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TRUNCATION AND SEMI-DECIDABILITY NOTIONS IN APPLICATIVE
THEORIES

GERHARD JÄGER, TIMOTEJ ROSEBROCK, AND SATO KENTARO

Abstract. BON+ is an applicative theory and closely related to the first order parts of the standard
systems of explicit mathematics. As such it is also a natural framework for abstract computations. In this
article we analyze this aspect of BON+more closely. First a point is made for introducing a new operation
�N, called truncation, to obtain a natural formalization of partial recursive functions in our applicative
framework. Then we introduce the operational versions of a series of notions that are all equivalent to
semi-decidability in ordinary recursion theory on the natural numbers, and study their mutual relationships
over BON+with �N.

§1. Introduction. Starting point of the following considerations is the applicative
theoryBON+whose universe consists of so-called operations; self-application is pos-
sible though not necessarily defined. This basic theory of operations and numbers
BON+ comprises the axioms of partial combinatory algebra, some natural axioms
for the data type of the natural numbers, and the schema of induction on the natural
numbers for all formulae (hence the symbol “+” in its name).
Moreover, BON+is closely related to the first order parts of the standard systems
of explicit mathematics introduced in Feferman [3,4]. Since the notion of a partial
combinatory algebra is an interesting generalization of and an abstract framework
for computations, this applicative part of explicit mathematics is sometimes called
its “computational engine”.
In this articlewe analyze this aspect ofBON+more closely.First a point ismade for
introducing a new operation �N, called truncation, to obtain a natural formalization
of partial recursive functions in our applicative framework. Then we introduce
the operational versions of a series of notions that are all equivalent to semi-
decidability in ordinary recursion theory on the natural numbers, and study their
mutual relationships over BON+with �N. As it turns out, not all these equivalences
can be transferred to their operational variants, and interestingmutual relationships
can be discovered.
This article is organized as follows. In the next section we present the basic theory

BON+ as well as two notions of representing partial number-theoretic functions
and state some central properties of BON+. In Section 3 we first discuss a few
shortcomings of BON+ with respect to a natural treatment of partial recursive
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functions and then introduce the truncation operator �N as a possibility to compen-
sate for these deficits. Section 4 gives two proofs of the undefinability of �N inBON

+.
Section 5 is about models of BON+(�N). These models serve several purposes: (i)
they underline that the operator �N reflects a very natural principle in our opera-
tional context, (ii) they give us the consistency of BON+(�N) with the assertion that
application is total and a kind of existence property, and (iii) they provide some
complexity results that we use in Section 6, where the relationships between our
operational versions of classical semi-decidability notions are studied.

§2. The theory BON+. In this section we introduce the basic theory BON+ of
operations and numbers, which is the point of departure for our considerations.
BON+axiomatizes the basic operational behavior of the first order objects of explicit
mathematics. It is closely related to the theory BON introduced in, for example,
Feferman and Jäger [5] and Feferman, Jäger, and Strahm [6], to the theory EON of
Beeson [2, VI.2.4], and to the theory APP of Troelstra and van Dalen [19, 9.3.3]. In
Section 3 we extend BON+to the theory BON+(�N).
The language L of BON+and BON+(�N) is a first order language with countably
many individual variables a, b, c, u, v, w, x, y, z, f, g, h, . . . (possibly with
subscripts) and the individual constants 0, k, s, p, p0, p1, sN, pN, dN, �N, the meaning
of which will be explained later. In addition, there is a binary function symbol ·
for application. The relation symbols are countably many unary relation variables
U , V ,W , . . . plus the specific unary relation symbols ↓, N, and the binary relation
symbol =.
The term formation operation is term application and thus the terms (r, s , t, r1,
s1, t1, . . . ) are generated as follows:

(1) Each individual variable is a term.
(2) Each individual constant is a term.
(3) If s and t are terms, then so also is (s · t).
We write (s · t) often just as (st) or st. In this simplified form we adopt the
convention of association to the left such that, for example, s1s2 . . . sn stands for
(. . . (s1 · s2) . . . · sn). We also use the notation s(t1, . . . , tn) for st1 . . . tn . If n is a
natural number, we write n for the corresponding numeral, i.e., for the closed term
given recursively by 0 := 0 and n+1 := sNn.
The formulae (ϕ, �, �, ϕ1, �1, �1, . . . ) of L are generated from the atomic
formulae t↓, (s = t), N(t), andU (t) by closing them under the usual propositional
connectives and quantification over individuals. We will often omit parentheses if
there is no danger of confusion.
The logic of BON+ is the classical version of Beeson’s logic of partial terms (see
Beeson [2, VI.1]). It corresponds to the E+-logic with equality and strictness of
Troelstra and van Dalen [18, 2.2.4], where E(t) is written instead of t↓. Here t↓ is
read “t is defined” or “t has a value”. The partial equality � is introduced by

(s � t) := ((s↓ ∨ t↓) → s = t).

Furthermore, we write t ∈ Z instead of Z(t) in case Z is a relation variable or the
relation constant N. As usual, t /∈ Z and s �= t stand for ¬(t ∈ Z) and ¬(s = t),

https://doi.org/10.1017/jsl.2018.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.34


TRUNCATION AND SEMI-DECIDABILITY NOTIONS IN APPLICATIVE THEORIES 969

respectively. As additional abbreviations we will use:

t ∈ (N→ N) := (∀x ∈ N)(tx ∈ N),

t ∈ (Nm → N) := (∀x0, . . . , xm−1 ∈ N)(t(x0, . . . , xm−1) ∈ N),

f ∈ Char := (∀x ∈ N)
(
fx = 0 ∨ fx = 1) ,

f ∈ Char2 := (∀x, y ∈ N)
(
f(x, y) = 0 ∨ f(x, y) = 1) ,

t ∈ N\U := t ∈ N ∧ t /∈ U,
U = ∅ := ¬∃x (x ∈ U ).

The so-called strictness axioms of the logic of partial terms are all formulae of
the following form where ϕ[u] is an atomic formula with an occurrence of u:

ϕ[s] → s↓ .
Keep in mind that in general t /∈ Z does not imply t↓ and that we cannot deduce
s↓ or t↓ from s �= t.
The non-logical axioms of BON+can be divided into the following four groups.

I. Partial combinatory algebra
(1) k(x, y) = x,
(2) s(x, y)

⏐� ∧ s(x, y, z) � x(z, yz).
II. Pairing and projection
(3) p0(p(x, y)) = x ∧ p1(p(x, y)) = y.

III. Natural numbers
(4) 0 ∈ N ∧ sN ∈ (N→ N),
(5) sNx �= 0 ∧ pN0 = 0 ∧ (∀x ∈ N)(pN(sNx) = x),
(6) x ∈ U → x ∈ N,
(7) ϕ[0] ∧ (∀x ∈ N)(ϕ[x] → ϕ[sNx]) → (∀x ∈ N)ϕ[x]
for all L formulae ϕ[x].

IV. Definition by cases on N
(8) x ∈ N ∧ y ∈ N ∧ x = y → dN(a, b, x, y) = a,
(9) x ∈ N ∧ y ∈ N ∧ x �= y → dN(a, b, x, y) = b.

k and s are the partial versions of the well-known combinators of Curry’s com-
binatory logic. p provides an injective pairing of the universe with the inverse
operations p0 and p1. sN represents the successor function on the natural num-
bers and pN the predecessor function. Axioms (4) and (5) formulate some basic
properties of the natural numbers, axiom (6) simply states that the relation vari-
ables range over subsets of the natural numbers, and (7) is the schema of induction.
dN gives definition by integer cases. Since BON+ comprises the axioms (1)–(2) of a
partial combinatory algebra, we clearly have � abstraction and the usual fixed point
theorem; this is mentioned already in Feferman [3] and proved in detail in, e.g.,
Beeson [2, VI.2.2], Troelstra and van Dalen [19, 9.3.5], and Feferman, Jäger, and
Strahm [6].

