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On the near-wall instability of oblique flow over a
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The instability of a shear flow passing over a wavy wall with wave crests not perpendicular
to the flow direction is investigated. The friction Reynolds number for the flow is large and
the wave amplitude scaled on the wavelength is small compared with the viscous wall
layer. The instability takes the form of a streamwise vortex of wavelength comparable
to the viscous wall layer in which the basic flow adjusts to the presence of the wall.
For a given wall amplitude, the instability considered is the first one to arise as the
Reynolds number is increased and modes of wavelength comparable to the viscous layer
grow much faster than modes of wavelength comparable to the wall wavelength. The
instability is not driven by centrifugal or viscous effects but is a novel kind of cross-flow
vortex instability associated with a spatially periodic flow; the existence of the instability
is associated with the orientation of the wave crests. The instability is investigated for
wavelengths comparable to the depth of the viscous wall layer; the limiting cases of
large and small wavelengths are investigated asymptotically. At small wavenumbers and
roughness heights the instability connects with disturbances of wavelength comparable to
the wall wavelength. At high wavenumbers and roughness heights a new structure emerges
and the disturbance moves away from the wall, that structure takes on a self-similar
form with progressively faster variations in the streamwise and spanwise directions as
the roughness height increases.

Key words: transition to turbulence, shear-flow instability, shear layer turbulence

1. Introduction

Our concern is with the interaction of high speed shear flows with wavy walls of small
amplitude. The wall waviness is used as a model of wall roughness. The wall wavelength
is taken as the length scale in the problem and is assumed small compared with the shear
flow’s length scale in the wall-normal direction. Therefore, we can assume without any
loss of generality that the shear flow has a velocity increasing linearly with distance from
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the wall. We note that here the waviness is the cause of the instability rather than the
enabler as in receptivity theory where streamwise non-uniformities provide the seed for
the initiation of existing instabilities; see for example Goldstein (1983) and Ruban (1984).

Interest in the understanding of instabilities associated with wall waviness comes from
a number of problems of practical importance. In aerodynamics, dating back to the
remarkable experiments of Fage (1943), there has been considerable interest in how wall
waviness associated with in-flight stresses or manufacturing imperfections can induce
transition to turbulence. In the heat transfer community wavy walls have long been used
as an aid to mixing; see for example Kandlikar (2008). In geophysics there is of course
considerable interest in flows over sand ripples and dunes; see Charru, Andreotti &
Claudin (2013).

Numerical investigations by Floryan (2002, 2003, 2015) in channel flows of periodically
varying depth in the streamwise direction show that streamwise vortex instabilities can be
excited. Results for Couette and Poiseuille flow are given by solving the linear stability
equations about a base state found by solving the Navier Stokes equations numerically.
Calculations are restricted to relatively small values of the wall amplitude. The source of
the instability is said by Floryan to be centrifugal effects. In pipe flows Cotrell, McFadden
& Alder (2008) and Loh & Blackburn (2011) investigate streamwise vortex instabilities
caused by wall waviness and argue that flow separation is necessary for instability to occur.
The earlier work by Cotrell et al. (2008) concentrates on axisymmetric perturbations but
Loh & Blackburn (2011) show that, in fact, non-axisymmetric disturbances are the most
unstable. As is the case for the work of Floryan, the instability problem is considered
within the framework of the Navier Stokes equations linearised around a base state
calculated numerically. Calculations for pipes and channels show that beyond a small
critical amplitude the Reynolds number required for instability increases monotonically
as the amplitude decreases. Limited results are known for amplitudes greater than the
critical value but the increase in the critical Reynolds number found for larger amplitudes
is usually attributed to flow separation.

In a series of papers Hall (2020, 2021a,b, 2022) showed that the streamwise vortex
instability in flows over wavy walls is accurately described by vortex–wave interaction
theory; henceforth VWI for short. The instability is found to be caused by the Reynolds
stresses associated with the wall-induced flow waviness, moreover, it is shown that
centrifugal effects are not the cause of instability and flow separation is not necessary
for instability. Hall (2022) showed that the instability is most easily described using the
so-called square vortex VWI equations first formulated by Hall & Smith (1991). Related
ideas in the context of Langmuir circulations have been discussed by a number of authors;
see for example Phillips (2002). In Hall & Smith (1991) the waviness is associated with a
downstream travelling neutrally stable wave disturbance to the streak part of a streamwise
vortex. Here, waviness of the flow is driven by the wavy wall. The self-interaction of the
wave with itself reinforces the roll part of the streamwise vortex which then sustains the
streak through the lift-up effect. The linear instability theory of Hall (2020) is shown in
Hall (2022) to be trivially recovered from a linearised form of the square vortex interaction
equations described in Hall (2022). Hereafter, we refer to Hall (2020, 2022) as H1 and H2,
respectively.

In a related paper Hall & Ozcakir (2021) consider Hagen–Poiseuille flow in a
corrugated pipe and describe the growth of streamwise vortices in that flow. The
extension to non-parallel flows is considered in Hall (2021b), where it is shown that, even
though the instability is not caused by centrifugal effects, wavy-wall-induced streamwise
vortices satisfy the zero Görtler number non-parallel Görtler vortex equations derived by
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Near-wall length scale vortex instabilities

Hall (1983). However, the instability is driven by a wall condition induced by the wave
Reynolds stresses rather than centrifugal effects. The non-parallel nature of the problem
leads to the same kind of issues present in the Görtler problem with the concept of a unique
growth rate or neutral curve not being tenable.

The outcome of the investigations by Hall and co-workers is that, in the different
problems, the wall amplitude needed for instability behaves like [Rγ1

√
log R]−1, where

R is the Reynolds number and the constant γ1 depends on the particular problem
under investigation. Previous numerical studies of the problem used curve fits to predict
an amplitude–Reynolds number dependence of similar form but crucially without the
logarithmic term so that the estimated values of γ1 are incorrect. It should be noted
that, for a given small amplitude of the wall waviness, the flow first becomes unstable
to streamwise vortices in the VWI regime. But of course in some cases, for example
plane Poiseuille flow, Tollmien–Schlichting waves might destabilise the flow before the
streamwise vortex occurs. The wall amplitude at which waviness induces streamwise
vortices is small compared with R−1/3, which is the size at which the basic flow becomes
interactive; see Smith (1982). This suggests that, if the flow environment is noisy enough
to stimulate the streamwise vortex instability, the interactive regime might not be attainable
in practice.

