, n of ordersm 5 50, 75 are highly influenced; even those of very
low ordersm 5 5, 7 are attracted by the three outliers, whereas the quantile
frontier is slightly perturbed+

We repeated the same exercise with many other simulated data sets, leading
to the same kind of results+

Figure 3. n 5 500+ Comparison between[qa, n ~a! and [wm, n ~b!, output vs+ input+
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5.4. Frontier Analysis of French Post Offices

We examine here a real data set in a univariate situation: this data set about the
cost of the delivery activity of the postal services in France is analyzed by Cazals
et al+ ~2002!+ There aren 5 9,521 post offices observed in 1994+ For each post
office i , the inputxi is the labor cost measured by the quantity of labor, which
represents more than 80% of the total cost of the delivery activity+ The output
yi is defined as the volume of delivered mail~in number of objects!+

Figure 4. n 5 503+ Comparison between[qa, n ~a! and [wm, n ~b! with three outliers
included, output vs+ input+
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The 4,000 observed post offices with the smallest input levels are plotted in
Figure 7, along with the estimates of quantile frontiers~Figure 7a! and of
expected maximal output frontiers~Figure 7b!, for several different ordersa
andm+ Here we obtain the frontiers[wm, n with B 5 2,000 bootstrap loops+

By using ~5!, it is very easy to check that every post officei belongs to the
quantile curve of orderai 5 ZF~ yi 0xi !+ On the other hand, the frontiers [wm, n do
not cover the observations below the first frontier[w1, n ~12% of the observed

Figure 5. n 5 100+ In the solid lines, the order-m frontiers [w5, n, [w7, n, [w50, n, [w75, n and
in the dotted lines, the quantile frontier [q0+93, n+
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data! and the observations between the frontiers of successive orders[wm, n and
[wm11, n+ This disadvantage of frontiers[wm, n with respect to frontiers[qa, n is due

to the fact that the orderm is discrete+
Note that the orderai of the quantile frontier that passes through the post

office ~xi , yi ! is equal to the percentage of post offices that produce less thanyi

among all the post offices using inputs smaller than or equal toxi + In other
words, this order indicates that thei th post office produces more than 100a%

Figure 6. n 5 103+ In the solid lines, the order-m frontiers [w5, n, [w7, n, [w50, n, [w75, n and
in the dotted lines, the quantile frontier [q0+93, n with three outliers included+
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of all post offices using inputs smaller or equal toxi and produces less than the
100~1 2 a!% remaining post offices+ This is why one sees in Figure 7a that, if
ai is close to one, then the post office~xi , yi ! can be seen to be performing
relatively efficiently, and likewise, if ai is close to zero, then the post office
would be performing relatively inefficiently+ Thus the order of the empirical
quantile frontier [qa, n defines a reasonable benchmark value+ Note also that the
nonparametric estimation of the expected frontier[wm, n can be viewed as a mark

Figure 7. The 4,000 observations with the smallest input levels+ ~a! The frontiers [qa, n

of ordersa 5 0+3, 0+5, 0+7, 0+9, 0+97, 0+98, 0+99, 0+995, 0+999 and the FDH frontier
~a 5 1!+ ~b! The frontiers [wm, n of ordersm 5 1, 2, 25, 50, 100, 200, 300, 400, 600 and
the FDH frontier~m 5 `!+ Output vs+ input+
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of good practice for post offices when studying their performance+ However,
this benchmark is less clear than the empirical quantile frontier because it is
less easy to interpret and does not cover the whole data set+

We also remark that the frontiers[wm,n ~Figure 7b! are perturbed by the extreme
observations from the orderm 5 25, whereas the frontiers[qa, n are not influ-
enced except for those having orders almost equal to one~a $ 0+999!+

Figure 8a~resp+ Figure 8b! indicates how the percentagep~a! ~resp+ p~m!!
of observations above the quantile estimates[qa, n ~resp+ the expected maximum

