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Finite-amplitude manifestations of stratified shear flow instabilities and their spatio-
temporal coherent structures are believed to play an important role in turbulent
geophysical flows. Such shear flows commonly have layers separated by sharp
density interfaces, and are therefore susceptible to the so-called Holmboe instability,
and its finite-amplitude manifestation, the Holmboe wave. In this paper, we describe
and elucidate the origin of an apparently previously unreported long-lived coherent
structure in a sustained stratified shear flow generated in the laboratory by exchange
flow through an inclined square duct connecting two reservoirs filled with fluids of
different densities. Using a novel measurement technique allowing for time-resolved,
near-instantaneous measurements of the three-component velocity and density fields
simultaneously over a three-dimensional volume, we describe the three-dimensional
geometry and spatio-temporal dynamics of this structure. We identify it as a
finite-amplitude, nonlinear, asymmetric confined Holmboe wave (CHW), and highlight
the importance of its spanwise (lateral) confinement by the duct boundaries. We
pay particular attention to the spanwise vorticity, which exhibits a travelling,
near-periodic structure of sheared, distorted, prolate spheroids with a wide ‘body’ and
a narrower ‘head’. Using temporal linear stability analysis on the two-dimensional
streamwise-averaged experimental flow, we solve for three-dimensional perturbations
having two-dimensional, cross-sectionally confined eigenfunctions and a streamwise
normal mode. We show that the dispersion relation and the three-dimensional spatial
structure of the fastest-growing confined Holmboe instability are in good agreement
with those of the observed confined Holmboe wave. We also compare those results
with a classical linear analysis of two-dimensional perturbations (i.e. with no spanwise
dependence) on a one-dimensional base flow. We conclude that the lateral confinement
is an important ingredient of the confined Holmboe instability, which gives rise to
the CHW, with implications for many inherently confined geophysical flows such as
in valleys, estuaries, straits or deep ocean trenches. Our results suggest that the CHW
is an example of an experimentally observed, inherently nonlinear, robust, long-lived
coherent structure which has developed from a linear instability. We conjecture that
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Confined Holmboe waves 509

the CHW is a promising candidate for a class of exact coherent states underpinning
the dynamics of more disordered, yet continually forced stratified shear flows.

Key words: instability, stratified flows, stratified turbulence

1. Introduction
The onset of instabilities triggering the transition to turbulence and consequent

irreversible mixing in stratified shear flows is a fundamental problem in fluid
mechanics, and was first recognised as such by Osborne Reynolds who observed
instabilities on an interface between two immiscible fluids. In his classic paper,
usually cited for his pipe flow experiments, Reynolds (1883) established a shear
flow in a two-layer fluid by tilting a closed tube. He noted it was ‘a very pretty
experiment’ which showed that ‘there is a critical velocity. . . at which direct motion
becomes unstable’ and that ‘the instability. . . did not depend on the magnitude of the
disturbances’. The first application of linear stability theory to stratified shear flows
was described by G. I. Taylor in his Adams Prize essay of 1915 entitled ‘Turbulent
motion in fluids’. Though Taylor published his stability predictions ‘without waiting
for experimental results’ (Taylor 1931), the influential and beautiful ‘tilting tank’
experiments by Thorpe (1971) demonstrated that the development and turbulent break
down of classical linear instabilities of stratified shear flows can be observed and
measured in the laboratory.

Since the pioneering work of Woods (1968), observational evidence has also
accumulated that finite-amplitude manifestations of stratified shear flow instabilities
occur frequently in the oceans and atmosphere (see e.g. van Haren et al. 2014,
Mahrt 2014). The mixing induced by the turbulence following these instabilities is
thought to play a key role in diapycnal transport (see Ivey, Winters & Koseff 2008
for a review). Since turbulent mixing occurs on small scales relative to the current
resolution of general circulation and climate models, the development of subgrid-scale
parameterisations to model diapycnal mixing remains essential. However, there is
still uncertainty concerning the causal relationship between bulk flow properties,
spatio-temporally intermittent turbulence and irreversible mixing.

A promising avenue of research to address this uncertainty is to analyse stratified
turbulence in a dynamical systems framework, focusing on spatio-temporal structures
rather than statistics. Within this approach, an interesting hypothesis is that the
dynamics of turbulence can be described as an, in general complicated, trajectory
in phase space that spends significant periods in the vicinity of a set of unstable
nonlinear exact solutions of the Navier–Stokes equations called ‘exact coherent states’
(see e.g. Gibson, Halcrow & Cvitanović 2008). In certain circumstances, these exact
coherent states can be traced back, generically through a sequence of bifurcations,
to linear instabilities (Lucas, Caulfield & Kerswell 2017). They can also provide
useful insights into the properties of the turbulent attractor, for example by allowing
for reduced-order modelling of key quantities such as energy dissipation (Lucas &
Kerswell 2015) and irreversible mixing in stratified flows (Lucas & Caulfield 2017).
It is, however, proving extremely challenging to identify such exact coherent states in
numerical simulations of flows prone to vigorous turbulence. This issue is particularly
significant in stratified flows relevant to the ocean due to the large values of the
Prandtl number Pr ≡ ν/κ ≈ 7 and Schmidt number Sc ≡ ν/κs ≈ 700, where ν is the
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510 A. Lefauve and others

kinematic viscosity, κ is the thermal diffusivity and κs is the salt diffusivity. The
tendency of those flows to develop well-mixed layers separated by sharp density
gradients (at least intermittently; see Salehipour, Caulfield & Peltier 2016), makes
their direct numerical simulation beyond current computational capabilities. Therefore,
laboratory experiments have an important role to play in guiding theoretical and
numerical work towards the identification of dynamically important exact coherent
states, under the hypothesis that they leave a distinctive signature in experimental
turbulent flow, as observable, inherently nonlinear, yet relatively long-lived coherent
structures.

In this paper, we describe an apparently previously unidentified coherent structure
in a sustained laboratory stratified shear flow. The stratified inclined duct experiment,
described by Meyer & Linden (2014), generates a two-layer stratified exchange flow
in an inclined duct connecting two reservoirs containing fluids of different densities.
As discussed in more detail by Meyer & Linden (2014), variations in the density
difference and/or inclination angle (a few degrees at most) lead to four qualitatively
different observed flow states:

(i) laminar flow, characterised by a thin, flat density interface;
(ii) a largely coherent, but non-parallel flow state characterised by robust, propagating,

quasi-periodic waves on the interface;
(iii) spatio-temporally intermittent turbulence with small-scale structures and mixing;
(iv) fully developed turbulence with significant small-scale structures and a thick

mixed interfacial density layer.

Here we focus on the coherent wave state (ii), which Meyer & Linden (2014)
described as the ‘Holmboe regime’, since the waves observed using a shadowgraph
were very similar in appearance to the finite-amplitude manifestation of the instability
predicted by Holmboe (1962), observed experimentally by Thorpe (1968) in tilting
tank experiments, and numerically simulated (in two-dimensional flows) first by
Smyth, Klaassen & Peltier (1988). As we shall see, the coherent structure that we
observe has close connections to the finite-amplitude waves arising from the traditional
(two-dimensional) Holmboe instability, but exhibits three-dimensionality and spanwise
confinement within our experimental duct. Therefore, we refer to this structure as
a ‘confined Holmboe wave’ (CHW). The aim of this paper is to characterise this
structure, and to understand how it originates, in the specific sense of identifying
and understanding the underlying physical mechanisms that lead to the observed
behaviour.

We characterise the three-dimensional structure of the CHW using a novel
technique allowing time-resolved near-instantaneous measurements of all three velocity
components and density field over a three-dimensional volume. We demonstrate
that many aspects of the observed CHW are consistent with the predictions of a
linear normal mode stability analysis of the experimentally measured, quasi-steady
background flow which develops within the duct. We call this instability the ‘confined
Holmboe instability’ (CHI). Note that, in the rest of the paper, we aim to distinguish
in general between

(i) an infinitesimally small perturbation that is linearly unstable, which we typically
refer to as an instability;

(ii) a finite-amplitude, nonlinear wave, which we typically refer to as a wave.

To address our above-mentioned aim of characterising and identifying the physical
mechanisms at the origin of the CHW observed in the stratified inclined duct,
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the remainder of this paper is organised as follows. In § 2 we review relevant
previous work, particularly on the traditional, two-dimensional Holmboe instability,
to contextualise and motivate our study. In § 3 we describe the experiment and
measurement technique, and present the experimental results to characterise the
CHW in § 4. In § 5 we describe our linear stability analyses and compare their
predictions (including the CHI) with our experimental data in § 6. Finally we present
our conclusions, and suggest possible future research directions in § 7.

2. Context and motivation
2.1. Holmboe instabilities

Holmboe (1962) considered the stability of an idealised two-layer stratification
embedded within a shear layer of finite depth, and demonstrated that, for sufficiently
strong stratification, such inviscid flows are always linearly unstable over a finite band
of wavenumbers. He considered a symmetric configuration, with the density interface
located at the mid-point of the shear layer, so there are two normal modes (with
equal and opposite phase speeds) with equal growth rates in this instability band of
wavenumbers.

This instability, which we refer to as the ‘traditional’ Holmboe instability, can
be interpreted physically as being due to a resonance between infinitesimal internal
wave-like perturbations localised at the density interface and infinitesimal Rayleigh (or
‘vorticity’) wave-like perturbations localised at the edges of the shear layers (Baines
& Mitsudera 1994; Caulfield 1994). This interpretation is a particular example of
the ‘wave interaction theory’ for the identification and classification of instabilities
(see Carpenter et al. (2013) for a review). The symmetric problem considered by
Holmboe (1962) has two such resonances simultaneously, leading to two instabilities:
one localised in the upper half of the shear layer, the other in the lower half of the
shear layer. However, this physical internal wave–vorticity wave interaction instability
mechanism is generic and gives rise to instabilities sharing the same essential features
as the traditional Holmboe instability in more general stratified shear flows with finite
depth shear layers with embedded ‘sharp’ density interfaces. It is this generic class
of instabilities that we, for simplicity, refer to as Holmboe instabilities (HIs).

Lawrence, Browand & Redekopp (1991) generalised the original stability
calculations of Holmboe to consider asymmetric flows where the sharp density
interface and the mid-point of the shear layer are not coincident. This breaks the
symmetry of the traditional stability problem, giving rise to two instabilities with
different growth rates, phase speeds and wavenumber bands for a given stratification.
For flows in domains that are not bounded vertically, the resonance between the
infinitesimal internal wave-like perturbation localised at the density interface and the
vorticity wave-like perturbation localised at the further edge of shear layer gives rise
to the assumed dominant instability band, with larger maximum predicted growth
rate, smaller magnitude phase speed and smaller wavenumbers. Haigh & Lawrence
(1999) further demonstrated that vertical confinement by sufficiently close top and
bottom boundaries could switch the dominant branch of instability, consistent with
the seminal work of Hazel (1972).

2.2. Holmboe waves: laboratory observations and numerical simulations
Finite-amplitude manifestations of HIs, which we refer to as Holmboe waves (HWs),
have been observed experimentally in a wide range of shear flows containing relatively
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512 A. Lefauve and others

sharp density interfaces (see e.g. Macagno & Rouse 1961; Thorpe 1968; Browand &
Winant 1973; Maxworthy & Browand 1975; Caulfield et al. 1995; Zhu & Lawrence
2001; Hogg & Ivey 2003; Tedford, Pieters & Lawrence 2009; Carpenter et al. 2010;
Meyer & Linden 2014). Generically, cusped waves are observed at the interface,
propagating at a phase speed intermediate between the propagation speed of the
density interface and the maximum speed of the sheared fluid, in qualitative agreement
with linear stability theory.

