Econometric Theory21, 2005 358-389 Printed in the United States of America
DOI: 10.1017S0266466605050206

NONPARAMETRIC FRONTIER
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In frontier analysis most of the nonparametric approach@&ze disposal hull
[FDH], data envelopment analydiIBEA]) are based on envelopment ideard
their statistical theory is now mostly availabldowever by constructionthey

are very sensitive to outlierRecently a robust nonparametric estimator has been
suggested by CazalBlorens and Simar2002 Journal of Econometric$, 1-25.

In place of estimating the full frontiethey propose rather to estimate an expected
frontier of orderm. Similarly, we construct a new nonparametric estimator of the
efficient frontier It is based on conditional quantiles of an appropriate distribu-
tion associated with the production proce¥¢e show how these quantiles are
interesting in efficiency analysi¥Ve provide the statistical theory of the obtained
estimatorsWe illustrate with some simulated examples and a frontier analysis of
French post officesshowing the advantage of our estimators compared with the
estimators of the expected maximal output frontiers of order

1. INTRODUCTION

An important problem in productivity and efficiency analysis is to characterize
and to estimate the production frontiee., the set of the most efficient produc-
tion processThe idea is to analyze how firms combine their inputs to produce
in an efficient way the outpuiVe are then interested in the production frontier
because it represents a reasonable benchmark value or reference.ftattier
us introduce the basic concepts and notation

According to economic theorKoopmans 1951, Debrey 1951, Shephargd
1970, the production setwhere the activity is described through a setpof
inputsx € RY used to produce an univariate outgu€ R, is defined as the
set of physically attainable point, y):

¥ = {(x,y) € R”"*| x can produce}.
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This set can be described mathematically by its sectiopg = {y € R |
(x,y) € ¥} where for any level of inputsx, the requirement set(x) repre-
sents the set of all outputs that a firm can produce usiag inputsAssuming
that¥ is compactthe maximal achievable level of output for a given level of
inputsx defines the output-efficient functiai(x) = maxY(x). From an eco-
nomic point of viewthis function is supposed monotone nondecreasing it
is then called the production function and its graghich represents the effi-
cient boundary of?, is called the production frontieOther different assump-
tions can be assumed dn such as free disposabiljtye., if (x,y) € ¥ then
(x,y’") € ¥ for anyx’ = x andy’ =< y; or convexity i.e., every convex com-
bination of feasible production plans is also feasibleno free lunchi.e., for
ally > 0 we havey &€ Y(0) (see e.g., Shephard1970.

The production processvhich generates observations, = {(X;,Y)] i =
1,...,n} is defined e.g., through the joint distribution of a random veciof, Y)
onR? X R, whereX represents the inputs andis the outputIn the case
where¥ is equal to the support of the distribution @X,Y), another way to
define the production frontier is given as follovihe production functionwhich
we denote from now on by, is characterized for a given level of inputdy
the upper boundary of the support of the conditional distributiorY gfiven
X=xi.e,

e(x) = suply E R, [ F(y/x) < 1}, 1)

whereF (- /x) = F(x,-)/Fx(x) is the conditional distribution function of given
X = x, with F being the joint distribution function ofX,Y) and Fx the mar-
ginal distribution function ofX. It is supposed here th&(x) > 0 or thatx is
an interior point of the support of the distribution ¥f The inequalityX = x
has to be understood componentwi&e a matter of fagtthe functione is the
smallest monotone nondecreasing function that is larger than or equal to the
output-efficient functiondY(.). Its graph defines the production frontidf
the efficient boundary ofF’ is monotone nondecreasin@ quite reasonable
assumption in practigeit coincides with the production frontie®g we have
in some sensgust reparametrized the definition of the efficient frontierdof
This new formulation of the production frontier is due to Caz&lsrens and
Simar(2002.

A large amount of literature is devoted to the estimation of the production
frontier from a random sample of production unyts Two different approaches
have been mainly developethe deterministic frontier modelsvhich suppose
that with probability ongall the observations iy, belong to¥, and the sto-
chastic frontier mode)swhere random noise allows some observations to be
outside ofw.

In deterministic frontier modeJghere are mainly two nonparametric meth-
ods based on envelopment techniqutse free disposal hul{FDH) and the
data envelopment analys{i®EA). The FDH estimator was introduced by
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Deprins Simar and Tulkens(1984) and relies only on the free disposability
assumption on. The DEA estimatgrwhich was initiated by Farre(ll957) and
popularized as a linear programming estimator by Cha@esperand Rhodes
(1978, requires stronger assumptioiitselies on the free disposability assump-
tion and the convexity o¥. Note that the convexity assumption is widely used
in economics but it is not always vali@ihe production set might admit increas-
ing returns to scale.e., the output increases faster than the inpotghere might
be lumpy goodsi.e,, fractional values of inputs or outputs do not exidence
the FDH is a more general estimator than the DEAe asymptotic distribution
of the FDH estimator was derived by PaBimar and Weine(2000 in the case
of multivariate input and outputaind the asymptotic distribution of the DEA
estimator was derived by Gijbelslammen Park and Simar(1999 in the uni-
variate caseThe statistical theory of these estimators is now mostly available
See Simar and Wilso(2000 for a recent survey of the available results

In stochastic frontier modelsvhere noise is alloweanly parametric restric-
tions on the shape of the frontier and on the data generating process allow iden-
tification of the noise from the efficiency frontier and estimation of this frontier
Aigner, Lovell, and Schmidf1977), Meeusen and van den Bro€k977), Olsen
Schmidt and Waldman{1980, Stevensor§1980, and Battese and Coelli988
specified a model for the production function and a specific distributional form
for the error and then used maximum likelihood methods to estimate the param-
eters of the production functiomhese methods may lack robustness if the
assumed distributional form does not hold particular outliers in the data
may unduly affect the estimate of the frontier function it may be biased if
the error structure is not correctly specifiédirthermoreas illustrated by Cau-
dill, Ford, and Groper(1995, heteroskedasticity in the error teyifinot prop-
erly accounted forcan lead to significant biases when estimating the production
frontier.

Nonparametric deterministic frontier models are very appealing because they
rely on very few assumptiondut, by constructionthey are very sensitive to
extreme values and to outlie®®ecently a robust nonparametric envelopment
estimator of the production frontier has been suggested by Cazald2062.
They introduce the concept of expected maximal output frontier of order
m € N*, whereN* denotes the set of all integens = 1. It is defined as the
expected maximum achievable level of output ameomdirms drawn in the
population of firms using less than a given level of inptasrmally, for a fixed
integerm € N* and a given level of inputs, the frontier function of ordemis
defined as

(0 = Elmax(v’ Y] = [ (L~ [F(y]™) dy.
0
where(Y?%,...,Y™) arem independent identically distributed random variables

generated by the distribution &f given X = x. Its nonparametric estimator is
defined by
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b0 = [ @ EmIm ay
whereF (y/x) = F(x, y)/Fx(X) is the empirical version of (y/x), with

R 12 R 12

Foy) = -2 16 =xY =y) and F(0 =3 1(X =X).
i=1 i=1

As pointed out in Cazals et.al2002, the FDH estimator of the production

function can be viewed as a plug-in estimator¢afx), where the unknown

F(y/x) in the formulag(1) has been replaced by its empirical analogiig/x).

