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A laboratory study of baroclinic waves and
turbulence in an internally heated rotating fluid

annulus with sloping endwalls
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Department of Physics, Sub-Department of Atmospheric, Oceanic and Planetary Physics,

Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK

(Received 2 February 1996 and in revised form 30 December 1996)

New laboratory experiments have been performed in a rotating fluid annulus, subject
to internal heating and sidewall cooling, in which a radial depth gradient has been
created by the inclusion of oppositely sloping boundaries. Endwall configurations that
cause the fluid depth (D) to increase with radius (∂D/∂r > 0) and to decrease with
radius (∂D/∂r < 0) have been studied, as the former is applicable to the terrestrial
atmosphere and oceans, while the latter may be relevant to deep atmospheres such
as those of the giant planets.

Even with the steepest boundary slopes, isolated or periodic chains of stable
coherent eddies are observed with both endwall configurations, and these regular eddy
modes are seen to drift relative to the walls of the convection chamber concordant
with simple Rossby wave ideas. When the boundary slope (δ) is small, no difference
is observed in the range of azimuthal wavenumbers seen in the regular wave regimes
of the two endwall configurations. At larger values of δ, however, this symmetry
is lost, since regular modes m = 2 to 8 are observed with ∂D/∂r > 0 endwalls,
while only a large vertically trapped anticyclonic gyre is seen with ∂D/∂r < 0
endwalls. The other effects of the radial depth gradient are the observed reduction
in both the lateral and vertical scale of the eddy features, and the formation of
two independent trains of eddies within the gap width at sufficiently high rotation
rates in the ∂D/∂r > 0 endwall experiments. The zonal mean flow is also found
to develop a significant barotropic component, superimposed on the vertically and
horizontally sheared zonal jets generated by the non-monotonic thermal gradient of
the experiment. This barotropic component is predominantly prograde (retrograde)
in the ∂D/∂r > 0 (∂D/∂r < 0) endwall experiments, and confined close to the outer
(inner) wall where the fluid depth is greatest.

There is evidence of the formation of increased numbers of zonal jets in the
∂D/∂r > 0 endwall experiments above that expected from the form of the thermal
forcing. These multiple zonal jets are highly localized in the vertical, and are trapped
close to the top boundary. Their radial scale is, nevertheless, close to that given by
the Rhines argument. No comparable increase in the radial wavenumber of the mean
flow is observed in the ∂D/∂r < 0 endwall experiments in the present system.

1. Introduction
In this paper we report new experiments on free thermal convection in an internally

heated rotating fluid annulus (Hide & Mason 1970; Quon 1977; Ukaji 1979; Read
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1986b; Tamaki & Ukaji 1986; Read, Lewis & Hide 1997 (hereafter referred to
as RLH)), where a radial depth gradient has been created by the inclusion of
oppositely sloping endwalls. In a barotropic fluid, this endwall arrangement can be
shown (Veronis 1963) to be completely equivalent to the β-effect (the variation in
Coriolis parameter with latitude), and hence introduce a dispersive component to
the flow. This direct equivalence is lost in a baroclinic fluid, since introducing β
into the quasi-geostrophic potential vorticity equation, for example, directly alters
the eigenfunctions, while sloping endwalls enter only into the boundary conditions.
Nevertheless, oppositely sloping lids and bases are the simplest endwall configuration
that can be used in the laboratory to simulate the azimuthal wave propagation and
dispersive effects produced by β. However, other important properties such as the
meridional and vertical wave propagation characteristics cannot be reproduced with
these boundary conditions. Sloping boundaries that cause the fluid depth to increase
with radius (∂D/∂r > 0) and to decrease with radius (∂D/∂r < 0) have both been
studied. The former arrangement is applicable to a shallow layer of fluid on a sphere,
for example the terrestrial atmosphere and oceans, where the depth of fluid columns
parallel to the planetary axis of rotation increases with decreasing latitude. Conversely,
the second endwall configuration may be relevant to the deep fluid envelopes of the
giant planets, where the lack of a large solid lower boundary causes the depth of
fluid columns parallel to the rotation axis to decrease with increasing distance from
the latter (Busse 1976; Ingersoll & Pollard 1982; Ingersoll & Miller 1986).

Hide & Mason (1970) have shown from simple thermal arguments that if heat is
removed equally from both sidewalls in an internally heated, rotating fluid annulus
with horizontal endwalls (f-plane), the flow near the top surface will consist of closed
re-circulating anticyclonic eddies. These stable eddy features are centred close to
mid-radius and in the shear zone which exists between the two opposing zonal jets
created by the horizontal non-monotonic thermal gradient of the experiment. The
geophysical motivation for the study of these internally heated and sidewall-cooled
flows comes from the suggestion (Read & Hide 1983, 1984; Read 1986a; Hide, Lewis
& Read 1994) that there may be a dynamical similarity between the predominantly
baroclinic eddies of this experiment and the major long-lived oval eddies seen in the
atmospheres of Jupiter, Saturn and Neptune. The linear perturbation theory of Hide
(1969) suggests, however, that the introduction of steep oppositely sloping endwalls
should radically alter the structure of the laboratory eddies by causing each individual
wave component to propagate with a phase speed which is dependent on its radial and
azimuthal wavenumber. If stable eddies are seen with oppositely sloping boundaries,
then a detailed comparison of their horizontal and vertical structure with that of the
internally heated f-plane flows described by RLH will not only illustrate how the
presence of a radial depth gradient modifies the flow structure in this experiment,
but may also provide further clues to understanding the dynamics and stability of
atmospheric flows.

Previous experimental studies on the effect of oppositely sloping endwalls on
baroclinic instability have concentrated on the wall-heated rotating fluid annulus
(Mason 1975), where the lateral temperature gradient is provided by the differential
heating of the sidewalls. At low rotation rates Mason observed stable regular wave
modes with azimuthal wavenumbers between m = 1 and 6, with m being dependent
on the endwall slope and the sign of the impressed lateral temperature gradient. As
the rotation rate was increased, however, he observed that the radial scale of the
waves decreased to less than that of the gap width, so that ultimately two separate
wave trains formed at the inner and outer cylinders. In the present set of experiments,
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we will investigate whether the radial scale of the internally heated and sidewall
cooled flows is affected in a similar manner, and if there is any quantitative difference
between the radial confinement produced by the two opposite senses of endwall
slope.

The horizontal non-monotonic thermal gradient produced by internal heating and
sidewall cooling in these experiments is expected to generate two opposing zonal
jets at each horizontal measurement level in the fluid. In the corresponding f-plane
experiments of RLH, these opposing zonal jets are seen to be centred close to the top
and bottom boundaries, and reverse sign about the level of no mean motion which
approximately coincides with mid-depth. The introduction of a radial depth gradient
might be expected to alter this basic background mean flow structure, perhaps by
blocking the spectral evolution of the barotropic component of the flow (Rhines 1975,
1979). Briefly, Rhines argues that a geostrophically turbulent fluid which possesses
a stable density stratification can convert potential energy from its vertically sheared
baroclinic modes to kinetic energy in the form of depth-independent barotropic modes.
The evolution of the latter may then be approximated to that of two-dimensional
turbulence. In the presence of β, the inverse energy cascade of freely evolving two-
dimensional turbulence (characterized by the total eddy wavenumber K , and the
r.m.s. particle velocity U) is blocked when the average wave steepness, 2UK2/β,
declines below unity, or when the growing eddies can radiate their accumulating
energy through Rossby wave propagation. Since the turbulent cascade associates
smaller wavenumbers with smaller frequencies and the Rossby wave regime associates
smaller wavenumbers with larger frequencies, the Rhines scale Lβ = π(2U/β)1/2 may
be expected to be the dominant scale within the flow. The anisotropy of the Rossby
wave dispersion relationship allows a further limited transfer of energy to smaller
frequencies if the lateral scale of the eddies shrinks while their zonal scale increases. If
the initial energy spectrum is evenly distributed in spectral space, Rhines argues that
the end state for this cascade is the formation of alternating easterly and westerly
zonal jets of lateral scale Lβ . It is clearly of interest to investigate whether the
basic background zonal mean flow structure is altered by the inclusion of oppositely
sloping endwalls, and whether there is evidence for the blocking of the inverse
energy cascade at the Rhines scale in the present system with its complicated thermal
structure.