Lemma 2.1 (� abstraction). For each variable x and term t we can construct a term
�x.t whose free variables are those of t, excluding x, such that BON+proves

�x.t↓ ∧ (�x.t)x � t.
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The generalization of � abstraction to several variables is by simply iterating
abstraction for one argument, andweusuallywrite�x1 . . . xn.t for the corresponding
term.
Lemma 2.2 (Fixed point). There exists a closed term fix such that BON+proves

fix(f)
⏐� ∧ (g = fix(f) → ∀x (gx � f(g, x))).

Corollary 2.3. Let ntN := fix(�xy.sN(x(y))). Then BON+proves

ntN↓ ∧ ∀x (ntN(x) � sN(ntN(x)))
and hence ntN(0) /∈ N.
BON+ is proof-theoretically equivalent to the theory BON (see Feferman and
Jäger [5] and Feferman, Jäger, and Strahm [6]) extended by the schema of induction
for arbitrary formulae. It can be shown that all primitive recursive functions can be
represented in BON+as explained below.
We write � for the set of natural numbers. Given a (possibly partial) function F
from �k to � we say that a closed term t numeralwise represents F in an L theory
T iff

F(m1, . . . , mk) = n ⇐⇒ T � t(m1, . . . , mk) = n
for all m1, . . . , mk, n ∈ �. However, this does not guarantee the expected behavior
of t on non-standard natural numbers. In order to impose such a condition, we have
to assume that it is described by a formula, e.g., by equations. For example, let us
consider a unary function G that is defined by primitive recursion from a natural
number n and a binary function F as

G(0) = n and G(m + 1) = F(m,G(m))
for all natural numbers m. Then, if the terms s and t represent the functions F and
G, respectively, we want the conditional equations

t0 = n and (∀x ∈ N)(t(sNx) = s(x, tx))

to be provable in T . If the defining formula of a function F is provable for a term t
in T , we say that t definitionally representsF in T . The following is immediate from
Troelstra and van Dalen [19, 9.3].

Theorem 2.4 (Prim. rec. func.). For any (definition of a) k-ary primitive recursive
function F , there exists a closed term primF that numeralwise and definitionally
represents F in BON+and for which BON+proves primF ∈ (Nk → N).
Observe, however, that this theorem does not imply that BON+proves

primF (a1, . . . , ak) ∈ N → a1, . . . , ak ∈ N

for the representation primF of a k-ary primitive recursiveF ; this implication is not
provable in BON+ in general.
According to the last theorem there are closed terms pair, proj0, proj1, numeralwise
and definitionally representing a primitive recursive bijective pairing function with
its corresponding projections, respectively, such that BON+proves the following:

(1) s, t ∈ N → (pair(s, t) ∈ N ∧ proj0(s) ∈ N ∧ proj1(s) ∈ N),
(2) s, t ∈ N → (proj0(pair(s, t)) = s ∧ proj1(pair(s, t)) = t),
(3) s ∈ N → pair(proj0(s), proj1(s)) = s .
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There is also a closed term less for the characteristic function of the primitive
recursive less relation, and we often write a < b for (a, b ∈ N ∧ less(a, b) = 0).
InTroelstra and vanDalen [19, 9.3.10], a specificminimumoperator is considered.
Later, we need the following part of this result.

Theorem 2.5 (min0). There exists a closed term min0 such that BON+proves

(∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N))

→ min0(f) ∈ N ∧ f(min0(f)) = 0 ∧ (∀y < min0(f))(0 < fy).
Proof. Let t := �fhx.dN(�u.x, �u.h(sNx), fx, 0)0. Then, as far as fx ∈ N,

fix(tf, x) � t(f,fix(tf), x) � dN(�u.x, (�u.h(sNx))[fix(tf)/h], fx, 0)0

�
{
x if fx = 0,
fix(tf, sNx) otherwise.

Define min0 := �f.fix(tf, 0). Now we assume

(∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N)).

By induction there exists a ∈ N with fa = 0 and (∀y < a)(0 < fy). If a = 0, then
min0(f) � fix(tf, a) = a is provable. If 0 < a, a further induction yields

y < a → min0(f) � fix(tf, sNy).
Therefore, we have min0(f) � fix(tf, a) = a as well. This proves our claim. �
Making use of this minimum operator and following [19] it is routine work to
show that every total recursive function can be represented numeralwise (but not
definitionally in general) in BON+by a closed term. Having primitive recursion and
min0, it is easy to see that even Kleene’s enumeration {e} of the partial recursive
number-theoretic functions can be obtained in BON+.

§3. Truncation to N. In this section we discuss some deficiencies of BON+

with respect to a “natural treatment” of partial recursive number-theoretic func-
tions within BON+ and propose the introduction of a new truncation operator to
compensate for them.
There are two interesting additional axioms, the totality assertion (Tot-Ap) and
the assertion (Tot-N) that every object is a natural number,

(Tot-Ap) ∀x ∀y (xy↓),
(Tot-N) ∀x (x ∈ N).

BON+ is consistent with (Tot-Ap) (as will be shown by the term model in
Section 5.1) andwith (Tot-N) (as seen byKleene’s first model [N, �] in the notation
of Section 4).However,BON++(Tot-Ap)+(Tot-N) is inconsistent byCorollary 2.3.
Thus, both (Tot-Ap) and (Tot-N) are unprovable in BON+, respectively. Hence, if
we want to be compatible with both possible extensions of BON+, the only way
to formally express the non-termination of a partial number-theoretic function F
at input x is to state tF (x) /∈ N for the associated term tF . In particular, in the
presence of (Tot-Ap), the non-termination ofF(n) is represented by having a value
outside of N; while in the presence of (Tot-N), it is represented by non-definedness.
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Now suppose that a unary partial number-theoretic functionF is the composition
of unary partial number-theoretic functions G andH, i.e.,

F(n) � H(G(n))
for all natural numbers n. Also, if G(n) does not terminate, then neither does
F(n). If the terms s and t represent G and H, respectively, we would expect that
r := �x.t(s(x)) represents F and

a ∈ N ∧ sa /∈ N → ra /∈ N

within BON+ according to the way of representing the non-termination of partial
functions mentioned in the previous paragraph. However, if H is the function
constant 0 and t := �x.0 its canonical representation, then

a ∈ N ∧ sa /∈ N ∧ ra = 0
is possible in BON+. Simply assume that sa has a value outside N.
In ordinary computation theory on the natural numbers and many of its
generalizations there exist

(i) a closed term r such that

(∀x ∈ N)(rx = 0) ∧ ∀x (rx ∈ N → x ∈ N),

(ii) an operator op that maps any partial computable function f to a partial
computable function g = op(f) such that

(∀x ∈ N)(fx ∈ N ↔ gx = 0).

In the following section wewill show that both such terms do not exist in our present
environment BON+.
To overcome these problems and similar difficulties, we now make use of the
constant �N, which did not play a role thus far. Consider the following two �N-
axioms.

VI. Truncation to N
(�N.1) x ∈ N → �N(f, x) � fx,
(�N.2) �N(f, x) ∈ N → x ∈ N.

The first axiom states that onN any operation f behaves exactly as its truncation �Nf.
Moreover, the second axiom states that �N(f, x) can belong toN only when so does x
as well. In this sense, �N truncates every operation f to the natural numbers N.
BON+(�N) is defined to be the extension ofBON

+by the axioms (�N.1) and (�N.2).
In Section 4, we will show that �N cannot be defined in BON

+. Hence BON+(�N) is a
proper extension of BON+. And it is easy to check that by means of �N the problems
described above can be healed. There is a close relationship between our truncation
operator �N andKahle’s notion ofN-strictness, introduced inKahle [8,9]; for details
see Rosebrock [17].
Before turning to the undefinability of �N in BON+ we want to illustrate that

BON+(�N) is a natural framework for explicitly dealing with partial recursive func-
tions and their defining equations. We leave it to the readers to convince themselves
that without �N and the �N-axioms this approach would not have been possible.
It turns out to be important to have a minimum operator that is stronger than
min0 of Theorem 2.5. To establish its existence we start with a preparatory lemma
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that asserts the existence of a term for deciding admissibility in the sense of Troelstra
and van Dalen [19, 9.3.9] up to a natural number.
Lemma 3.1. There exists a closed term adm such that BON+(�N) proves the
following:
(1) (∀x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N) → adm(f, x) = 0),
(2) (∀x ∈ N)(adm(f, x) ∈ N → adm(f, x) = fx ∧ (∀y < x)(fy ∈ N)).
Proof. We work within BON+(�N) and define

adm := �f.fix(�hx.dN(f, �u.�N(�z.fx, h(pNx)), x, 0)0).