It is given by

@n(x) = suply = 0| F(y/x) < 1} = max ;.

i X;=x

Because of the trimming nature of the oraerfrontier, the estimatorp, ,(x)
does not envelop all the data poingsd so it is more robust to extreme values
than the FDH estimatog,,(x). By choosingm appropriately as a function of
the sample siz@, ¢y, (X) estimates the production functign(x) itself while
keeping the asymptotic properties of the FDH estimator

Hendricks and Koenkef1992 p. 58) stated “In the econometric literature
on the estimation of production technologidsere has been considerable inter-
est in estimating so called frontier production models that correspond closely
to models for extreme quantiles of a stochastic production suffabe present
paper can be viewed as the first work to actually implement the idea of Hen-
dricks and Koenkerwe construct a new nonparametric estimator of the pro-
duction frontier that is more robust to extreme values than the standar¢ DEA
FDH estimators and than the nonparametric estimator of Cazalsleisabased
on extreme quantiles of the conditional distributionYofjiven X = x. These
nonstandard conditional quantiles define a natural concept of a partial produc-
tion frontier in place of than-trimmed frontier The idea is nice and attractive
because here the “trimming” is continuous in terms of the ondguantile where
a € [0,1]. Quantile methods are known for their robustnédsre precisely
conditional quantiles are not very sensitive to large observations in the output
direction We show that our new partial frontier and its resulting estimator share
most of the properties of the orderfrontier and its estimator

The paper follows the structure of Cazals et(2D02 initially very closely
adapting their technique to the output oriented case and extending their basic
ideas thus sharing similar comments is organized as followsSection 2 moti-
vates our concept of quantile-frontier of ordermnd investigates its properties
and its relation to the ordem frontier and to the true production frontidn
Section 3 we define a nonparametric estimator of our ordefrontier, which
is very easy to derivevery fast to computeand does not envelop all the observed
data pointsin Section 4 we show that this estimator converges at the rte
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and is asymptotically normally distributed/e also derive a nonparametric esti-
mator of the efficient production frontier and analyze its asymptotic distribu-
tion. In Section 5 a numerical illustration is proposed with some simulated
examples and a data set on laljas inpui and mail volumegas outpux about
10,000 French post officedVMe show how resistant to outliers our estimators
are compared with the estimators of the expected maximal output frontiers of
orderm. Section 6 concludes the pap&he proofs appear in the Appendix

2. A NEW CONCEPT OF PRODUCTION FRONTIER

Let (Q,.A, P) be the probability space on which the vector of inp¥tand the
output variableY are definedIn this approachwe define the attainable sdt
to be the support of the joint distribution 0X,Y), and we will concentrate on
the setV* = {(x,y) € ¥|Fx(x) > 0}, which contains the interior of.

From its definition ¢ (x), the value of the production function coincides with
the order one quantile of the law &fgiven X = x,

a1(x) = inf{y = 0[F(y/x) = 1}.

This suggests introducing a concept of production function of continuous order
a € [0,1], as the quantile function of order of the law ofY given thatX does

not exceed a given level of input$his function takesfor a given level of
inputsx, the value

0.(x) := F*(a/x) = inf{y = 0|F(y/x) = a}.

This conditional quantile is the production threshold exceeded by11:0@)%
of firms that use less than the levelas inputs The functionF ~1(./x) is the
so-called generalized inverse Bf - /x). If the distribution functionF(-/x) is
strictly increasingits inverse coincides with the generalized inveFse (./x).
Using this propertywe easily obtain the following result

PROPOSITION 2.. Assume that for every x such that(k&) > 0, the con-
ditional distribution function K-/x) is strictly increasing on the support
[0,¢(x)]. Then,

O(x,y) € ¥* we have y= q,(x) witha = F(y/x). (2)

From property(2), we see that any production uriix,y) in ¥* belongs to
somea-order quantile curveThen unit(x,y) produces more than 1a96 of
all production units using inputs smaller than or equaktand produces less
than the 1001 — )% remaining unitsThus the quantile functioq,(x) quan-
tifies the production efficiency of unitx, y) by comparing it with all units that
use the same level of inputsand also with those that use strictly less than
This motivates our interest in the distribution ¥igiven X = x.
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But the most attractive property of this quantile function is that it can be
easily nonparametrically estimated without the drawbacks of the methods try-
ing to estimate the frontier function itselit will be less sensitive to noise
extreme valuesor outliers This is developed in the next section

As it is shown by property2), the quantile curve$(x,q,(x))|Fx(x) > 0}
cover the whole production s&*. As can be seen in the next propositionis
does not hold for expected order-frontiers of Cazals et al(2002
{(%, em(x))[Fx(x) > O}.

PROPOSITION 2. Under the assumption of Proposition 2.1 and if we
assume furthermore the free disposability of outputs, i.e.,

YEY(Xx) and Yy =y=Y € Y(x),
then the functiong,, do not satisfy the following property:
a(x,y) € v, Ome N* s.t.y= gn(X).

Let us compare how the expected maximal production function and the quan-
tile function can be useful in terms of practical efficiency analySisppose a
production unit uses a quantity of inputsand produces an outpyg; ¢m(Xo)
gives the expected maximum production among a fixed numbmrfiois using
less thanx, as inputs This value indicates how efficient the uriko, yo) is,
compared with thesen units. This is achieved by comparing its lewg] with
the value ofp,(Xo). For this particular unjtwe know that it belongs to a quan-
tile frontier. The order of this frontieiwhich is known gives the proportion of
units that produce less thag among all firms using less thax. Hence the
quantile function gives a clearer indication on the production performamce
it can be viewed as a reasonable benchmark value

We can howevery establish an asymptotic relationship between the two fam-
ilies of production functionsp,, and q,. Namely we can state the following
proposition

PROPOSITION 3. For every x such that the conditional distribution func-
tion F(-/x) is twice differentiable with first derivative(f/x) strictly positive on
the suppor{0, ¢(x)], we have as m> oo anda — 1,

em(X) — Q. (x) = {W + (a = D[yYy(a) + O(a)]}
X O(m~¥4(logm)¥2(log logm)¥4) + o(a), (3)

whereyy(a) = —F"(0a(X)/X)/f 3(0a(X)/X).