Apart from Hall & Ozcakir (2021) and H2, research has focused completely on the
situation when the wave crests of the wall are perpendicular or parallel to the flow
direction. In H2, the problem of crests no longer perpendicular to the flow direction
is considered in the context of unbounded Couette flow or finite Couette flow. In that
configuration it turns out that, as the vortex wavenumber becomes large, viscous effects
do not stabilise the flow and the growth rate of disturbances increases quadratically with
the vortex wavenumber. Moreover, for flows in channels with waves of wavelength less
than a critical value, the most unstable configuration corresponds to the latter short-wave
limit. Our aim in the present paper is to see how that instability adjusts as new effects
come into play as its wavelength decreases. It is appropriate to do so for an unbounded
shear flow since the small wavenumber limit of the finite problem given in H2 shows that
when it is the most unstable it localises near the lower wall.

The procedure adopted in the rest of the paper is as follows: in § 2 a very brief recap
of salient results from H2 is given. Then, the equations governing the streamwise vortex
instability of a uniform shear flow over a wavy wall are formulated for the case when the
wave amplitude is small compared with the viscous wall layer where the vortex is trapped.
In § 3 the linear instability equations are solved and results presented. In §§ 4 and 5 the
low and high wavenumber regimes are investigated. Finally, in § 6 some conclusions are
drawn.

2. The instability equations

Consider a shear flow of an incompressible viscous fluid above a wavy wall of wavelength
b having crests inclined at an angle π/2 − θ to the main flow direction; see figure 1.
The amplitude of the undulations is taken to be 2εb where ε is small, a more precise
size for ε will be given later. We suppose that when ε = 0 the flow is predominantly in
the x∗ direction with respect to a Cartesian coordinate system (x∗, y∗, z∗). We use the
wall wavelength as a typical length scale and so define dimensionless variables (x, y, z) =
(x∗, y∗, z∗)b−1.

We define the friction velocity us =
√
νu∗

b
′(0), where ν is the kinematic viscosity

and u∗
b( y∗) is the flow in the x∗ direction when ε = 0. We take U∗ = u∗

b
′(0)b as the
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b

b

2ε

y
x
z

Main flow direction

θ

Figure 1. The basic configuration with a uniform shear flow u = y in the x direction over a rigid obliquely
orientated wavy wall.

unperturbed velocity a distance b from the mean wall position as a typical velocity and
define the Reynolds number

R = U∗b
ν

= u2
s b2

ν2 = R2
f , (2.1)

where Rf is the friction Reynolds number. The wavelength b of the wall is assumed to be
small compared with a typical length scale of the flow in the wall-normal direction so that
the basic state with ε = 0 can be taken to be a uniform shear flow in the x direction. We
scale time on 1/u∗

b
′(0) so that the dimensionless equations of motion are

Du
Dt

= −∇p + 1
R

∇2u, (2.2)

∇ · u = 0. (2.3)

Here, p is the pressure and the Reynolds number is assumed large. In dimensionless
variables the wall is defined by

y = 2ε cos[αx + βz], (2.4)

and since we have used the wall wavelength as a typical length scale we can take α2 +
β2 = 1. At the wall the fluid velocity must vanish and far from the wall the flow at leading
order is a uniform shear flow in the x direction. Thus, for y � 1, we require that u ∼
( y, 0, 0), see figure 1 for a sketch of the configuration. Note that the problem formulated
above applies to any predominantly uni-directional shear flow over a wavy wall with the
global properties of the unperturbed state entering only through the friction velocity. The
relationship of the problem formulated above to the finite problem where an upper wall
exists will be commented on later.

2.1. Vortex wavelengths comparable to wall wavelength
Let us summarise the key relevant results from H2 where streamwise vortex disturbances
of wavelength comparable to the wall wavelength are considered. In that case the
instability is associated with a VWI with the wave forced by the wavy boundary. The
disturbance field then splits into a two layer structure with a thin viscous layer and
an O(1) region adjacent to the wall. Away from the wall there is a streamwise vortex
with wavelength 2π/K driven by a VWI process in the wall layer. If we define the
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Figure 2. (a) Values of Γ0 as a function of K for different values of the wavenumber α.Note that α = 1, β = 0
corresponds to the aligned case. (b) The growth rate σ0 as a function of K for different values of α when
Γ0 = 70.

amplitude parameter

Γ0 = ε2R4/3 log R, (2.5)

then the neutral value of Γ0 for a disturbance with wavenumber K is given by (3.5)
of H2. If the vortex is not neutrally stable so that its streamwise velocity component
∼ u0( y) exp(iKz + σ0t) then (3.5) of H2 becomes

Γ0 = 2([1 + K2]2 − 4β2K2)
√
σ0 + K2(

√
σ0 + K2 + K)

Ai′2(0)α4/3K2[(1 + K2)(10 + 9β2K2)− 38β2K2]
+ · · · , (2.6)

where α2 + β2 = 1 and Ai is the Airy function. For given values of K, Γ0 (2.6) is a
quadratic equation for

√
σ0 + K2 which can be solved to give the growth rate σ0.

Figure 2(a) shows neutral values of Γ0 as a function of K for a range of values of α. Note
that α = 1 corresponds to the aligned case where the wave crests are perpendicular to the
basic flow. We observe that for K � 1 the right-hand side of (2.6) with σ0 = 0 tends to
a constant so that, for any non-zero value of β, instability is possible for 0 < K < ∞ for
a large enough value of Γ0. In fact, the approach to that constant is from above or below
depending on whether β is greater or less than βc = (47 − √

769)/72 ∼ 0.53. Thus, for
the unbounded problem, instability first occurs as ε2R4/3 log R is increased at a finite value
of K. Note that for the finite problem instability can occur first as K → ∞; see H2.