Zhu & Lawrence (2001) observed both symmetric (up–down) and asymmetric
(only up or only down) HWs in a laboratory exchange flow. They compared their
observations with two different normal mode stability calculations. One calculation
used the piecewise-linear profiles originally considered by Holmboe (1962), while the
other used smooth parallel velocity and density profiles, calculated as solutions to the
Taylor–Goldstein equation by Nishida & Yoshida (1990). They found only qualitative
agreement with the predicted phase speeds and wavelengths, perhaps unsurprisingly
due to the highly idealised nature of the assumed velocity and density profiles
compared to the actual laboratory flows. Tedford et al. (2009) and Carpenter et al.
(2010) conducted further experiments, and the latter made the first comparison with
three-dimensional direct numerical simulations (DNS). They attributed the discrepancy
between experiments and linear theory to wave stretching (increasing wavelength by
the streamwise convective acceleration of the mean flow), and the discrepancy between
DNS and linear theory to wave merging (increasing wavelength by vortex merging
events). They also found that the wave amplitude was larger in the DNS than in the
experiments, although the simulations did not correspond exactly to the experimental
situation, in particular in the choice of the Schmidt number.

In the first two-dimensional DNS of HWs, Smyth et al. (1988) established that the
counter-propagating trains of HWs above and below the (symmetrically located)
density interface accelerate when the crests of the characteristic cusped waves
are aligned vertically, and slow down when they are laterally far apart. As is
apparent in their figure 7, this behaviour is associated with the relative location
of the elliptical spanwise vortices that develop in front of the density crests, with
the slowing occurring when the two vortices are close to being aligned vertically
(corresponding to density crests being far apart). Indeed, for sufficiently weak
stratification, these two vortices ‘lock’ and then roll up the interface into an array
or ‘train’ of elliptical billows, i.e. the finite-amplitude manifestation of the Rayleigh
instability of a finite-depth shear layer (see Rayleigh 1879, and for further discussion
of this phenomenon for ‘marginal’ HWs, Smyth & Peltier 1991). Such structures are
commonly referred to as ‘Kelvin–Helmholtz billows’, even though Kelvin (Thomson
1871) and Helmholtz (1878) only considered a discontinuous velocity profile, which
does not exhibit the scale selection characteristic of billow trains.

The elliptical vortices of HWs develop close to the critical layers of the linear
instability (i.e. where the predicted phase speed of the linear instability matches the
flow speed). Due to the relatively strong baroclinic vorticity generation associated with
the cusped waves, these vortices do not typically correspond to the maximum vorticity
magnitude within the flow, although they typically induce the entrainment of ‘wisps’
of fluid from the crest of the propagating cusped waves.

Smyth & Peltier (1991) used secondary linear Floquet stability analysis, (i.e. the
linear stability analysis of non-parallel flow fields extracted from two-dimensional
numerical simulations under the assumption that these flow fields were ‘frozen’ in
time) in an attempt to understand how a two-dimensional saturated HW becomes
three-dimensional, breaks down and hence has the potential to undergo the transition
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Confined Holmboe waves 513

to turbulence. Simulations at moderate Reynolds numbers suggested that HWs could
be robust and identifiable over relatively long times (see for example Smyth & Winters
2003, Carpenter, Lawrence & Smyth 2007 and Smyth, Carpenter & Lawrence 2007).
However, through simulations at significantly higher Reynolds number, Salehipour
et al. (2016) demonstrated that finite-amplitude symmetric HWs are prone to a wide
range of secondary instabilities of both convective and shear-driven types, which
destroy the coherence of the primary instability and trigger a relatively long period
(at least in comparison to KH billow trains) of turbulent motions characterised by
enhanced turbulent dissipation and irreversible mixing. Nevertheless, these behaviours
at higher Reynolds numbers may well be inherently linked to the transient run-down
nature of such simulations, with no forcing acting to re-energise the initial shear
flow, and the initial profiles and computational domain geometry being chosen to be
susceptible to specific (and typically monochromatic) linear instabilities.

2.3. Limitations of previous research
In this paper, we attempt to address some of the limitations of the previous
studies of HWs, which we classify in three categories: steadiness; dissipation; and
three-dimensionality.

2.3.1. Steadiness
To the best of our knowledge, all numerical calculations have considered the time

evolution of an initially unstable state, analogous to the time-dependent instabilities
observed in ‘tilting tank’ experiments of Reynolds (1883) and Thorpe (1971). This
set-up is convenient for comparison with the predictions of linear stability theory
in an initial value problem. However, many geophysically relevant flows – such as
exchange flows in straits, estuaries (e.g. Geyer et al. 2010), coastal inlets (e.g. Farmer
& Armi 1999), deep ocean overflows (e.g. van Haren et al. 2014) and stratified flows
in the atmospheric boundary layer (e.g. Mahrt 2014) – are sustained in time through
slowly varying forcing, such that a quasi-steady nonlinear state can exist. Such natural
flows are not the product of carefully designed initial conditions chosen to trigger
specific primary instabilities, which as noted above lead to inherently transient flow
evolution and, in particular, preclude any possibility of finite-amplitude coherent
structures emerging which are both robust and long-lived.

In contrast, the stratified inclined duct experiment sets up a statistically steady
flow that is not the inevitable result of carefully designed initial conditions. HWs
propagate throughout the duct and nonlinearly influence the mean flow that sustains
them. This situation is more representative of environmental flows, yet there is no a
priori rigorous argument justifying a connection between observed saturated nonlinear
waves and linear instabilities predicted to grow from infinitesimal perturbations using
the horizontally averaged mean flow as a notional, though not actually realised, base
flow. In this paper we show that despite the undoubted challenge to this modelling
approach, the comparison is, perhaps fortuitously, good.

2.3.2. Dissipation
The majority of the experiments and numerical calculations of which we are

aware considered flows at relatively low Reynolds numbers of O(10–100) (based
on the definition (3.4) adopted later in this paper), with the recent exception of
Salehipour et al. (2016). Moreover, the ‘run-down’ character means that a strictly
restricted amount of energy, set at the beginning of the flow evolution, is available to
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dissipate, and that this dissipation is inherently limited in time. Indeed, the stratified
turbulence literature (see e.g. the review of Ivey et al. (2008)) increasingly highlights
the importance of the ‘buoyancy Reynolds number’ Reb, defined as

Reb ≡
ε0

νN2
0
. (2.1)

Here, ε0 is a characteristic (volume-averaged) value of the rate of dissipation of total
kinetic energy ε ≡ 2νsijsij (where sij ≡ (∂xiuj + ∂xjui)/2 is the symmetric strain rate
tensor) and N0 is a characteristic value of the buoyancy frequency N ≡

√
−(g/ρ0)∂zρ.

This non-dimensional number, sometimes referred to as the ‘activity parameter’ or
Gn (Portwood et al. 2016), is the (square) ratio of the frequencies associated with
kinetic energy dissipation

√
ε/ν and buoyancy N. An alternative and illuminating

interpretation is to express Reb as a ratio of length scales: Reb = (Lo/Lk)
4/3 where

Lo = (ε/N3)1/2 is the Ozmidov scale, the vertical scale below which turbulent
eddies are not significantly affected by stratification, and Lk = (ν3/ε)1/4 is the
Kolmogorov scale, below which viscous dissipation dominates. The ratio Reb therefore
measures the range of scales that are not significantly affected either by stratification
(suppressing vertical scales & Lo) or by viscosity (damping scales . 10Lk). Although
caution needs to be exercised when comparing different studies and flow geometries
where Reb may be defined in different ways, consensus is developing, not least
motivated by the arguments of Gibson (1980) and Gibson (1999), that Reb & 20–30 is
required for the flow to exhibit any of the key characteristics of stratified turbulence
(see Bartello & Tobias 2013; Portwood et al. 2016 for further discussion).

In the stratified inclined duct experiment, we estimate the volume-averaged
Reb ≈ Re sin θ (see (3.4) and (3.6)) and CHWs are found to exist for Reb up to
≈ 50, controlled by increasing either the Reynolds number Re or the tilt angle of the
duct θ (see § 3.4.1 for more details). We are therefore able to generate waves that
maintain relatively high dissipation for hundreds of advective times units, making
this experiment a viable attempt to reproduce inertia-dominated flows of geophysical
relevance in the laboratory.

2.3.3. Three-dimensionality
Temporal linear stability analyses of parallel shear flows with a background

streamwise velocity U(z)x̂ focus on wave-like disturbances, i.e. normal modes, of
the form

Ψ ′(x⊥, z, t)≡ Ψ̂ (z) exp(ik · x⊥ + σ t), (2.2)

where Ψ̂ (z) is the one-dimensional complex eigenfunction of any perturbation
variable; z is the vertical coordinate; x⊥ ≡ xx̂ + yŷ is the horizontal coordinate
vector; k ≡ |k|(cos βx̂ + sin β ŷ) is the real horizontal wave vector; and σ is the
complex growth rate. Conventionally, k is taken to be aligned with the background
flow along x, i.e. β = 0. In this paper, we refer to such an analysis as ‘2P-1B’,
for two-dimensional perturbations on a one-dimensional base flow and to the more
general analysis with β 6= 0 as ‘2.5P-1B’, for its intermediate character between two-
and three-dimensional perturbations. The focus on 2P-1B analyses can generically be
justified by appealing to a corollary of ‘Squire’s theorem’ (Squire 1933) in unstratified
flows at finite Reynolds number, and the analogous ‘Yih’s theorem’ (Yih 1955; Smyth
et al. 1988) in (inviscid) stratified flow.
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Both theorems rely on the observation that ‘three-dimensional’ normal modes
aligned at some angle β 6= 0 to the background flow, having growth rate σ ,
wavenumber |k| in a flow with Reynolds number Re and bulk Richardson number Ri
are equivalent to ‘two-dimensional’ normal modes having β = 0 with lower growth
rate (σ cos β) and larger wavenumber (|k|/cosβ) in an equivalent flow with lower
Reynolds number (Re cos β) and higher bulk Richardson number (Ri/cos2 β). This
statement is summarised by the relation (see Smyth & Peltier 1990)

σ(|k|, β, Re, Ri)= cos β σ
(
|k|

cos β
, 0, Re cos β,

Ri
cos2 β

)
. (2.3)

It is then natural to consider the locus of the two-dimensional modes (β = 0) with
maximum growth rate σm across all wavenumbers for given values of the external flow
parameters Re and Ri. For an unstratified flow, if σm(Re) decreases more slowly than
1/Re (i.e. σm(Re) × Re increases with Re), then the most unstable two-dimensional
modes have higher growth rates than any three-dimensional mode, a circumstance
which is generic for shear flow instabilities. In particular, if instability occurs only
above a critical Reynolds number (i.e. for Re > Rec), this condition implies that the
marginal instability mode must be two-dimensional (as any three-dimensional mode
in a flow with Re= Rec experiences an equivalent flow with Re< Rec, and hence is
stable).

The equivalent statement for (inviscid) stratified flows is, if σm(Ri) increases more
slowly than

√
Ri (i.e. σm(Ri)/

√
Ri decreases with increasing Ri), then the most

unstable two-dimensional modes have higher growth rates than any three-dimensional
mode. For stratified flows, the dominance of two-dimensional modes is not so clear
cut, as HIs (for example) only occur in stratified flows, and occur for all bulk
Richardson numbers, thus making it at least plausible that σm(Ri) increases more
rapidly than

√
Ri. Indeed, in a stratified flow at finite Reynolds number, Smyth &

Peltier (1990) identified a small parameter range in Re–Ri space where σm(Ri) does
increase more rapidly than

√
Ri and HIs at an angle β 6= 0 were predicted to be

dominant, but it has proved difficult to test these predictions either experimentally or
numerically.