From its definition it is clear that for any fixec such thatx(x) > 0, g,(x)
is a monotone nondecreasing functioneofThe limiting case whema — 1 is
of particular interestlt converges to the efficient frontieby lettingm tend to
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infinity in (3) and using lim,_,.. om(X) = ¢(x), we obtaing(x) — g,(x) = o(a)
whena — 1. We can prove this property directly by using the monotonicity of
quantilesq,(x) with respect toa as indicated by the next propositioBven
more strongly it is shownunder some regularity conditionthat the ordeix
production functiorng, converges uniformly to the true production functign

PROPOSITION 2.

(i) For any fixed value of x such that#x) > 0, we havdim,_,; 7 q,(x) =
®(X).

(i) Assume that for everg € [0,1], the quantile function g.) is continu-
ous on the interior of the support of X. Then for any compact K interior
to the support of X,

suplq,(x) — (X)) >0 asa /1.
xeK

The functiong, converges to a monotone nondecreasing functiasa — 1,
but it is not monotone nondecreasing itself unless we add the following
assumption

Oy =0, Ox; =X, st Fy(x;) >0, we haveF(y/x;) = F(y/x,). (4)

This assumption is not needed for all the results of this paper except for the
next propositionbut it appears to be quite reasonabtesays that the chance

of producing less than a valuedecreases if a firm uses more inputdis
assumption is necessary and also sufficient

PROPOSITION &. The quantile function x> q,(x) is monotone nonde-
creasing on the sdix € R? |Fy(x) > 0} for every ordera € [0,1] if and only
if the function x— F(y/x) is monotone nonincreasing on the st €
RY |Fyx(x) > 0} for any output ye R, .

Note that the results established in Propositioh &e very similar to those
obtained for the ordem frontier. Indeed ¢,(x) converges simply and uni-
formly to ¢(x) asm — co. However for Proposition B, Cazals et al(2002
Theorem A3) only prove that if assumptio®) holds thenp,(x) is monotone
nondecreasing im.

3. NONPARAMETRIC ESTIMATION

To estimate the conditional quantitg(x), it is natural to use the conditional
empirical quantile obtained by inverting the conditional empirical distribution
function F (- /x),

Qu.n(X) := FX(a/x) = inf{y|F(y/x) = a}.
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This estimator may be computed explicitly as followst N, be the number of
observations«; smaller than or equal tg, i.e, N, = >/, 1(X; = x), and for

j =1...,N denote byY;, thejth order statistic of the observatioi¥ssuch
thatX = x: Y = Yo,y = --- =Y. We havefor x such thatN, # 0,

> LY =y) Ellmnfy)
P

Flym = 25— ==

Hence
0 ify <Y,

Fy/x) = KN i Y=y <Y, 1=k=N-1
1 ify= Y(iNX)

Therefore we obtain for everyy > 0,
Y(i(

Y(i(l«Nle)) otherwise

if aN, € N*

any})

G(X) = Yy = MAXY, Gyy(0) = { )

where[aN, ] denotes the integral part ofN,: the largest integer less than or
equal toaN,. The conditional empirical quantil, ,(x) is thus computed very
easily as being the simple empirical quantile of observatjpssich thailx; = x.
For comparisonnote that an exact formula is available to compg@ge,(x).
It is as simple as the formul@) but is restricted to the case of no ties among
the inputs The nonparametric estimatgr, ,(x) can also be approximated in
practice by using a Monte-Carlo algorithraven in the full multivariate case
(several inputs and several outpytehich we do not treat in our papégfor
instancein the univariate output castihe Monte-Carlo method can be described
as follows For a givenx, draw a random sample of size with replacement
among these; such thatx; = x and denote this sample ly,..., y). Then
compute @y m(x) = ma>g=Lm,m(yg). Redo this forb = 1,...,B whereB is
large Finally, we have

1 B
sz,n(x) ~ E 2 @b,m(x),

where the quality of the approximation can be tuned by the choid of

Note also that the relation between the ordefrontier and the true frontier
remains valid with their estimatot&, ,(X) and@n(X), i.e, My ., 7 Gmn(X) =
&n(X). Similarly it is easily seenfor any fixed value of inputx for which the
estimatorq, »(x) is well defined for every ordesx € [0,1], thatq, ,(x) is a
monotone nondecreasing functionafand thus
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lim 7 6, n(X) = ¢o(X).

Note that even for large values af< 1, the estimatol,, ,(X) is less sensi-
tive to extreme values than the FDH estimaii x), which by construction
envelops all the observatioriBhe asymptotic theory is discussed in Section 4
Note also thatj, n(x) is not necessarily monotone nondecreasing with respect
to x. Indeed even if assumptiorn4) is assumed for the true conditional distri-
bution function it could happen that its empirical counterpart does not satisfy
it. Of course we know that for large sample sizdt will mostly be the case

Another property thatj, ,(x) shares with¢,, ,(X) lies in the fact that both
the nonparametric partial frontiers underestimate the full frorties, for every
order In our casefor any value of input for which ¢ (x) andq,_ ,(x) are well
defined for any ordex € [0,1], we have

Oon(X) = Gn(X) = @(x) as  La €[0,1].

Indeed because the production functian(-) is monotone nondecreasing and
greater than or equal to the efficient-output functidfi.), for eachi such that
X; = xwe have almost surely, = dY(X;) = ¢(X;) = ¢(x). Thereforeg,(x) =
max{Y|X; = x} = ¢(x) as. On the other hand we haw@, ,(X) = Gi(x) =
én(x) for everya € [0,1].

4. ASYMPTOTIC PROPERTIES

For the unconditional case whefg denotes the ordeg-quantile of a distribu-
tion functionF, of a random variabl&, and£, denotes the empirical quantile
of a sample(Z4,...,Z,) of Z, if F, is differentiable in¢, and such that
F;(¢,) > 0, the Bahadur representation theorem gives

a(l—a)
T[Fa(€.)]7
The direct application of this result to the distribution functies(-) = F(-/x)
does not serve our purpose because our data do not yield a sample from this

distribution However as for unconditional quantiles,, we focus here on pairs
(X, ) that satisfy the following property

Vn(é, — &) > N(o

> asn — oo.

F(-/x) is differentiable ag,(x) s.t. F'(q,(x)/x) > 0. (6)

As a consequence of this properB(-/x) is a bijective transformation from a
neighborhood ofy,(x) onto a neighborhood af. In particular the generalized
inverseF ~1(./x) is equal to the inverse d&(./x) in the neighborhood of:.
This property will be used in the proof of the following theorewhich sum-
marizes the asymptotic properties of our estima}pp(Xx).
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THEOREM 41. Leta € (0,1) be a fixed order and let x be a fixed value
such that k(x) > 0. Assume that the conditional distribution functioi- Fx)
is differentiable at g(x) with derivative fq,(x)/x) > 0. Then,

(i) Gu.n(X) = Gu(x) @s N— oo;
(i) VN(Gan(¥) — Gu(x)) =5 N(0,0%(x, @)) as n— oo,

where
o?(x,a) = a(l— a)/(f2(0,(X)/%) Fx(X)).