Figure 2(a) shows the growth rate σ0 as a function of K for the same range of values of α
with Γ0 = 70. We see that the aligned case α = 1 gives instability over only a finite range
of K but α = 0.4, 0.6, 0.8 are unstable for all K. The case α = 0.2 is unstable apart from a
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small interval near K = 1. We see that for small K the growth rate σ0 ∼ K whilst for K �
1 we find σ0 ∼ K2 so that the largest growth rates always correspond to the short-wave
limit. The primary aim of the present paper is to determine the fate of the latter short-wave
instability as K increases. In doing so we will uncover a new instability mechanism which
enables disturbances originating in the K = O(1) problem to persist to indefinitely large
K for any non-zero β.

2.2. The modified basic state induced by the wavy wall
We shall in the first instance describe how, at large Reynolds numbers, the flow adjusts
to the presence of the wavy wall in a viscous layer of thickness R−1/3 next to the wall.
The adjustment depends crucially on the size of this viscous layer compared with the
wave amplitude. Here, we assume the amplitude is small compared with the viscous layer
depth. Thus, we require ε 
 R−1/3; for a discussion of the flow at larger amplitudes see,
for example, Smith (1982). It is a common misconception in the wavy-wall instability
literature that flow reversal is needed for instability, but at the amplitudes discussed here
there is no flow reversal when instability occurs. In terms of the wall layer variable Y =
R1/3y, the perturbed flow for Y = O(1) is

u = ub = (R−1/3Y, 0, 0)+ [εE(u1(Y),R−1/3v1(Y),w1(Y))+ c.c.] + · · · , (2.7)

p = pb + R−1/3[εEp1 + c.c.] + · · · . (2.8)

Here, E = exp(i[αx + βz]), c.c. denotes the complex conjugate and p1 is a constant.
The order-ε correction above must satisfy u1(0) = −1, v1(0) = w1(0) = 0, and, because
the flow in the outer y = O(1) region satisfies Rayleigh’s equation, which has no
non-trivial solution with normal velocity vanishing at the wall, we require that v′

1(∞) = 0.
Substituting the above into the equations of motion written in terms of the wall layer
variable Y , following the steps given in H2 it is readily shown that

v1 = −3[iα]2/3
∫ (iα)1/3Y

0
dθ

∫ θ

∞
Ai(ψ) dψ, w1 = 3αβAi′(0)

α2 + β2 L([iα]1/3Y), (2.9a,b)

p1 = −3[iα]5/3Ai′(0)
α2 + β2 , iαu1 = −dv1

dY
− iβw1. (2.10a,b)

Here, Ai is the Airy function and L(ψ) is the Scorer function which satisfies

L′′ − ψL = 1, (2.11)

L(0) = L(∞) = 0. (2.12)

Before deriving the equations governing the instability of the flow modified by the wall
undulation we note that the wall wavelength has been used as the length scale in the
problem and so the discussion above is valid for O(1) wavelengths. If an upper boundary
is present then constraints on the layer depth and wavelength must be applied; see H2.

2.3. The equations for near-wall disturbances
The instability of the wave-modified flow described above to streamwise vortex
disturbances of wavelength comparable to the wall wavelength is discussed in H1 for
β = 0 and more generally in H2. In the oblique case α, β /= 0 we noted above that a
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short-wave instability occurs with the temporal growth rate increasing like the square of
the vortex wavenumber at high wavenumbers. In H2 is is shown that, for flows with an
upper wall, the short-wave instability can be the first to occur as the Reynolds number is
increased at a given wall amplitude. Thus, in for example Couette flow where we must now
satisfy the no-slip condition at y = 1, the short-wave instability is the most dangerous one
for oblique walls of wavelength greater than 5.83 channel depths. But in both the bounded
and unbounded cases the largest growth rates are associated with the short-wave limit.

We first note that when K is increased in (2.6) the associated disturbance field
becomes localised in a layer of depth K−1 near the wall. But the vortex in the y = O(1)
region is driven by a VWI process in the viscous wall layer of thickness O(R−1/3) and
so a new distinguished limit emerges when K ∼ R1/3. In other words the short-wave
limit of H2 must take on a new structure when the vortex wavelength scales with
the wall layer thickness, we investigate that problem here. By subsequently taking the
long-wavelength limit of the new distinguished limit we show how that situation connects
with the short-wave limit of H2. We also discuss the short-wavelength limit of the new
distinguished limit and find that the disturbance then takes on a self-similar form of
increasing complexity.

The size of ε at which instability occurs in the new regime here can be inferred from H2.
However, it can also be trivially obtained from well-known results for three-dimensional
boundary layer instabilities. We will see that the instability can be interpreted as a
modulated cross-flow vortex instability; see for example Gregory, Stuart & Walker (1955)
or Hall (1986) in the context of the rotating disc boundary layer.

Cross-flow vortices occurring in three-dimensional boundary layers are inviscid
Rayleigh modes of the composite velocity profile α̂ū + β̂w̄. Here, α̂, β̂ are the cross-flow
vortex wavenumbers in the x, z directions and ū, w̄ are the boundary layer velocities in
those directions. On swept wings, or the flow over a rotating disc, the latter velocities are
of comparable size and instability is readily obtained by choosing the wavenumbers so
that the composite velocity has an inflection point. However, as discussed by Bassom &
Hall (1991), cross-flow vortices persist when w̄ 
 ū. Within the wall layer (2.7) shows
that the streamwise velocity is of size R−1/3 whilst the spanwise velocity is of size ε.
Therefore, if we perturb the flow in the wall layer to a disturbance with wavelength
2π/α in the x direction and wavelength scaled on R−1/3 the wall layer thickness in the
z direction, then the composite velocity associated with the wall layer flow will have terms
of comparable size if ε = O(R−2/3). The same scaling can be deduced from H2 by taking
the long-wavelength limit of the problem considered there. Thus we anticipate a cross-flow
vortex instability if ε = O(R−2/3), but the situation is slightly more complex than the usual
scenario. Since we are seeking a disturbance in the wall layer with wavelength of size
R−1/3 in the z direction, and the base flow depends on Y and αx + βz, the disturbance
depends on the variables αx + βz, Y = R1/3y and R1/3z.