Figure 8. Evolution of the percentage of observations above the frontiers~a! [qa, n and
~b! [wm, n+
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cost estimates[wm, n! decreases witha ~resp+ m!+We remark that the percentage
p~a! decreases very slowly until the ordera 5 0+8 of approximately 24% of
observations+ It means that the quantile frontiers of orders 0# a # 0+8 are
very tight+ The 24% observations below the frontier[q0+8, n have an intermediate
production performance and can be relatively inefficient+ However, the percent-
agep~a! falls dramatically from the ordera 5 0+8, which means that the quan-
tile frontiers of extreme orders 0+8 # a # 1 are very spaced and are spread out
over 76% of the observations+ In particular, 10% of the observations are above
the frontier [q0+995, n and 3% of the observations are above the frontier[q0+999, n+ It
is what explains notably the fact that only quantile frontiers of orders very close
to one are influenced by superefficient units+

In Figure 8b, we observe an opposite phenomenon: first the percentagep~m!
falls severely until the orderm 5 50 of approximately 80% of observations,
and then it continues to decrease but very slowly+ Consequently the frontiers
[wm, n of ordersm $ 50 are very tight+ In particular we just have 9% of obser-

vations between the two frontiers[w100, n and [w600, n, and only 3% of observa-
tions are above the frontier[w600, n+ The 20% observations above the frontier
[w50, n are extreme and could be outliers or noisy observations+ In summary the

frontiers [wm, n are very tight from the orderm 5 50 and are spread out over
extreme observations; it is then natural that these frontiers would be more sen-
sitive to extreme values than the quantile frontiers+

We can illustrate this result more clearly by considering the following inverse
problem: for a given percentagep0, denote bya~ p0! ~resp+ m~ p0!! the order of
the frontier [qa,n ~resp+ [wm,n! above which the percentage of observations is equal
to p0; we havep~a~ p0!! 5 p~m~ p0!! 5 p0+ Inverting the relationship between
a andp~a! and betweenm andp~m! in Figure 8, we get the evolution ofa and
m as functions ofp+ When the percentagep varies between 0 and 10%, we
remark that the ordera~ p! is almost constant~a~ p! ' 1!, whereas the order
m~ p! falls rapidly fromm5 600 tom' 100+ This means that the 10% extreme
observations influence all the frontiers[wm, n with orders 100# m#`, whereas
only the frontiers [qa, n with orders almost equal to 1 are influenced by these
extreme observations+ This can be understood because the FDH frontier[q1 enve-
lops all the observed data+

This result is also illustrated in Figure 9, where the curve of evolution of
a~ p! with respect tom~ p! is nearly flat from the point~100, 0+995! which cor-
responds to the percentagep ' 10%+ This plot establishes an empirical relation-
ship between the two families of frontiers$ [qa, n% and $ [wm, n% + Given a frontier
[qa, n, we can determine the frontier[wm, n above which we have the same per-

centage of observations and vice versa+

6. CONCLUSIONS

In this paper, we propose a new statistical concept of a production frontier that
allows a more subtle tuning than the expected maximal output frontier of order
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m [ N* ~Cazals et al+, 2002!+ We define a frontier of continuous ordera [
@0,1# of the production setC, for a given level of inputsx, by the conditional
a-quantile of the distribution ofY given X # x+

Our quantile frontiers satisfy at least the same statistical properties as the
expected maximal output frontiers of orderm+ Moreover they have the advan-
tage, from an economic point of view, of covering the interior of the attainable
set entirely, thus giving a clearer indication of the production efficiency+ This
benefit is due to the continuity of the indexa of our conditional quantiles+

A nonparametric estimator of the quantile function of ordera , 1 is very
easy to derive by inverting the empirical version of the conditional distribu-
tion function+ It does not envelop all the observed data points, and so it is more
robust to extreme values than the standard DEA0FDH nonparametric envelop-
ment estimators+ Also it is easier to interpret than the nonparametric estimator
of the expected function of orderm+ Moreover our estimator achieves the
Mn-consistency and is asymptotically unbiased and normally distributed,
which is reasonable because the conditioning setX # x has a positive probabil-
ity measure+ By choosinga as an appropriate function ofn, it estimates the true
frontier function and satisfies the asymptotic properties of the FDH estimator+

The method is illustrated using simulated and real data+ It shows that the
nonparametric quantile frontiers are more resistant to large observations in the

Figure 9. An empirical relationship between[qa, n and [wm, n+
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output direction than the nonparametric estimates of expected maximal output
frontiers and that the continuous ordera represents a good benchmark value+
The robustness revealed by the numerical illustrations needs to be confirmed
by some theoretical properties+ This question is currently being investigated+