It is important to note that heyalsq the equivalent properties hold with the
nonparametric estimator of the orderfrontier. Indeed it is easy to see that
émn(X) converges at the ratén and is asymptotically unbiased and normally
distributed £(Vn(@m n(X) — em(x))) = N(0,0%(x, m)), where c?(x,m) =
E[T2(x, X,Y)], with

m
Fy (X)

Moreover for a vectol @, n(x1),..., mn(X")), the asymptotia-variate nor-
mal distribution is obtained with asymptotic covariances givex pgx* x') =
E[T(xK X, Y)Iin(X', X, Y)]. Similarly we have the following more general result
for the estimator of the conditional quantile frontier function

Lo X,Y) = —— 1(%, =x) f 2y [E(y/%) — 10Y, = )l dy.

THEOREM 42. Let x%...,x" be r levels of the input X that satisfy the
assumption of Theorem 4.1 for a given ordeE (0,1). Then,

VA (an(X) = G (XD, o, o n(X) = Gu(X7) = Ne(0,%,)  as n— oo,
where
3, (x5 x) = E[h, (X5 X, Y)h, (X, X,Y)],
with
al(X=x) - LX=XxY=q,(x))
f(0, (X)/X)Fx(X)

In applied work the variance factore2(x, ) and3,,(x* x') must be esti-
mated For instancgconsistent estimators for these factors can be obtained by
plugging in nonparametric estimators for the conditional derfgityx) and the
marginal distribution functiofr«(x) and taking the empirical mean for the expec-
tation Note that as for unconditional quantileguantiles in the tail of the con-

ditional distribution where the conditional density is low are inherently more
difficult to estimate

ha (X, X,Y) =
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Note also that Cazals et.42002 obtained an asymptotic representation for
their nonparametric estimatas,, ,(x) where the error term is uniform i,
whereas the error term involved in our approach depends(see the proof of
Theorem 41). This can be explained as followBoth ¢, ,(x) andq,, ,(x) are
representable as functionals of the empirical distribution fundfiofihe cor-
responding functional fo, ,(X) is differentiable in the Frechet senser.tv
the sup-normwhereas that corresponding €p ,(X) is only differentiable in
the Gateaux sens€&he uniformity of the error term allowed Cazals et@002
Appendix B to improve the convergence results f, ,(x) by a functional
limit theorem which is not the case in our approach

It is also interesting to compar, ,(x) with the estimator of the standard
conditional quantile of the distribution of given X = x. First note that this
latter estimate requires a smoothing procedutaich is not the case when the
distribution of Y is conditioned byX = x. To compare their asymptotic vari-
ance let us recall that the smooth estimators of the quantlgx) of the dis-
tribution functionF, of Y given X = x, are obtained by inverting a kernel
estimator off, and satisfy the following result

ANRL(,(X) = £,(X) =5 N(O, u2(x, @),

whereu?(x, @) = a(1— a)R(K)/f2(£,(x), with f,(y) = (9/dy) Fx(y), R(K) =
JK?2(u) du, andK andh, are respectivelya kernel and a bandwidth satisfying
some specific constrain{see e.g., Berlinet Cadre and Gannoun2001;, Du-
charme Gannoun Guertin and Jequierl995.

Let us now turn to the convergence to the full frontier functipfx). We
know that the estimato€, ,(x) converges to the FDH estimatd,(x) as
a — 1. We also know from Park et a(2000 that under regularity conditions
asn — oo, the FDH estimatoi,(x) converges to the true unknown frontier
¢(X). The idea is then to define as a function oh such thata(n) — 1 and
Qa(n).n(X) = @(X) asn — co. We thus derive an estimator of the true produc-
tion frontier ¢ (x) and show in the next theorem that it converges to the same
asymptotic distribution as the FDH estimator and as the nonparametric enve-
lopment estimator of Cazals et £2002. The rate of convergence of the order
a(n) to 1 is provided

THEOREM 43. Assume that the joint probability measure ©f,Y) on
the compact suppor® provides a strictly positive density on the frontier
{(x,p(x))|Fx(x) > 0} and that the functiorp is continuously differentiable.
Then for any x interior to the support of X we have, as>mno,

NYP ((X) = Gy, n(X)) > Weibull( w2, p + 1),
where u, is a constant and the order(n) is such that

n(Pr2/(P+D (1 — @(n)) - 0 as n— oo.

https://doi.org/10.1017/50266466605050206 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466605050206

NONPARAMETRIC QUANTILE FRONTIERS 369

The constanju, appearing in the limiting Weibull depends on the slope of
the frontier and the value of the density near the frontier poigip(x)). A
consistent nonparametric estimator of this unknown constant has been pro-
posed in Park et a[2000.

Like the approach of Cazals et.a(2002, here also we lose the
\n-consistency because we u§e,(x) to estimate the full frontietp(x) and
not the partial frontieq,(x).

5. NUMERICAL ILLUSTRATIONS

In this section we illustrate our procedure through some numerical examples
with simulated and real datén the simulation studythe observations are sim-
ulated according to the same data generating process used in Q00&).

5.1. Example 1

We first consider a situation where the attainable set is canwéxsimulate
a sample ofn = 500 data pointgx;,y;) according to the Cobb—Douglas
log-linear frontier model given by = X% X exp(—U), whereX is uniform
on (0,1) and U is exponential with meary. The true frontier function is
o(x) = x°5,

Figure 1 illustrates the simulated data and the quantile cuflygsand the
expected maximal frontierg,, , (B = 1,000 for several different values of
a andm. In the solid linesthe estimates), , (Figure 1a with « = 0.7, 0.97,
0.98, 0.99, 1 are compared with the estimatgg , (Figure 1 with m= 2, 25,
50, 75, co. The true frontiere is in dash-dotted linesThe frontiers are mono-
tone nondecreasing with respect to the oréfer Figure 2 we add in the data
set three outliersand we plot the same frontieds, , and ¢, n.