The wall layer is viscous and so, unlike the classical cross-flow vortex scenario, we
cannot ignore viscosity. But the composite basic velocity profile here is a function of
αx + βz and so, unlike the usual cross-flow vortex case, the base flow and instability vary
on the same streamwise length scale. Therefore a parallel flow approximation cannot be
made but, since the base flow is periodic in αx + βz, that is taken care of by appealing
to Floquet theory. Here, unlike the VWI case, the leading-order stability problem involves
all the streamwise harmonics. The upshot then is that the instability we describe is best
interpreted as a viscous cross-flow instability of a spatially periodic flow. But we will see
that when the vortex wavenumber k scaled on the reciprocal of the wall layer thickness
tends to zero, the instability reverts to the VWI type. However, for k → ∞ a structure
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apparently not related to known instabilities develops. But we see that at all disturbance
wavenumbers neither of the two often-assumed views that wavy-wall-induced instabilities
are centrifugal in nature, or instabilities associated with reversed flow, are correct.

It is convenient to now introduce Φ = αx + βz and define Z = R1/3z. Thus, we seek
a structure with the disturbance having a z dependence through the slow variable Φ and
the fast variable Z. The disturbance varies only slowly in the x direction so that the only
x dependence is through the slow variable Φ. Within the wall layer we perturb the basic
flow given by (2.7)–(2.12) by writing

u = ub +�U+(Φ, Y, Z)+ · · · , (2.13)

v = vb +�R−1/3V+(Φ, Y, Z)+ · · · , (2.14)

w = wb +�R−1/3W+(Φ, Y, Z)+ · · · , (2.15)

p = pb +�R−1P+(Φ, Y, Z)+ · · · , (2.16)

where the disturbance amplitude Δ 
 1 and the basic state ub, pb is as defined by
(2.7)–(2.12). If we take εR2/3 = O(1) and substitute the above expansions into the
equations of motion expressed in terms of wall layer variables, linearising in Δ, then the
leading order approximation for R � 1 is

[
∇2

2 − αY
∂

∂Φ
− εR2/3ŵ1

∂

∂Z

]
U+ = V+, (2.17)

[
∇2

2 − αY
∂

∂Φ
− εR2/3ŵ1

∂

∂Z

]
V+ = ∂P+

∂Y
, (2.18)

[
∇2

2 − αY
∂

∂Φ
− εR2/3ŵ1

∂

∂Z

]
W+ = ∂P+

∂Z
+ εR2/3

[
V+ ∂ŵ1

∂Y
+ αU+ ∂ŵ1

∂Φ

]
, (2.19)

α
∂U+

∂Φ
+ ∂V+

∂Y
+ ∂W+

∂Z
= 0, (2.20)

where ∇2
2 = [∂2/∂Y2 + ∂2/∂Z2], ŵ1 = w1E + c.c. and w1 is given by (2.9a,b). The

streamwise wavenumber α can be scaled out of the above system by the transformation
(Y, Z,U+,V+,W+,P+) → (Y/α1/3, Z/α1/3,U+, α2/3V+, α2/3W+, αP+) and defining
the wall amplitude parameter Γ by

Γ = Γ (α) = 3α2/3[1 − α2]1/2εR2/3Ai′(0) = 3εR2/3Ai′(0) sin θ cos2/3 θ, (2.21)

where, as defined earlier, π/2 − θ is the angle between wave crests and the unperturbed
flow direction. Note that if there exists a neutral solution for a given Γ then there exists
a corresponding solution for −Γ since switching the sign of ε corresponds to a shift
of π in Φ. We see that tan θ = √

3/2 minimises the value of εR2/3 needed for a given
value of Γ so, for a given shear flow and wall, the flow is most unstable when the wave
crests are inclined at an angle of approximately 39◦ to the flow direction. Thus, with
the orientation of the wall built into the definition of Γ , (2.17)–(2.20) and the associated
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boundary conditions can be replaced by[
∇2

2 − Y
∂

∂Φ
− Γ w̄1

∂

∂Z

]
U+ = V+, (2.22)

[
∇2

2 − Y
∂

∂Φ
− Γ w̄1

∂

∂Z

]
V+ = ∂P+

∂Y
, (2.23)

[
∇2

2 − Y
∂

∂Φ
− Γ w̄1

∂

∂Z

]
W+ = ∂P+

∂Z
+ Γ

[
V+ ∂w̄1

∂Y
+ U+ ∂w̄1

∂Φ

]
, (2.24)

∂U+

∂Φ
+ ∂V+

∂Y
+ ∂W+

∂Z
= 0, (2.25)

U+ = V+ = W+ = 0, Y = 0,∞, (2.26a,b)

where w̄1 = L(i1/3Y)E + c.c. The above system is linear and the coefficients are
independent of Z so we can seek solutions proportional to e±ikZ in which case the system
simplifies to a partial differential system in the variables Φ, Y. The Φ dependence is
periodic and so the above system is similar to that governing the centrifugal instability
of a Stokes layer with the Scorer function playing the role of the Stokes layer velocity
profile; see Seminara & Hall (1976). We now take the disturbance to be periodic in Z and
write

(U+,V+) = U+(Φ, Y, Z) = U(Φ, Y) eikZ + c.c., (2.27)
and eliminate the disturbance pressure and spanwise velocity component from the above
equations to give the following system to determine U :[

∂2

∂Y2 − k2 − Y
∂

∂Φ
− ikΓ w̄1

]
U = V, (2.28)

[
∂2

∂Y2 − k2 − Y
∂

∂Φ
− ikΓ w̄1

] [
∂2

∂Y2 − k2
]

V = −2ikΓ
∂

∂Y

[
∂w̄1

∂Φ
U

]
− ikΓ

∂2w̄1

∂Y2 V,

(2.29)

U = V = ∂V
∂Y

= 0, Y = 0,∞. (2.30a,b)

Notice that, if w̄1 is independent of Φ, we can solve for V independently of U, which is
then found from (2.28). That situation corresponds to the viscous Orr–Sommerfeld case
of cross-flow vortex instabilities for the composite profile α+Y + ikΓ w1 for a disturbance
periodic inΦ with wavenumber α+. In the present problem, instability arises from the first
term on the right-hand side of (2.29) so the instability owes its origin to the periodicity in
Φ of the basic state.