Then we have for all y ∈ N,

adm(f, y) � dN(f, (�u.�N(�z.fy, h(pNy)))[admf/h], y, 0)0

�
{
f0 if y = 0,
�N(�z.fy, adm(f, pNy)) otherwise.

To show (1), pick x ∈ N with fx = 0 and (∀y < x)(fy ∈ N). We prove
y < x → adm(f, y) ∈ N by induction on y and continue with

adm(f, x) �
{
f0 if x = 0
�N(�z.fx, adm(f, pNx)) otherwise

}
� fx = 0.

For establishing (2), we prove

adm(f, x) ∈ N → adm(f, x) = fx ∧ (∀y < x)(fy ∈ N)

by induction on x. This is obvious for x = 0. Assume adm(f, sNx) ∈ N. This
means �N(�z.f(sNx), adm(f, x)) ∈ N. Hence (�N.2) implies adm(f, x) ∈ N, and
so (�N.1) yields adm(f, sNx) = f(sNx). By induction hypothesis we also have
fx = adm(f, x) ∈ N and (∀y < x)(fy ∈ N). Therefore, we can finally conclude
(∀y < sNx)(fy ∈ N). �
Theorem 3.2 (min). There exists a closed term min such that BON+(�N) proves
the following:
(1) (∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N)) → min(f) ∈ N,
(2) min(f) ∈ N → f(min(f)) = 0 ∧ (∀y < min(f))(0 < fy).
Proof. We define

min := �f.�N(�u.dN(�v.min0(f), ntN, u, 0)0, adm(f,min0(f))),

where ntN is defined in Corollary 2.3.
In order to prove (1), assume (∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N)). The-
orem 2.5 implies min0(f) ∈ N, f(min0(f)) = 0, and (∀y < min0(f))(fy ∈ N).
Therefore, adm(f,min0(f)) = 0 in view of the previous lemma. By (�N.1) we have

min(f) � dN(�v.min0(f), ntN, 0, 0)0 = min0(f).
Now we turn to (2) and assume min(f) ∈ N. Then adm(f,min0(f)) ∈ N by
(�N.2) and the definition of min. Hence,

min(f) � dN(�v.min0(f), ntN, adm(f,min0(f)), 0)0

�
{
min0(f) if adm(f,min0(f)) = 0,
ntN(0) otherwise.
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By min(f) ∈ N and ntN(0) /∈ N, the second case is ruled out. Therefore
adm(f,min0(f)) = 0 and min(f) = min0(f). According to the previous lemma,
we thus have

(∀y < min(f))(fy ∈ N) ∧ f(min(f)) = adm(f,min(f)) = 0.
Now we apply Theorem 2.5 and obtain (∀y < min(f))(0 < fy). �
Nowwe are ready to turn to the definitional representation of all partial recursive
(number-theoretic) functions.We start off from thedefinition of the partial recursive
functions as the least class of number-theoretic functions that (i) contains the
constant-zero function, the successor function, the projections and (ii) is closed
under compositions and minimizations.

Theorem 3.3 (Part. rec. func.: definit. repr.). For any (definition of a) partial
recursive number-theoretic function F , there is a closed term gF such that BON+(�N)
proves the defining formulae for both the domain and the values of gF .
Proof. We prove this by induction on the definition of the class of the partial
recursive functions.

(i) Initial functions. Clearly, the term sN represents the unary successor function
and the corresponding defining equations are provable inBON+(�N). The term
zerok := �x0 . . . xk−1.0 and the term projki := �x0 . . . xk−1.xi represent the k-
ary zero function and the k-ary i-th projection function (for 0 ≤ i < k),
respectively, with the equations
(1) zerok(x0, . . . , xk−1) ∈ N ↔ �,
(2) zerok(x0, . . . , xk−1) = 0,
(3) projki (x0, . . . , xk−1) ∈ N ↔ �,
(4) projki (x0, . . . , xk−1) = xi
being provable in BON+(�N) for all x0, . . . , xk−1 ∈ N.

(ii) Composition. For notational simplicity we restrict ourselves to the case of the
composition of a binary with two unary functions,

F(n) � I(G(n),H(n));
the generalization to the general case is obvious. By induction hypothesis we
have the terms gG , gH, and gI . Then define

gF := �x.�N(�y0.�N(�y1.gI(y0, y1), gHx), gGx)

and check that BON+(�N) proves, for all x ∈ N,
(5) gFx ∈ N ↔ (gGx ∈ N ∧ gHx ∈ N ∧ gI(gGx, gHx) ∈ N),
(6) gFx ∈ N → gFx = gI(gGx, gHx).

(iii) Minimization. For notational simplicity we restrict ourselves to the case that
the unary F is defined from the binary G by minimization, i.e.,

F(n) is the least m with
{
G(n,m) = 0 and
for all k < m,G(n, k) terminates, (�)

if such m exists; otherwise F(n) does not terminate. By the induction
hypothesis we have a term gG representing G and define

gF := �x.min(�y.gG(x, y)).
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In view of Theorem 3.2 it is clear that BON+(�N) proves, for all x ∈ N,
(7) gFx ∈ N ↔ (∃y ∈ N)(gG(x, y) = 0 ∧ (∀z < y)(gG(x, z) ∈ N)),
(8) gFx ∈ N → (gG(x, gFx) = 0 ∧ (∀z < gFx)(0 < gG(x, z))).

This finishes the proof of the definitional representation theorem for all partial
recursive number-theoretic functions. �
Then it is natural to ask for the numeralwise representation of the partial recursive
functions. For this purpose, we need the following lemma.

Lemma 3.4 (evaluation of numerical terms). For any closed term t, if BON+(�N)
proves t ∈ N then there exists a natural number n such that BON+(�N) proves t = n.

This lemma is proved in full detail in Rosebrock [17]. The underlying idea of its
proof is also sketched in Section 5.1.

Theorem 3.5 (Part. rec. func.: numeralwise repr.). For any (definition of a) partial
recursive number-theoretic function F , there is a closed term gF which numeralwise
represents F in BON+(�N).
Proof. We can use the same closed term as in Theorem 3.3. For the case of the
initial functions, the claim is trivial.
Let us consider the case of composition, namely F(n) � I(G0(n),G1(n)).
If F(n) = m, then let li := Gi(n) for i < 2. By the induction hypothe-
sis, BON+(�N) proves gGi n = li for i < 2 and gI

(
l0, l1

)
= m. Therefore

gFn = �N(�y0.�N(�y1.gI(y0, y1), gG1n), gG0n) = m is provable in BON
+(�N).

Conversely, if gFn = m is provable in BON+(�N), then by the axioms (�N.2) and
(�N.1), gGi n ∈ N is provable for i < 2. By the last lemma, there exist li for i < 2 such
that gGi n = li is provable. Then, by the induction hypothesis, F(n) = I(l0, l1) = m.
Next, we look at the case of minimization, namely (�). If F(n) = m, then

G(n,m) = 0 and G(n, k) > 0 for k < m. By the induction hypothesis, BON+(�N)
proves gG(n,m) = 0 and 0 < gG

(
n, k

)
for any k < m. By Theorem 3.2(1),

min(�y.gG(n, y)) ∈ N is provable. By the last lemma, there exists l such that
min(�y.gG(n, y)) = l is provable. By Theorem 3.2(2),

gG
(
n, l

)
= 0 ∧

(
∀y < l

)
(0 < gG(n, y))

is provable. Again by the induction hypothesis, G(n, l) = 0. Therefore m ≤ l . If
m < l , then 0 < gG(n,m) is provable contradicting gG(n,m) = 0. Thus m = l and
gFn = m is provable.
Conversely, if gFn = m is provable, so is

gG(n,m) = 0 ∧ (∀y < m)(0 < gG(n, y))
in view of Theorem 3.2(2). By the induction hypothesis and the last lemma,
F(n) = m. �
We close this section with the following easy lemma, which will be useful later.
It asserts that subclasses of N that are represented as ranges of operations are
exactly the projections of those represented as preimages of 0 under operations (cf.
Definition 6.1).
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Lemma 3.6. In BON+(�N) we can prove the following:
(1) ∀g ∃f (∀x ∈ N)((∃z ∈ N)(fz = x) ↔ (∃y ∈ N)(g(pair(x, y)) = 0)),
(2) ∀f ∃g (∀x ∈ N)((∃y ∈ N)(fy = x) ↔ (∃y ∈ N)(g(pair(x, y)) = 0)).
Proof. (1) Given g, take f := �z.�N(dN(�v.proj0(z), ntN, gz, 0), gz). It is easy to
see fz = x iff gz = 0 ∧ proj0(z) = x for x, z ∈ N.
(2) Given f, set g := �z.�N(dN(�u.0, ntN, f(proj1(z)), proj0(z)), f(proj1(z))). For
x, y ∈ N, it is easy to see fy = x iff g(pair(x, y)) = 0. �
It is easy to check that all the arguments in this sections go through if we replace

BON+(�N) by its intuitionistic counterpart.