It is important to recognise that such ‘three-dimensional’ modes considered by the
2.5P-1B analysis (in this precise sense of travelling at angle β 6= 0 to the background
flow) are strictly only well defined in infinite domains with translational invariance in
x and y. As another example of a ‘three-dimensional’ stability analysis, Drazin (1974)
considered the linear instability of an inviscid flow with two layers of different
density, where the upper layer has a non-zero streamwise velocity which varies
slowly in the spanwise direction. This flow is prone to a (truly) three-dimensional
variant of the conventional Kelvin–Helmholtz instability, yet the background flow
was still not confined or localised in any sense. Such flow instabilities, just like the
flow instabilities ‘propagating at an angle’, are therefore unlikely to be observed
experimentally. Furthermore, the modal structure (2.2) assumed for such perturbations
inevitably imposes the same spanwise periodicity on the perturbation density and
velocity components, thereby strongly restricting their possible spatial structure. As
we discuss in more detail in this paper, perturbations with a more complex spatial
structure are, in fact, consistent with our experimental observations.

Indeed, experimental observations of HWs are typically compared to HI ‘2P-1B’
predictions (often representing U(z) by hyperbolic-tangent or error-function vertical
profiles in unbounded domains). Analogously, three-dimensional numerical simulations
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typically consider periodic boundary conditions in both of the horizontal directions,
avoiding potential issues with horizontal boundary conditions interacting with HWs.
However, viscous effects and the presence of confining side walls in an experimental
tank make any experimental mean flow inherently dependent on the spanwise (y)
and vertical (z) coordinates and affect any waves which may develop by requiring
the perturbations to decay to zero at these walls. Many of the geophysical flows
mentioned in § 2.3.1 also exhibit two- or three-dimensional base flows and significant
spatial confinement. It is therefore desirable to understand the effects of this inherent
three-dimensionality and confinement and model them appropriately. Our experimental
apparatus is designed to obtain data to achieve this.

3. The experiment
3.1. The stratified inclined duct

We consider the flow in a duct connecting two reservoirs containing aqueous salt
solutions of densities ρ0±1ρ/2 (figure 1). The seal between the duct and the barrier
separating the two reservoirs is made of flexible rubber, allowing the duct to tilt at a
relatively small angle θ from the horizontal. The duct has length L= 1350 mm and
has a square cross-section of height and width H = 45 mm (aspect ratio L/H = 30).
At the start of the experiment, the duct is opened, initiating an exchange flow (with
zero net volume flux) between the reservoirs.

This flow is a two-layer stratified shear flow, forced by gravity in two distinct ways.
The first contribution is a hydrostatic pressure gradient in each layer, resulting from
the end of each duct sitting in reservoirs containing fluids of different densities, and
is sufficient to drive an exchange flow at θ = 0◦. The second contribution depends
on the tilt angle: the resulting non-zero projection of gravity along the duct provides
additional buoyancy forces. A positive angle θ > 0◦ (defined here by the duct being
raised in the denser reservoir) reinforces the exchange flow by accelerating the light
layer up (to the left) and the heavy layer down (to the right). Each individual reservoir
measures 1× 0.2× 0.5 m and holds approximately 100 l, allowing us to maintain a
statistically steady exchange flow for several minutes. This steady flow continues until
the controls at the ends of the duct (see below) are flooded by the accumulation of
fluid of a different density coming from the other reservoir.

As outlined in § 1, Meyer & Linden (2014) described and mapped four qualitatively
different flow states obtained by varying the main parameters 1ρ/ρ0 and θ , using
shadowgraph observations and a larger square duct with length L = 3000 mm and
height H = 100 mm. At low 1ρ/ρ0 and θ , the flow is laminar with an undistorted
interface. At larger values of either or both parameters, persistent coherent HWs distort
the interface. Higher values of the forcing give rise to spatio-temporally intermittent
turbulence at the interface, and eventually, fully developed turbulence with a thick
mixing layer. Their measurements of layer-averaged velocities through mass flux
balances support the hypothesis that the flow is hydraulically controlled at both ends
of the duct for θ & 1◦. The flow is subcritical (with respect to long, small-amplitude,
interfacial disturbances) inside the duct, and undergoes two transitions at each end:
a smooth one to a supercritical state shortly after exiting the duct, and an abrupt
one further downstream (in the form of a jump) from supercritical to subcritical, to
match the reservoir conditions. These hydraulic controls ensure that the exchange
flow taking place through the duct is maximal, i.e. that its layer-averaged velocities
obey the Froude number condition (3.1) (see Armi 1986).

The practical consequence of this hydraulic control is that positive angles cannot
increase the exchange flow rate, or mean flow velocities, beyond a certain value.
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Side view

Top view

Measurement
volume
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2. 3.
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8. 9.

10.

FIGURE 1. Experimental flow geometry: an inclined duct (1) connects a reservoir of
dense fluid (2) and a reservoir of light fluid (3). All fluid is seeded with particles for
stereo particle image velocimetry (sPIV), and fluid initially in (3) is dyed for planar laser
induced fluorescence (PLIF). The laser beam emitted from (4) is directed to the pair of
oscillating mirrors in (5), before entering the light-sheet-producing optics mounted on the
linear traverse (6). The scanning light sheet sweeps a measurement volume (7) whose
successive planes are imaged for sPIV by cameras (8) and (9) and for PLIF by camera
(10). The measurement volume inset shows the coordinate system and notation used, as
discussed in § 3.2.

The additional kinetic energy input provided by gravity through a positive tilt angle
must be dissipated by the flow within the duct, either by increased wave activity or
turbulence. We are therefore able to control the dissipation rate by the tilt angle, and
to maintain target dissipation rates in a statistically steady sense for extended periods
of time. The dissipation achieved is expressed non-dimensionally as a buoyancy
Reynolds number in § 3.2, and depends on two free experimental parameters: the
Reynolds number (when appropriately defined as in (3.4) and the tilt angle.

The inclined duct experiment is thus ideally suited to study HWs for the following
reasons.

(i) It naturally sets up a flow with large shear layer thickness/density interface
thickness ratio. The low diffusivity of salt compared to momentum (or high
Schmidt number Sc ≈ 700, as defined in § 1), and the continuous supply of
unmixed fluid from both reservoirs in the open duct mean that the interface
thickness ratio resulting from interfacial diffusion of vorticity compared to
interfacial diffusion of density is of the order of

√
Sc=O(10).
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(ii) It naturally sets up a flow with large bulk Richardson number. The hydraulic
control sets an upper bound for the speeds achieved inside the duct and, as we
shall see in § 3.2 and from (3.5), effectively sets the overall or bulk Richardson
number to an O(0.1–1) constant, regardless of the forcing parameters.

(iii) Both symmetric and asymmetric HWs can be observed. Experiments at low
angles θ . 2◦ typically exhibit flows where the density interface is close to
the centre of the shear layer and so is prone to symmetric HWs (i.e. two
waves propagating in opposite directions with similar amplitude). In contrast,
experiments at higher angles θ & 2◦ exhibit an offset between the mid-point of
the shear layer and the density interface sufficient to give rise to asymmetric
(i.e. one-sided) HWs, where the instability with smaller growth rate is apparently
being sufficiently suppressed such that it does not reach an observable ‘wave’
with finite amplitude. The mechanism leading to the offset of the interface is
thought to be related to the complex pressure adjustment necessary to match
the different hydrostatic pressures in each reservoirs when the duct is tilted. We
will use this empirical knowledge to our advantage in this paper, deliberately
selecting parameters for which asymmetric HWs are observed.

3.2. Notation and non-dimensional parameters
The notation we use in the paper is shown in the measurement volume inset in
figure 1. The streamwise x axis is aligned along the duct and the spanwise y axis
across the duct, making the z axis tilted at an angle θ from the vertical (resulting
in a non-zero streamwise projection of gravity). All coordinates are centred in the
middle of the duct, such that −L/2 6 x 6 L/2 and −H/2 6 y, z 6 H/2. The velocity
vector field has components u(x, y, z, t)= (u, v,w) along x, y, z, respectively, and we
denote the density field by ρ(x, y, z, t).

Only a limited number of parameters are believed to play important roles in this
experiment. The geometrical parameters are L, H, θ and the dynamical parameters
are the acceleration due to gravity g, the non-dimensional density difference 1ρ/ρ0,
the kinematic viscosity of water ν and the molecular diffusivity of salt κs. The
relative density difference (<0.1 % in the experiment reported here) is sufficiently
small so that the Boussinesq approximation requiring that 1ρ/ρ0 � 1 is valid,
and density differences only play a dynamically relevant role through the reduced
gravity g′ ≡ g1ρ/ρ0. Since the six free parameters L, H, θ, g′, ν, κs have two
independent dimensions (length and time), it is possible to construct four independent
non-dimensional parameters, as we do below.

It is important to note at this point that the experiment does not have any imposed
velocity scale. However, to a good approximation, the hydraulic controls at the ends
of the duct require that the composite Froude number

G2
≡ F2

1 + F2
2 = 1, (3.1)

where F2
i ≡ 〈u

2
i 〉y,z/(g

′hi) is the Froude number of layer i and 〈·〉y,z denotes spanwise
and vertical averaging over the depth hi of each layer. The symmetry of this
Boussinesq exchange flow implies that both layers have equal depth and Froude
number in the central section of the duct

F2
≡ F2

1(x= 0)= F2
2(x= 0), (3.2)
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such that for each layer

F=
〈u〉y,z
√

g′(H/2)
=±

1
√

2
, or 〈u〉y,z =±

√
g′H
2

. (3.3a,b)

Due to the moderate values of Re, the mean velocity profile is affected by viscosity
and we find that the peak velocities in each layer are approximately twice the layer-
averaged values, i.e. max |u| ≈

√
g′H. We choose to non-dimensionalise velocities by

this characteristic peak value, or half the total (peak-to-peak) velocity jump 1U/2≡
√

g′H. We define (ũ, ṽ, w̃) ≡ (u, v, w)/(1U/2) such that −1 . ũ . 1 (note that in
general |ṽ|, |w̃|� |ũ|; see § 6.1.2). For consistency, we choose H/2 as the length scale,
such that −1 6 ỹ, z̃ 6 1, and −L/H 6 x̃ 6 L/H. Consequently, the natural time scale
for non-dimensionalisation is the advective time H/1U = H/(2

√
g′H). The resulting

non-dimensional time units will be referred to as advective time units (ATU). The
relevant Boussinesq density field is ρ̃≡ (ρ− ρ0)/(1ρ/2), where we use 1ρ/2 to non-
dimensionalise density such that −1 6 ρ̃ 6 1.

Using the previously defined scales, it is natural to construct the Reynolds number

Re≡

1U
2

H
2

ν
=

√
g′HH
2ν

, (3.4)

which, for a given duct geometry and fluid, is a function of the driving density
difference 1ρ alone.

The Froude condition (3.1) artificially adds another dimensional parameter, the
velocity scale, to our previous set of six parameters. It will prove useful in the rest
of the paper (e.g. for the governing equations (5.1)) to define the overall Richardson
number of the flow, expressed as the non-dimensional product of the density, length
and inverse square velocity scales

Ri≡

g
ρ0

1ρ

2
H
2(

1U
2

)2 =
1
4
, (3.5)

by definition of 1U. Note that the value of Ri is set and not a free parameter; it
is simply an equivalent formulation of the Froude condition (3.1): Ri = 1/(8F2) =
1/(4G2) and G2

= 1. We choose the Schmidt number Sc (defined in § 1), L/H and
θ as the last parameters. In summary, we have a total of four free independent
non-dimensional parameters: Sc, L/H, θ , Re and one imposed parameter Ri. For
the apparatus considered, we have Sc = 700, L/H = 30, Ri = 1/4, and we have the
freedom to vary θ and Re (through varying 1ρ).