The form of the Φ dependence of w̄1, and the fact that wherever it appears above it is
multiplied by ik means that (2.28)–(2.30a,b) admit Floquet solutions of the form

U = eμΦ
∞∑

n=−∞
[U2n(Y)E2n cos kZ + U2n−1(Y)E2n−1 sin kZ], (2.31)

V = eμΦ
∞∑

n=−∞
[V2n(Y)E2n cos kZ + V2n−1(Y)E2n−1 sin kZ], (2.32)

where μ is the Floquet exponent. The corresponding form of W is similar but with
cos kZ and sin kZ interchanged. We can substitute the above Fourier expansions into
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(2.28)–(2.30a,b) to obtain an infinite system of coupled ordinary differential equations
of similar form to those found by Seminara & Hall (1976) for the Stokes layer problem.
However, it can be seen from (2.29) for large Y that, far from the wall, Vn has solutions
e±2/3i1/2n1/2y3/2

and e±kY so that the infinite system is stiff and not readily solved by
shooting. In fact it was found that shooting works for small k where the solution is
dominated by the n = 0 terms.

Instead of shooting we found solutions by marching (2.28)–(2.30a,b) in Φ using a finite
difference scheme until the solution settled down to the mode with the largest growth rate
μr. In the following section we present results obtained using that procedure, but we note
here that all solutions found have μ purely real and have period 2π in Φ.

3. Numerical results for O(1) values of k and Γ

The linear disturbance equations (2.28)–(2.30a,b) have coefficients periodic in Φ and
therefore have Floquet solutions of the form

(U,V) = eμΦ(Ū(Y, Φ), V̄(Y, Φ)). (3.1)

Here, Ū(Y, Φ) and V̄(Y, Φ) are periodic functions of Φ and the Floquet exponent μ is a
function of the spanwise wavenumber k and Γ . For each (k, Γ ) we expect there will be an
infinite discrete spectrum of eigenvalues μ. If we march (2.28)–(2.29) forward in Φ over a
sufficiently long range the solution will be dominated by the Floquet solution with largest
positive real part μr. The system (2.28)–(2.30a,b) is parabolic in Φ and is solved using
a finite difference scheme; see for example Hall (1983) for an appropriate scheme first
used for the Görtler vortex problem. For a given (k, Γ ) an initial disturbance is imposed
at Φ = 0 and then marched forward in Φ. The initial disturbance is chosen so that the
solution does not have a singularity at the wall for small Φ.

Numerically, it was confirmed that, after integrating over a sufficiently long interval
in Φ, the solution is dominated by the least stable Floquet mode. Once the solution
has converged to the dominant Floquet solution the Floquet exponent is calculated by
comparing the solution over an interval of 2π in Φ. Because most of the energy of the
disturbance is in the streamwise velocity component the calculations reported on here
used

I =
∫ ∞

0
|U(Y, Φ)|2 dY, (3.2)

as the disturbance property used to find μ. We found that the dominant Floquet mode was
always real and synchronous with the forcing in Φ so that μ is real and given by

μ = 1
4π

[log I(Φ0 + 2π)− log I(Φ0)] (3.3)

for some suitably large Φ0. Typically, we found it necessary to integrate over some 20–30
periods in Φ in order to obtain μ correct to two decimal places. Alternative disturbance
properties such as the maximum disturbance amplitude and the wall shear were also used
to monitor disturbance growth and gave consistent results. However, for reasons which
will become apparent later when we give results, the wall shear is not an appropriate
disturbance measure at higher wavenumbers.

In the calculations it is found that the value of Y = Y∞ needed to approximate ∞
depends on the spanwise wavenumber k. For small k, the disturbance develops a two layer
structure in Y with an O(1) layer at the wall and an outer layer of depth O(k−1); see § 4
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Figure 3. (a) The growth rate as a function of k for different values of Γ . (b) The neutral curve where μ = 0
in the k–Γ plane and the small k approximation to the neutral curve described in § 4.

for details of this structure. Thus in the computations it is necessary to take kY∞ � 1
whilst keeping the step length in Y small enough to resolve the O(1) layer at the wall.
Typically, it was found necessary to use 2000 points in Y with Y∞ = 100. For the smaller
values of k reported below it was necessary to increase the number of points to 104 with
infinity at 500. Calculations at higher values of k showed that the disturbance in that limit
localises in a layer which moves progressively further away from the wall and develops an
increasingly rapid variation with respect toΦ. The disturbance structure for k � 1, Γ � 1
will be discussed in § 5 but we note here that to capture it the numerical scheme needs to
be modified. The analysis given in § 5 shows that the neutral disturbance for large Γ is
exponentially small apart from a layer of depth Γ 1/12 located a distance Γ 1/3 from the
wall. Therefore, the numerical scheme used for large values of Γ employed a grid taking
account of that structure.

Figure 3(a) shows the Floquet exponent μ as a function of k for different values of Γ.
We see that, as expected, viscous effects stop the monotonic increase with wavenumber
of the growth rate found in H2 for disturbances with wavenumber comparable to the
wavelength of the undulating wall. For a given value of k we vary Γ until the Floquet
exponent vanishes; by then varying k a neutral curve in the k–Γ plane is constructed.