The outline of this paper is therefore as follows. A brief description of the
experimental configuration is given in §2, while §3 explains how the velocity data
obtained from the system has been analysed to produce the various diagnostics used
in this study. Section 4 discusses the results obtained from the experiment, and is
split into two parts. The first, §§4.1–4.3, investigates whether stable eddy structures
are observed with oppositely sloping endwalls, and if there is any difference between
the flows seen with the two senses of endwall slope. The horizontal and vertical
structure of these flows are then described in detail and compared with those seen
in the f-plane experiments of RLH in order to identify how the introduction of a
radial depth gradient modifies the flow regimes. The angular phase velocities of the
stable eddy modes observed in these experiments are then calculated and compared
with those of barotropic Rossby waves. The second part of this section, §§4.4–4.6,
investigates how the zonal mean flow profiles are altered by the different endwall
arrangements, and examines whether the observed increase in the radial wavenumber
of the zonal mean flow can be linked to the Rhines effect. Finally, §5 summarizes and
discusses the main results of this study and suggests further experiments which could
extend this work.
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Figure 1. Schematic cross-section of the cylindrical annulus used in the experiments with endwalls
that cause the fluid depth to increase with radius (∂D/∂r > 0).

2. Experimental details
The experiment consisted of two vertical co-axial thermally conducting copper-

coated brass cylinders of radii 41 and 102 mm respectively shown in figure 1. The
cylinders were mounted on a solid non-conducting horizontal base so that there was
a uniform annular gap of 61 mm between them. This annular region was filled with a
water/glycerol working solution of a sufficient density to allow the fluid to be seeded
with neutrally buoyant polystyrene beads (600 µm diameter), which acted as tracers
for flow visualization and velocity measurement. The convection chamber was centred
on a level turntable, and was rotated by a servo-controlled permanent-magnet d.c.
motor, giving rotation rates between 0.01 and 4.5 rad s−1.

The thermal forcing in these experiments was provided by the passing of an a.c.
electric current through the body of the fluid (cf. Hide & Mason 1970), to which trace
amounts of an inorganic copper salt (CuCl2) had been added. This caused the fluid to
act as an electrolyte, with the inner and outer cylinders being the electrodes. Adjacent
to both cylinders were water baths through which water at a carefully controlled
temperature (typically ± 0.02 K) was passed. By maintaining both sidewalls at the
same temperature (∼ 20 ◦C), the heat generated in the convection chamber was
removed simultaneously at both sidewalls. The impressed temperature contrast in the
convection chamber was then determined by the power input, which was calculated
from measurements of the r.m.s. voltage (up to 300 V) and current applied to the
sidewalls, the physical geometry of the system, and the thermal properties of the
working fluid. All runs were performed by maintaining a constant power input
(approximately 100 W) and spinning up the apparatus from rest to the required
rotation rate Ω for each run. The rotation rate was systematically increased in steps
of 0.05 rad s−1 which is the effective ‘resolution’ of these experiments.

Flow visualization was achieved by making the outer cylinder (and its water
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Radius of inner and outer cylinders a,b 41, 102 mm
Angular velocity Ω 0–4.5 rad s−1

Power input P̄0 95–105 W
Coef. cubic expansion α 3.10–3.16 ×10−4 K−1

Kinematic viscosity of fluid ν 1.30–1.52 ×10−2 cm2 s−1

Thermal diffusivity κ 1.30–1.32 ×10−3 cm2 s−1

Specific heat capacity of fluid Cp 3.84–3.85 J g−1 K−1

Mean density of fluid ρ̄ 1.047–1.049 g cm−3

Depth of fluid at mid-radius D 13.8 (35◦), 15.8 (12◦) cm

Height of measurement levels z/D 0.72, 0.44, 0.16 (35◦)

Table 1. General experimental dimensions, and working fluid parameters.

bath) in four separate sections, with a 5 mm transparent acrylic insert between each
part. Horizontal flow velocity fields were obtained using the particle tracking system
described by Hignett et al . (1985). Under computer control the convection chamber
was illuminated cyclically at one of three measurement levels in the vertical with
flat horizontal sheets of light. The light scattered from the polystyrene beads was
collected by a monochrome closed-circuit TV camera mounted approximately 1.5 m
above the geometric centre of the convection chamber. Each image was then digitized
and sent to a PDP 11/34 minicomputer where the motions of individual particles
between frames allowed the determination of their trajectories over a time interval of
approximately 3.6 s. A scan of each measurement level typically produced a horizontal
velocity field with 200–500 randomly distributed velocity vectors.

The fluid was in contact with rigid non-conducting radially sloping top and bottom
boundaries, whose slopes were either 12◦ or 35◦ to the horizontal. The lids were made
of clear Perspex so the light scattered from tracer particles in the flow could be seen
by the camera mounted directly overhead. The top surfaces of these lids were also
shaped to provide additional optical correction. The lids and bases sloped so that
there was either an increase in fluid depth with radius (∂D/∂r > 0), or there was a
decrease in fluid depth with radius (∂D/∂r < 0). Four different endwall configurations
were investigated (with the magnitude of the endwall slope being the same for the
top and bottom boundaries), namely 12◦ ∂D/∂r > 0, 12◦ ∂D/∂r < 0, 35◦ ∂D/∂r > 0
and 35◦ ∂D/∂r < 0. In the rest of the paper these different experimental sets will be
referred to as the +12◦, −12◦, +35◦ and −35◦ experiments. A barotropic β-term for
each run in these experiments may be obtained from consideration of the potential
vorticity equation for an incompressible inviscid two-dimensional fluid layer, and has
the form

β = ±4Ω tan (δ)

D
, (2.1)

where D is the mean fluid depth at mid-radius. Values of D for each experimental
configuration are given in table 1.

3. Velocity data analysis
The ‘raw’ velocity data of the experiment were reconstructed on an evenly spaced

annular grid by fitting a truncated set of orthogonal basis functions (by the method
of least-squares) to the radial and azimuthal velocity components. The fitted function
consisted of the product of a discrete set of sixteen Fourier modes in the azimuthal
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direction (m = 0, 15), and a series of six ‘cylindrical sine’ functions in the radial
direction (l = 1, 6). It has the form

(u, v) =

(
b

r

)1/2
(

15∑
m=0

6∑
l=1

a
(u,v)
m,l sin(lπx) cos(mθ) + b

(u,v)
m,l sin(lπx) sin(mθ)

)
, (3.1)

where θ is the azimuthal angle, and x is the scaled radius, x = (r − a)/(b− a). The
regression coefficients am,l , bm,l were calculated for both the radial (u) and azimuthal
(v) velocity components by minimizing the square of the difference of the above
function from the raw velocity data (Jackson & Hignett 1984; Bell 1984; Bell &
Jackson 1985). The m = 0 azimuthal mode represents the zonal mean flow, while the
fifteen remaining azimuthal wavenumbers represent the ‘eddy’ components.