It should be clear that, unlike the approach of Cazals et al+ ~2002!, the con-
ditional quantile approach is not extended here to multivariateY+ Serfling~2002!
stated, “Despite the absence of a natural ordering of Euclidean space for dimen-
sion greater than one, effort to define vector-valued quantile functions for multi-
variate distributions has generated several approaches+” The methods based on
depth functions recommended by Serfling might be adapted to generalize in a
reasonable way our univariate conditional quantiles+ This problem is worth
investigating+
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APPENDIX: PROOFS

Proof of Proposition 2.1. Let ~x, y! [ C* and seta 5 F~ y0x!+ It is an immediate
consequence of the strict monotonicity ofF~{0x! that qa~x! 5 F21~a0x! 5 y+ n

Proof of Proposition 2.2. Let us assume the contrary+ Then we obtain

∀x [
°
ZSupp~X !, ∀y [ Y~x!, ∃mx, y [ N* : y 5 wmx, y

~x!, (A.1)

whereSupp~X ! is the support of the distribution ofX and
°
ZSupp~X ! denotes its interior+

Let x [
°
ZSupp~X ! be fixed such that]Y~x! . 0+ Because the production functionw is

greater than or equal to the output-efficient function]Y~+!, we havew~x! 5 ]Y~x! or
w~x! . ]Y~x!+

If w~x! 5 ]Y~x!, we know from Cazals et al+ ~2002, Appendix A! that w~x! 5
lim ;mr` wm~x!, so there exists an integermx [ N* such thatwmx

~x! , wmx11~x! #
]Y~x! ~else, we would havewm~x! 5 wm11~x! for everym [ N*, so thatw~x! 5 w1~x!;
consequently we would obtain*0

w~x! F~ y0x! dy 5 0, which is impossible because the
function F~{0x! is strictly increasing on@0,w~x!# !+ Let y be a real number such that
wmx

~x! , y , wmx11~x!+ Using the free disposability assumption of outputs, it is easily
seen thatY~x! [ @0,]Y~x!# , so thaty [ Y~x!+ Then by ~A+1!, there exists an integer
mx, y [ N* such thaty 5 wmx, y

~x!+ It follows that wmx
~x! , wmx, y

~x! , wmx11~x!, and
thusmx , mx, y , mx 1 1 becausewm~x! is a monotone nondecreasing function ofm+
This contradicts the fact thatmx, y is an integer+

Now if w~x! . ]Y~x!, first note that]Y~x! [ Y~x! yields by ~A+1! that ]Y~x! 5
wmx,]Y~x!

~x! wheremx,]Y~x! [ N*+ Because of lim;mr` wm~x! 5 w~x!, there exists an
ordermx . mx,]Y~x! such thatw~x! $ wm~x! . ]Y~x! whenm $ mx, andwm~x! # ]Y~x!
whenm , mx+ For anyy [ Y~x! we havey # ]Y~x! so thaty , wmx

~x!+ We also have
by ~A+1! y 5 wmx, y

~x! wheremx, y [ N*+ Hencewmx, y
~x! , wmx

~x!+ Therefore, again
using the monotonicity ofwm~x! with respect tom, we getmx, y , mx+ In summary,

∀y [ Y~x!, ∃mx, y [ $1, + + + ,mx 2 1% : y 5 wmx, y
~x!+
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Becausewm~x! [ @0, ]Y~x!# 5 Y~x! for every m , mx, the mapm ° wm~x! is
well defined and is onto from$1, + + + ,mx 2 1% to Y~x!+ As a consequence, the finite
set $w1~x!, + + + ,wmx21~x!% coincides with the interval@0, ]Y~x!# , which implies the
contradiction+ n

Proof of Proposition 2.3. Let x be an input that satisfies the condition of Proposi-
tion 2+3+ We have by definitionwm~x! 5 E @max~Y1, + + + ,Ym!# , whereY1, + + + ,Ym arem
independent identically distributed random variables generated by the distribution func-
tion F~{0x!+ Let Fm, x~ y! 5 ~10m!(i51

m 1~Yi # y! be the empirical distribution function
of ~Y1, + + + ,Ym!+ The empirical quantile of ordera [ ~0,1# of this sample is then de-
fined by

qa
m~x! :5 Fm, x

21 ~a! 5 inf $ y6 Fm, x~ y! $ a%+

We know thatqa
m~x! is equal toY ~am! if am is an integer and toY ~ @am#11! otherwise+