A characteristic buoyancy Reynolds number Reb (see § 1 and (2.1)) can be estimated
for θ > 0◦, assuming complete dissipation of the instantaneous power gained by the
fluid moving at a layer-averaged velocity 1U/4 in the streamwise gravity field g′ sin θ ,
i.e. the characteristic dissipation scale is ε0 ≈ g′(1U/4) sin θ . Using the characteristic
buoyancy frequency N2

0 = g1ρ/(2ρ0)/(H/2)= g′/H, we find that

Reb ≈

g′
1U

4
sin θ

ν
g′

H

=
1UH

4ν
sin θ = Re sin θ. (3.6)
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Note that this is a volume-averaged estimate that includes the dissipation due to
viscous stresses on the duct walls, and that the actual dissipation can be highly
heterogeneous in space. Therefore, it is necessary to be cautious when comparing
the specific numerical values of Reb reported here with other studies where other
definitions have been used. For positive angles θ > 0◦, the three main qualitative
bifurcations in flow regimes have been found to scale with Re sin θ over a wide range
of Re and θ . Based on hundreds of shadowgraph observations, HWs are observed
for 20 . Reb . 50, intermittent turbulence is observed for 50 . Reb . 100 and steady
turbulence for Reb & 100 (Lefauve 2018).

Henceforth, we drop the tildes and, unless explicitly stated otherwise, use
non-dimensional variables throughout.

3.3. Three-dimensional volumetric sPIV/PLIF measurements
We obtained time-resolved, three-dimensional, volumetric measurements of the
three components of velocity using a novel method that combines successive
two-dimensional planar stereo particle image velocimetry (sPIV) measurements to
construct a volume. The flow was illuminated by a thin, pulsed, vertical laser sheet,
which was rapidly scanned back and forth in the spanwise y direction (figure 1),
sweeping the volume of interest. The fundamental technical challenge with this
approach is to obtain pairs of images, separated by a small time interval appropriate
for PIV, at the same spanwise locations without relying on the overlap of successive
laser sheets achieved either from the continuous traverse of an excessively thick
laser sheet (which would compromise the spanwise resolution) or from a very slow
scanning speed (which would compromise the near-instantaneous character of the
measurements). The novelty of the system employed here is the conversion of the
continuous motion of a traverse into a discontinuous motion of the light sheet. The
laser beam was directed onto a pair of oscillating mirrors controlled by galvanometers
(for accurate and fast positioning) that deflect its position before entering the optics
mounted on a fast-moving linear traverse. This allowed us to control the successive
positions of the pulsed laser sheet independently of the traverse, and thus obtain pairs
of images at the same spanwise location while continuously scanning the thin laser
sheet across the measurement volume. A detailed description of the scanning system
and other aspects of the sPIV/planar laser induced fluorescence (PLIF) measurements
can be found in Partridge, Lefauve & Dalziel (2018).

The disadvantage of this approach is that the measurements are not instantaneous
as successive planes have a time lag. However, this time lag can be made very small
by increasing the scanning speed while maintaining the co-location of laser sheet
pairs. As discussed in more detail in Partridge et al. (2018), this method has three
main advantages over existing methods for obtaining three-dimensional experimental
diagnostics of a stratified flow across a volume: it is less sensitive to unavoidable
residual refractive index variations; it yields a higher spatial resolution; and crucially,
it allows simultaneous measurements of the density field.

Simultaneous measurements of the density field were achieved by combining
successive PLIF measurements in the same fashion. PLIF requires an additional
camera imaging the concentration of a fluorescent dye marking one of the fluids (in
our case, the less dense solution, initially in region (3) of figure 1). The dye emits
light at a slightly longer wavelength than the wavelength of the absorbed laser light.
Narrow bandpass filters in front of the PIV cameras and a suitable long-pass filter
for the PLIF camera allow separation of the two signals.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.324


Confined Holmboe waves 521

3.4. Experimental details
3.4.1. Flow parameters

As discussed in § 3.2, HWs are observed for a wide range of parameters (θ, Re).
For θ = 0◦, the HWs are typically symmetric and are observed for 2000 . Re . 4500.
For θ = 5◦ the HWs are typically asymmetric and observed for 300 . Re . 600.

In order to gain insight into the three-dimensional structure of CHWs, analysing
the propagation of an asymmetric Holmboe wave train, propagating only in one
direction proves more straightforward. Moreover, the current limitation of our system
in terms of scanning speed and the maximum displacement that can be achieved by
the oscillating mirror means that a forward or backward scan cannot be achieved in
less than approximately one second. At the current values of H and ν, a one-second
scanning duration corresponds to 1U/H = 4νRe/H2

= Re/482 ATU, making the
measurement of flows with, for example, Re=O(500) in O(1 ATU) more reasonably
assumed to be near to instantaneous than those with Re = O(5000) in O(10 ATU).
For these reasons, the principal experiment discussed in this paper was carried out at
θ = 5◦, Re= 440, corresponding to Reb = 38.

Four additional experiments were carried out with the same parameters except
for slightly different Re ∈ [400, 490] and initial transients resulting from different
experimental initialisation procedures. The data from these additional experiments
confirm that the conclusions drawn from the principal experiment presented in this
paper are robust. For the sake of brevity, and also because the data from these
additional experiments are of inferior quality by comparison to the data from the
principal experiment, we do not discuss these experiments further.

3.4.2. Fluids
The success of both the sPIV and PLIF measurements relies on both fluids having

very similar refractive indices, such that both particles and dye concentration can
be accurately imaged without aberrations. Two salt solutions were used for that
purpose: sodium chloride (NaCl) for the light layer and sodium nitrate (NaNO3) for
the heavy layer. Using a handheld refractometer (Reichert Technologies Goldberg) it
was possible to obtain the desired density difference 1ρ while matching refractive
indices within a relative error of 1n/n ≈ 10−4, small enough to obtain sharp and
accurate particle images. The difference in diffusivity of these solutions is negligible,
and does not introduce any additional dynamics, as discussed in Olsthoorn & Dalziel
(2017).

Densities were measured at the temperature of 20 ◦C (at which the experiment
was carried out) using a density meter (Anton Paar DMA 5000). Here ρ0 −1ρ/2=
1.003242 g cm−3 and ρ0 + 1ρ/2 = 1.004190 g cm−3, giving 1ρ/ρ0 = 9.44 × 10−4

and Re = 440 using an average viscosity ν = 1.05 × 10−6 m2 s−1. The angle of the
duct was set to θ = 5.0◦ using a digital inclinometer (Digi-Pas DWL-280Pro).

Both fluids were seeded with polyamide particles of diameter dp = 50 µm and
density ρp = 1.03 g cm−3 for PIV. Their small size and near-neutral density ensured
that they accurately followed the flow, as evidenced by the small ratio of settling to
mean flow velocities, or Stokes number Sk = (ρp − ρ0)gd2

p/(9ρ0ν1U) = 1.7 × 10−3.
The less dense layer was dyed with rhodamine 6G at 1.5 × 10−8 g cm−3 for PLIF,
a low enough concentration to produce no visible attenuation of the laser sheet over
the height of the duct, nor to affect the density of the fluid.
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3.4.3. Optics
The light sheet was produced by a dual-cavity Litron Nano L 100 Nd:YAG laser,

providing 50 mJ per pulse of duration O(10 ns) for each cavity, here used at a
frequency of 50 Hz. The thickness of the laser sheet varied between ≈2 mm at the
centre and ≈1 mm at the edges of the measurement volume.

Experiments were recorded using three 8 MPixel Teledyne Dalsa Falcon2 cameras,
each connected to a workstation and triggered by a timing system for accurate laser
pulse - camera trigger synchronisation, handled via the DigiFlow software package.
The same timing system controlled the galvo-mirrors and traverse responsible for
scanning the laser sheet. The two PIV cameras were fitted with Micro Nikkor 60 mm
f/2.8D lenses at aperture f/8 and were positioned at a distance of 0.6 m from the
measurement volume. As those cameras must image the flow at an angle (figure 1),
Scheimpflug adaptors were fitted in order to keep focus on oblique planes. The PLIF
camera was fitted with a Nikkor 50 mm f/1.2D at aperture f/1.2 and positioned at a
distance of 1 m from the measurement volume. With these parameters, all cameras
maintained good focus on all the planes scanned. As explained above, the cameras
were equipped with filters to separate the signals from either the particles or the dye.

To ensure that particles in the reservoir did not interfere with PLIF measurements
by blocking light coming from the duct, a box filled with pure water was inserted
between the duct outer wall and the reservoir inner wall (not shown in figure 1) to
allow an unobstructed view of the test section. This box, as well as the duct and
reservoirs, was made of smooth, transparent Perspex (acrylic) sheets with good optical
clarity.

3.4.4. Scanning parameters and coordinates
The scanning system was set up so that a measurement volume was spanned by

30 parallel planes to avoid redundancy of data by overlapping light sheets (average
spanwise separation = 45/30 = 1.5 mm, which is the average light sheet thickness).
Therefore, to construct each volume, a forward scan or a backward scan captured 60
frames (noting that two frames are needed for each velocity slice). At a camera speed,
or capture rate, of 50 fps (for adequate particle displacement between frames) each
forward or backward scan therefore took 1.2 s to complete, or 1.1 advective time units
(ATU). This proved to be fast enough to ‘freeze’ adequately the structure of waves
travelling at the (relatively small) phase speed of the order of 5–10 % of the maximum
advective speed, as our data will show.

A total of 309 volumes were captured, spanning 370 s or 335 ATU and representing
150 GB of raw data. The recording was started at an arbitrary time origin t= 0 once
the flow was established, a few seconds after the gravity current following the opening
of one end of the duct had exited the other open end of the duct. The measurement
volume spanned 248 mm in the streamwise direction and the full cross-section
45 × 45 mm, or 11 × 2 × 2 in non-dimensional units. The corresponding non-
dimensional coordinates of our measurement volume are (x, y, z, t) ∈ [−17.5,−6.5] ×
[−1, 1] × [−1, 1] × [0, 335], where (x, y, z)= (0, 0, 0) is the centre of the duct.

3.4.5. Data processing and resolution
In order for multi-plane measurements in pixel coordinates from three cameras to

be mapped into a three-dimensional volume with real world coordinates, a careful
calibration technique was employed. It relied on using a two-plane calibration target,
each plane containing approximately 100 white circles on a black background at
known positions, inserted inside the duct prior to the experiment. The process
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of capturing still images of the target was repeated by shifting the target in the
spanwise direction to three different (x, z) planes inside the duct to obtain a set of
approximately 600 points used to fit a least-square polynomial mapping between
pixel and (x, y, z) world coordinates. Given the importance of an accurate mapping
for sPIV reconstruction, and since the light sheet is not infinitely thin, a further step
of coordinate mapping refinement was used, as discussed in Partridge et al. (2018).