3.1. Eddy spectral energy density

A one-dimensional spectral energy density plot of the radial (shown here) and az-
imuthal eddy kinetic energy against total dimensional wavenumber

κ =

[(
2m

b+ a

)2

+

(
πl

b− a

)2
]1/2

, (3.2)

can be obtained directly from the 90 (15 by 6) individual eddy kinetic energy
components

1

2

∫ b

a

| u (m, l) |2 rdr∫ b

a

rdr

=
b

4 (b+ a)

15∑
m=0

6∑
l=1

(
a2
m,l + b2

m,l

)
, (3.3)

derived from the least-squares-fitted regression coefficients of equation (3.1). The
eddy spectral energy E(κ) dκ is then calculated by summing those eddy kinetic energy
components which fall within a small interval in κ, dκ (0.5 cm−1), which is moved
in steps (0.1 cm−1) from κmin = 0.534 cm−1 (m , l = 1, 1) to κmax = 3.735 cm−1

(m , l = 15, 6). The spectral energy density E(κ) is then obtained by dividing by the
width of the interval dκ, and is then averaged over a number of scans to produce
time-averaged spectra. Although the range in total wavenumber space is probably
not sufficient to resolve fully the inertial ranges suggested by the statistical theories of
geostrophic turbulence (Charney 1971), enough modes are fitted to the data to allow
the determination of the scales of maximum eddy kinetic energy. Comparison of this
scale with the Rhines scale may then provide insight into whether the inverse energy
cascade of the barotropic components of the flow is blocked at Lβ .

3.2. Velocity streamfunctions

Horizontal streamfunction and velocity potentials can be determined from the Fourier
components fitted to the raw velocity data of the experiment following the method
of Read (1990). Furthermore, since most flows encountered in thermally forced
rotating fluid experiments are in approximate quasi-geostrophic (QG) balance (Hide
& Mason 1975), the streamfunction is roughly equivalent to the horizontal pressure
field, thereby enabling QG potential vorticity fields to be derived from it.

The method works by representing the two-dimensional velocity fields as a linear
superposition of a non-divergent rotational velocity component Vψ and an irrotational
divergent component Vχ (Batchelor 1967). Scalar streamfunction (ψ) and velocity
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potential fields (χ) may be defined for Vψ and Vχ, so that Vψ = k× ∇ψ and Vχ = ∇χ,
where k is the unit vector perpendicular to the annular plane. Consideration of the
form of the azimuthal (u) and radial (v) basis functions (3.1) fitted to the velocity
data requires that two Poisson equations must be solved simultaneously to find ψ
and χ. In cylindrical polar coordinates (with the application of the non-slip boundary
conditions ψ = 0 at one sidewall, ∂ψ/∂r = 0 at the other, and ∂χ/∂r = 0 at both
sidewalls), the two Poisson equations are

∇2
hψ =

1

r

∂ (rv)

∂r
− 1

r

∂u

∂θ
, (3.4)

and

∇2
hχ =

1

r

∂ (ru)

∂r
+

1

r

∂v

∂θ
. (3.5)

Solutions for ψ and χ are obtained from the horizontal vorticity (∇2
hψ) and the

divergence (∇2
hχ) fields in the form of four ordinary differential equations (for each

azimuthal wavenumber), which can be solved by the ‘shooting method’.
In the interior of rotating flows where the Rossby and Ekman numbers tend to be

small, the approximate conservation of the QG potential vorticity Π places a powerful
constraint on the time evolution of the flow, and can therefore be used as a flow
tracer. To derive Π a uniform mean N2 profile in the vertical is assumed (derived from
temperature measurements at the top and bottom boundaries), and data are collected
from three sequential measurement levels which are scanned as close together in time
as possible. The presence of strong gradients in the flow, however, tends to produce
errors of up to 20% in the amplitude of the field (Read 1990).

4. Experimental results
4.1. Overview of flow regimes

The main flow regimes exhibited in these oppositely sloping endwall experiments
are broadly similar to those found in the internally heated f-plane studies (Hide &
Mason 1970; RLH), depending strongly on the impressed temperature contrast and
the rotation rate Ω. As Ω is systematically increased there is a transition from purely
axisymmetric flow, through a regular wave regime consisting of a numbers of stable
eddy features, to fully irregular and disordered flow, which may be close to a state of
‘geostrophic turbulence’ (Hide & Mason 1975; Buzyna, Pfeffer & Kung 1984). These
distinct flows may be ordered with respect to values of the dimensionless parameters:
the Burger (S) and Taylor (τ) numbers. Specifically the Burger number is defined as
the squared ratio of the Rossby deformation radius Lr to the annular gap width

S =

(
Lr

b− a

)2

=
gα∆TzD

4Ω2 (b− a)2
, (4.1)

where ∆Tz is a measure of the vertical temperature scale set up by the internal
heating, and the other parameters are as indicated in table 1. The Taylor number is
defined as

τ =
4Ω2 (b− a)5

ν2D
, (4.2)

following Hide & Mason (1975). The vertical temperature scale and the other
parameters were calculated from temperature measurements of the fluid, through a
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 2. A representative sample of the range of flows at the upper measurement level (z/D =
0.72) obtained with +35◦ (a–c), f-plane (d–f ) and −35◦ (g–i ) endwall configurations. Fields shown
are total horizontal streamfunction maps corresponding to the following conditions: (a) m = 2
(S = 0.902, τ = 1.48 × 106); (b) m = 5 (S = 0.152, τ = 1.11 × 107); (c) double eddy train (S = 0.013,
τ = 1.96 × 108); (d) m = 3 (S = 0.400, τ = 3.41 × 106); (e) m = 4/5 wavenumber vacillation
(S = 0.014, τ = 2.68 × 107); (f) irregular (S = 3.61 × 10−3, τ = 7.58 × 107); (g) m = 1 (S = 0.233,
τ = 6.40 × 106); (h) irregular (S = 0.091, τ = 1.76 × 107); (i) irregular (S = 0.015, τ = 1.97 × 108).
Contour intervals are 2 (c, f, i) and 5 mm2 s−1.

series of 15 copper–constantan thermocouples placed flush with the surfaces of the
inner and outer cylinders, and the top and bottom boundaries.

Figure 2 shows a set of total horizontal streamfunction maps, obtained at the
upper level of the experiment (z/D = 0.72), which represent the range of flows
obtained with +35◦ (a–c), f-plane (d–f ) and −35◦ (g–i ) endwall configurations. These
streamfunction maps represent regular (a, b, d, g), wavenumber vacillation (e), double
eddy train (c) and irregular (f, h, i) flows. The regular wave regimes of the +35◦ and
+12◦ experiments comprised single-wavenumber steady flows in the range m = 2 to
8 and m = 3 to 7. These regular eddy modes were observed to drift fairly quickly in
an easterly, or clockwise, sense relative to the walls of the apparatus. Two examples
of regular eddy flows seen in the +35◦ experiment are shown in figure 2. The m
= 2 mode (a), observed just inside the upper symmetric transition, consists of two
small cyclones centred close to the inner cylinder and two anticyclones compressed
near to the outer cylinder. As Ω is increased the wavenumber and structure of
the regular eddy features change so that for the m = 5 mode (b) the anticyclonic
eddies are now seen to fill the annular gap, while the cyclonic eddies have a slightly
smaller radial scale, and are centred about mid-radius. Further increases in the Taylor
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number caused the flow to become more disordered, with the eddies reducing their
radial scale and becoming progressively more radially confined so that they no longer
filled the gap width. At sufficiently high Taylor numbers, τ > 6.5 × 107 (+35◦) and
τ > 1.0× 108 (+12◦), the radial confinement became so strong that two independent
trains of eddies, with apparently different phase speeds, were seen to form in the
annular gap. This double eddy train was most evident at the upper measurement
level of the experiment (c). The eddy train close to the outer cylinder was observed
to consist mainly of cyclonic eddies, while that at the inner cylinder was dominated
by anticyclones, this arrangement being consistent with the shear of the background
flow at the different radii.