§4. Undefinability of �N in BON+. We have seen how the truncation operator �N
is used for a representation of the partial recursive functions within our operational
framework. In this section, we prove that BON+(�N) is not a definable extension of
BON+.
Our strategy is to show that there is no closed term s such that BON+proves

(∀x ∈ N)(sx = 0) ∧ ∀x (sx ∈ N → x ∈ N).

On the other hand such s is easily definable from �N by �x.�N(�y.0, x).
To show this fact and for further unprovability results in Section 6 we make use
of semantic considerations, and thus begin with introducing some basic notions.

Definition 4.1. An operational structure is a 5-tuple

M = (M,App,Nat,S, I )
with the following properties:
(1) M is a non-empty set, the so-called universe of M, App is a subset of M 3,
unique in its last argument,Nat is a subset ofM , and S is a non-empty subset
of the power set Pow(Nat) of Nat.

(2) I is a mapping that assigns an element I (r) of M to any constant r of the
language L.

Furthermore, a valuation over this structure is a mapping J that assigns an element
J (u) ofM to any individual variable u and an element J (U ) of S to any relation
variable U .

Given an operational structureM = (M,App,Nat,S, I ) and a valuation J over
M, the value ‖r‖JM of a term r is inductively defined as follows. If r is an individual
constant, then ‖r‖JM := I (r); if r is an individual variable, then ‖r‖JM := J (r). If r
is the compound term st we have to distinguish a few cases:
(1) If ‖s‖JM and ‖t‖JM are elements of M and if there exists m ∈ M such that
(‖s‖JM, ‖t‖JM, m) ∈ App, then this element m is uniquely determined, and we
set ‖r‖JM := m;

(2) If ‖s‖JM and ‖t‖JM are elements ofM and if there exists nom ∈M such that
(‖s‖JM, ‖t‖JM, m) ∈ App, then ‖r‖JM is the value undef;

(3) If ‖s‖JM or ‖t‖JM is the value undef, then ‖r‖JM is the value undef.
Clearly, the value of a closed term does not depend on the valuation J and, there-
fore, we simply write ‖r‖M for the value of the closed term r with respect to the
operational structureM.
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Similarly, the value ‖ϕ‖JM of an L formula ϕ with respect to the operational
structureM = (M,App,Nat,S, I ) and the valuation J overM is either T or F. For
atomic formulae we set the following:
(1) ‖ t↓ ‖JM := T if ‖t‖JM ∈M , and ‖ t↓ ‖JM := F if ‖t‖JM is the value undef;
(2) ‖s = t‖JM := T if ‖s‖JM = ‖t‖JM ∈ M , and ‖s = t‖JM := F if (at least) one
of ‖s‖JM or ‖t‖JM is the value undef or if they are both inM but different;

(3) ‖N(t)‖JM := T if ‖t‖JM ∈ Nat, and ‖N(t)‖JM := F if ‖t‖JM is the value undef
or an element ofM \Nat;

(4) ‖U (t)‖JM := T if ‖t‖JM ∈ J (U ), and ‖U (t)‖JM := F if ‖t‖JM is the value
undef or an element ofM \ J (U ).

Starting off from this treatment of the atomic formulae, the values of the compound
formulae are introduced as usual. We say that an L formula ϕ is valid in the
operational structureM, in symbolsM |= ϕ, iff ‖ϕ‖JM = T for all valuations J over
this structure. Let T be the theory BON+or BON+(�N). Then we call an operational
structureM a model of T iff all axioms of T are valid inM.
Recall that � is the set of the standard natural numbers and in the following we
write N = (�, . . . ) for the standard model of Peano arithmetic PA. We may assume
without loss of generality that any modelM = (M, . . . ) of PA is an extension of N
and that � is an initial segment ofM .
Models of Peano arithmetic PA can be easily extended to operational structures.
Let {e} be an indexing of the partial recursive functions, keeping in mind that there
exists a Σ1 formula Kleene of the language of PA that defines {e}(x) � y in PA by
Kleene[e, x, y]. IfN is either the set� or the setM , theN -extension ofM is defined
to be the operational structure

[M, N ] := (M,AppM, N, {∅}, I�),
where AppM is defined to be the set

{(e, x, y) ∈M 3 :M |= Kleene[e, x, y]}
and I� is an arbitrary but fixed assignment of standard natural numbers to the
constants of L such that the axioms of BON+ are satisfied and any numeral n is
interpreted as the natural number n; this is possible by formalizing ordinary recursion
theory in PA. Hence for any modelM = (M, . . . ) of PA, the structures [M, �] and
[M,M ] are models of BON+. By the upward Σ1 persistency, we have the following.

Remark 4.2. If t is a closed term that is defined in [N, �], i.e., ‖t‖[N,�] ∈ �, then
for any modelM = (M, . . . ) of PA,

‖t‖[N,�] = ‖t‖[M,�] = ‖t‖[M,M ] .
Theorem 4.3. There exists no closed term s such that BON+proves

(∀x ∈ N)(sx = 0) ∧ ∀x (sx ∈ N → x ∈ N).

Proof. For contradiction, let s be a closed term such that BON+proves

(i) (∀x ∈ N)(sx = 0),
(ii) ∀x (sx ∈ N → x ∈ N).

Then we take any non-standard model M = (M, . . . ) of Peano arithmetic and
arbitrary n ∈M \ �. In view of (i) and (ii) we thus have
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(iii) [M,M ] |= (∀x ∈ N)(sx = 0),
(iv) [M, �] |= ∀x (sx ∈ N → x ∈ N).

From (iii) we conclude that Kleene[m, n, 0] holds in M if m is the value of s in
[M,M ] which is also the value in [M, �]. Together with (iv) we thus obtain n ∈ �,
a contradiction. �
Corollary 4.4. The operator �N is not definable in BON+.
This corollary can also be obtained by showing that another term cannot exist
in BON+, see Theorem 4.7 below. This result, or better the strategy to show it, is
interesting in its own and proceeds as follows.
Given a modelM of PA, we write N ≺1 M iff for every Σ1 formula ϕ[u] of the
language of PA with at most u free and all n ∈ �,

N |= ϕ[n̂] ⇐⇒ M |= ϕ[n̂].
Here, n̂ is the numeral in the sense of the language of PA corresponding to n ∈ �.
We use this different notation in order to avoid confusing the numerals in the sense
of BON+with those in the sense of PA. The following observation is logical folklore
and will play a central role in the proof of Theorem 4.7.
Lemma 4.5. There exists a modelM of Peano arithmetic PA with N �≺1M.
Proof. Assume that N ≺1M for all modelsM of PA, and let ϕ be a Σ1 sentence
logically equivalent to ¬Con(PA). From N �|= ϕ we thus obtain thatM |= Con(PA)
for all modelsM ofPA. ByGödel–Henkin’s completeness this yieldsPA � Con(PA),
a contradiction. �
There is a further well-known property of PA, dealing with formalized recursion
theory, that will be used in the proof of Theorem 4.7.
Lemma 4.6. Let ϕ[u, v] be a Δ0 formula of the language of PA with at most u and
v free. Then there exists a natural number eϕ such that PA proves

∀x (∃y ϕ[x, y] ↔ {êϕ}(x)
⏐�) ∧ ∀x ({êϕ}(x)⏐� → ϕ[x, {êϕ}(x)]

)
.