From Figures 1 and,4t is clear that the frontierg,, , are more resistant to
the three outliers than the FDH frontidrut they are less resistant to the outli-
ers than the quantile frontiers of ordexs< 1. Indeed the quantile frontier
Go.0a.n is influenced by only one outlieand it comes back down immediately
whereas the frontierg,, , with m = 25, 50, 75 are attracted by all the outliers
and moreover continue to grow after each jurSp in this particular example
the frontier@o g9 » is more robust to the outliers than the three frontigs,,
whereas it envelops all these frontiers in absence of the three outliers

5.2. Example 2

We now simulate a sample of = 500 data pointgx;, y;) with a nonconvex
production setWe choose here the modél= exp(—5 + 10X)/(1 + exp(—5 +
10X))exp(—U), whereX is uniform on(0,1) andU is exponential with meag.
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FiGure 1. n = 500 Comparison betwee€, , (a) and¢m n (b), output vs input

Figure 3 plots the simulated data and the solid lines the frontiersq, .,
and ¢n, , (B = 1,000 with the same orders as in the preceding example and
in the dash-dotted lineshe true frontiery. Note that here alspthe frontier
Go.0an is above all the frontierg,, ,. We again add in the data set three out-
liers, as shown in Figure ,4and we plot the frontiers), , and ¢, , for the
same orderslt is clear that the quantile curves of ordexs< 1 are more
resistant to the three outliers than the expected maximal output froiftiess
and the FDH frontieqy .
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FiGure 2. n = 503 Comparison betweeq, , (@) and ¢m n (b) with three outliers
included output vs input

5.3. Example 3

We now test the robustness of both estimatgys, andq,_ , for a small sample
sizen = 100. In Figures 5a and 5b we ploin the dotted linesthe quantile
frontier of ordera = 0.93 and in the solid linesthe frontiers¢,, , (B = 1,000

of ordersm = 5, 7, 50, 75. In Figure 5athe data points are simulated accord-
ing to the same model used in Exampleahd in Figure 5bthey are simulated
according to the same model used in Exampl®Bserve that the quantile fron-
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FiGure 3. n = 500 Comparison betwee€, , (a) and¢n, » (b), output vs input

tier §o.o3 n iS below the frontiersp,, , of ordersm = 50, 75 and is above those
of ordersm=5, 7.

In Figure 6 we add to the preceding two data sets the same three outliers
used in Examples 1 and and we plot the same frontierd/e remark that the
frontiers ¢, , of ordersm = 50, 75 are highly influencedeven those of very
low ordersm = 5, 7 are attracted by the three outlierghereas the quantile
frontier is slightly perturbed

We repeated the same exercise with many other simulated datdeseling
to the same kind of results
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FiGURE 4. n = 503 Comparison betweeq, , (8) and ¢n n (b) with three outliers
included output vs input

5.4. Frontier Analysis of French Post Offices

We examine here a real data set in a univariate situatios data set about the
cost of the delivery activity of the postal services in France is analyzed by Cazals
et al (2002. There aren = 9,521 post offices observed in 19938or each post
office i, the inputx; is the labor cost measured by the quantity of laldrich
represents more than 80% of the total cost of the delivery actiVitg output

y; is defined as the volume of delivered méi number of objects
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FiGURE 5. n =100 In the solid linesthe orderm frontiers ¢s n, $7.n, @s0,n, $75n and
in the dotted linesthe quantile frontiep g3 n-

The 4000 observed post offices with the smallest input levels are plotted in
Figure 7 along with the estimates of quantile frontiefBigure 7a and of
expected maximal output frontiefg&igure 7b, for several different ordera
andm. Here we obtain the frontierg,, , with B = 2,000 bootstrap loops

By using(5), it is very easy to check that every post officéelongs to the
quantile curve of ordew; = F(y;/x;). On the other handhe frontiersgy, , do
not cover the observations below the first frontigr, (12% of the observed
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F1GURE 6. n = 103 In the solid linesthe orderm frontiers ¢s n, $7.n, $s0.n, $75n and
in the dotted linesthe quantile frontieg g3 » With three outliers included

datg and the observations between the frontiers of successive apdgrand
¢m+1.n- This disadvantage of frontiets, , with respect to frontierg, , is due
to the fact that the ordem is discrete

Note that the order; of the quantile frontier that passes through the post
office (x;, y;) is equal to the percentage of post offices that produce lessythan
among all the post offices using inputs smaller than or equad.tdn other
words this order indicates that thi¢h post office produces more than 0%
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FIGURE 7. The 4000 observations with the smallest input levés The frontiersq,
of ordersa = 0.3, 0.5, 0.7, 0.9, 0.97, 0.98, 0.99, 0.995 0.999 and the FDH frontier
(a =1). (b) The frontiersgn, , of ordersm = 1, 2, 25, 50, 100, 200, 300, 400 600 and
the FDH frontier(m = oo). Output vs input

of all post offices using inputs smaller or equabtaand produces less than the
100(1 — a)% remaining post officesThis is why one sees in Figure 7a thit
«a; is close to ongthen the post offic€x;,y;) can be seen to be performing
relatively efficiently and likewise if «; is close to zerpthen the post office
would be performing relatively inefficientlyThus the order of the empirical
quantile frontierg, , defines a reasonable benchmark valNete also that the
nonparametric estimation of the expected frondigr, can be viewed as a mark
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of good practice for post offices when studying their performamt@vever
this benchmark is less clear than the empirical quantile frontier because it is
less easy to interpret and does not cover the whole data set

We also remark that the frontieg, , (Figure 7b are perturbed by the extreme
observations from the orden = 25, whereas the frontier§, , are not influ-
enced except for those having orders almost equal to(erre 0.999).

Figure 8a(resp Figure 8h indicates how the percentagéa) (resp p(m))
of observations above the quantile estimajgeg (resp the expected maximum

% 01 02 03 04 05 06 07 08 09 1
o
(a)
0.9
0.8 |
07| ]

p(m)

0 100 200 300 400 500 600
m

(b)

Ficure 8. Evolution of the percentage of observations above the front@n, , and
(b) émn-
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cost estimateg,, ,) decreases withx (resp m). We remark that the percentage
p(«) decreases very slowly until the order= 0.8 of approximately 24% of
observationslt means that the quantile frontiers of orderssOa = 0.8 are
very tight The 24% observations below the frontigys , have an intermediate
production performance and can be relatively inefficiétawever the percent-
agep(«) falls dramatically from the order = 0.8, which means that the quan-
tile frontiers of extreme orders®= « = 1 are very spaced and are spread out
over 76% of the observations particular 10% of the observations are above
the frontierp go5 n» and 3% of the observations are above the frorgigig . It
is what explains notably the fact that only quantile frontiers of orders very close
to one are influenced by superefficient units

In Figure 8k we observe an opposite phenomentfinst the percentagp(m)
falls severely until the ordem = 50 of approximately 80% of observatigns
and then it continues to decrease but very slowlgnsequently the frontiers
¢m n Of ordersm = 50 are very tightIn particular we just have 9% of obser-
vations between the two frontiegs oq, and ¢goqn, and only 3% of observa-
tions are above the frontigpsoqn. The 20% observations above the frontier
@s0,n are extreme and could be outliers or noisy observatibnsummary the
frontiers ¢, , are very tight from the ordem = 50 and are spread out over
extreme observationg is then natural that these frontiers would be more sen-
sitive to extreme values than the quantile frontiers