Thenq1
m~x! 5 Y ~m! + Because the family~qa

m~x!!0,a,1 increases toq1
m~x! whena r 1,

the dominated convergence theorem yieldswm~x! 5 limar1 E @qa
m~x!# , and thus we can

write wm~x! 5 E @qa
m~x!# 1 «1~a!, where«1~a! 5 o~a! whena r 1+ On the other hand,

according to the representation theorem of Bahadur~see, e+g+, Serfling, 1980, Theo-
rem 2+5+1, p+ 91!, we have for everya [ ~0,1!,

qa
m~x! 2 qa~x! 5

a 2 Fm, x~qa~x!!

f ~qa~x!0x!
1 Rm, x~a!,

where, with probability 1, Rm, x~a! 5 O~m2304~ log m!304! asmr `+ By using Kiefer’s
theorem~see, e+g+, Serfling, 1980, Theorem D, p+ 101!, it can easily be seen that a more
precise expression of the remainder is given by

Rm, x~a! 5
1

f ~qa~x!0x!
Rm, x,

where, almost surely and uniformly ina, we have

Rm, x 5 O~m2304~ log m!102~ log logm!104!, mr `+

It follows that

wm~x! 2 qa~x! 5
1

f ~qa~x!0x!
O~m2304~ log m!102~ log logm!104! 1 «1~a!, mr `+

Now consider the functioncx~ p! 5 10f ~qp~x!0x!, p [ @0,1# + We have asm r `,

wm~x! 2 qa~x! 5 @cx~1! 2 ~cx~1! 2 cx~a!!#O~m2304~ log m!102~ log logm!104! 1 «1~a!+

BecauseF~{0x! has a positive continuous densityf ~+0x! in the neighborhood~0,w~x!! of
qa~x!, for any a [ ~0,1!, we obtain according to Shorack and Wellner~1986, Proposi-
tion 6, p+ 9! that the partial derivative~]0]a!qa~x! exists and equals 10f ~qa~x!0x!+ Then,
for everya [ ~0,1!, the derivative ofcx~a! with respect toa is given by
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cx
'~a! 5 2

]

]a
qa~x!F ''~qa~x!0x!0f 2~qa~x!0x!+

Using the fact thatcx~1! 2 cx~a! 5 ~12 a!cx
'~a! 1 ~12 a!«2~a!, where«2~a! 5 o~a!

whena r 1, we obtain asm r ` anda r 1,

wm~x! 2 qa~x! 5 $cx~1! 2 ~12 a!@cx
'~a! 1 o~a!#%

3 O~m2304~ log m!102~ log logm!104! 1 o~a!,

which proves~3!+ n

Proof Proposition 2.4.

1+ Because the family$qa~x!%0#a#1 is monotone nondecreasing and bounded byq1~x!,
qa~x! converges pointwise toq1~x! whena r 1+

2+ Let K be a compact subset of
°
ZSupp~X !+ The term$qa~+!%0,a,1 is a nondecreasing

sequence of real valued functions that are continuous onK+ Moreover it converges
pointwise to the continuous functionq1~+! asa tends to one+ Then by Dini’s theo-
rem ~Schwartz, 1991, p+ 325! the convergence is uniform onK+ n

Proof of Proposition 2.5. Suppose that for everyy $ 0, the functionx ° F~ y0x!
is monotone nonincreasing on$x [ R1

p 6FX~x! . 0% + Let a [ @0,1# andx1 # x2 such
that FX~x1! . 0+ Then F~qa~x2!0x1! $ F~qa~x2!0x2! $ a+ It follows that qa~x2! $
inf $ y6 F~ y0x1! $ a% 5 qa~x1!+

Conversely, suppose that the quantile function is monotone nondecreasing for every
order on$x [ R1

p 6FX~x! . 0% + Let y [ R1 andx1 # x2 such thatFX~x1! . 0+ Seta 5
F~ y0x2!+We haveqa~x2! 5 inf $u6F~u0x2! $ a% , so thaty $ qa~x2!+ Becauseqa~x1! #
qa~x2!, y $ qa~x1!, and thusF~ y0x1! $ F~qa~x1!0x1! $ a 5 F~ y0x2!+ n

The following lemma will be useful in the proof of Theorem 4+1+

LEMMA 6 +1+ Let $Vn%, $Wn% be two sequences of random variables satisfying the
following conditions.