That neutral curve is shown in figure 3(b). Also shown in the figure is a small k
asymptotic prediction of the neutral curve to be derived in § 4. We see there is rather
good agreement between the small k and full numerical solutions when k → 0. For the
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larger values of k shown Γ increases; later we will see that for k � 1 the neutral curve has
k ∼ Γ 1/6. That limit will be discussed in § 5 and further results given there.

Figure 3(a) shows that the most amplified disturbance moves to smaller k as Γ increases.
That trend continues at even higher values of Γ but we do not pursue it further here.

Now let us discuss how the structure of the disturbance changes along the neutral curve.
In order to see the changes we plot contours of constant values of the disturbance functions
(Ū, V̄) in the Φ–Y plane. We also plot isosurfaces of the streamwise vorticity

ωx =
[
∂2

∂Y2 − k2
]

V̄ + ∂2Ū
∂Φ∂Y

. (3.4)

Figure 4 shows contours of constant values of Ū, V̄, in the Φ–Y plane and isosurfaces
of ωx for the neutral case with Γ = 1.38. For this case the velocity field is predominantly
real and independent of Φ with a small imaginary part varying with Φ. That is consistent
with the small k solution described in the next section or the large wavenumber limit
of H2. The vorticity isosurfaces where the vorticity is ±%60 of its maximum value are
illustrated in the lower part of figure 4. We note that Φ is defined by scaling x∗, z∗ with
the wall wavelength b whereas Y is scaled on bR−1/3 so that in dimensional coordinates
the humps in the figure will be elongated in the streamwise direction. Once again the
isosurfaces are consistent with the small k structure to be described in § 4. Figure 5 gives
the corresponding results further to the right along the neutral curve where Γ = 2.55.
Here, the isosurfaces of the vorticity have not changed significantly but the real and
imaginary parts of the velocity field have become comparable to a significant variation
in Φ having developed.

Figures 6 and 7 show results for the neutral cases with Γ = 10, 100 and here we see a
distinct new structure emerging. The velocity contours in figure 6 have begun to move away
from the wall and figure 7 clearly shows the velocity field now localising away from the
wall. The form of the isosurfaces seen in figures 4 and 5 is shown in figure 6 to be changing
significantly before now taking on a new distinctive structure in figure 7. Calculations
at higher values of Γ reveal that the layer in which the disturbance localises moves
further away from the wall and thickens slightly as Γ increases. In addition a short-scale
dependence in Φ develops, we will discuss that structure further in § 5 where we take
the limit Γ → ∞. Surprisingly, we will find an analytical form for the leading-order
asymptotic approximation to the increasingly complicated short-scale structure of the
disturbance.

Let us now consider how the wall shear associated with the disturbance varies along the
neutral curve. We find that

μ0 = ∂U+

∂Y |Y=0
=

[
∂

∂Y

(
Ū(Φ = αx + βz, Y)

)
eiR1/3z

]
|Y=0

. (3.5)

Because of the two length scales in z appearing in the expression for μ0 we must specify
a value for the Reynolds number to evaluate μ0 as a function of x and z. Before doing so,
we give results for μ0 along z = 0, these results will illustrate why μ0 as a function of x, z
becomes somewhat complicated for large Γ.

Figure 8 gives μ0 along z = 0 for Γ = 10 at different values of k. We observe the
increasing variation withΦ of the shear as k increases. Note that, here and in the following,
shear plots the disturbance have been normalised such that

∫ ∞
0 |Ū|2 dY = 1. Figure 9

shows the shear at the wall along z = 0 for an increasing set of relatively large values
of Γ. We see that, as Γ increases, the shear at the wall decreases rapidly and takes on a
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Figure 4. Results for Γ = 1.38 (a–d) shown across the real and imaginary parts of Ū, V̄ in the first and
second rows, respectively. (e) The ±60 % isosurfaces of the streamwise vorticity for Γ = 1.38.

characteristic shape. In fact we will see in § 5 that, for large Γ , the disturbance decays
exponentially away from the location in Y where it localises, thus the disturbance is
exponentially small near the wall; this is the reason why the shear decreases rapidly with
Γ .

Figure 10 shows the wall shear in the x–z plane for different values of Γ along the
neutral curve. The values of α, β have been chosen to correspond to the most dangerous
orientation with the crests at an angle of approximately 39◦ to the basis state. Moving
along the wave crests corresponds to fixing Φ and varying R1/3z so we observe the fast z
dependence arising from the dependence of U+ on Z.

Figure 10(a,b) corresponds to Γ = 2.1, 4.5. For the smallest value of k we see a slight
waviness between cell boundaries. However, in panel (b) we see that the slight cell
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Figure 5. Results for Γ = 2.55 (a–d) shown across the real and imaginary parts of Ū, V̄ in the first and
second rows, respectively. (e) The ±60 % isosurfaces of the streamwise vorticity for Γ = 2.55.

boundary waviness seen in the first plot has now magnified significantly. The waviness
is similar to the wavy vortex pattern which appears in the Taylor vortex problem; see for
example Davey, DiPrima & Stuart (1968). The waviness arises for small k because, as
can be seen in figure 4 and will be demonstrated asymptotically in the following section,
the functions Ū, V̄ have dominant parts independent of Φ with small imaginary parts
which are wavy in Φ. In panel (e) the values of Γ = 15, 30 and so the disturbance has
begun concentrating away from the wall so that the wall shear falls significantly. Clearly,
a distinct large Γ pattern has already emerged for these relatively moderate values of Γ.
However, although that pattern persists to much larger values of Γ , its magnitude falls
exponentially to zero and so the presence of the instability at large Γ perhaps cannot be
detected by measurements near the wall.
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Figure 6. Results for Γ = 10. (a–d) Results across the real and imaginary parts of Ū, V̄ in the first and
second rows, respectively. (e) The ±60 % isosurfaces of the streamwise vorticity for Γ = 10.