The range of regular modes found in the −12◦ experiment was similar to that
seen with +12◦, that is m = 3 to m = 7. However, the regular regime of the −35◦

set was found to consist solely of a single isolated anticyclonic eddy, which was
only clearly visible at the upper level (g). It was found to drift very rapidly in a
westerly sense relative to the apparatus, and was only observed over a small range
in Taylor number 2.77 × 106 6 τ 6 1.23 × 107 (0.62 > S > 0.12). Moving to larger
values of Taylor number, this gyre was seen immediately to break up directly into
disordered flow at τ > 1.35 × 107 (S < 0.12), with no evidence for the existence of
stable higher-wavenumber regular states (h). Further increases in Ω produced only
more disorder in the flow, with the scale of the eddy features becoming progressively
smaller (i).

Comparison of these oppositely sloping boundary flows with those of the f-plane
experiment (d–f ) not only illustrates the difference in the horizontal structure of the
eddies in the different regular wave regimes, but also the effective reduction in the
radial scale of the eddies produced in the ∂D/∂r > 0 endwall experiments at high
Taylor numbers (c). In the latter there is clear evidence for the organization of the
flow, with radial confinement of the eddy features to different ‘latitudinal bands’,
which is not seen in the f-plane example (f). This organization of the flow may be
attributable to vortex partitioning, in which the various eddy components migrate to
the radii corresponding to their respective absolute vorticity (Kuo 1950, 1951, 1953).

Figure 3 shows a schematic regime diagram of the non-axisymmetric flows seen
in both the f-plane and oppositely sloping boundary experiments as a function of
endwall slope and Taylor number. Each symbol represents a single run, and hence
shows the effective ‘resolution’ in Taylor number space of the experiments. Apart
from the −35◦ set, the range in azimuthal wavenumber of regular modes is greater
in the oppositely sloping boundary experiments than in the corresponding f-plane
experiments, where only the regular modes m = 3 to 5 are observed. In the oppositely
sloping boundary experiments there is the occasional example of two stable modes
with different azimuthal wavenumber existing in the same region of parameter space.
This overlap in dominant wavenumber is, however, smaller than that seen in the
f-plane experiments, where the multiplicity of equilibrium states is found to increase
with Taylor number (RLH). These hysteresis effects are, nevertheless, much less
pronounced than in conventional wall-heated annulus flows, where no well-defined
lower boundary in Θ (the stability parameter corresponding to S) is found to exist
(see e.g. Hignett et al . 1985).

The axisymmetric flow regimes of the four oppositely sloping endwall configurations
were observed to exist over the approximate range in Taylor number τ 6 5.36 × 105

(S > 2.44) for +35◦, τ 6 1.79 × 106 (S > 0.44) for +12◦, τ 6 1.93 × 106 (S >
0.64) for −12◦ and τ 6 2.3 × 106 (S > 0.73) for −35◦. The leftmost symbol for
each endwall configuration in figure 3 suggests that there is a trend in the onset of
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Figure 3. Schematic regime diagrams of the non-axisymmetric flows seen in the ∂D/∂r > 0 (a),
f-plane (b), and ∂D/∂r < 0 (c) endwall experiments as a function of Taylor number. Regular
(irregular) flow with the indicated azimuthal wavenumber m is denoted by open (closed) circles.
The approximate onset of a double eddy train in the +12◦ and +35◦ experimental sets is indicated
by the vertical dot-dashed lines.
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instability in these experiments with ∂D/∂r < 0 (∂D/∂r > 0) endwalls stabilizing (de-
stabilizing) the wave regime. This is of interest since the linear perturbation theory of
Hide (1969) cannot distinguish between these different endwall configurations, which
both produce a stabilization of the wave regime (Mason 1975). The linear theory
assumes isotherms with constant slope, which is clearly not the case with the complex
non-monotonic thermal gradient of these experiments.

4.2. Eddy horizontal and vertical structures

As is clear from figures 2 and 3, isolated or periodic chains of eddies are a feature
of all the oppositely sloping boundary configurations studied, even those with the
steepest endwall slopes. The detailed structure of the eddies seen in the internally
heated and sidewall cooled f-plane experiments have been extensively investigated
in both numerical simulations (Read 1985) and laboratory measurements (RLH).
Briefly, these internally heated f-plane eddies were found to have an equivalent-
barotropic structure close to the ‘thermal equator’ (where ∂T/∂r ≈ 0), while being
highly baroclinic on either side of it, with a phase slope that depended on the sign of
∂T/∂r in the azimuthally averaged mean flow. Apart from the weak waves confined
towards the top boundary seen close to the upper symmetric transition, the radial and
zonal amplitude of the fully developed waves in the f-plane experiment was found
not to vary substantially with depth, being only slightly larger at the lower levels in
the fluid. In the previous section it is apparent from the horizontal streamfunction
maps that one of the principal effects of the radial depth gradient is to modify the
lateral scale of the eddy features seen in the current experiment. Since such effects
are not seen in the f-plane experiments, it is possible that the vertical structure of the
regular modes seen in the present system may also depart from that found for the
f-plane eddies, and this constitutes the subject we investigate in the present section.

Figures 4 and 5 show horizontal eddy streamfunction maps at the upper (z/D =
0.72) and lower (z/D = 0.16) levels in the experiment corresponding to the examples
of +35◦ and −35◦ flow shown in figure 2. In the +35◦ m = 2 mode (figure 4a, d), the
eddy features have approximately equal strength at both levels, with the anticyclonic
features tilting anticlockwise with height and the cyclones tilting clockwise with
height (once the anticlockwise drift of the eddies between consecutive scans has been
removed). As Ω is increased, however, the regular eddy features become stronger at
the lower level, as is illustrated by the m = 5 mode (figure 4b, e). Further increases
in Taylor number cause the radial scale of the eddy features to diminish so that
ultimately two independent trains of eddies form in the gap width. The eddy field
of such a flow is still surprisingly regular (figure 4c, f) with an alternating pattern
of radially confined cyclones and anticyclones, which have approximately the same
radial scale at both levels, whilst also being centred close to the outer cylinder. Once
again the eddy features are slightly stronger at the lower level. This apparent vertical
trapping of the eddies seen in the +35◦ experiments towards the lower levels of the
fluid is further illustrated in figure 6, which shows (r, z) cross-sections of the eddy

radial velocity amplitude
(
| u2 |

)1/2
for the regular m = 5 mode (a) and double eddy

train flow (b) discussed above. In both cases the eddy radial velocity amplitude
becomes larger as the bottom boundary is approached (although there is a maximum
at mid-depth close to the inner cylinder in the double eddy train flow), while the
radial confinement of the eddies close to the outer cylinder in the double eddy train
flow (figure 4c, f) is also evident.

The boundary towards which the regular eddy modes become localized is reversed
in the ∂D/∂r < 0 experiments. This is illustrated in figure 5 where horizontal eddy
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(a) (b) (c)

(d ) (e) ( f )

Figure 4. Eddy horizontal streamfunction maps at the upper (z/D = 0.72) (a–c) and lower

(z/D = 0.16) (d–f ) measurement levels for the +35◦ endwall configuration. Maps correspond to the
m = 2, 5 and double eddy train flows shown in figure 2. The lower-level streamfunction maps for
the two regular modes have been ‘phase corrected’ so that they are in the same time frame as the
upper-level maps. Contour intervals are 2 (c, f) and 5 mm2 s−1.

streamfunction maps at upper and lower levels are shown for an example of a
regular −35◦ m = 1 mode. The m = 1 mode is clearly much stronger at the upper
measurement level. This anticyclonic eddy was, in fact, only visible at the upper
level in the experiment, suggesting that it was vertically trapped quite close to the top
boundary. The vertical trapping of this mode is further illustrated in figure 6(c), where
the radial velocity amplitude of azimuthal wavenumber m = 1 is centred close to
mid-radius and at the upper level. The other maxima seen close to the inner cylinder
at the lower level may indicate the position of the accompanying cyclone visible in
the eddy streamfunction maps (figure 5d). At the highest Taylor numbers, however,
the eddy streamfunction plots show that the irregular eddies are now strongest at
the lower level, and are centred close to the inner cylinder (figure 5f). This radial
confinement is also evident in figure 6(d) where the dominant azimuthal wavenumber
m = 6 is compressed close to the inner cylinder.