The proof of this lemma is by a straightforward formalization of a “search from
below” argument.
Theorem 4.7. There exists no closed term t such that BON+proves

∀f ( tf↓ ∧ (∀x ∈ N)(fx ∈ N ↔ t(f, x) = 0)). (�)

Proof. For contradiction assume that BON+ proves (�) for a closed term t. By
Lemma 4.5 take a modelM = (M, . . . ) of PA for which N �≺1M.
Now we pick an arbitrary Δ0 formula ϕ[u, v] of the language of PA with at most
u, v free and choose eϕ ∈ � according to the previous lemma such that
PA � ∀x (∃y ϕ[x, y] ↔ {êϕ}(x)

⏐�) ∧ ∀x ({êϕ}(x)⏐� → ϕ[x, {êϕ}(x)]
)
. (1)

In BON+, (�) implies t eϕ
⏐�, hence also t↓ by strictness. This implies that the value

of t in [N, �] is a natural number and that

‖t‖[N,�] = ‖t‖[M,�] = ‖t‖[M,M ]
according to Remark 4.2. From BON+ � t eϕ

⏐� we also obtain that there exists a
natural number m such that

[N, �] |= t eϕ = m and [M,M ] |= t eϕ = m.
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Since we assume the provability of (�) in BON+, this implies

[M, �] |= (∀x ∈ N)(eϕ x ∈ N ↔ m x = 0), (2)

[M,M ] |= (∀x ∈ N)(eϕ x ∈ N ↔ mx = 0). (3)

For any n ∈ � we have the following equivalences. The first ones are consequences
of (1) and the interpretation of N in [M,M ],

M |= ∃y ϕ[n̂, y] ⇐⇒ M |= {êϕ}(n̂)
⏐� ⇐⇒ [M,M ] |= eϕ n ∈ N. (4)

Because of (3) we continue with

[M,M ] |= eϕ n ∈ N ⇐⇒ [M,M ] |= m n = 0. (5)

Then the interpretation of the application in [M,M ] and [M, �] yields
[M,M ] |= m n = 0 ⇐⇒ M |= {m̂}(n̂) = 0 ⇐⇒ [M, �] |= m n = 0. (6)

Now we apply (2) and obtain

[M, �] |= m n = 0 ⇐⇒ [M, �] |= eϕ n ∈ N. (7)

By the interpretations of N and the application in [M, �] we have
[M, �] |= eϕ n ∈ N ⇐⇒ M |= {êϕ}(n̂) = k̂ for some k ∈ �. (8)

By (1) and the absoluteness of ϕ we further have

M |= {êϕ}(n̂) = k̂ =⇒ M |= ϕ
[
n̂, k̂

]
⇐⇒ N |= ϕ

[
n̂, k̂

]
for any k ∈ �. Therefore, together with (8),

[M, �] |= eϕ n ∈ N =⇒ N |= ∃y ϕ[n̂, y]. (9)

Lines (4)–(9) plus the upward Σ1 persistency thus give us

M |= ∃y ϕ[n̂, y] ⇐⇒ N |= ∃y ϕ[n̂, y]
for all n ∈ �. Since ϕ[u, v] has been an arbitrary Δ0 formula of the language of PA,
this is a contradiction to N �≺1M. �
This also shows the undefinability of �N in BON

+ since t := �fx.r2(fx), where
r2 is from Lemma 6.5 below, cannot exist in BON

+according to this theorem.

§5. �-models of BON+(�N). For the standard recursion-theoretic operational
structure [N, �] (also called Kleene’s first model) with� as universe and application
ab � c interpreted as {a}(b) � c we can easily validate the �N-axioms: Simply inter-
pret �N as the identity operation. Hence BON

+(�N) + (Tot-N) is clearly consistent,
and thus the �N-axioms are justified with respect to this standard model of BON

+,
even under the additional assumption that all individuals are natural numbers.
In order to make a point that �N is a natural operator, we also look at further
typical operational models: the canonical term model as well as two variants of
Kleene’s second model and of the graph model, respectively. In this article we
confine ourselves to some basic definitions and results. A detailed analysis of these
structures will be given in Rosebrock’s forthcoming dissertation [17].
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For the following, we call an operational structureM = (M,App,Nat,S, I ) an
�-model of BON+(�N) iff it is a model of BON

+(�N) and, in addition,

Nat = {‖n‖M : n ∈ �}.
Before turning to some particular�-models, we summarize some general properties
of �-models of BON+(�N).

Theorem 5.1. Let M = (M, ◦,Nat,S, I ) be an �-model of BON+(�N) and
S ⊆ �.
(1) If S is Σ01, there is f ∈M withM |= f ∈ Char2 such that for all m ∈ �,

m ∈ S ⇐⇒ (f ◦ ‖m‖M) ◦ ‖n‖M =
∥∥0∥∥

M
for some n ∈ �.

(2) The following are equivalent:
• There is f ∈M such that for all m ∈ �,

m ∈ S ⇐⇒ f ◦ (‖pair(m, n)‖M) =
∥∥0∥∥

M
for some n ∈ �.

• There is g ∈M such that for all m ∈ �,
m ∈ S ⇐⇒ g ◦ ‖n‖M = ‖m‖M for some n ∈ �.

Proof. For (1), let S be Σ01. There is a total recursive function α such that
S = {m ∈ � : (∃n ∈ �)(α(m, n) = 0)} and α(m, n) ∈ {0, 1} for any m, n ∈ �.
Then f := gα from Theorem 3.5 is what is required, sinceM is an �-model.
(2) follows immediately from Lemma 3.6. �
5.1. The canonical term model. We begin with the canonical term model. On the
closed terms a binary relation conv is introduced such that we have conv(r, s) if and
only if there exist closed terms t0, t1, t2 as well as different natural numbers m and
n for which one of the cases in Table 1 holds. If we have conv(r, s) then r is called a
redex and s the contractum of r.
Let ≈ be the smallest congruence relation, with respect to application, on the
collection of all closed terms that contains conv. Given any closed term r, by [r] we
mean the equivalence class of r modulo ≈.

r is of the form s is of the form
k(t0, t1) t0
s(t0, t1, t2) t0(t2, t1t2)
p0(p(t0, t1)) t0
p1(p(t0, t1)) t1
pN0 0
pN(sNn) n

dN(t0, t1, m,m) t0
dN(t0, t1, m, n) with m �= n t1
�N(t0, n) t0n

Table 1. The relation conv(r, s).
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Now we write |CT| for the collection of all equivalence classes of the closed terms
and define an application relation ·CT on |CT| by setting, for all closed terms r
and s ,

[r] ·CT [s] := [rs].
Definition 5.2. The operational term structure is the 5-tuple

CT =
(|CT| , ·CT,NatCT,Pow (

NatCT
)
, I CT

)
,

where NatCT = {[n] : n ∈ �} and I CT(r) = [r] for every constant r of L.
Essentially by exploiting the confluence property it is shown in Rosebrock [17]
that CT is a model of BON+(�N) + (Tot-Ap). We obtain also the second part of the
following theorem, where the essence of its proof is

conv(r, s) =⇒ BON+(�N) � r↓ → r = s,

but BON+(�N) � s↓ → r = s does not follow from conv(r, s) in general.

Theorem 5.3. CT is an �-model of BON+(�N) + (Tot-Ap). In addition, for all
closed terms r and s ,

r ≈ s =⇒ BON+(�N) � (r↓ ∧ s↓) → r = s.