(i) For all d . 0, there exists al (depending ond) s.t. P~6Wn6 . l! , d.
(ii) For all k and all « . 0

lim
nr`

P~Vn # k,Wn $ k 1 «! 5 0,

lim
nr`

P~Vn $ k 1 «,Wn # k! 5 0+

Then Vn 2 Wn
P
&& 0 as nr `.

The proof of this lemma can be found in Ghosh~1971, Lemma 1, p+ 1958!+ Now let
us demonstrate Theorem 4+1+

Proof of Theorem 4.1. Consider the statistical functionalT a, x that associates to a
distribution functionG on R2 the real value

T a, x~G! 5 inf Hy6
G~x, y!

G~x,`!
$ aJ +
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The conditional quantileqa~x! and its estimator[qa,n~x! are then given byqa~x! 5 T a, x~F!
and [qa, n~x! 5 T a, x~ ZF!+ Let

Rn
a, x 5 ~T a, x~ ZF! 2 T a, x~F!! 2

1

n (
i51

n

d1T a, x~F;1~Xi # + ,Yi # +! 2 F!, (A.2)

where

d1T a, x~F;1~Xi # + ,Yi # +! 2 F! 5
d

dl
T a, x~F 1 l~1~Xi # + ,Yi # +! 2 F!!6l501

is the first Gâteaux differential ofT a, x at F in the direction of 1~Xi # + ,Yi # +!+ Using
property~6!, we obtain by a straightforward computation

T a, x~F 1 l~1~Xi # + ,Yi # +! 2 F!! 5 F21Sa 1
al1~Xi # x!

~12 l!FX~x!
YxD1~Yi . qa~x!!

1 F21Sa 2
l~12 a!1~Xi # x!

~12 l!FX~x!
YxD

3 1~Yi , qa~x!! 1 qa~x!1~Yi 5 qa~x!!+

Hence,

d1T a, x~F;1~Xi # + ,Yi # +! 2 F!

5
a1~Xi # x!1~Yi . qa~x!! 1 ~a 2 1!1~Xi # x!1~Yi , qa~x!!

f ~qa~x!0x!FX~x!
+

Therefore,

1

n (
i51

n

d1T a, x~F;1~Xi # + ,Yi # +! 2 F! 5
1

n (
i51

n

ha~x,Xi ,Yi !, (A.3)

where

ha~x,X,Y! 5
a1~X # x! 2 1~X # x,Y# qa~x!!

f ~qa~x!0x!FX~x!
+

We have

Var@ha~x,X,Y!# 5 E @~ha~x,X,Y!!2# 5 s2~x,a!,

so that, by the central limit theorem,

Wn
a, x 5

1

Mn (
i51

n

d1T a, x~F;1~Xi # + ,Yi # +! 2 F! D
&& N~0,s2~x,a!! asn r `, (A.4)
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and by the law of large numbers,

1

Mn
Wn

a, x P
&& 0 asn r `+ (A.5)

Let Vn
a, x 5 Mn~ [qa,n~x! 2 qa~x!!+ Then we obtain via~A+2!

MnRn
a, x 5 Vn

a, x 2 Wn
a, x+

Using Lemma 6+1, we will show thatMnRn
a, x converges in probability to zero+We have

for every real numbert,

$Vn
a, x # t % 5 H [qa,n~x! # qa~x! 1

t

Mn
J

5 Ha # ZFSqa~x! 1
t

Mn
YxDJ 5 $Zt,n # Tn%, (A.6)

where

Zt,n 5
Mn ZFX~x!

f ~qa~x!0x!FX~x!
FFSqa~x! 1

t

Mn
YxD2 ZFSqa~x! 1

t

Mn
YxDG

and

Tn 5
Mn ZFX~x!

f ~qa~x!0x!FX~x!
FFSqa~x! 1

t

Mn
YxD2 aG +

BecauseF ~{0x! is differentiable atqa~x! with derivative f ~qa~x!0x!, F ~qa~x! 1
~t0Mn!0x! 2 a 5 ~t0Mn! f ~qa~x!0x! 1 ~t0Mn!o~1! as n r `, which implies Tn 5
@ ZFX~x!0FX~x!# t 1 @t ZFX~x!0f ~qa~x!0x!FX~x!#o~1! asn r `+ We know from the law of
large numbers thatZFX~x! P

&& FX~x!, and thus,

Tn
P
&& t asn r `+ (A.7)

On the other hand we have

Zt,n 2 Wn
a, x 5

Mn ZFX~x!

f ~qa~x!0x!FX~x!