It is therefore evident that the variation in fluid depth with radius has a pronounced
effect on both the horizontal and vertical structure of the eddies produced with internal
heating and sidewall cooling. The reduction in the radial scale of the waves observed
by Mason (1975) at high rotation rates and steep endwall slopes in his wall-heated
experiments is also reproduced in the current study with the formation of the double
eddy train at high Taylor numbers in the ∂D/∂r > 0 endwall experiments. Although
a reduction in the radial scale of eddies is also seen in the −35◦ experiments, it is
less dramatic than in the +35◦ set, and a possible reason for this is outlined later.
At the highest Ω the two senses of endwall slope are also seen to confine the eddies
close to the outer cylinder with ∂D/∂r > 0 endwalls, and close to the inner cylinder
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(a) (b) (c)

(d ) (e) ( f )

Figure 5. Eddy horizontal streamfunction maps at the upper (a–c) and lower (d–f ) measurement
levels for the −35◦ endwall configuration. Maps correspond to the m = 1 and two irregular flows
seen in figure 2. The lower-level streamfunction map for the regular m = 1 mode has been ‘phase
corrected’ so that it is in the same time frame as the upper-level map. Contour intervals are
2 mm2 s−1.

(a) (b) (c) (d )

m = 6m =1m =12m = 5

Figure 6. Contour maps in the meridional-height (r, z)-plane of the azimuthally averaged mean

radial velocity amplitude
(
| u2 |

)1/2
for the indicated dominant azimuthal wavenumbers in the +35◦

(a, b) and −35◦ (c, d) experiments. Maps shown correspond to the regular m = 5 (a), double eddy
train (b), regular m = 1 (c) and high-Taylor-number irregular flows seen in figure 2. The contour
intervals are 0.025 (c) and 0.05 mm s−1.
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(a) (b) (c)

Figure 7. Total horizontal streamfunction (a) and total QG potential vorticity (b) maps obtained
at mid-level for the m = 5 mode of figure 2. Also shown is the upper-level total velocity potential
(c) map for the m = 2 mode of figure 2. Contour intervals are 5 mm2 s−1 (a), 0.3 s−1 (b) and
1 mm2 s−1 (c).

with ∂D/∂r < 0 endwalls. This radial confinement appears to be related to the radial
variation in the fluid depth, with the eddies being confined close to where the depth
of the fluid is largest (see figure 6b, d).

The addition of oppositely sloping endwalls does not, however, radically alter
the vortex character of the eddy features produced by internal heating and sidewall
cooling. This is illustrated in figure 7 which shows maps of the total horizontal
streamfunction (a) and QG potential vorticity (b) at the mid-level (z/D = 0.44) for
the m = 5 regular mode of figures 2 and 4. The closed ‘pools’ of potential vorticity
indicate that fluid may be trapped for extended periods within these baroclinic eddies,
as demonstrated by the dye-tracer experiments of RLH. In the regular wave regime of
all but the −35◦ experiments, the eddy features still appear to have an approximately
equivalent-barotropic structure at their centre once the drift of the eddies between
scans of each level is removed. Unlike the f-plane regular modes, however, their
amplitude varies considerably with height, with the eddy features produced with
∂D/∂r < 0 (∂D/∂r > 0) endwalls being stronger towards the top (bottom) boundary.
As is argued later, this vertical trapping may be a consequence of the structure of the
azimuthally averaged zonal mean flow generated by the two endwall configurations
and its respective strength at each different level in the fluid.

Finally, there also appears to be a significant divergent component in these flows.
This is illustrated in figure 7(c) where the upper-level horizontal velocity potential
map for the +35◦ m = 2 mode discussed above is displayed. This velocity potential
map, which is derived following the method of Read (1990), effectively shows the
magnitude of the divergent, and hence ageostrophic, component of the flow. It can be
seen that the magnitude of the velocity potential represents between approximately
30% and 50% of its streamfunction field at this level. As discussed below, this large
divergent component has implications for the numerical modelling of these internally
heated flows, indicating as it does why neither linear nor QG theory will be able to
reproduce the considerable asymmetry between the regular wave regimes generated
in the steep ∂D/∂r > 0 and ∂D/∂r < 0 endwall experiments.

4.3. Eddy phase velocities

The radial variation in fluid depth introduces a considerable dispersive component to
the flow, causing the eddy features to drift relative to the walls of the apparatus. In
order to identify essentially nonlinear effects within the fluid, Mason (1975) compared
the drift rates of the regular waves seen in his wall-heated system with theoretical
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Figure 8. Measured angular phase velocity cm versus barotropic β averaged over the three
measurement levels of the experiment for ±12◦ (a) and +35◦ (b) regular flows. The azimuthal
wavenumber of the flow is denoted as follows: m = 2 (closed square), m = 3 (plus), m = 4
(asterisk), m = 5 (diamond), m = 6 (triangle), m = 7 (open square) and m = 8 (cross).

drift rates for both barotropic Rossby waves and those obtained from the linear
perturbation theory of Hide (1969). He found that the measured drift rates were
between 40% and 80% of the theoretical values. Within the linear perturbation
theory, the phase speeds of the waves are dependent on, amongst other factors, the
ratio of the endwall slope to that of the isotherms. It is not practical with the present
experimental setup to measure the internal temperature structure of the fluid, thus
precluding detailed comparison with this theory. It is possible, however, to see how
the phase speeds of the regular modes of the current experiment compare with those
of barotropic Rossby waves, and this is undertaken below.

In both +12◦ and +35◦ experiments, the eddies were observed to drift in an
‘easterly’ or clockwise sense relative to the walls of the apparatus, while those of the
−12◦ and −35◦ experiments drifted in a ‘westerly’ sense ahead of the rotation of the
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system. The smaller-wavenumber eddies (especially the m = 1 mode of the −35◦ set)
were seen to drift faster than the higher-wavenumber modes, which is in qualitative
agreement with the barotropic Rossby wave dispersion relation

cb = − β(
2m/(b+ a)

)2
+
(
πl/(b− a)

)2
, (4.3)

which associates large phase speeds with smaller wavenumbers. Figure 8 shows the
measured eddy phase velocity cm averaged over the three levels of the experiment as
a function of barotropic β for ±12◦ (a) and +35◦ (b) endwall configurations. The
phase velocity of a mode is defined as ωd/m , where the measured drift frequency ωd
is obtained from the Fourier components of the radial velocity fields fitted to the flow
(cf. Hignett et al . 1985). In only the +12◦ experiment is there any apparent pattern
in the phase velocities, which form small almost straight ‘bands’ for each different
wavenumber. These bands do not intersect with the origin (as barotropic β tends to
zero), however, as might be expected from the above dispersion relation. This pattern
is less distinct in the +35◦ experiment where the magnitude of the phase velocity is
fairly constant around 2–3 × 10−2 rad s−1 for all wavenumbers. The phase velocities
of the −35◦ m = 1 mode were more difficult to measure from the fitted Fourier
components due to their small amplitude and vertically trapped nature.

Table 2 shows the ratio of the measured eddy phase velocity cm to that of barotropic
Rossby waves cb (with unity indicating agreement between observation and the
above dispersion relation), calculated for the observed azimuthal wavenumber m
and first radial mode structure (l = 1). In all but the −12◦ experiments, the best
agreement between the measured phase velocity and the above dispersion relation is
obtained for the low azimuthal wavenumber flows. As the Taylor number (and hence
azimuthal wavenumber) increases, however, the ratio cm/cb decreases to values close
to approximately 0.35. One possible explanation for this may be that the effective
‘β term’ experienced by these flows is smaller than that given by the calculated
barotropic β of equation (2.1). In addition, Mason (1975) notes that processes that
would be expected to cause the waves to drift relative to the apparatus can be split
up into those which produce a net zonal mean flow (such as the curvature of the
apparatus, sloping geopotentials and variations of the physical properties of the fluid
with temperature), and those which make the waves propagate relative to the zonal
mean flow. In the f-plane experiments, it is primarily the former which causes the
small drift in the eddies relative to the walls of the annulus (typically around 1–2 ×
10−3 rad s−1), effectively Doppler-shifting each wave component by an equal amount.
As the endwall slope becomes steeper, however, it appears that the latter effect
becomes more significant in determining the phase speed of the eddies. Nevertheless,
the values for cm/cb obtained in this study are remarkably close to those obtained by
Mason.