Initial, two-dimensional, sPIV processing for each camera was carried out using the
DigiFlow software package using a multi-pass adaptive algorithm that includes the
distortion of interrogation windows. Here we used a nominal window size of 31× 31
pixels and a spacing of 8 pixels. The pixel-based velocity fields from each camera
were then combined using the coordinate system, again in DigiFlow, to produce the
three-dimensional velocity field for each plane. By aggregating fields from across a
scan, a final resolution of 440×30×70×309 is achieved in x, y, z, t, corresponding to
a vector spacing of 0.025× 0.067× 0.028× 1.08 (or 0.55 mm × 1.5 mm × 0.64 mm
× 1.2 s). For comparison, the Kolmogorov scale (see § 2.3.2) in this flow is measured
as Lk = 0.032 (or 0.72 mm), hence our streamwise and vertical resolutions are better
than Lk, while our spanwise resolution is around 2Lk. Prior to computing vorticity
using second-order finite differences, the velocity field is filtered in each (x, z) plane
using an isotropic two-dimensional Gaussian filter with modest standard deviation of
1 vector spacing. Vorticity data are then shown raw, except for the three-dimensional
isosurfaces, which were smoothed by an isotropic three-dimensional Gaussian filter
with standard deviation of 1 vector spacing.

PLIF post-processing was used to deduce the density field from the imaged dye
fluorescence. A careful calibration step was required, using full volume scans of
images in which the duct was empty and then full of dye. The minimum (background)
and maximum light intensity were used to rescale the dye images, in order to account
for non-uniformity and divergence of the light sheet. Particles sitting in the tank below
the duct interfered with the incoming light sheet and generated spatio-temporally
dependent tilted rays, fanned out by the cylindrical sheet-producing optics. These
artefacts were removed on all frames by first projecting the processed images into
ray coordinates (making the rays vertical), then normalising by a reference image
produced by vertically averaging a section in the upper layer (which should always
be of uniform density in this two-layer flow) before finally being projected back to
world coordinates. Only one of the two PLIF planes obtained for each sPIV plane
was used, as the second one was found to contain little additional information. Due to
its higher (x, z) resolution compared with the velocity field (around six times higher
in both x and z), the density field was first filtered in each plane using a median
filter of size 3× 3 pixels, before being interpolated onto the grid of the sPIV data.

4. Experimental results
4.1. Instantaneous snapshots

Figure 2 shows four snapshots of the flow (in non-dimensional units), in the vertical
mid-plane of the duct y = 0. The spanwise component of vorticity ωy = ∂zu − ∂xw
(a,c,e,g) is shown together with the density field ρ (b,d, f,h) at four different
times t = 0, 250, 300, 335 (our choice of times is motivated by the analysis in
§ 4.3). A movie showing the full dynamics is available as supplementary movie 1
(https://doi.org/10.1017/jfm.2018.324). Both fields exhibit a quasi-periodic wave
pattern corrugating the interface by upward-pointing cusps that propagate leftwards
(with negative phase speed), as will be shown in § 4.2. The vorticity field shows
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FIGURE 2. Snapshots of spanwise vorticity ωy (a,c,e,g) and density ρ (b,d, f,h) in the
mid-plane y= 0 at t= 0 (a,b), t= 250 (c,d), t= 300 (e, f ) and t= 335 (g,h). Axes are to
scale. Throughout the paper, all data are shown in non-dimensional units.

concentration of negative vorticity that spans the interface downward to the right in
tilde-shaped bands. The wavelength of these patterns shows some temporal variation,
but both fields are coupled in the sense that their wavelength changes together. It is
this wave that we refer to as a confined Holmboe wave (CHW).

A small amount of mixed fluid is present above the sharp interface, consistent
with thin wisp-like ejections characteristic of asymmetric HWs, as discussed by
Carpenter et al. (2007) (see their figure 19). No wisp ejection was detected within
the measurement volume; mixed fluid was either advected from other regions inside
the duct where ejection took place and/or was a residual from the start of the
experiment that had not been flushed out due to small velocities at the density
interface.

To gain insight into the three-dimensional structure of the vorticity field, figure 3
shows, for the same times, the isosurface ωy = −ωmax/2 = −2.5, where ωmax = 5.0
is the maximum value of |ωy| found in the domain. This value represents a good
intermediate value that shows the structure of interest. (Values ωy &−2 mostly show
the x-independent mean shear while values ωy . −3 show only a small part of the
wave structure.) To make observation easier, the z axis is stretched by a factor of
three, so it is important to remember that the actual structure is closer to horizontal
than displayed.

The vorticity structure is confined both in the spanwise (y) and vertical (z) directions
and takes the form of inclined, distorted, prolate spheroids with a wide (in y) ‘body’
and a progressively (in the negative x direction) narrower ‘head’ (as indicated by the
arrows in figure 3a). A chevron shape at the posterior side of the body is partially
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FIGURE 3. Isosurfaces of spanwise vorticity ωy =−2.5 at the same times as in figure 2.
The z axis is stretched by a factor of 3 and only z ∈ [−0.5, 0.3] is shown.

visible in figure 3(c,d). The structures overlap one another and are connected by their
bodies at the edges (the extent of the connection between structures naturally depends
on the chosen isosurface). It is unknown whether the observed regular annular banding
of the isosurface is a real, coherent signal or the result of the isosurface rendering of
noise in the data. A movie showing the full dynamics is available as supplementary
movie 2.
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4.2. Spatio-temporal behaviour
Figure 4 shows the spatio-temporal behaviour of the CHW. Slices of the vorticity field
(figure 4a) and density field (figure 4b) taken at the mean positions of the respective
interfaces (z = −0.11 for the velocity interface, z = −0.22 for the density interface)
are stacked in time to form a spatio-temporal (Hovmöller) diagram.

The wave propagates leftwards in both fields, i.e. with phase speed c < 0. The
coupling of the fields is confirmed, as both travel at the same instantaneous phase
speed and undergo the same gradual change in wavelength. The range of wavelengths
observed from this figure is λ ∈ [3.5, 6.0], corresponding to a range in wavenumber
k ∈ [1.05, 1.80]. The range of phase speeds, as determined by the slope of the
characteristics, is c ∈ [−0.18, 0.05].

There is evidence of a preferred wavelength, as splitting events occur when the
wavelength becomes ‘too large’, presumably due to wave stretching (e.g. at t ≈ 180
and t ≈ 270), consistent with some development in x of the mean flow (Tedford
et al. 2009; Carpenter et al. 2010). This development of the mean flow along x is an
inevitable consequence of the convective acceleration of the flow as it travels along
the duct. In experiments for which gravity forcing dominates over the longitudinal
pressure gradient (θ & tan−1(H/L)≈ 2◦, as in the present case) this effect is small and
the flow is nearly parallel. Splitting events require a difference in phase speed between
the parent and daughter structures (stretching–splitting) and we indeed observe for
a short time a daughter wave propagating with slightly positive phase speed while
the parent continues at unchanged, negative phase speed (at x ≈ −10, t ≈ 180 and
x≈−13, t≈ 270 in figure 4).

4.3. Phase-averaged properties
To characterise the ‘typical’ structure of the CHW and reduce its spatio-temporal
complexity, we phase-average the flow variables over a single wavelength by following
the wave along a characteristic, an operation denoted by 〈·〉. To make this calculation,
we determine the phase speed c and wavelength λ by considering the interval
t ∈ [300, 335] towards the end of the experiment. This period, indicated by solid
horizontal lines in figure 4(a,b), was selected as it is during this period that the wave
has reached a very nearly constant negative phase speed and a steady wavelength,
making the analysis easier and more meaningful. We determine the phase speed
c = −0.078 and wavelength λ = 4.30 (wavenumber k = 1.46) by fitting in time the
location of the vorticity minimum contained within the wavelength denoted by two
thick solid sloping lines in figure 4(a,b). The dashed sloping lines having slope
c and spacing λ, drawn half a wavelength from the solid lines, extend over the
entire spatio-temporal plot and demonstrate that the phase-averaged properties are
representative of the flow at earlier times.

The three-dimensional structure of the resulting phase-averaged vorticity in the
region x ∈ [0, 4.30] is shown in figure 4(c,d), using the same isosurface level
〈ωy〉 = −2.5 as in figure 3. For better visualisation, this region has been replicated
to x ∈ [4.30, 8.60]) to show two wavelengths for the structure. The two panels show
views from different angles. Naturally, we recover the features identified in figure 3,
but are able to discern further details. The structure is remarkably symmetrical about
y= 0 and very nearly periodic (see the small discontinuity at x= λ= 4.30 where the
replicated structures join), despite the slow stretching in x discussed above. It is also
triply connected, and its tilt with respect to x (the duct axis) is 10◦ (maximum angle
at the inflection point).
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FIGURE 4. (a,b) Spatio-temporal diagrams taken in the vertical mid-plane and horizontal
interfacial plane: (a) ωy(y = 0, z = −0.11) and (b) ρ(y = 0, z = −0.22). Dashed sloping
lines are characteristics with phase speed c=−0.078 and wavelength λ= 2π/1.46= 4.3.
Black solid horizontal lines indicate the start (t = 300) and end (t = 335) of the phase-
averaging window, represented by thick sloping lines. (c,d) Two views of the isosurface of
phase-averaged spanwise vorticity 〈ωy〉 =−2.5. Two wavelengths are shown by repeating
the structure along x. Note the slight lack of periodicity evidenced by the discontinuity at
x= 4.30. The z axis is stretched by a factor of 3 and only z ∈ [−0.5, 0.3] is shown.

We discuss further details of the phase-averaged structure of the CHW (including
the other flow variables ρ, u, v,w) in § 6 when comparing it with the linear confined
Holmboe instability (CHI) predicted by the stability analysis introduced in the next
section § 5.

5. Linear stability: formulation
In this section, we derive the eigenvalue problem describing the linear stability

of the experimental flow from the governing equations. We model the flow by the
incompressible Navier–Stokes equations under the Boussinesq approximation. The
non-dimensional equations of motion under the notation and conventions adopted in
§ 3.2 are

∇ · u = 0, (5.1a)
∂tu + u · ∇u = −∇p+ Ri(− cos θ ẑ+ sin θ x̂)ρ + Re−1

∇
2u, (5.1b)

∂tρ + u · ∇ρ = (Re Sc)−1
∇

2ρ, (5.1c)

where, for the experiment considered, θ = 5◦, Re = 440, Ri = 0.25, Sc = 700 (see
§ 3.4.1).
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We first consider the general case of three-dimensional perturbations on a
two-dimensional base flow (3P-2B) in § 5.1 before showing how the equations can
be simplified to the more commonly used study of two-dimensional perturbations on
a one-dimensional base flow (2P-1B) in § 5.2. We discuss our choice of base flow in
§ 5.3.