Note that the streamwise vorticity isosurfaces shown earlier in theΦ − Y − Z space can
in principle be similarly used to produce isosurfaces for a given R in the x − Y − z space.
However, doing so produces patterns as shown already in the direction perpendicular to
the wave crests but to extend the isosurfaces of the previous figures, each of which needed
5003 points to resolve the figure, is not possible over many wave crests.

4. The small wavenumber–small roughness limit

Now let us investigate the nature of the solutions of (2.28)–(2.30a,b) in the limit of long
spanwise wavelengths. For small k the wall layer develops a double layer structure with
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Figure 7. Results for Γ = 100. (a–d) Results across the real and imaginary parts of Ū, V̄ in the first and
second rows, respectively. (e) The ±60 % isosurfaces of the streamwise vorticity for Γ = 100.

regions of depth O(1) and O(k−1). The key feature of the solution in this regime is that
the Fourier expansions (2.31)–(2.32) now become power series in k with the leading-order
term independent of Φ, the second proportional to e±iΦ and so on. In the outer region
the operators on the left-hand sides of (2.28)–(2.29) are dominated by the inviscid terms
proportional to Y and so the Φ-dependent part of the disturbance is inviscid in nature
whilst the Φ independent part, i.e. the roll-streak flow, is viscous.

4.1. The outer layer solution
In the outer region we define ψ = kY and seek a solution of the form

U = [Û0 + · · · ] cos kz + {[k3Ũ0 + · · · ]E + c.c.} sin kz + · · · , (4.1)
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Figure 8. The real and imaginary parts of the shear μ0 = ŪY (0, Φ) along z = 0 as a function of Φ for
Γ = 10 and, from top to bottom, k = 0.1, 0.5, 0.98.

V = [k2V̂0 + · · · ] cos kz + {[k2Ṽ0 + · · · ]E + c.c.} sin kz + · · · , (4.2)

W = [k2Ŵ0 + · · · ] sin kz + {[k2W̃0 + · · · ]E + c.c.} cos kz + · · · , (4.3)

P = [k3P̂0 + · · · ] cos kz + {[P̃0 + · · · ]E + c.c.} sin kz + · · · , (4.4)

where once again E = eiΦ and Û0, Û1, etc. are functions of only the outer variable ψ =
kY. Note that the disturbance in the outer layer at leading order is a streamwise vortex with
no modulation in Φ. The relative size of the terms proportional to E above is fixed by the
interaction in the wall layer. Substituting the above into (2.28)–(2.29) written in terms of
ψ we find that the leading-order problem satisfies

[
d2

dψ2 − 1
]

Û0 = V̂0,

[
d2

dψ2 − 1
]

V̂0 = dP̂0

dψ
, (4.5a,b)

[
d2

dψ2 − 1
]

Ŵ0 = −P̂0,
dV̂0

dψ
+ Ŵ0 = 0. (4.6a,b)

The above linear equations are solved subject to

Û0 = V̂0 = 0, ψ = 0, Û0 → 0, ψ → ∞. (4.7a–d)

Here, we are anticipating that, as discussed in H2, the spanwise vortex of the vortex will
be driven by an interaction in the wall layer so we do not impose the condition Ŵ0(0) = 0.
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Figure 9. The real and imaginary parts of the shear μ0 = ŪY (0, Φ) along z = 0 as a function of Φ on the
neutral curve for, from top to bottom, Γ = 10, 100, 200.

Normalising the solution such that Ŵ0(0) = −1 we find that

Û0 = − [ψ2 + ψ]
4

e−ψ, V̂0 = ψe−ψ, Ŵ0 = (ψ − 1)e−ψ. (4.8a–c)

The next-order approximation to (2.28)–(2.29) determines the leading-order pressure and
velocity fields proportional to E,E−1 in the outer layer. As mentioned earlier, viscosity is
not important for the latter field and so Ṽ0 satisfies Rayleigh’s equation with wavenumber
unity and a uniform shear flow in ψ . It follows that Ṽ0 = Be−ψ there with B a constant
fixed by matching with the flow in the wall layer. Note here that an unbounded uniform
shear flow is inviscidly stable and so Rayleigh’s equation has no solutions with the
perturbation vanishing at the wall. Now we consider the flow in the wall layer and construct
a solution consistent with (4.8a–c) in the limitψ → 0; that will determine the zeroth-order
approximation to the neutral curve for k small.

4.2. The inner layer solution for Y = O(1)
Here, we seek a solution of (2.28)–(2.29) taking the form

U = [kλ0Y + · · · ] cos kz + {[k2ũ0 + · · · ]E + c.c.} sin kz + · · · , (4.9)

V = [k3v̂0 + · · · ] cos kz + {[k2ṽ0 + · · · ]E + c.c.} sin kz + · · · , (4.10)

W = [k2ŵ0 + · · · ] sin kz + {[kw̃0 + · · · ]E + c.c.} cos kz + · · · , (4.11)

P = [k3p̂0 + · · · ] cos kz + {[p̃0 + · · · ]E + c.c.} sin kz + · · · . (4.12)

944 A37-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.462


Near-wall length scale vortex instabilities

–0.10

–0.08

–0.06

–0.04

–0.02

0.02

0.04

0.06

0.08

0

–0.010

–0.005

0.005

0.010

0

–0.3

–0.2

–0.1

0.1

0.2

0

–0.15

–0.10

–0.05

0.05

0.10

0.15

0

(a) (b)

(c) (d)

Figure 10. Contours of constant values of the streamwise wall shear in the x–z plane associated with the
disturbance at values of k, Γ. Note the horizontal axis is x and the vertical axis is z. (a,b) Results for
Γ = 2.1, 4.5 and (c,d) results for Γ = 15, 30. The value of R used is 103 in all cases.