If BON+(�N) proves t ∈ N for some closed term t, then there exists n ∈ � such
that t ≈ n. Therefore Lemma 3.4 immediately follows.
5.2. Two variants of Kleene’s second model. Kleene’s second model provides a
further interesting approach to constructing a model of a partial combinatory
algebra; see, e.g., Beeson [2, VI.7.4] and Troelstra and van Dalen [19, 9.9.2]. First
we have to introduce some notations.
In the following we will make use of the standard primitive recursive coding
machinery: 〈m0, . . . , mn−1〉 stands for the primitive recursively formed n-tuple of
the natural numbersm0, . . . ,mn−1 and ∗ is the primitive recursive concatenation of
the finite sequences, i.e.,

〈m0, . . . , mi−1〉 ∗ 〈n0, . . . , nj−1〉 = 〈m0, . . . , mi−1, n0, . . . , nj−1〉 .
If α is a function from � to � and n a natural number, then we write α�n for the
code of the initial segment of α up to n − 1, i.e.,

α�n := 〈α(0), . . . , α(n − 1)〉 .
Finally, if α and 
 are functions from � to � then α|
 is the possibly partial
function from � to � that is defined as follows:

(α|
 )(n) :=
{
α(〈n〉 ∗ 
�m)− 1 if m is minimal with α(〈n〉 ∗ 
�m) > 0,
undefined if there is no such m.

On functions from � to � we define a partial application relation by

α � 
 :=
{
α|
 if α|
 is a total function from � to �,
undefined otherwise.

Note that α|
 is Σ01 definable relative to α and 
 , and that the definedness of α� 

is a Π02 statement on α and 
 .
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In the following we denote the collection of total recursive functions by TRec.
Because of the Σ01 definability, if α, 
 ∈ TRec and α � 
 exists then α � 
 ∈ TRec.
The following lemma is easily proved byKleene’s normal form theorem. Together
with the definition of�, it characterizes the functionals on Baire space�� described
by this operation. It is not difficult to generalize it to the characterization of multi-
argument functionals.

Lemma 5.4. We have the following results about the existence of specific
functions:
(1) Any partial continuous functional on Baire space �� whose domain is a G� set
can be expressed as 
 �→ α � 
 for some total function α.

(2) For Σ01 formulae ϕ[n, 
] and �[n,m, 
] without other parameters such that,

for any 
 ∈ �� if (∀n ∈ �)ϕ[n, 
] then (∀n ∈ �)(∃m ∈ �)�[n,m, 
],
there exists α ∈ TRec such that for any total function 
 from � to �,

α � 
 is defined ⇐⇒ ϕ[n, 
] for all n ∈ �
=⇒ �[n, (α � 
)(n), 
] for all n ∈ �.

Note that (1) follows from the relativized version of (2). Thus (1) is a boldface
version of (2). While the lightface version (2) is proved in Nemoto and Sato [15,
3.23(1)] (applied to ϕ[n, 
] ∧ �[n,m, 
]), the boldface one seems more popular in
the literature; see, e.g., Rin and Walsh [16, 3.3] and Longley and Normann [11,
12.2.2]. This explains why the operations based on � are sometimes called partial
continuous, e.g., in Troelstra and van Dalen [19, 9.4.1].
Cn is written for the constant function with value n and

Const := {Cn : n ∈ �}.
In the structures below this is the interpretation of the predicate N. It is known that
the structures are models of BON+(see, e.g., Beeson [2, VI.7.4.1, 7.5.1]) and we can
easily extend them to those of BON+(�N) by using Lemma 5.4(2). The details will
be shown in Rosebrock [17].

Theorem 5.5 (Bold- and lightface Kleene’s second model). There exists an
interpretation I of the constants of L in TRec such that the operational structures

BK2 =
(
��,�,Const,Pow(Const), I )

and LK2 =
(
TRec,�,Const,Pow(Const), I )

are �-models of BON+(�N) and that ‖n‖LK2
= Cn for any n ∈ �.

Despite the popularity of the boldfaceBK2, later wewill need the following result,
which is specific to the lightface LK2.

Theorem 5.6. For every subset S of � we have the following equivalences:

(1) S is Σ01 iff there is α ∈ TRec with LK2 |= α ∈ Char2 such that for all m ∈ �,
m ∈ S ⇐⇒ (α � Cm)� Cn = C0 for some n ∈ �.

(2) S is Π02 iff there exists α ∈ TRec such that for all m ∈ �,
m ∈ S ⇐⇒ α � Cm = C0.
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(3) S is Σ03 iff there exists α ∈ TRec such that for all m ∈ �,
m ∈ S ⇐⇒ α � Cn = Cm for some n ∈ �.

Proof. (1) The “only-if” part is by Theorem 5.1(1). For the “if” part, note that
(α � Cm)� Cn = C0 iff ((α|Cm )|Cn )(0) = 0 by LK2 |= α ∈ Char2.
(2) The “if” part is obvious. Let S = {n ∈ � : (∀m ∈ �)�[m, n]} with � being
Σ01. Lemma 5.4(2) with ϕ[n, 
] ≡ �[n, 
(0)] and �[n,m, 
] ≡ m = 0 yields the
required α ∈ TRec.
(3) Theorem 5.1(2) asserts that S satisfies the latter condition iff S is a projection
of a set satisfying the latter condition of (2). Hence (2) yields the statement. �

5.3. Two variants of the graph model. The so-called graph model for the untyped
lambda calculus was discovered independently by Engeler, Plotkin, and Scott.
The universes of our variants are included in Pow(�). To define the application
relation, we let (en : n ∈ �) be a standard enumeration of finite binary sequences
where en represents the finite set {i < |en | : en(i) = 1}. Here |en | denotes the length
of the sequence en and for i < |en |, we let en(i) be its i-th component. For arbitrary
P,Q ⊆ � we then set

P ·G Q := {m ∈ � : 〈n,m〉 ∈ P and en ⊆ Q for some n ∈ �},
where en ⊆ Q means that the set represented by en is a subset of Q. Clearly, this
application is total on Pow(�) and the class Σ01 is closed under it.
The next lemma is analogous to Lemma 5.4. Now Pow(�) is equipped with the
so-called Scott topology, and must not be confused with Cantor space 2�.

Lemma 5.7. We have the following results about the existence of specific sets:

(1) Any continuous functional from the Scott domain Pow(�) to Pow(�) can be
expressed as Q �→ P ·G Q for some P ⊆ �.

(2) For any Σ01 formula �[n,Q] without other parameters in which Q occurs only
positively, there exists a Σ01 subset P of � such that, for any Q ⊆ �,

P ·G Q = {n ∈ � : �[n,Q]}.
Similarly to Lemma 5.4, (1) follows from the relativization of (2). As the Scott
continuity is equivalent to the positive Σ01 definability with set parameters, we can see
the contrast between boldface and lightface again. While the boldface version (1)
seems more popular (e.g., Barendregt [1, 18.1.8.(ii)], and Rin and Walsh [16, 3.6]),
we can prove (2) easily by the Σ01 normal form theorem in second order arithmetic
with a modification for the positiveness of the set variables.
The natural numbers are represented by the singletons of elements of �, and we
set

Sing := {{m} : m ∈ �}.
It is shown in, e.g., Beeson [2, VI.7.2.4, 7.5.2] that the following structures are
models of BON+ and we can easily extend them to those of BON+(�N) by using
Lemma 5.7(2). The details of this result will also be shown in Rosebrock [17].
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Theorem 5.8 (Bold- and lightface graph model). There exists an interpretation
I of the constants of L in Pow(�) ∩ Σ01 such that the operational structures

BG =
(
Pow(�), ·G,Sing,Pow(Sing), I )

and LG =
(
Pow(�) ∩ Σ01, ·G,Sing,Pow(Sing), I

)
are �-models of BON+(�N) + (Tot-Ap) and that ‖n‖LG = {n} for any n ∈ �.
We can also have an analogue of Theorem 5.6 as follows. Σ01∧Π01 denotes the class
consisting of intersections of Σ01 sets and Π

0
1 sets. This class must not be confused

with Δ01 = Σ
0
1 ∩Π01, the intersection of the classes Σ01 and Π01.

Theorem 5.9. For every subset S of � we have the following equivalences.