5.1. Three-dimensional perturbations, two-dimensional base flow (3P-2B)
We assume a steady parallel two-dimensional base flow U ≡ [U(y, z), 0, 0] and
one-dimensional density distribution R(z) (note that (5.1) do not support steady states
with this base flow and R(y, z)). We superimpose three-dimensional infinitesimal
perturbations, so that the full velocity field is

u ≡

U(y, z)
0
0

+ ε
u′(x, y, z, t)
v′(x, y, z, t)
w′(x, y, z, t)

 , (5.2)

and similarly ρ ≡ R(z)+ ερ ′(x, y, z, t), p≡ P(z)+ εp′(x, y, z, t), (|ε| � 1). We assume
that each perturbation variable ψ ′ has periodic wavelike behaviour in x and t,

ψ ′(x, y, z, t)≡ ψ̂(y, z) exp(ikx+ σ t), (5.3)

where the real part is implied. Note the fundamental distinction between this 3P-2B
form and the 2.5P-1B form in (2.2). We tackle the temporal stability problem by
specifying the perturbation wavenumber k> 0∈R and solve the following eigenvalue
problem for the (temporal) growth rate σ ∈C and eigenfunctions ψ̂(y, z) ∈C:

σ

∇2

∇
2

I

v̂ŵ
ρ̂

=
 Lv Lvw Lvρ

Lwv Lw Lwρ
Lρw Lρ

v̂ŵ
ρ̂

 , (5.4)

where

Lv ≡ −ikU∇2
+ ik(∂yyU − ∂zzU)− 2ik∂zU∂z + Re−1

∇
4, (5.5a)

Lw ≡ −ikU∇2
+ ik(∂zzU − ∂yyU)− 2ik∂yU∂y + Re−1

∇
4, (5.5b)

Lvw ≡ 2ik(∂yzU + ∂zU∂y), (5.5c)
Lwv ≡ 2ik(∂yzU + ∂yU∂z), (5.5d)

Lρ ≡ −ikU + (Re Sc)−1
∇

2, (5.5e)
Lvρ ≡ Ri(cos θ ∂yz − ik sin θ ∂y), (5.5f )

Lwρ ≡ Ri{cos θ (∂zz −∇
2)− ik sin θ ∂z}, (5.5g)

Lρw ≡ −∂zR. (5.5h)

Here I is the identity, ∇2
≡ −k2

+ ∂yy + ∂zz and ∇4
≡ k4
+ ∂yyyy + ∂zzzz + 2∂yy∂zz −

2k2(∂yy + ∂zz). The streamwise velocity eigenfunction is then deduced as

û=−
i
k
(∂yv̂ + ∂zŵ). (5.6)

The derivation of (5.4)–(5.6) is given in appendix A.
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We represent the rigid, impermeable walls of the duct by imposing no-slip boundary
conditions for velocity perturbations: v̂= ŵ=0 along y, z=±1. To impose û=0 along
y, z=±1, (5.6) requires that we further impose ∂yv̂=0 along y=±1 and ∂zŵ=0 along
z=±1. Physically, no salt diffuses through the walls of the duct, hence the boundary
conditions for the density perturbation are ∂yρ̂ = 0 along y = ±1 and ∂zρ̂ = 0 along
z=±1.

We solve the eigenvalue problem (5.4) numerically, using second-order finite-
difference discretisation with uniform spacing in both y and z. A resolution of
120× 120 proved to be sufficient for convergence of the results, and required solving
a (3× 1182)× (3× 1182) eigenvalue problem. The results are presented in § 6.1.

5.2. Two-dimensional perturbations, one-dimensional base flow (2P-1B)
To contextualise the results of the formulation introduced above, we will also discuss
the results of the more commonly used 2P-1B analysis. This represents the special
case for which the spanwise velocity perturbation v and all variations in the spanwise
direction y are ignored, so that the full velocity field is

u† ≡

U(z)
0
0

+ ε
u′†(x, z, t)

0
w′†(x, z, t)

 , (5.7)

and ρ† ≡ R(z)+ ερ ′†(x, z, t), p† ≡ P(z)+ εp′†(x, z, t), with all perturbations

ψ ′†(x, z, t)≡ ψ̂†(z) exp(ikx+ σ t). (5.8)

Note that this 2P-1B form corresponds to the special case β = 0 of the 2.5-1B form
in (2.2). Here and below, the subscript/superscript † distinguishes the variables and
operators of the 2P-1B analysis from those of the 3P-2B analysis.

The governing equations for this problem are obtained from (5.4)–(5.6) by removing
v̂ and setting ∂y = 0, i.e.

σ

[
∇

2
†

I

] [
ŵ†
ρ̂†

]
=

[
L†

w L†
wρ

L†
ρw L†

ρ

] [
ŵ†
ρ̂†

]
, (5.9)

where

L†
w ≡ −ikU∇2

† + ik∂zzU + Re−1
∇

4
† , (5.10a)

L†
ρ ≡ −ikU + (Re Sc)−1

∇
2
† , (5.10b)

L†
wρ ≡ Ri{cos θ(∂zz −∇

2
† )− ik sin θ ∂z}, (5.10c)

L†
ρw ≡ −∂zR, (5.10d)

and ∇2
† ≡−k2

+ ∂zz, ∇4
† ≡ k4

+ ∂zzzz−2k2
+ ∂zz. The streamwise velocity eigenfunction is

simply û†=−(i/k)∂zŵ†. As in § 5.1, we discretise (5.9) in z using second-order finite
differences and the boundary conditions at z=±1 are no-slip for ŵ†, û†: ŵ†= ∂zŵ†= 0
and no-flux for ρ̂†: ∂zρ̂† = 0. The results are presented in § 6.2.
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FIGURE 5. Base flow for stability analysis using experimental flow averaged over t ∈
[250, 300] before the phase-averaging window. (a) Streamwise velocity U(y, z) for the
3P-2B analysis. (b) U(z) = U(y = 0, z) for the 2P-1B analysis. (c) Density: in dashed
green, 〈ρ〉x,y,t conditioned at the interface, and in solid black, R(z) the tanh fit with the
mixed layer removed as used for the 3P-2B and 2P-1P analyses (see text for details).

5.3. Experimental base flow

In order to obtain linear stability predictions which are most relevant for comparison
with the CHW observed in the experiment, we use averages of the experimental flow.
To obtain a representative, canonical U(y, z) for the 3P-2B analysis, the streamwise
velocity u was first averaged along x and over 50 ATU before the start of the phase-
averaging window, i.e. for t ∈ [250, 300], and symmetrised about y = 0: U(y, z) ≡
[〈u〉x,t(y, z) + 〈u〉x,t(−y, z)]/2 (figure 5a). The profile used for the 2P-1B analysis is
U(z)≡U(y= 0, z) (figure 5b). Note that since the flow is close to steady, the duration
of 50 ATU for the phase-averaging window is arbitrary and the results were only
weakly sensitive to this choice.

The measured density field was averaged over the same x and t windows, with
an additional averaging over y ∈ [−1, 1] since only the one-dimensional base density
profile R(z) enters the stability problem. Being distorted by a finite-amplitude HW,
the interface does not lie on z = const. Since the linear stability properties of HIs
are known to be sensitive to the thickness of the interface, it is important to ensure
that R(z) has a thickness representative of undistorted local profiles. We achieve this
by conditionally averaging over x and y, i.e. shifting all profiles vertically in order
to align them at the interface before averaging them (shown in dashed green in
figure 5c). Finally, our aim is to elucidate the origin of CHWs (i.e. to identify and
understand the underlying physical mechanisms leading to their observed behaviour)
and not to capture either the initial transient of the experiment or the nonlinear wisp
ejection dynamics, which presumably produces the slightly mixed region in the region
−0.2. z. 0.1 described in § 4.1. We therefore eliminate this mixed region by fitting
a hyperbolic tangent function (shown in solid black) to the lower (unmixed) region
(z6−0.2) of the previously obtained conditional average. The best-fit base profile we
use for the 3P-2B and 2P-1B analyses is R(z) ≡− tanh{(z − z0)/δ} with z0 =−0.22
and δ = 0.047.
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FIGURE 6. Dispersion relation: (a) positive growth rate σr and (b) phase speed c.
3P-2B analysis (thick blue curve) and 2P-1B analysis (green dotted curve). (The blue
star and green square mark the respective theoretically predicted fastest-growing modes.)
Experimental range observed and values used for the phase average are respectively
indicated by grey shading and black dashed lines.

6. Linear stability: predictions, comparison and discussion
6.1. 3P-2B results

6.1.1. Dispersion relation
The dispersion relation σ(k), where σ ≡ σr + iσi (growth rate σr and phase speed

c ≡ −σi/k), is shown for growing modes σr > 0 only in figure 6 (thick blue curve).
We observe a lower wavenumber band of positive growth rate signalling an unstable
mode for the range of wavenumbers k ∈ [0.8, 2.2], as well as another band with
lower growth rate for k ∈ [2.3, 5.0]. The fastest-growing mode (with largest σr) is
predicted to occur at k= 1.32 with growth rate σr = 0.0824 and negative phase speed
c=−0.213. The other mode of instability has maximum growth rate of σr = 0.0192
and positive phase speed c= 0.55. As discussed in § 2, the existence of a faster and a
slower-growing Holmboe modes with different phase speed magnitudes, growth rates
and wavenumbers is typical of asymmetric profiles (where the relatively sharp density
interface and mid-point of the shear layer are not coincident). In the following we
will focus on the faster-growing, leftward-propagating band of instability, which we
identify as a confined Holmboe instability (CHI).

The ranges of wavenumbers and phase speeds observed in the experimental CHW
(figure 4a,b) are shown as grey shading: k ∈ [1.05, 1.80], c ∈ [−0.18, 0.05], and the
phase-average values (k= 1.46, c=−0.078) as black dashed lines. The wavenumber
of the fastest-growing mode compares well with the experimental values, and with the
phase-averaged structure (k = 1.32 versus k = 1.46). The agreement in phase speed
is qualitatively good overall, despite the fastest-growing mode travelling significantly
faster (in magnitude) than the representative phase-average value (c=−0.213 versus
c=−0.078). There is overlap between the unstable branch and the intersection of the
two perpendicular grey boxes in figure 6(b), i.e. the shortest observed CHWs having
k ∈ [1.5, 1.8] and moving at the highest speeds c∈ [−0.18,−0.15] are consistent with
the slower-growing modes of the CHI.

A variety of causes can be invoked for the discrepancy in phase speed.

(i) The base velocity (i.e. with ∂xU(y, z) = 0) is only an approximation to the
slowly developing, non-parallel experimental flow, and such streamwise variation
naturally affects the wavelength and speed of HWs.
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(ii) The base flow used in the stability calculation is a spatio-temporal average from
the unsteady experimental flow that contains the wave. The most obvious effects
of this wave on the density profile have been partially eliminated in determining
R(z), but not in determining U(y, z). It is not a priori obvious that this intuitive
choice of base flow should correctly predict the linear instability that grows to
finite amplitude and hence is observed in the experimental flow.

(iii) The experimental flow is not the result of an initial value problem. The nonlinear
wave state selected by the flow does not have to result from the saturation of a
monochromatic instability (the fastest growing mode), and there is therefore no
reason to think that the nonlinear phase speed should match closely the phase
speed of the fastest-growing mode.

To summarise, the analysis of the dispersion relation reveals reasonably good
agreement between the predicted CHI and the observed CHW, despite the challenge
of inferring the nonlinear properties of our flow from a linear analysis. In the next
section we focus on comparing the three-dimensional structure of the fastest-growing
CHI with the CHW.

6.1.2. Eigenfunctions
We turn to the three-dimensional structure of the eigenfunction of the fastest-

growing CHI. To provide meaningful comparison with experimental data, the vorticity
eigenfunction is added to the base flow vorticity

ω∗y ≡ ∂zU + α Re{ω̂y(y, z) exp(ikx+ φ)}, (6.1)

where the superscript ∗ denotes this reconstruction and α, φ are constants to be
determined. The phase parameter φ was simply chosen to compare directly with
the phase of figure 4. The scaling parameter α contains the information relative to
the finite amplitude of the wave observed in the experiment. It was determined by
imposing the condition that the volume-averaged root mean square (r.m.s.) of the
wave perturbation in the reconstructed vorticity ω∗y − ∂zU is equal to that of the wave
perturbation in the phase-averaged vorticity 〈ωy〉 − ∂zU, such that

〈(ω∗y − ∂zU)rms
〉x,y,z =

α

2

√
〈ω̂2

y〉y,z = 〈(〈ωy〉 − ∂zU)rms
〉x,y,z = 0.31, (6.2)

where r.m.s. denotes the operator ψ rms(x, y, z)≡
√
(ψ − 〈ψ〉x,y,z)2. The first equality is

a simple consequence of the definition in (6.1), the second equality is our condition
and the third is the experimentally measured value.