We can illustrate this result more clearly by considering the following inverse
problem for a given percentagg,, denote byx (py) (resp m(py)) the order of
the frontierd,,  (resp ¢, n) above which the percentage of observations is equal
to po; we havep(a(py)) = p(m(pg)) = po. Inverting the relationship between
a andp(«) and betweem andp(m) in Figure 8 we get the evolution of and
m as functions ofp. When the percentage varies between 0 and 1Q%ve
remark that the ordes(p) is almost constanta(p) =~ 1), whereas the order
m(p) falls rapidly fromm = 600 tom~ 100 This means that the 10% extreme
observations influence all the frontiefg, , with orders 100= m = oo, whereas
only the frontiersq,, , with orders almost equal to 1 are influenced by these
extreme observation$his can be understood because the FDH frorftjemve-
lops all the observed data

This result is also illustrated in Figure @here the curve of evolution of
a(p) with respect tan( p) is nearly flat from the poinf100, 0.995) which cor-
responds to the percentage- 10% This plot establishes an empirical relation-
ship between the two families of frontietd, .} and{¢n }. Given a frontier
§..n, We can determine the fronties,,, , above which we have the same per-
centage of observations and vice versa

6. CONCLUSIONS

In this paperwe propose a new statistical concept of a production frontier that
allows a more subtle tuning than the expected maximal output frontier of order
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Fi1GURE 9. An empirical relationship betweetd), , and ¢, .

m € N* (Cazals et aJ 2002. We define a frontier of continuous order €
[0,1] of the production se¥, for a given level of inputs, by the conditional
a-quantile of the distribution o¥ given X < x.

Our quantile frontiers satisfy at least the same statistical properties as the
expected maximal output frontiers of ordar Moreover they have the advan-
tage from an economic point of vieywof covering the interior of the attainable
set entirely thus giving a clearer indication of the production efficienthis
benefit is due to the continuity of the indexof our conditional quantiles

A nonparametric estimator of the quantile function of ordex 1 is very
easy to derive by inverting the empirical version of the conditional distribu-
tion function It does not envelop all the observed data pqgiatsl so it is more
robust to extreme values than the standard DEBH nonparametric envelop-
ment estimatorsAlso it is easier to interpret than the nonparametric estimator
of the expected function of orden. Moreover our estimator achieves the
vn-consistency and is asymptotically unbiased and normally distributed
which is reasonable because the conditioning<sstx has a positive probabil-
ity measureBy choosinga as an appropriate function of it estimates the true
frontier function and satisfies the asymptotic properties of the FDH estimator

The method is illustrated using simulated and real dHtahows that the
nonparametric quantile frontiers are more resistant to large observations in the
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output direction than the nonparametric estimates of expected maximal output
frontiers and that the continuous ordemrepresents a good benchmark value
The robustness revealed by the numerical illustrations needs to be confirmed
by some theoretical propertieBhis question is currently being investigated

It should be clear thaunlike the approach of Cazals et 8002, the con-
ditional quantile approach is not extended here to multivaagerfling (2002
stated “Despite the absence of a natural ordering of Euclidean space for dimen-
sion greater than oneffort to define vector-valued quantile functions for multi-
variate distributions has generated several approdchiee methods based on
depth functions recommended by Serfling might be adapted to generalize in a
reasonable way our univariate conditional quantifelsis problem is worth
investigating
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APPENDIX: PROOFS

Proof of Proposition 2.1. Let (x,y) € ¥* and sete = F(y/x). It is an immediate
consequence of the strict monotonicityFf- /x) thatq,(x) = F~(a/x) = . u

Proof of Proposition 2.2. Let us assume the contrafhen we obtain
0Ox € SuppX), Oy € Y(x), On, , EN":y= gomx’y(x), (A1)

whereSupg X) is the support of the distribution of and STpp(\X) denotes its interior

Let x € Supg X) be fixed such thadY(x) > 0. Because the production functianis
greater than or equal to the output-efficient functidf(.), we havee(x) = dY(x) or
o(X) > IY(X).

If ¢(x) = dY(x), we know from Cazals et al2002 Appendix A) that ¢(x) =
lim 7o ©m(X), SO there exists an integemn, € N* such thatp,, (X) < @ 1(X) =
dY(x) (else we would havep,(X) = ¢m+1(X) for everym € N*, so thatp(X) = ¢1(X);
consequently we would obtaifg"(x’ F(y/x)dy = 0, which is impossible because the
function F(-/x) is strictly increasing ori0,¢(x)]). Let y be a real number such that
om (X) <y < @n 1(X). Using the free disposability assumption of outpiitss easily
seen thatY(x) = [0,0Y(x)], so thaty € Y(x). Then by(A.1), there exists an integer
m, y € N* such thaty = gomy(x). It follows that ¢, (x) < gomy(x) < @m,+1(X), and
thusm, < m, , < m, + 1 becausepn(X) is a monotone nondecreasing functionnaf
This contradicts the fact tham, , is an integer

Now if ¢(x) > dY(x), first note thatdY(x) € Y(x) yields by (A.1) that 9Y(x) =
gomxm(x)(x) wherem, ;v(xy € N*. Because of [Im 'y, ¢m(X) = ¢(X), there exists an
ordermy > My 5v(x) such thatp(X) = gm(Xx) > aY(x) whenm = my, andem(Xx) = dY(x)
whenm < m,. For anyy € Y(x) we havey = 9Y(x) so thaty < ¢, (x). We also have
by (A1) y = qomw(x) wherem, , € N*. HenCEquva(X) < @m,(X). Therefore again
using the monotonicity ofy,(x) with respect tan, we getm, , < m,. In summary

Oy € Y(x), Om,,€{L....m—1}:y= (pmxyy(x).
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Becausepn(x) € [0,0Y(x)] = Y(x) for everym < m,, the mapm — ¢n(X) is
well defined and is onto from1,...,m, — 1} to Y(x). As a consequencehe finite
set {¢;(X),...,om1(X)} coincides with the interval0,0Y(x)], which implies the
contradiction ]

Proof of Proposition 2.3. Let x be an input that satisfies the condition of Proposi-
tion 2.3. We have by definitionp,(x) = E[max(Y%,...,Y™)], whereY?...,Y™ arem
independent identically distributed random variables generated by the distribution func-
tion F(-/X). Let F x(y) = (1/m) 2", 1(Y' = y) be the empirical distribution function
of (Y%,...,Y™). The empirical quantile of ordex € (0,1] of this sample is then de-
fined by

ae'(X) := Fy (@) = inf{y| Fp ((y) = a}.