4.4. Zonal mean flow structure

The change in sign of the laterally imposed temperature gradient, created by the
internal heating and sidewall cooling, is expected to give rise to two opposing zonal
jets in ‘thermal wind balance’ centred close to the top and bottom boundaries (Hide
& Mason 1970; Read 1986a). In the f-plane experiment (RLH) the symmetry of
the horizontal endwalls causes these zonal jets to be approximately anti-symmetric
about mid-depth, while the zonally averaged horizontal temperature gradient changes
sign across the lateral domain indicating the existence of a ‘thermal equator’ near
mid-radius. The introduction of a radial depth gradient might be expected to alter
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+35◦ +12◦ −12◦

τ × 107 m cm/cb τ × 107 m cm/cb τ × 107 m cm/cb

0.13 2 0.81 0.20 3 0.75 0.46 3 0.15
1.11 5 0.63 1.75 5 0.31 1.87 5 0.33
7.39 8 0.46 4.39 7 0.36 5.59 7 0.35

Table 2. Comparison of the ratio of the observed phase velocity cm to the theoretical phase velocity
of barotropic Rossby waves cb for a range of regular modes seen with +35◦ and ±12◦ endwall
configurations. Unity indicates agreement between observation and the barotropic Rossby wave
dispersion relation (4.3).

this background mean flow structure, perhaps through the blocking of the inverse
energy cascade of the barotropic components of the flow (Rhines 1975, 1979). In
the following section we shall therefore investigate whether the complex mean flow
structure of this experiment is modified by the presence of a radial depth gradient,
and if any increase in the observed number of zonal jets can be linked to the Rhines
effect.

Figure 9 shows several examples of (r, z) cross-sections of the time-averaged zonal
mean flow v in the axisymmetric (a, d), regular (b, e), and high Taylor number (c, f)
flow regimes of both 35◦ endwall configurations. The zonal mean flow in the +35◦

experiments is dominated by a strong prograde jet which extends over the full range
of the fluid depth measured, thus removing the approximate antisymmetry of v
about mid-depth seen in the f-plane experiments. The axisymmetric flow is entirely
prograde and has a strong barotropic component superimposed on the vertically
sheared current, with the retrograde jet at the lower level being only just visible close
to the inner cylinder. As Ω increases this prograde jet becomes radially confined
close to the outer cylinder, with retrograde flow appearing towards the inner cylinder.
While at the lower levels there are only the two opposing zonal jets expected from
the background thermal forcing, at the upper level there is evidence for an increase
in the radial wavenumber of the zonal mean flow, with three, and perhaps even four,
zonal jets being observed. The prograde jet adjacent to the inner cylinder is initially
localized close to the top boundary (b), but as Ω increases this jet extends deeper into
the body of the fluid, so that at the highest Taylor numbers three distinct opposing
zonal jets are seen above mid-level (c). A similar increase in the radial wavenumber of
the zonal mean flow at the upper level is also seen in the +12◦ experiments, although
the prograde jet centred close to the inner (outer) cylinder does not extend as close
to mid-level (upper level) as in the steeper endwall set. Furthermore, these additional
zonal jets are observed over a much smaller range of Taylor number space than in
the steeper endwall arrangement.

This evolution of the zonal mean flow from a single prograde barotropic jet in
the axisymmetric regime to multiple zonal jets in the double eddy train regime may
be linked to the apparent migration of the thermal equator from the inner to the
outer cylinder as Ω is increased. In fact, this process proceeds so far that a second
thermal equator appears close to the inner cylinder in the double eddy train regime.
Comparison of the total horizontal streamfunction map of figure 2(c) with figure
9(c) shows that each eddy train is centred on a different thermal equator, with the
sense of circulation of the eddies given by the horizontal shear of the background
flow. This is remarkably different from the f-plane experiment, in which only a single
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(a) (b) (c)

(d ) (e) ( f )

Figure 9. Contour maps in the meridional-height (r, z)-plane of the azimuthally-averaged zonal
mean flow for +35◦ (a–c) and −35◦ (d–f ) endwall configurations. Maps shown correspond to the
following flow regimes: (a) axisymmetric (S = 1.89, τ = 6.99 × 105); (b) regular (S = 0.152, τ =
1.11 × 107); (c) double eddy train (S = 0.013, τ = 1.96 × 108); (d) axisymmetric (S = 1.98, τ = 7.03
× 105); (e) regular (S = 0.233, τ = 6.40 × 106); (f) irregular (S = 0.015, τ = 1.97 × 108). Positive
contours indicate prograde flow. The contour interval is 0.15 mm s−1.

thermal equator, centred close to the geometric centre of the channel, is observed at
the highest Taylor numbers.

In contrast, the zonal mean flow in the −35◦ experiments is dominated by the
retrograde jets, which almost entirely fill the gap width above mid-depth. The
prograde jet close to the outer cylinder is considerably weaker than in the +35◦

arrangement, extending only up to mid-depth. The prograde jet at the upper level is
only seen close to the inner cylinder at the highest Taylor numbers. No increase in
the mean flow radial wavenumber (above the two expected from geostrophy) can be
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detected in the mean flow cross-sections of either the −12◦ or −35◦ arrangements.
Although the thermal equator is once again centred towards the outer cylinder at high
Taylor numbers, no additional thermal equator forms closer to the inner cylinder as
occurs in the +35◦ experiments.

It is therefore evident that the introduction of oppositely sloping endwalls causes the
zonal mean flow to develop a significant barotropic component that is superimposed
on the background vertically and horizontally sheared double jet structure generated
by the non-monotonic thermal gradient of the experiment. This barotropic component
is predominantly prograde (retrograde) in the ∂D/∂r > 0 (∂D/∂r < 0) experiments,
and is increasingly confined close to the outer (inner) cylinder where the fluid depth
is greatest. Furthermore, this ‘barotropization’ of the flow becomes more pronounced
as the amplitude of the top and bottom boundary slope is increased.

4.5. Eddy kinetic energy spectra

If the formation of the additional zonal jets seen at high Taylor numbers in the
∂D/∂r > 0 endwall experiments results from the blocking of the inverse energy
cascade of the barotropic eddy component of the flow due to the presence of the
radial depth gradient, then the Lβ scale is expected to dominate the flow and to be
coincident with scale of maximum eddy kinetic energy. This can be determined by
plotting the time-averaged eddy spectral energy density E (κ) (§3.1) as a function of
the dimensional total wavenumber κ, and investigating whether there is a peak, or

change of gradient, in E (κ) close to the κβ =
(
β/2vr.m.s.

)1/2
scale. To reflect the fact

that the Rhines argument relates to the barotropic component of the flow, κβ has
been calculated from a zonal velocity scale obtained from the vertically averaged
m = 0 components of the azimuthal Fourier series fitted to the zonal mean flow. This
barotropic zonal velocity scale has the form

vr.m.s. =
1

3

{∫ b

a

(v1 + v2 + v3)
2 dr/

∫ b

a

dr

}1/2

, (4.4)

where v1, v2 and v3 are the azimuthally averaged zonal velocity scales obtained at
the upper, middle and lower measurement levels of the experiment. The barotropic
β-term is given by (2.1).