The isosurface ω∗y = −2.5 of the resulting reconstruction for two wavelengths is
shown in figure 7. A direct comparison with the phase average 〈ωy〉 = −2.5 of
figure 4(c,d) reveals excellent agreement between the three-dimensional structure of
the CHI and the CHW. The tilt of the structure with respect to the duct axis is
8◦ (maximum angle at the inflection point), slightly smaller than the 10◦ obtained
from the experimental phase average. The general geometry, including the detail
of the triple connectedness of the head-to-tail connection, is faithfully reproduced.
Supplementary movie 3 offers a panoramic visualisation of the vorticity isosurface of
the CHW and CHI, allowing for more detailed comparison.

To reveal the structure of the wave further and to allow for more detailed
comparison, we build, by analogy with (6.1), a more complete picture of the
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FIGURE 7. Fastest-growing mode of the CHI: isosurface ω∗y = −2.5 (see (6.1) for
definition of ω∗y ). We show a double wavelength under two different views (a) and (b) for
direct comparison with figures 4(c) and (d), respectively. As in those figures, the z axis
is stretched by a factor of 3 and only z ∈ [−0.5, 0.3] is shown for clearer visualisation.

wave field by considering the following variables associated with the fastest-growing
mode,

ρ∗ ≡ R(z)+ α Re{ρ̂(y, z) exp(ikx+ φ)}, (6.3a)
u∗ ≡ U(y, z)+ α Re{û(y, z) exp(ikx+ φ)}, (6.3b)
v∗ ≡ α Re{v̂(y, z) exp(ikx+ φ)}, (6.3c)
w∗ ≡ α Re{ŵ(y, z) exp(ikx+ φ)}, (6.3d)

using the previously determined value of α. We plot these wave variables in planar
cuts in figure 8 (experimentally observed CHW) and figure 9 (theoretically predicted
fastest-growing CHI). These figures combine views in the vertical mid-plane y = 0,
horizontal interfacial planes (z = −0.22 and z = −0.11 for density and velocity,
respectively) and one cross-sectional plane for ωy, ρ, u, v,w for a single wavelength.

There is good agreement between the observed and predicted structure in each of
these variables. Even though only the magnitude of the perturbation vorticity field was
matched with the experimental value, the other variables in figure 9 have amplitudes
very close to those in figure 8 (colour bars have the same limits in both figures and
black contours are the same). The spanwise and vertical velocities v and w are small
relative to the streamwise velocity, with a maximum of approximately 6 % of the
maximum of u. The quantitative and qualitative agreement extends to a number of
interesting features as follows.

(i) The sheared vertical pattern in w, typical of Holmboe modes, is clearly
identifiable in m of figures 8 and 9.

(ii) The horizontal chevron pattern identified earlier in the three-dimensional
visualisation of the vorticity ωy is again visible in b (highlighted by the contours).
It is also found in the streamwise velocity u (h), where it contributes the main
signal in this interfacial plane where the mean velocity is zero.

(iii) The relative phase of the density ρ and vorticity ωy reveals that the ‘head’ of the
vorticity structure is shifted slightly left of the top of the upward-pointing density
cusp, while its ‘body’ appears to rest on the sloping interface of the cusp for
which ∂xρ < 0 (a,b,d,e). This gradient is responsible for the baroclinic production
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of negative vorticity (reinforcing the negative mean shear). The density crests
and troughs have a distinct convex structure (their vertical displacement peaks
in the middle of the duct y= 0 and decays near the boundaries y=±1), making
the gradients ∂xρ larger in the middle of the duct, presumably responsible for
confinement of the vorticity and the nonlinear maintenance of the CHW at finite
amplitude.

(iv) The variables clearly have different symmetries about the mid-plane y= 0, as is
apparent in e,h,k,n. The structure of the CHI correctly predicts that the density ρ̂,
streamwise velocity perturbation û and vertical velocity perturbation ŵ are even
functions about this mid-plane, while the spanwise velocity perturbation v̂ is an
odd function, implying that the CHI is of varicose rather than sinuous form. It is
important to stress that we did not impose these symmetries; they arose naturally
as solutions to the 3P-2B stability eigenvalue problem. Furthermore, and perhaps
unsurprisingly, the 2.5P-1B description of a normal mode travelling at an angle as
described in § 2.3.3 is not appropriate to describe this structure, as the spanwise
periodicity of v̂ is clearly different from the other perturbation quantities û, ŵ
and ρ̂. The odd symmetry of v̂ seems to be inherently related (for reasons which
are not yet fully understood) to the spanwise boundary conditions v̂ = ∂yv̂ = 0
imposed by no-slip and incompressibility at the duct walls at y = ±1. Indeed,
a very similar eigenstructure was observed when we solved the 3P-2B problem
with these boundary conditions for the spanwise uniform base flow U(z). (For
reasons of brevity we do not discuss this problem further here.)

(v) A consequence of the specific symmetry of the CHW/CHI is the horizontal,
in-plane divergence and convergence of v (k,l) around the upward density crest
(e, f ). Due to the relatively large stratification (Ri = 1/4), the horizontal flow
around the density crest is energetically preferred to the vertical flow above it.
The convex structure of the density crest allows the flow to move around it
horizontally. An important consequence is that it gives rise to relatively large
spanwise gradients |∂yv|, positive in the centre of the duct y ∈ [−0.5, 0.5]
and negative near the boundaries |y| ∈ [0.5, 1]. These gradients have a vortex
stretching effect on ωy through the term ωy∂yv, producing negative vorticity in
the centre (reinforcing the mean shear), and positive vorticity near the boundaries
(weakening the mean shear). They could play an important role in explaining
the spanwise confinement (largest values of |ωy| in the centre) and maintenance
of the CHW at finite amplitude.

6.2. 2P-1B results
6.2.1. Dispersion relation

The dispersion relation of the 2P-1B analysis in shown in figure 6 by the green
dotted curve. The fastest-growing ‘traditional’ two-dimensional HI has a growth rate
higher than its three-dimensional confined counterpart CHI, at σr = 0.173, which is
achieved at a slightly larger wavenumber k = 1.52, well within the experimentally
range observed.

This mode is almost stationary, with a phase speed of c = 0.002. This positive
value is slightly surprising, as we are dealing with an originally leftward-propagating
Holmboe mode. Further inspection reveals that this is an effect of the positive tilt
angle θ = 5◦ of the duct. Solving with θ = 0◦ gives σr = 0.215, c = −0.045, and
we found that a small positive angle decreases the growth rate and increases the
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FIGURE 8. Experimental phase-averaged spanwise vorticity 〈ωy〉 (a–c), density 〈ρ〉 (d–f ),
and velocity components 〈u〉 (g–i), 〈v〉 ( j–l), 〈w〉 (m–o). The panels show the vertical
mid-plane y = 0 (a,d,g,j,m), horizontal interfacial plane (z = −0.11 for velocity and z =
−0.22 for density) (b,e,h,k,n) and a cross-sectional plane x = 0.72 (c, f,i,l,o). The colour
bars are the same for a given variable. Ten black contours equally spaced across the range
of the colour bar are also shown, except for (b) and (h) where the ten contours are across
[−4, −1] and [−0.25, 0.25] respectively, to highlight features of interest. Dashed lines
represent the planes in the other panels.

phase speed to positive values. These effects are not thoroughly understood, but the
behaviour of these linear, inherently two-dimensional modes is not of central interest
to our study. In contrast, the wavenumber and phase speed of the CHI predicted by
the inherently three-dimensional 3P-2B analysis are not sensitive to the angle. For
example, setting θ = 0◦ increases the growth rate slightly to σ = 0.10 > 0.0824 but
similar k and c are predicted.
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FIGURE 9. Fastest-growing CHI of the 3P-2B linear stability analysis superimposed on the
base flow (see (6.1), (6.2) and (6.3) for definitions of the variables). All panels plotted as
in figure 8 for direct comparison.

6.2.2. Eigenfunctions
By analogy with the approach followed in § 6.1.2, the one-dimensional vorticity

eigenfunction of the fastest-growing mode was added to the one-dimensional base flow
such that

ω∗y† ≡ ∂zU + α† Re{ω̂y†(z) exp(ikx+ φ†)}, (6.4)

where the amplitude α† was determined in the same fashion as for the 3P-2B
analysis, i.e. by matching the r.m.s. of the vorticity eigenfunction to the experimental
perturbation in the mid-plane y= 0:

〈(ω∗y† − ∂zU)rms
〉x,z = 〈(〈ωy〉 − ∂zU)rms(y= 0)〉x,z = 0.58. (6.5)

The other flow variables ρ∗† , u∗†, w∗† were then obtained using α† similarly to (6.3a),
(6.3b), (6.3d) and are shown with ω∗y† in figure 10.
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FIGURE 10. Fastest-growing mode of the 2P-1B analysis (see text for definition of the
variables). Note the higher colour bar limits of ŵ when comparing with figures 8 and 9.
As in those previous figures, ten equally spaced black contours span the range of the
colour bar for each panel.

From figure 10(a), it appears that the ‘head’ of the distinctive vorticity structure
observed in the experimental CHW (figure 8a) and predicted by the CHI (figure 9a)
is lacking. The vertical velocity pattern in figure 10(d) has a similar appearance to
figures 8(m) and 9(m) but has a larger amplitude (approximately 60 % larger, requiring
different colour bar limits of ±0.1 instead of the previously used ±0.06). The relative
magnitude of the vertical velocity w versus the spanwise vorticity ωy (and hence the
streamwise velocity u) in the 2P-1B analysis is therefore different from the equivalent
relative magnitude in the 3P-2B analysis and compares poorly with the experimental
observations. Moreover, this analysis is, by construction, incapable of reproducing the
three-dimensional structure of the CHW discussed in § 6.1.2, which we have shown
depends on the spanwise coordinate y and spanwise velocity v.

6.3. Possible relevance to geophysical field observations
The distinctive tilde shape of the CHW and CHI is reminiscent of the field
observations of Geyer et al. (2010) in the continuously forced stratified shear
flow of the Connecticut River estuary. Through the combined use of acoustic
backscattering and high frequency conductivity sensors around the sharp density
interface (pycnocline), they observed a near-periodic signal of large sheared
tilde-shaped regions of high density gradients with average wavelength around 10 m
and height around 1 m (see their figures 2b and 3b, where the z axis has been
stretched by factors of 12 and 6, respectively). Those structures are oriented in the
same direction as our vorticity structures (the mean shear has the same direction in
both our work and their work) and we estimate their maximum angle at the inflection
point around 5◦–6◦, somewhat smaller than that of the CHW (10◦) and CHI (8◦).
They identified these regions as the braids connecting Kelvin–Helmholtz billows, and
argued convincingly, in particular from the conductivity measurements, that these
inclined ‘braids’ were the locations of the most vigorous turbulent motions, and
that the large density gradients resulted from turbulent mixing within the braids, an
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inherently high-Re phenomenon which was unlikely to be observed experimentally or
numerically. Mashayek & Peltier (2012a,b) identified secondary instabilities localised
in the braid regions connecting Kelvin–Helmholtz billows as a possible explanation
for the observations of Geyer et al. (2010). Here we have identified a primary
instability, the CHI, whose finite-amplitude manifestation is also consistent with these
observations. Since the background profiles of the estuary flow are not known with
sufficient accuracy to distinguish between flows susceptible to the Holmboe instability
or flows susceptible to the Rayleigh instability, we cannot eliminate either of these
explanations at this stage. However, unlike the simulated secondary braid instabilities
of Mashayek & Peltier (2012a,b), which occur as a transient event in an initial value
problem, the observed CHWs occur in a flow in which the forcing is maintained in
time as is the case in the estuary flow.