We know thatg™(x) is equal toY “™ if amis an integer and t& {«™+1 otherwise
Theng(x) = Y™, Because the familygT(x))g—.~1 iNcreases t@(x) whena — 1,
the dominated convergence theorem yiglgdgx) = lim,_,, E[gM(X)], and thus we can
write ¢m(X) = E[qM(X)] + e1(@), wheree (@) = o(a) whena — 1. On the other hand
according to the representation theorem of Bahddee e.g., Serfling 198Q Theo-
rem 25.1, p. 91), we have for everyr € (0,1),

a— Fm,x(qa(x))

02'(X) = da(x) = F(QL(0/%)

+ Rm, X(a)7

where with probability 1 Ry, x(a) = O(m~¥4(logm)*4) asm — oo. By using Kiefer’s
theorem(seg e.g., Serfling 198Q Theorem D p. 101), it can easily be seen that a more
precise expression of the remainder is given by

1
R =—R
mx(a) f(qn(x)/x) m, X»
where almost surely and uniformly i, we have
R x = O(m~¥4(logm)*2(log logm)*4), m— oo.

It follows that

em(X) = 0o (X) = O(m~**(logm)*2(log logm)**) + e;(a), ~ M- oco.

1
(9. (X)/X)
Now consider the functiogiy(p) = 1/f(q,(x)/x), p € [0,1]. We have asn — oo,
@m(X) = 0, (%) = [P (1) — (Y (1) — Py (@))]O(m~**(logm)*?(log logm)**) + &,(«).
Becausd- (- /x) has a positive continuous density/x) in the neighborhood0, ¢ (x)) of
0.(x), for anya € (0,1), we obtain according to Shorack and Wellri@086 Proposi-

tion 6, p. 9) that the partial derivative/da)q,(x) exists and equals/L(qg.(x)/x). Then
for everya € (0,1), the derivative ofi/,(«) with respect tax is given by
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ad
Yxle) = === Ao (X)F " (A (X)/%)/F (0 (X)/X).

Using the fact thai, (1) — (@) = (1 — a) iy (a) + (1 — a)ex(a), wherees(a) = o(a)
whena — 1, we obtain asn — oo anda — 1,

@m(X) = da(X) = { (D) — (1 = ) [¢g(@) + 0(@)]}
X O(m~¥4(logm)*¥2(log logm)¥#) + o(a),
which proves(3). |
Proof Proposition 2.4.

1. Because the familjg, (x)}o=.=1 iS monotone nondecreasing and bounded{§x),
0.(X) converges pointwise tq;(x) whena — 1.

2. LetK be a compact subset &‘u/pp(\X). The term{qg,(.)}o<a<1 iS @ NOndecreasing
sequence of real valued functions that are continuous.dvioreover it converges
pointwise to the continuous functian(.) as«a tends to oneThen by Dini's theo-
rem (Schwartz 1991, p. 325 the convergence is uniform dQ |

Proof of Proposition 2.5. Suppose that for every = 0, the functionx — F(y/x)
is monotone nonincreasing dn € R?|Fy(x) > 0}. Let & € [0,1] andx; = X, such
that Fx(x;) > 0. Then F(q.,(X2)/X1) = F(Q.(X2)/X2) = a. It follows that q,(x,) =
inf{y| F(y/x1) = a} = Qa(X1).

Converselysuppose that the quantile function is monotone nondecreasing for every
order on{x € RP |Fy(x) > 0}. Lety € R+ andx; < X, such thatx(x;) > 0. Seta =
F(y/X»). We haveq,(x,) = inf{u|F(u/x,) = a}, so thaty = g,(x,). Becauseg,(x;) <
Au(X2), ¥ = Qo (X1), and thusF (y/x1) = F(da(X1)/X1) = @ = F(y/X2). u

The following lemma will be useful in the proof of Theoreni4

LEMMA 6.1. Let {V,}, {W,} be two sequences of random variables satisfying the
following conditions.

(i) For all 8§ > 0, there exists a (depending o) s.t. P(|W,| > ) < 4.
(i) Forallk and alle > 0

lim P(V, = kW, =k+¢) =0,

n—oo

lim P(V,=k+¢g,W,=k)=0.

n—oo
Then V, — W, = 0 as n— co.

The proof of this lemma can be found in Ghadl®971 Lemma 1 p. 1958. Now let
us demonstrate Theoreml4

Proof of Theorem 4.1. Consider the statistical functiondl®* that associates to a
distribution functionG on R? the real value

G )
TeX(G) = inf{y\ % = a}.
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The conditional quaptilqa(x) and its estimatod, ,(x) are then given bg,(x) = T**(F)
andq, n(x) = T**(F). Let

. 120
Ry* = (T**(F) = T**(F)) — ;0 2 TRl =.Y,=.)—F), (A.2)
where

d
GT*X (R =Y =) = F) = — ToX(F+ Q06 =Y =) ~ F))| o0

is the first Gateaux differential of ** at F in the direction of 1X; = .,Y; = .). Using
property(6), we obtain by a straightforward computation

aAl(X; = Xx)
(1= MF(X)

. F1<a CAL-a)LX =X) X)

TeXF+ALX =.Y,=)—-F)=F1 <a + x> 1Y, > q,(x))
(1= V(%)
X 1(Y; < ,(¥) + A, () LY = g,(x)).
Hence
dTeX(FLX <..Y,<.)—F)

al(X = x)1(Y; > q, (X)) + (@ = D1(X; = ) L(Y; < q,(X))

£ (0, (X)/%) Fy (X)
Therefore
10 13
S AT RUX =Y, =)~ F) == h,(xX,Y), (A-3)
ni=y ni=a1
where
al(X=x) —1(X=xY=q,(x)
h,(x,X,Y) =
a0 X.Y) (0L (/%) Fx (%)
We have

Var[h,(x,X,Y)] = E[(h,(x,X,Y))?] = 02(x, @),
so that by the central limit theorem

1
Vn S

\M:

WX = dTXFAX =.,Y,=.) - F) 2 N@O,02(x,a)) asn— o, (A.4)
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and by the law of large numbers

1
—wW>*x250 asn— o (A.5)

An
Let VX = VN (G, »(X) — g.(x)). Then we obtain vidA.2)
\/ﬁRﬁ‘X — Vna,x _ Wr;x,x'

Using Lemma 6@L, we will show that\/nR®* converges in probability to zerbVe have
for every real numbet,

Ve =ty = {qa n(X) =0, (x) + %}

={a5|f<qa(x)+ /)}—{Zm_T} (A.6)
where

o (0 ) - (o + o ]
Zn = H @ 0000 |\ 5 /%)~ Fla00 + 5 /x

and

“tamr Fem s 35 ]
T = a0 |\ 5 /%) e

BecauseF (-/x) is differentiable atq,(x) with derivative f(q.(x)/x), F(g.(x) +
(t/\/_)/x) —a = (t/\/_)f(qﬂ(x)/x) + (t/A/n)o(1) asn — oo, which implies T, =
[Fx(X)/Fx(x)]t + [tFX(x)/f(qa(x)/x)FX(x)]o(l) asn — oo. We know from the law of
large numbers thafy (X) = Fx(x), and thus
T, 5t asn— o (A7)
On the other hand we have

\/—lfx(x)
(. (X)/X) Fx ()

X [(F <qa(x) + ﬁ/x> - ﬁ(qa(x) + %/x)) —(a— lf(qa(x)/x))].