(1) S is Σ01 iff there is P ∈ Σ01 with LG |= P ∈ Char2 such that for all m ∈ �,
m ∈ S ⇐⇒ (

P ·G {m}) ·G {n} = {0} for some n ∈ �.
(2) S is Σ01∧Π01 iff there exists P ∈ Σ01 such that for all m ∈ �,

m ∈ S ⇐⇒ P ·G {m} = {0}.
(3) S is Σ02 iff there exists P ∈ Σ01 such that for all m ∈ �,

m ∈ S ⇐⇒ P ·G {n} = {m} for some n ∈ �.
Proof. (1) The “only-if” part is by Theorem 5.1(1). For the “if” part, note that(
P ·G {m}) ·G {n} = {0} iff (P ·G {m}) ·G {n} � 0 by LG |= P ∈ Char2.
(2) For the ‘if ’ part, the latter condition is equivalent to(

0 ∈ P ·G {m}) ∧ (∀k ∈ �) (k ∈ P ·G {m} → k = 0
)
.

For the converse, let S = {m ∈ � : ϕ[m] ∧ �[m]} with ϕ and � being Σ01 and Π01,
respectively. Lemma 5.7(2) yields P such that

P ·G {m} = {0 : ϕ[m]} ∪ {1 : ¬�[m]} for any m ∈ �
by �[n,Q] ≡ (∃m ∈ Q)((n = 0 ∧ ϕ[m]) ∨ (n = 1 ∧ ¬�[m])).
(3) Similar to Theorem 5.6(3), for projections of Σ01∧Π01 sets are exactly Σ02 sets. �
As the class Σ01∧Π01 is not so popular as the classes Σ0n, a short remark seems
to be justified. Since the elements are of the form R \ S with R and S being Σ01,
it is the second level of the lightface analogue of Hausdorff–Kuratowski difference
hierarchy. The corresponding boldface class is denoted by D2(Σ01) in Louveau [12,
1.1], (Σ01)2 in Nemoto [14], and would be by 2-Σ

0
1 in the notation of Kanamori [10,

Section 31] and Σ01,2 in that of Montalbán and Shore [13, 2.4]. Note however that
they consider classes of subsets of Baire space �� or Cantor space 2�, whereas
we consider classes of subsets of �. Even so, we can define a similar hierarchy by
defining Π01∨Σ01,

(
Σ01∧Π01

)∨Σ01 and so on in the obvious way. From a universal Σ01
set, we can define universal sets for these classes. This yields the strictness of the
hierarchy, similarly to the arithmetical hierarchy, as in Figure 1, where Δ

(
Σ01∧Π01

)
denotes

(
Σ01∧Π01

) ∩ (
Π01∨Σ01

)
and so on. In particular, Σ01∧Π01 is properly between

Σ01 and Δ
0
2.
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Figure 1. Semi-recursive difference hierarchy.

§6. Operational semi-decidability and the like. Section 3 explains the role of �N
for formalizing the basic parts of recursion theory within BON+(�N). According
to this, any partial recursive function is represented as a partial operator on N
and moreover the basic closure properties of the structure of all partial recursive
functions are also formalized as those of partial operators onN. Therefore we could
say that it also formalizes the structure of the partial recursive functions relative to
some class of functions. In this sense, we could consider partial operations on N as
“generalized” partial recursive functions.
Now let us go further with this paradigm, to the recursion-theoretic notions
for sets of natural numbers. It is natural in our paradigm to call U operationally
decidable iff there exists an operation f with

f ∈ Char ∧ (∀x ∈ N)(x ∈ U ↔ fx = 0).

Correspondingly, we call U operationally semi-decidable iff there is f with

(∀x ∈ N)(x ∈ U ↔ fx = 0).

So the totality requirement is dropped in the case of semi-decidability.
In ordinary recursion theory a subset of � is decidable iff the set itself and its
complement are semi-decidable. As we will see below, this is not the case in our
paradigm. Moreover, in ordinary recursion theory there are many (equivalent)
ways how semi-decidability can be defined, but operationally the situation is more
complex. The second part of the following definition lists some of the possible “stan-
dard” definitions of semi-decidability, tailored for our present context. Afterwards
we will say more about their relationships.
Since ordinary recursion theory is typically developed in a classical context, we
confine ourselves to classical arguments in the following. It would be interesting to
see what would go through in a constructive context as well.

Definition 6.1. Given any U , we use the following abbreviations to express
that U is operationally decidable, semi-decidable, a projection of an operationally
decidable set, a domain of an operation, a range of an operation or operationally
enumerable:

OD[U ] := (∃f ∈ Char)(∀x ∈ N)(x ∈ U ↔ fx = 0),

OSD[U ] := ∃f (∀x ∈ N)(x ∈ U ↔ fx = 0),

Pr[U ] := (∃f ∈ Char2)(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0)),

Dom[U ] := ∃f (∀x ∈ N)(x ∈ U ↔ fx ∈ N),

https://doi.org/10.1017/jsl.2018.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.34
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Rng[U ] := ∃f (∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(x = fy)),

OE[U ] := U = ∅ ∨ (∃f ∈ (N→ N))(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(x = fy)).

The notions OD[N\U ], OSD[N\U ], Pr[N\U ], . . . are defined accordingly.
We begin with the more or less obvious relationship between these notions.
Theorem 6.2. In BON+we can prove the following:
(1) OD[U ] → OD[N\U ],
(2) OD[U ] → Pr[U ].
Proof. We assume f ∈ Char and (∀x ∈ N)(x ∈ U ↔ fx = 0), and we set
r := �u.dN

(
1, 0, fu, 0

)
. Then r ∈ Char and, for any x ∈ N, x ∈ N\U iff rx = 0.

Hence we have (1). Furthermore, for s := �uv.fu we have s ∈ Char2 and, for any
x ∈ N, x ∈ U iff (∃y ∈ N)(s(x, y) = 0); thus we also have (2). �
Theorem 6.3. In BON+we can prove

OD[U ] ↔ (Pr[U ] ∧ Pr[N\U ]).
Proof. By the previous theorem, the direction from left to right is obvious. For
the converse, let f, g ∈ Char2 be such that
x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0) and x ∈ N\U ↔ (∃y ∈ N)(g(x, y) = 0)

for all x ∈ N. Now we define

r := �uv.dN
(
0, g(u, v), f(u, v), 0) and s := �u.f(u,min0(ru)).

Clearly, rx ∈ Char and (∃y ∈ N)(r(x, y) = 0) for all x ∈ N. Applying Theorem
2.5, we see min0(rx) ∈ N if x ∈ N. This implies s ∈ Char. Assume now x ∈ N and
sx = 0. Then f(x,min0(rx)) = 0. Thus, x ∈ U . Conversely, if x ∈ N with sx = 1,
we conclude 0 = r(x,min0(rx)) = g(x,min0(rx)) by Theorem 2.5 again. Hence,
x ∈ N\U . We have shown (∀x ∈ N)(x ∈ U ↔ sx = 0). �
Theorem 6.4. In BON+we can prove

Pr[U ] ↔ OE[U ].

Proof. The equivalence is clearly provable for U = ∅. So let us assume a ∈ U .
To show the direction from left to right we assume

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0)) (
)

for some f ∈ Char2 and set
r := �u.dN(proj0(u), a, f(proj0(u), proj1(u)), 0).

r ∈ (N→ N) is clear, and it remains to show that, for all x ∈ N,

x ∈ U ↔ (∃y ∈ N)(x = ry).

Given x ∈ U , the equivalence (
) yields f(x, y) = 0 for some y ∈ N. Hence
r(pair(x, y)) = x, and thus (∃z ∈ N)(x = rz). Conversely, if x = rz for some
z ∈ N, then x = a or x = proj0(z) ∧ f(proj0(z), proj1(z)) = 0. In both cases we
have x ∈ U .
Turning to the direction from right to left of our theorem, assume OE[U ], say
g ∈ (N→ N) with

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(x = gy)).
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Set s := �uv.dN
(
0, 1, u, gv

)
. Clearly, s ∈ Char2 and

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(s(x, y) = 0)).

But this implies Pr[U ], as we had to show. �
Lemma 6.5. There exist closed terms r1, r2, r3 such that the following:

(1) BON+ � r10 = 0 ∧ (∀x ∈ N)(x �= 0 → r1x /∈ N),
(2) BON+(�N) � ∀x (r2x = 0 ↔ x ∈ N),
(3) BON+(�N) � ∀x (r3x ∈ N ↔ x = 0).