3 FSFSqa~x! 1
t

Mn
YxD2 ZFSqa~x! 1

t

Mn
YxDD2 ~a 2 ZF~qa~x!0x!!G +

By a simple computation we find that

$ f 2~qa~x!0x!FX
2~x!%E @~Zt,n 2 Wn

a, x!2#

5 aFX~x! 2 a2FX~x! 2 FX~x!F 2Sqa~x! 1
t

Mn
YxD

1 FX~x!FSqa~x! 1
t

Mn
YxD1 2aFX~x!FSqa~x! 1

t

Mn
YxD

2 2FX~x!FSqa~x! 1 S t

Mn
∧ 0DYxD+
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Using the continuity ofF~{0x! in qa~x!, we getE @~Zt, n 2 Wn
a, x!2# r 0 asn r `, and

thus,

Zt,n 2 Wn
a, x P

&& 0 asn r `+ (A.8)

Now, using the results~A+3! and~A+6!–~A+8!, we will show thatVn
a, x andWn

a, x satisfy
the two conditions of Lemma 6+1+ As E @~Wn

a, x!2# 5 s2~x,a!, the first condition fol-
lows from a trivial application of the Markov inequality+ For any k and any« . 0,
settingt 5 k, we have by~A+6!,

$Vn
a, x # k,Wn

a, x $ k 1 «% 5 $Zt,n # Tn,Wn
a, x $ t 1 «% , $~Wn

a, x 2 Zt,n! $ « 2 ~Tn 2 t !%+

Hence,

P~Vn
a, x # k,Wn

a, x $ k 1 «! # P~6~Wn
a, x 2 Zt,n! 1 ~Tn 2 t !6$ «!+

Therefore, combined with~A+7! and ~A+8!, limnr` P~Vn
a, x # k,Wn

a, x $ k 1 «! 5 0+
Now applying~A+6! to t 5 k 1 «, we get

P~Vn
a, x $ k 1 «,Wn

a, x # k! # P~6~Zt,n 2 Wn
a, x! 2 ~Tn 2 t !6$ «!+

Then~A+7! and~A+8! yield limnr` P~Vn
a, x $ k 1 «,Wn

a, x # k! 5 0+ Hence, the second
condition of Lemma 6+1 is also satisfied+ ThereforeVn

a, x 2 Wn
a, x P

&& 0, asn r `, i+e+,

MnRn
a, x P

&& 0 asn r `+

In particularRn
a, x converges in probability to zero asn r `+ Thus,

[qa,n~x! 2 qa~x! 5
1

Mn
Wn

a, x 1 Rn
a, x 5

1

Mn
Wn

a, x 1 op~1! asn r `, (A.9)

Mn~ [qa,n~x! 2 qa~x!! 5 Wn
a, x 1MnRn

a, x 5 Wn
a, x 1 op~1! asn r `+ (A.10)

The consistency follows from results~A+5! and ~A+9!, and the asymptotic normality is
obtained by~A+4! and~A+10!+ n

Proof of Theorem 4.2. It follows from ~A+10!, asn r `,

Mn~ [qa,n~x1! 2 qa~x1!, + + + , [qa,n~xr ! 2 qa~xr !!