Figure 10 shows plots of E (κ) at upper and lower levels for the +35◦ double eddy
train flow (a, b) and the −35◦ high Taylor number irregular flow (c, d) discussed above.
In the former, there appears to be a clear correspondence between κβ and the scale
of maximum eddy kinetic energy κM , which indicates that this is the scale at which
the eddy kinetic energy is being blocked. The similarity in the scale of κM at both
the upper and lower levels is also reflected in the corresponding eddy streamfunction
plots of figures 4(c) and 4(f) where there appears to be little difference in the size
of the eddies at the two levels. The κβ scale is also found to be close to κM at high
Taylor numbers in both 12◦ endwall arrangements.

A different situation is seen in the −35◦ example, where the eddy kinetic energy
has clearly penetrated κβ at both levels. This is reminiscent of the work of Shepherd
(1987), who found that the disturbance field of barotropic β-plane turbulence could
penetrate the Rhines radius in the presence of a strong zonal shear flow. He also
observed that, at the largest scales, the eddies developed meridional rather than the
zonal anisotropy suggested by Rhines. It is not obvious from the eddy streamfunction
plots (figure 5c, f) whether these high-Taylor-number eddies are indeed developing
meridional rather than zonal anisotropy, but they do appear to be larger than those
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Figure 10. Eddy spectral energy density E (κ) versus total dimensional wavenumber κ (multiplied
by 2 for plotting purposes) at upper (a, c) and lower (b, d) measurement levels for the +35◦ double
eddy train flow (a, b) and −35◦ high Taylor number irregular flow shown in figure 2. The position
of the κβ scale is indicated by the vertical dot-dashed line.

observed in the double eddy train flows at approximately the same Burger number
(figure 4c, f).

A second important length scale in this problem is the Rossby deformation radius
Lr , which is the scale where the barotropic component of the flow is ‘stirred’ by
baroclinic instability. For the two high-Taylor-number flows discussed here, Lr
(obtained from their respective Burger numbers) has approximate values of 0.7 cm
and 0.75 cm. In the total wavenumber space of figure 11, these values correspond
to κ = 9.0 and 8.4 cm−1, and are close to the smallest scales that can be resolved
in the current system. It is therefore not clear whether Lr does play a direct
role in determining the scale of these jets, or if indeed, as required by the Rhines
argument, there is the large inertial range separating Lr and Lβ for the inverse energy
cascade.

In figures 10(a), 10(b) and 10(d) there appears to be little evidence for the existence
of an inertial range with a slope close to κ−5/3 which might correspond to an inverse
energy cascade. At higher wavenumbers than κβ , the spectral slope is, in fact, much
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steeper than κ−5/3, being greater than or approximately equal to the κ−3 which
characterizes an enstrophy cascade in the classical theory of geostrophic turbulence
(Charney 1971). There does, however, seem to be a range in the radial component of
E (κ) at the upper level for the −35◦ example (figure 10c) which has a slope close to
κ−5/3. Nevertheless, this range clearly extends beyond κβ indicating that the energy
component is not blocked by the Rhines effect. Such a situation is not only interesting
for the reasons outlined above, but also because this is the level at which the single
isolated vertically trapped −35◦ m = 1 mode was observed. Figure 10(c) may thus be
further reflecting the observation that with a large negative radial depth gradient the
eddy kinetic energy is apparently trapped close to the largest scales in the flow, and
this trapping may be a consequence of an inverse energy cascade to the larger scales
of motion which is not blocked by the Rhines effect.

4.6. Multiple zonal jets and the Rhines scale

Given that the eddy kinetic energy appears to be blocked close to the κβ scale at high
Taylor numbers in all but the −35◦ experiments, it is of interest to determine whether
the Rhines scale can be used to predict quantitatively the number of zonal jets seen in
each endwall configuration. This is investigated in figure 11, which shows values for
Nj = (b− a)/Lβ , effectively the number of zonal jets expected from the barotropic
theory, against Taylor number for both 35◦ endwall configurations. The Rhines scale
has been calculated using the barotropic zonal velocity scale vr.m.s. described above.
To reduce random errors in vr.m.s (and hence Nj) five sets of scans were analysed for
each measurement of vr.m.s. and the results combined to yield a mean and standard
deviation. Formal uncertainties in Nj are in the range 1–10% (typically 5%).

In the +35◦ experiments Nj reaches values close to 4 at the highest Taylor numbers,
which is in good quantitative agreement with the three to four zonal jets actually
observed at the upper/middle level with this endwall arrangement. This correspon-
dence between Nj and the radial wavenumber of the mean flow is not, however,
reproduced at either the lower level of the +35◦ set, or at any of the three levels in
the −35◦ experiments, where only the two strong zonal jets generated by the thermal
forcing are evident in the (r , z ) profiles of v (figure 9). A similar situation is seen
in the 12◦ endwall experiments, with Nj reaching values of approximately 3 at the
highest Taylor numbers, which is in reasonable agreement with the number of zonal
jets detected at the upper level of the +12◦ experiments. At lower levels, and in the
−12◦ set, Nj once again overestimates the number of zonal jets observed in the flow,
although not to the same extent as in the 35◦ endwall experiments. Thus, it appears
that the Rhines scale can approximately predict the radial wavenumber of the mean
flow in the ∂D/∂r > 0 endwall experiments, but only in regions where the background
thermally forced zonal jets are weak.

In summary, while there is evidence for the existence of multiple zonal jets in these
baroclinic ∂D/∂r > 0 endwall experiments, it still remains uncertain what role, if
any, the barotropic arguments of §1 have in their formation. As noted previously,
the introduction of steep oppositely sloping boundaries causes the zonal mean flow
to develop a significant barotropic component to which the Rhines argument should
apply. Consideration of figure 11 shows that at the highest Taylor numbers there is
not a great difference in the values of Nj for the two endwall configurations (4.2 to 4.7
for 35◦ experiments and 3.1 to 3.2 for the 12◦ experiments (not shown)). This suggests
that in terms of the barotropic theory at least, there should only be a small difference
in the number of zonal jets seen in each experiment, and it is just the presence of
the strong thermally forced zonal jets which effectively mask the relatively weaker
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Figure 11. The number of zonal jets expected from the barotropic theory Nj versus Taylor
number for the ±35◦ experiments.

zonal jets produced by barotropic β-plane turbulence. This appears to be the case
in the ∂D/∂r > 0 endwall experiments, since figure 10 shows that the eddy kinetic
energy is blocked close to the Rhines scale at both the upper and lower levels at
high Taylor number in the +35◦ experiments. However, while the values of Nj are in
good agreement with the number of zonal jets seen at upper levels in the ∂D/∂r > 0
endwall experiments, it does not explain why the eddy kinetic energy appears to have
penetrated the Rhines scale at the highest Taylor numbers in the −35◦ experiments.
If we appeal to the ideas of Shepherd (1987) then the eddy kinetic energy should also
penetrate the Rhines scale at the two lower levels in the +35◦ experiments, where the
mean flow is as large as it is in the −35◦ set. Clearly, this is highlighting a difference
in the effect the two opposite senses of boundary slope have on the flow structure
when the endwall slope is large. This disparity cannot be explained purely in terms
of simple barotropic ideas, or indeed QG theory, but may find expression in the
primitive equations of the system.

5. Discussion
In this study we have extended the work of Read & Hide (1983, 1984) and RLH

by investigating how a radial depth gradient modifies the flow regimes seen in a
fluid system heated internally and cooled at the side boundaries. Stable, regular
eddy features are seen with both ∂D/∂r > 0 (fluid depth increasing with radius) and
∂D/∂r < 0 (fluid depth decreasing with radius) boundary configurations, even those
with the largest values of endwall slope. These regular modes still comprise a series
of closed compact oval anti-cyclonic eddies (at the upper level), as in the f-plane
experiment, but which now have a large net drift relative to the walls of the apparatus.
Values for the drift rates of these regular modes are between 30% and 80% of those
given by the barotropic Rossby wave dispersion relation (4.3). A role for nonlinear
interactions in suppressing the dispersion of the constituent wave components of these
eddy structures is suggested by the closed contours of QG potential vorticity, which
also indicates that fluid may be trapped for extended periods within these baroclinic
‘vortices’ (Lewis 1992; Read 1993; RLH).