Proof. Let ntN be the closed term introduced in Corollary 2.3. Recall that BON+

proves ntN↓ and ntN(0) /∈ N. For

r1 := �x.dN(�u.0, ntN, x, 0)0 and r2 := �x.�N(�u.0, x),

(1) and (2) are immediately proved. For (3) consider

r3 := �x.�N(r1, x).

Then x = 0 implies r3x = 0 ∈ N. Conversely r3x ∈ N yields x ∈ N. Hence
r1x = r3x ∈ N and thus x = 0. �
The existence of the two closed terms r2 and r3 according to the previous lemma is
also the core of the proof of (1) in the following theorem. As shown in Theorem 6.7,
the converse directions of (2) and (3) do not hold in BON+(�N).

Theorem 6.6. In BON+(�N) we can prove the following:

(1) OSD[U ] ↔ Dom[U ],
(2) Dom[U ] → Rng[U ],
(3) Pr[U ] → Dom[U ].

Proof. (1) is easy by r2 and r3 from Lemma 6.5.
For (2), assume Dom[U ]. Then (1) tells us OSD[U ], i.e., there exists f with

(∀x ∈ N)(x ∈ U ↔ fx = 0).

Now we make use of Lemma 3.6. Set t := �u.f(proj0u). Then obviously we have
(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(t(pair(x, y)) = 0)). By Lemma 3.6(1), there exists
g such that (∀x ∈ N)(x ∈ U ↔ (∃z ∈ N)(gz = x)), implying Rng[U ].
We turn to (3). If Pr[U ] then there exists f ∈ Char2 with

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0)).

We first observe fx ∈ (N → N) for all x ∈ N and set t := �u.min(fu). Hence
Theorem 3.2 gives us, for all x ∈ N, that tx ∈ N iff (∃y ∈ N)(f(x, y) = 0).
Consequently, U is the domain of t. �
Now we turn to some unprovability results that we directly obtain from the
complexity results in connection with our lightface models, namely Theorems 5.6
and 5.9. In what follows, given a set S of natural numbers and an operational
structureM, we write SM for {‖n‖M : n ∈ S}.
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Theorem 6.7. The following are not provable in BON+(�N) + (Tot-Ap):
(1) Dom[U ] → Pr[U ],
(2) Rng[U ] → Dom[U ].
Proof. To show the unprovability of (1), choose a universal Π01 set R of the
natural numbers. R is Σ01∧Π01 but not Σ01. In view of Theorems 5.9 and 6.6(1), the
lightface graph model LG satisfies Dom

[
RLG

]
but not Pr

[
RLG

]
.

For establishing the unprovability of (2), we pick a universal Σ02 set S of the
natural numbers. S is Σ02 but not Σ

0
1∧Π01. Then Theorem 5.9 tells us thatLG satisfies

Rng
[
SLG

]
but not Dom

[
SLG

]
. �

Theorem 5.6 also gives us similar unprovability results but on BON+(�N) or on
BON+(�N) + ¬(Tot-N) + ¬(Tot-Ap).
We summarize the results of Theorems 6.2, 6.4, 6.6, and 6.7 (together with an
obvious observation) in Figure 2, where an uncrossed arrow means the provability
of the corresponding implication in BON+(�N) while a crossed arrow represents
the unprovability in BON+(�N) + (Tot-Ap). It depicts the interdependencies of our
(semi-)decidability notions, relative to the theory BON+(�N).
Theorem 6.3 naturally leads us to be interested also in the “decidability notions”,
Pr[U ] ∧ Pr[N\U ], Dom[U ] ∧ Dom[N\U ] and Rng[U ] ∧ Rng[N\U ]. By The-
orem 5.9 with help of Figure 1, we can similarly obtain the unprovability of
the respective implications between them corresponding to Theorem 6.7, and
moreover the following unprovability of implications from the “decidabilities”
to the “semi-decidabilities” (while the others of this type, e.g.,

Pr[U ] ∧ Pr[N\U ] → Dom[U ],

are obviously provable inBON+(�N), because of, e.g., Theorem6.6(3)). In particular,
in BON+(�N) or even in BON

+(�N) + (Tot-Ap) we do not have that a relation on
the natural numbers is operationally decidable iff the relation and its complement
in the natural numbers are operationally semi-decidable.

Theorem 6.8. The following are not provable in BON+(�N) + (Tot-Ap):
(1) Dom[U ] ∧ Dom[N\U ] → Pr[U ],
(2) Rng[U ] ∧ Rng[N\U ] → Dom[U ],
(3) Rng[U ] ∧ Rng[N\U ] → Pr[U ].
How about the converses of the implications in Theorem 6.8? Trivially, they are
all false in the ordinary recursion-theoretic operational structure, i.e., the variantK1
of Kleene’s first model where the relation variables vary over Pow(�), and hence not
provable in BON+(�N) + (Tot-N). However this does not show the unprovabilities

OD[U ]

OD[N\U ]

Pr[U ]

OE[U ]

Dom[U ]

OSD[U ]

Rng[U ]

Figure 2. Summary of our main results.
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model Kleene’s first canonical term graph Kleene’s second
notion K1 CT LG LK2
Pr, OE Σ01 Σ01 Σ01 Σ01
Dom, OSD Σ01 Σ01 Σ01∧Π01 Π02
Rng Σ01 Σ01 Σ02 Σ03

Table 2. Corresponding complexities to our semi-decidability notions.

on BON+(�N)+(Tot-Ap). Theorems 5.6 and 5.9 do not show these unprovabilities,
either. For this, we need the analogous results for the canonical term model CT, as
follows.
Lemma 6.9. For any S ⊆ �, the following equivalences hold :
S is Σ01 ⇐⇒ CT |= Pr [SCT] ⇐⇒ CT |= Dom [

SCT
] ⇐⇒ CT |= Rng [SCT] .

Proof. Theorem 5.1(1) yields the first =⇒ and (3) and (2) of Theorem 6.6 yield
the second and the third. It remains to imply that S is Σ01 from CT |= Rng [SCT].
Code the closed terms by Gödel numbering. Then the relation conv is Δ00 and its
congruent closure ≈ is Σ01. Thus {m ∈ � : (∃n ∈ �)(t n ≈ m)} is Σ01. �
Theorem 6.10. The following are not provable in BON+(�N) + (Tot-Ap):
(1) Pr[U ] → Dom[U ] ∧ Dom[N\U ],
(2) Dom[U ] → Rng[U ] ∧ Rng[N\U ],
(3) Pr[U ] → Rng[U ] ∧ Rng[N\U ].
Table 2 summarizes our complexity results, namely Theorems 5.6 and 5.9 and
Lemma 6.9. It characterizes the subsets S of � for which SM satisfies the semi-
decidability notions in our four �-modelsM of BON+(�N).
The complexity results yield further interesting consequences. First, Σ01∧Π01 is
not closed under projections nor under binary unions (for otherwise

(
Σ01∧Π01

)∨Σ01
would be included in Σ01∧Π01). Therefore, for example,BON+(�N)+(Tot-Ap) cannot
prove the closure of OSD under binary unions, formalized as

(∀x ∈ N)(x ∈W ↔ x ∈ U ∨ x ∈ V ) ∧ OSD[U ] ∧ OSD[V ] → OSD[W ].

Second, since Π02 is known to lack the reduction property (see, e.g., Hinman
[7, III.1.10(ii)]), BON+(�N) cannot prove the operational form of the reduc-
tion property for OSD. (Also, since Σ01 does not have the separation property,
BON+(�N) + (Tot-Ap) cannot prove that of the separation property for OSD.)
These results suggest that, despite its simple definition, the notion OSD as we
defined is not a right operational formalization of semi-decidability, since it does
not satisfy the basic properties which we expect from the word “semi-decidable”.
We conclude this article with some open questions.
Question 6.11. It might be interesting to ask
• if BON+(�N) proves the operational form of the reduction property of Rng;
• how to characterize a many-one degree Γ for which there is an �-model M of
BON+(�N) such that S ∈ Γ iffM |= OSD [

SM
]
for any S ⊆ �;

• if BON+(�N) + (Tot-N) can prove the implications in Theorems 6.7 and 6.8.
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