Preliminary experimental observations of flows in the stratified inclined duct in the
intermittently turbulent and fully turbulent regimes revealed a variety of smaller-scale,
shorter-lived vorticity structures whose appearance resembles that of the CHW. In
particular, two-dimensional (y = 0) particle image velocimetry measurements at high
temporal resolution in the intermittent regime (θ = 4◦, Re= 940 – not reported here)
strongly suggest that those small-scale structures appear to come from the cascade
break-down of larger-scale structures akin to the CHW through successive stretching
and splitting.

We, therefore, argue that it is at least possible that the angled structures we
observed experimentally (CHW) and predicted theoretically (CHI), through their
local coherent intensification of spanwise vorticity due to the spanwise confinement,
also have the potential to leave a ‘signature’ at higher Re, even when incoherent,
turbulent small-scale motions have been triggered. In particular, in the spirit of the
dynamical systems approach discussed in the introduction, we conjecture that the
CHW might be sufficiently robust, even at substantially higher Re, to constitute an
alternative nucleation site for secondary instabilities and hence turbulent break-down,
distinct from the strained braid-like region that occurs between finite-amplitude
Kelvin–Helmholtz billows proposed by Corcos & Sherman (1976) and invoked by
Geyer et al. (2010).

7. Conclusions
7.1. Summary

We have investigated the structure and origin of a ‘confined Holmboe wave’ (CHW), a
finite-amplitude, nonlinear wave at the sharp density interface of a sustained stratified
shear flow.

The stratified inclined duct experiment (figure 1) sets up an exchange flow in an
inclined square duct connecting two reservoirs containing fluids of different densities.
The flow is steadily forced by gravity for hundreds of advective time units, and can
maintain relatively high levels of dissipation, as measured by the buoyancy Reynolds
number Reb (see (2.1)). By setting the duct tilt angle θ and the density difference 1ρ
between the two reservoirs connected by the duct (and hence the Reynolds number Re,
see (3.4)), different flow states are observed. For 20 . Re sin θ . 50, a coherent wave
state features robust, propagating symmetric or asymmetric Holmboe waves (HWs),
confined within the square cross-section of the duct. In order to characterise the
structure of CHWs, we focused on the simpler case of upward-pointing, asymmetric
HWs found in a flow in which θ = 5◦ and Re= 440.

We employed a novel time-resolved, near-instantaneous measurement technique
of the three-component velocity field (u, v, w) (stereo particle image velocimetry)
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and density field ρ (planar laser induced fluorescence) simultaneously over a
three-dimensional volume (see figures 2, 3 and supplementary movies 1, 2). This
allowed us to reveal the spatio-temporal behaviour of this CHW (figure 4a,b)
by quantifying its range of wavelengths λ ∈ [3.5, 6.0], or wavenumbers k ∈
[1.05, 1.80] (non-dimensionalised by half the duct height) and phase speeds
c ∈ [−0, 18, 0.05] (non-dimensionalised by the layer peak velocity). We first focused
on the three-dimensional structure of its spanwise vorticity, where the wave field
periodically reinforces and weakens the mean shear to form a pattern of inclined,
distorted, prolate spheroids with a wide ‘body’ and a narrower ‘head’ (figure 3).
Using phase-averaging we extracted a typical, robust representation of the CHW and
characterised its salient features (figure 4c,d).

To understand the origin (i.e. the underlying physical mechanisms that lead to the
observed behaviour) of this apparently previously unreported structure, we undertook a
linear stability analysis. We studied three-dimensional velocity (u′, v′,w′) and density
ρ ′ perturbations having two-dimensional, cross-sectional eigenfunctions of y, z and a
normal streamwise mode in x: ψ ′ ≡ ψ̂(y, z) exp(ikx + σ t). Those perturbations were
analysed on the two-dimensional (y, z, i.e. x and t-averaged) experimental mean flow
(figure 5) and were confined with the appropriate boundary conditions in the square
duct. This computation revealed the existence of a ‘confined Holmboe instability’
(CHI) with wavenumber band k ∈ [0.8, 2.2], phase speed band c ∈ [−0.35, −0.08]
and fastest-growing mode k = 1.32, c = −0.21, consistent with the properties of
the CHW (figure 6). By matching the volume-averaged root-mean-square (r.m.s.)
of the spanwise vorticity eigenfunction to the experimentally observed value, we
reconstructed the three-dimensional structure of the CHI to compare it with the CHW.
The side-by-side comparisons of the vorticity isosurfaces (figures 4c,d and 7a,b as
well as supplementary movie 3) and slices of flow variables ωy, ρ, u, v, w (figures 8
and 9) show excellent agreement between the finite-amplitude wave and the predicted
instability. These views revealed further details including the spanwise mid-duct
localisation, the convexity of the density crests and troughs, the resulting localisation
of the baroclinic production of vorticity, as well as the divergence/convergence of the
flow around density crests, causing vortex stretching. Such localisation and stretching
are inherent to the spanwise confinement and are believed to play a critical role in
the dynamics of the CHI/CHW.

We also compared these results with those of the more commonly used stability
analysis of two-dimensional perturbations (u′, w′, ρ ′) with an associated one-
dimensional eigenfunction in z and a streamwise normal mode in x of the form
ψ ′† ≡ ψ̂†(z) exp(ikx + σ t) on the one-dimensional, mid-duct base flow. Despite the
dispersion relation showing some agreement (figure 6), the two-dimensional predicted
structure (figure 10) compares less favourably with the experimental results and fails,
by construction, to capture any spanwise confinement and behaviour. Crucially, the
spanwise velocity perturbation v′ of the CHI is an odd function of the spanwise y
coordinate, possessing a different spanwise periodicity from the other perturbation
variables. This key property cannot be captured by such purely one-dimensional
eigenfunctions, or even by normal modes ‘propagating at an angle’ to the base flow.

Finally, the coherent structure associated with the CHW bears a passing resemblance
to the distinctive angled structures observed in the Connecticut River Estuary by Geyer
et al. (2010). While perhaps fortuitous, this resemblance, as well as preliminary
experimental results in more turbulent flows not reported here, lead us to conjecture
that the angled coherent structures of the CHW may retain at least a partial signature
in higher-Re flows with lateral confinement and sharp density gradients.
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7.2. Future directions
Our results raise a number of questions that may stimulate future research.

(i) How generic is the effect of confinement on shear flow instabilities? This paper
focused on an asymmetric Holmboe wave found in a particular laboratory flow,
and four additional experiments with similar parameters confirmed that the
qualitative results outlined in this paper are robust. Asymmetric HWs might be
more generic than symmetric HWs due to some inevitable degree of asymmetry
present in environmental flows; however, they introduce another non-dimensional
parameter (the degree of asymmetry) to the problem. More work is needed to
investigate the effect of confinement in the parameter space spanned by HWs.
Varying the level of confinement by considering rectangular ducts or other
geometries would add further complexity but may be worth pursuing. Moreover,
little work has been done to study the effect of confinement on other instabilities,
such as the so-called Kelvin–Helmholtz instability. As outlined in our review
in § 2, laboratory observations in confined geometries are often compared to
stability analyses that ignore confinement, and numerical simulations usually
impose periodic boundary conditions in the spanwise direction. The results
presented here, as well as other preliminary results, suggest that the properties
of three-dimensional confined waves may differ significantly from those predicted
by such analyses.

(ii) How is the amplitude of the CHW determined and sustained in time? The
quasi-steady forcing provided by the stratified inclined duct experiment sustains
the observed CHW at an approximately constant amplitude for hundreds
of advective time units. We determined this amplitude by computing the
volume-averaged r.m.s. of the phase-averaged vorticity perturbation, and used it
to compare with the most unstable linear eigenfunction. We did not address the
value of this amplitude, which is selected through inherently nonlinear processes.
By examining the structure of the CHW, we suggested possible nonlinear
vorticity dynamics mechanisms (which rely on confinement) to sustain this
wave (i.e. baroclinicity and vortex stretching) but their details and quantitative
impact fall outside the scope of this paper. The relatively well-defined parameter
range for which the CHW is observed is also particularly interesting. The wave
studied here at θ = 5◦, Re = 440 would be replaced by intermittent turbulence
at slightly higher angles θ & 6◦ and/or values of Re & 600. This suggests that
the amplitude of this wave results from a fine-tuning of energy input (through
θ ) and dissipation (through Re), and that the dissipation that the CHW structure
can generate through higher amplitudes is no longer enough beyond a certain
threshold in the θ–Re plane, at which it must bifurcate to more dissipative,
intermittently turbulent, structures (Meyer & Linden 2014; Lefauve 2018).

(iii) Is the coherent structure of the CHW dynamically relevant to more turbulent
flows? Does this structure generically emerge in miniature around the fine-scale
density gradients of high Reynolds number and high Schmidt number confined
flows such as estuarine flows discussed above? Can the large-scale coherent
intensification of vorticity catalyse the formation of nucleation sites for secondary
instabilities and turbulent break-down? These considerations are central to the
dynamical systems modelling mentioned in § 1, using a reduced set of exact
coherent states (ECSs), i.e. exact (yet unstable) nonlinear solutions of the
Navier–Stokes equations. Recently, Lucas et al. (2017) successfully converged
two ECSs from direct numerical simulations of body-forced, horizontally
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sheared stratified turbulence in a triply periodic domain. These ECSs were
found to be striking representations of the mean flow and could account for the
organisation of the stratified turbulence into inclined shear layers. By constructing
a bifurcation diagram, they demonstrated that the ECSs originate from a sequence
of instabilities, including the stratified linear instability of the base flow. Our
results suggest that the experimental long-lived coherent structure of the CHW
originates from the linear CHI, but it is still unknown whether it is the signature
of a relatively robust ECS that would carry its dynamical significance into
confined stratified turbulent flows at geophysically relevant scales. We believe
that this question warrants further investigation.
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Appendix A. Derivation of the 3P-2B eigenvalue problem
We start by combining the divergence of the linearised momentum equation (5.1b)

and the linearised continuity equation (5.1a) to obtain a diagnostic equation for the
pressure perturbation:

−∇
2p′ = 2(∂yU∂xv

′
+ ∂zU∂xw′)+ Ri(cos θ ∂zρ

′
− sin θ ∂xρ

′). (A 1)

We proceed to use (A 1) in combination with the Laplacian of the linearised
momentum equation, in order to eliminate p′. This reduces the dimensionality of
our system by increasing its order. The resulting linear system (A 2) fully describes
the time evolution of the perturbations using prognostic equations (A 2b)–(A 2d) for
two velocity variables v′ and w′ and density ρ ′. The streamwise velocity perturbation
u′ is recovered independently by continuity (A 2a):

∂xu′ = −∂yv
′
− ∂zw′, (A 2a)

{(∂t +U∂x)∇
2
+ (∂zzU − ∂yyU)∂x + 2∂zU∂xz − Re−1

∇
4
}v′

= 2(∂yzU∂x + ∂zU∂xy)w′

+Ri(cos θ ∂yz − sin θ ∂xy)ρ
′, (A 2b)

{(∂t +U∂x)∇
2
+ (∂yyU − ∂zzU)∂x + 2∂yU∂xy − Re−1

∇
4
}w′

= 2(∂yzU∂x + ∂yU∂xz)v
′

+Ri{− cos θ (∂xx + ∂yy)− sin θ ∂xz}ρ
′, (A 2c)

{∂t +U∂x − (Re Sc)−1
∇

2
}ρ ′ =−∂zR w′. (A 2d)
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We now transform the differential operators in x and t using our ansatz (5.3)
(∂xn = (ik)n, ∂t = σ ), reducing (A 2b)–(A 2d) to the eigenvalue problem (5.4) and
(A 2a) to (5.6).
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