Within the linear perturbation theory of Hide (1969), there should be no quanti-
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tative difference between the regular wave regimes produced by a positive/negative
radial depth gradient. This is essentially what is observed when the endwall slope
is small, as the regular wave regime of the ±12◦ experiments are seen to consist of
regular modes m = 3 to 7. At larger values of endwall slope this symmetry is lost,
however, with regular modes m = 2 to 8 being observed in the +35◦ experiments,
but only the single m = 1 mode in the −35◦ set. Such differences clearly cannot be
explained purely in terms of linear perturbation theory, nor even QG theory, due to
the presence of the significant divergent component of these flows.

While the introduction of a radial depth gradient does not preclude the existence
of stable, regular eddy modes, oppositely sloping endwalls are found to modify both
the horizontal and vertical structure of the eddy features seen in this experiment. As
Ω increases, the radial scale of the eddy features is seen to decrease to values less
than that of the gap width. This is similar to the findings of Mason (1975) who also
observed a reduction in the radial scale of baroclinic waves at high rotation rates and
steep endwall slopes in his wall-heated system. The reduction in the radial extent of
these internally heated eddy features is most pronounced in the ∂D/∂r > 0 endwall
experiments, where two independent trains of eddies are seen to form in the lateral
domain at the highest Taylor numbers. This double eddy train is most clearly seen at
the upper level of the experiment, although there appears to be very little qualitative
difference in the structure of the eddy circulations at the different levels, suggesting
that the strong mean flow existing at the lower levels may be masking these weaker
features. Conversely, although the radial extent of the eddies is less than half that of
the gap width at the highest Taylor numbers in the −35◦ experiments, a double eddy
train is not evident at any of the three levels. Once again this may be partly due to
the relative strength of the mean flow at each level, but also to the structure of the
eddies seen in the −35◦ experiments, which appear to be both stronger and adopt a
larger radial scale than their +35◦ counterparts.

A further effect of steep oppositely sloping boundaries, not noted by Mason, is
the reduction in the vertical as well as the radial scale of the eddies. The regular
modes of these internally heated experiments appear to be vertically trapped close
to the lower (upper) level in the ∂D/∂r > 0 (∂D/∂r < 0) endwall experiments.
Careful examination of the (r, z) profiles of the azimuthally-averaged zonal mean
flow show that the magnitude of v is also largest towards the lower (upper) level in
the regular wave regime of the +35◦ (−35◦) experiments. Global energy budgets for
examples of internally heated regular f-plane eddy flows show that their kinetic energy
is maintained against viscous and thermal diffusion predominantly by baroclinic
conversions from the potential energy of the mean flow, but also partly through
barotropic conversions arising from the strong lateral shear of the zonal mean flow
(Hide et al. 1994; RLH). There is no reason to suppose that introducing oppositely
sloping endwalls will radically alter these basic energetics, so it is perhaps to be
expected that the eddy features will also be strongest in the regions where v is greatest.
This is most clearly demonstrated in figures 6 and 9 where the correspondence between
the vertical structure of the zonal mean flow (9e, 9f) and the apparent vertical trapping
of the −35◦ regular m = 1 (6c) and irregular m = 6 (6d) modes close to the top
and bottom boundaries is striking. These figures further reflect the experimental
observation that while the regular m = 1 mode of the −35◦ experiments was localized
close to the upper level, the high-Taylor-number irregular flows were strongest at the
lower level. It is interesting to note that vertical trapping is also a feature of the
Charney model of baroclinic instability, and Green’s (1960) β-plane extension to the
Eady model. Green found that the minimum in the perturbation pressure amplitude
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(close to the steering level where U ∼ c) moved from mid-depth when β = 0 (the
Eady problem) to near the bottom boundary when β > 0.

In the f-plane experiment the distribution of internal heating and sidewall cooling
gives rise to a mean flow structure which consists of two opposing zonal jets at each
measurement level. The inclusion of oppositely sloping endwalls has been seen to alter
radically this situation, with the formation of between one and two additional zonal
jets at the upper level in both the +12◦ and +35◦ experimental sets. These additional
zonal jets are highly localized in the vertical and only penetrate to mid-depth at the
largest Taylor numbers. The radial scale of these multiple zonal jets is in reasonable
quantitative agreement with the Rhines scale Lβ . At lower levels, the mean flow is
very much stronger and retains the double jet structure expected from the thermal
forcing. This increase in the number of zonal jets in regions where the background
mean flow is weak, but which are not seen when the thermally forced mean flow
is stronger, has parallels with the work of Shepherd (1987) who investigated how
forced homogeneous barotropic β-plane turbulence was altered in the presence of
a large-scale barotropically stable zonal flow. He found that as the flow evolved,
the disturbance enstrophy was transferred along lines of constant zonal wavenumber
through shear-induced nonlinear interactions with the mean flow, with the result that
the disturbance field penetrated the Rhines scale and developed meridional rather
than the expected zonal anisotropy. It is not possible with the limited spectral
resolution of the data in the present experiment to develop the sophisticated spectral
diagnostics required to verify whether these spectral transfers are indeed occurring.
In the −35◦ experiments, however, there is evidence that the eddy kinetic energy has
penetrated beyond the Rhines scale in the presence of the strong mean flow at the
largest Taylor numbers. This is not reproduced in the +35◦ experiments (or the 12◦

experiments) where, even at the lower levels in the presence of strong thermally forced
jets, the maximum in the eddy kinetic energy is approximately coincident with the
Rhines scale.

It is thus evident that while we have observed evidence for the formation of
multiple zonal jets in a baroclinic fluid, the identification of the processes which give
rise to them is complicated by the complex structure of the background mean flow
generated by the thermal forcing of this experiment. The structure of this background
mean flow also makes direct comparison with numerical models used to investigate
baroclinic turbulence (e.g. Panetta 1993) difficult. Therefore, a system with a simpler
mean flow structure closer to that of the numerical models would be desirable to
investigate further this important problem. Such a laboratory model is provided by
the modification of the present system through the removal of the inner cylinder
and its replacement by a thin wire, thereby simulating a polar β-plane (cf. Hide &
Mason 1970). Since heat can only be extracted from the outer cylinder in this new
experiment, the mean flow is expected to consist of a single jet (retrograde at the
upper level, prograde at the lower) at each level. Work on this new open cylinder
experiment is currently being undertaken and will be reported elsewhere.

However, the present experiment does, nevertheless, provide an important message
for further numerical studies of rotating fluid systems. Within the simple linear
instability theory and the fully nonlinear QG theory, the sign of β may be changed
with little effect on the resulting flow structure. These experiments clearly demonstrate
that this is not the case when the magnitude of the endwall slope becomes large,
as endwalls which create a large positive radial depth gradient produce dramatically
different flows to those seen with a large negative radial depth gradient. These
differences cannot be due purely to nonlinear effects, but must in part be caused by
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deviations from quasi-geostrophy in the interior of the fluid and at the boundaries.
Therefore, while there may be a qualitative similarity between the f-plane steady wave
features produced in QG models and those found in full Navier–Stokes simulations
(Read 1985; Lewis 1992), QG theory will never be able to represent all aspects of
these oppositely sloping boundary laboratory flows, since it is not able to account for
ageostrophic advection by the significant divergent component of these flows.

It is a pleasure to thank Dr Steve Lewis for many useful discussions during the
course of this work. The help received from Mr Mike Buckler in setting up the
apparatus is also greatly appreciated. Funding for M.E.B. was provided by the UK
Meteorological Office.
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