5
1

Mn (
i51

n

~ha~x1,Xi ,Yi !, + + + , ha~xr,Xi ,Yi !! 1 op~1!+

Hence, the multivariate central limit theorem yields

Mn~ [qa,n~x1! 2 qa~x1!, + + + , [qa,n~xr ! 2 qa~xr !! D
&& Nr ~0,Sa! asn r `,

where

Sa~xk, xl ! 5 Cov~ha~xk,X1,Y1!, ha~xl,X1,Y1!!+

This ends the proof+ n
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Proof of Theorem 4.3. From Park et al+ ~2000! and Cazals et al+ ~2002! we
know that

n10~ p11! ~w~x! 2 [wn~x!! D
&& Weibull~mx

p11, p 1 1! asn r `+

So by using the following decomposition:

n10~ p11! ~w~x! 2 [qa,n~x!! 5 n10~ p11! ~w~x! 2 [wn~x!! 1 n10~ p11! ~ [wn~x! 2 [qa,n~x!!

we want to find a functiona of n such that

a~n! r 1 and n10~ p11! ~ [wn~x! 2 [qa~n!,n~x!! D
&& 0, asn r `+

From ~5! we have for anya . 0,

[wn~x! 2 [qa,n~x! 5 ~Y~iNx! 2 Y~i$aNx% ! !1~aNx [ N* !

1 ~Y~iNx! 2 Y~i$@aNx#11% ! !1~aNx Ó N* !+ (A.11)

Set for everyk [ $1, + + + ,Nx 2 1%

Cx, k~n! 5
Y~iNx! 2 Y~ik!

12
k

Nx

and letCx~n! 5 max$Cx, k~n! 6 1 # k # Nx 2 1% + Then we have

~Y~iNx! 2 Y~i$aNx% ! !1~aNx [ N* ! 5 ~Y~iNx! 2 Y~i$aNx% ! ! (
k51

Nx

1~aNx 5 k!

5 (
k51

Nx21

~Y~iNx! 2 Y~ik! !1~aNx 5 k!

5 (
k51

Nx21

Cx, k~n!S12
k

Nx
D1Sa 5

k

Nx
D

# Cx~n! (
k51

Nx

~12 a!1~aNx 5 k!

5 Cx~n!~12 a!1~aNx [ N* ! (A.12)
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because 1~aNx [ N*! 5 (k51
Nx 1~aNx 5 k!+ Now, using that 1~aNx Ó N*! 5

(k50
Nx21 1~aNx [ ~k, k 1 1!!, we get

~Y~iNx! 2 Y~i$@aNx#11% ! !1~aNx Ó N* ! 5 (
k50

Nx21

~Y~iNx! 2 Y~i$k11% ! !1~aNx [ ~k, k 1 1!!

5 (
k50

Nx22

~Y~iNx! 2 Y~i$k11% ! !1~aNx [ ~k, k 1 1!!

5 (
k50

Nx22

Cx, k11~n!S12
k 1 1

Nx
D1~aNx [ ~k, k 1 1!!

# Cx~n!~12 a! (
k50

Nx22

1~aNx [ ~k, k 1 1!!

# Cx~n!~12 a!1~aNx Ó N* !+ (A.13)

It follows from ~A+11!–~A+13! that

[wn~x! 2 [qa,n~x! # Cx~n!~12 a!1~aNx [ N* ! 1 Cx~n!~12 a!1~aNx Ó N* !

5 Cx~n!~12 a!,

so that

n10~ p11! ~ [wn~x! 2 [qa,n~x!! # n10~ p11!Cx~n!~12 a!+ (A.14)

Because the supportC of ~X,Y! is compact, the support ofY is bounded+ Let M . 0 be
its upper bound+ Then for anyk 5 1, + + + ,Nx 2 1,

Y~iNx! 2 Y~ik! # Y~iNx! # M a+s, and
1

12
k

Nx

# Nx+

Hence,

∀k 5 1, + + + ,Nx 2 1 : Cx, k~n! 5
Y~iNx! 2 Y~ik!

12
k

Nx

# MNx a+s+

Therefore,

Cx~n! 5 max
1#k#Nx21

Cx, k~n! # MNx a+s+

We deduce from~A+14!

n10~ p11! ~ [wn~x! 2 [qa,n~x!! # MNx n10~ p11! ~12 a! 5 M ZFX~x!n~ p12!0~ p11! ~12 a! a+s+
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We know from the strong law of large numbers thatZFX~x! a+s+
&& FX~x!+ So to achieve

our goal, it is sufficient to choosea~n! such that

n~ p12!0~ p11! ~12 a~n!! r 0 asn r `+

Indeed we find,

a~n! r 1 and n10~ p11! ~ [wn~x! 2 [qa~n!,n~x!! a+s+
&& 0 asn r `+

This completes the proof+ n
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