By a simple computation we find that

{12(0 (/X FXOOFENZ, n = Wi>)?]

Z _Wnax_

= aFy(X) — a®Fx(X) — Fx(X)FZ(qa(X) + %/X>

+ FX(X)F<qw(x) + %/x) + 2aFX(x)F<qL,(x) + %/x)
— ZFX(X)F<qa(x) + (% I]O)/x).
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Using the continuity of (- /x) in d.(x), we getE[(Z; , — W&*)2] — 0 ash — oo, and
thus

Zin—Wex P50 asn— oo, (A.8)

Now, using the result$A.3) and(A.6)—(A.8), we will show thatV,®* and W * satisfy
the two conditions of Lemma.B. As E[(W®*)2] = o?(x,a), the first condition fol-
lows from a trivial application of the Markov inequalitfFor anyk and anye > 0,
settingt = k, we have by(A.6),

V=KW =k+ef ={Z, , = T, W =t + &} C{W = Z ) = e — (T, — )}
Hence
PV = KW=k + e) = P(J(We X = Z, ) + (T, — )| = &).

Therefore combined with(A.7) and (A.8), lim,_, P(V** = KW®* =k + &) = 0.
Now applying(A.6) tot = k + &, we get

P(Vna’x =k+ E’Wna’x = k) = P(‘(Zt,n - Wna’x) - (Tn - t)‘ = 8)-

Then(A.7) and(A.8) yield lim,_, ., P(V;** = k + &,W** = k) = 0. Hence the second
condition of Lemma €L is also satisfiedThereforeV,®* — W BN 0, asn — oo, i.e,

VnR=* 250 asn— .

In particularR% > converges in probability to zero @as— co. Thus

Qo.n(X) — 0, (X) = % WX+ REX = %Wn‘“ +0,(1) asn— oo, (A.9)
VN(Q, n(X) = 0, (X)) = WX + VNRy* = WX + 0,(1)  asn — co. (A.10)

The consistency follows from resul{&.5) and (A.9), and the asymptotic normality is
obtained by(A.4) and(A.10). |

Proof of Theorem 4.2. It follows from (A.10), asn — oo,

VN (G, n(X1) = (x1),..., 0, n(X") — Q. (x"))
1 n
=~ _:El(ha(xl, Xi, ), hy (X5 X0, Y0) + 0,(2).

Hence the multivariate central limit theorem yields

NNy n(XH) = Ay (X1, ..., 0 (X)) = 0, (X)) 25 N(0,3,) asn— oo,
where
3, (xK x") = Cov(h, (x5 X4, Yy), h, (X', X4, Y1)).

This ends the proof u
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Proof of Theorem 4.3. From Park et al (2000 and Cazals et al(2002 we
know that

nY(P+D (o(x) — ¢, (X)) = Weibull( xP*™t, p+1) ash— co.
So by using the following decomposition
NP (9(X) = Qg n(X)) = VP (@(X) = @n(x)) + NPT (G (X) — g n(X))
we want to find a functior of n such that
a(n) =1 and nY® (g (X) = Gun.n(X) >0, asn— co.
From (5) we have for anyx > 0,
@n(X) = Qo n(X) = (Vi) = Vi) 1(aN, € N¥)
+ (Y(iNx) - Y(i”aNan))l(aNx & N*). (A.12)

Set for evenyk € {1,...,N, — 1}

Yiino ~ Yaio

Coul) = ———
1_ —
N

X

and letCy(n) = max{Cy «(n) | 1 = k = N, — 1}. Then we have

N,
N = Yo L@N E N¥) = (Y ) = Vi) 2 HaN =k)
k=1

N,—1
= 2 (Y(i,\,x) - Y(ik))l(aNx =k)

k=1

Ne—1

< k k
=3 Cum(1-—)1{a=—

2 ey )i iy)

N

= C,(n) ZX (1-a)l(aN,=k)
k=1

= C(n)(1— a)1l(aN, € N*) (A.12)
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because (aN, € N*) = E’Q‘;ll(aNx = k). Now, using that 1aN, & N*) =
S0 LaN, € (kK + 1)), we get

Ny—1

2 (Y(iNX) - Y(i<k+1)))1(aNx € (k, k+ 1))

k=0

Vi) = Yoiygamea) LN & N7)

Ny—2

> (Y(iNx) - Y(i{kﬂ}))l(aNx € (kk+1))
k=0

Ny,—2

: k+1
2 Cx, k+1(n) <1 -

k=0

X

) 1(aN, € (kk + 1))

Ny—2

=C(M(1—a) S 1aN, € (kk+1)
k=0

=C,(n)(1— a)l(aN, & N*). (A.13)
It follows from (A.11)—(A.13) that
(%) = Go.n(0) = C(M (L~ @) L(aN, € N*) + C,(n) (1~ @) 1(aN, & N)
= C (M- ),
so that
Y (G,(X) = G, n(X) = NYPHIC,(N)(1 - a). (A14)

Because the suppoit of (X,Y) is compactthe support ofy is boundedLetM > 0 be
its upper boundThen for anyk = 1,...,N, — 1,

Y(iNx) - Y(ik) = Y(iNx) = M a.S, and k = NX'
l - —
Ny
Hence
i ~ Yo
Dk=1...,N,—1: Cy(n)= '”—k'k =MN, as
l_ —_
Ny
Therefore

C.(n) = 1§L1%X—1CX"‘(”) =MN, as.

We deduce fron{A.14)

Y (G(X) = G, () = MN,NY P (1= @) = ME, ()P 2P D (1 - a)  as
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We know from the strong law of large numbers thai(x) == Fy(x). So to achieve
our goal it is sufficient to chooser(n) such that

nPr2/(P*(1 — a(n)) - 0 asn — oo,

Indeed we find

a(n)—>1 and nY®P*(G (X) = Gum.n(X) =50 asn— co.

This completes the proof u
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