Here, λ0 = Û
′
0(0) and the sizes of the first terms on the right-hand sides of the above

expansions are fixed by the limiting form of the outer expansion as the wall is approached.
In particular, the first term in the expansion of U is the first term in the Taylor series
expansion near the wall of the corresponding term in the outer expansion. Also, the first
term on the right-hand size of the expansion of W must match onto the corresponding
term in the outer flow which, as noted above, cannot be reduced to zero as the wall
is approached. The leading-order terms proportional to E±1 are driven by the terms
proportional to Γ in (2.28)–(2.29) and that fixes the scaling used in the expansions.
Substituting the above expansions (2.28)–(2.29) we find that the leading-order system for
terms proportional to E is

[
d2

dY2 − iY
]

ũ0 = ṽ0 − λ0YΓL(i1/3Y), (4.13)

dp̃0

dY
= 0, (4.14)[

d2

dY2 − Y
]

w̃0 = p̃0 + iλ0YΓL(i1/3Y), (4.15)
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iũ0 + dṽ0

dY
− w̃0 = 0. (4.16)

The above equations must be solved subject to ũ0 = ṽ0 = w̃0 = 0 at Y = 0 and ũ0 =
∂ṽ0/∂Y = w̃0 = 0 at Y = ∞. We obtain

ũ0 = −λ0Γ

(
i
[L

2
− L′′

6

]
,− 1

2i1/3
[L′′ − 1],−

[L
2

+ L′′′

3

])
, p̃0 = −3λ0Γ i2/3

2
,

(4.17a,b)

where L(i1/3Y) is the Scorer function. Now let us consider the leading-order terms
independent of E when (4.9)–(4.12) are substituted into (2.28)–(2.29). In fact, it is
sufficient here to consider only the spanwise momentum equation, which yields

d2ŵ0

dY2 = −Γ
[

2L∗w̃0 − d
dY
(L∗ṽ0)

]
+ c.c., (4.18)

where ∗ denotes the complex conjugate. For large Y we can use the above expression for
ũ0 to show that, in that limit, the equation becomes

d2ŵ0

dY2 � −3Γ 2λ0

Y2 . (4.19)

Replacing λ0 by Û
′
0(0) it follows for large Y that

ŵ0 � 3Γ 2Û
′
0(0) log Y. (4.20)

If we now replace log Y by (logψ − log k) it follows that the Φ independent spanwise
velocity in the wall layer is consistent with the limiting form of (4.8a–c) for small ψ if

Γ 2 = 4
3| log k| . (4.21)

The small wavenumber prediction given above is shown in figure 2(b) and we see good
agreement with the numerical solution. Equation (2.21) then gives

ε2R4/3 = 4
27α4/3β2|[Ai′(0)]2 log k| . (4.22)

The above result applies to the long-wave limit of the neutral curve for streamwise vortices
of wavelength scaled on the viscous wall layer. Now compare the above result with the
large K form of (2.6) derived in H2 for disturbances of wavenumber K where the vortex
wavelength is scaled on the wall wavelength. It follows that k = R1/3K so expressing (4.22)
in terms of K and taking log K 
 log R we obtain

ε2R4/3 log R =
4

(
1 + 3

log K
log R

+ · · ·
)

9α4/3β2|[Ai′(0)]2|, (4.23)

and we find that the leading-order term of (2.6) expanded for K � 1 coincides with the
leading-order term in the above expansion. Moreover, the order-K−2 correction term in
(2.6) expanded for large K comes from the structure within the viscous wall layer whilst
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the correction term in (4.23) comes from the outer layer. Thus the two expansions can be
combined to give the result

ε2R4/3 log R =
4

(
1 + 3

log K
log R

+ 1
9β2K2

{
47 − 36β2 − 10

β2

}
+ · · ·

)
9α4/3β2|[Ai′(0)]2| . (4.24)

The term in the curly brackets is negative if β <∼ 0.52 and positive otherwise, so for a
disturbance of wavelength small compared with the wall wavelength the amplitude needed
for a give large Reynolds number has a local minimum at K = Kc where

K2
c �

2 log R
{

47 − 36β2 − 10
β2

}
27β2α4/3 , (4.25)

if β � 0.52 whilst for β � 0.52 the required amplitude increases monotonically. We
comment further on this result in the conclusion.

5. The large roughness limit Γ � 1

We saw in § 3 that, for large numerical values of Γ , a distinctive disturbance structure
concentrated at increasingly large distances from the wall emerges. Of course, Γ → ∞
is a second limit having first taken εR2/3 = O(1), as shown in (2.21). More precisely,
the second limit must be taken such that εR1/3 remains small so that the interactive
region is not established. Here, we explain the emergence of the characteristic scales
of the disturbance in that limit and give an asymptotic description of the disturbance.
Calculations showed that, for large Γ , the disturbance extended a large distance from the
wall but varied on a shorter length scale in the Y direction. Therefore, we anticipate that
the disturbance should be described by the so-called WKBJ procedure due to Wentzel,
Kramers, Brillouin and Jeffreys. If the disturbance extends a distance Γ μ from the wall
we assume a WKBJ expansion which has U,V in (2.28)–(2.29) of the form

U,V ∼ exp(Γ mΘ(η,Φ)), (5.1)

where η = Γ −μY is a slow variable in the Y direction andΘ(η,Φ) is a phase function. At
this stage, the constants μ,m and the size of k are unknown. For large Γ inviscid effects
dominate and so the dominant balance in (2.28)–(2.29) will be between the operators
Y(∂/∂Φ) and ikΓ w̄1. Noting that, for large Y the function w̄1 ∼ Y−1, it follows that

Γ μ+m ∼ kΓ 1−μ. (5.2)

Next, we note that if diffusions in the Y, Z directions are comparable then

k ∼ Γ m−μ. (5.3)

We deduce from the two above equations that μ = 1
3 , however, m remains unknown but

once m is known k follows using k ∼ Γ m−1/3. Now, consider the dominant balances
in (2.28)–(2.29) when Y(∂/∂Φ)+ Γ w̄1(∂/∂Z) vanishes at leading order. In (2.28) this
gives k2U ∼ V , whilst (2.29) requires k4V ∼ k2Γ 2/3 so that k ∼ Γ 1/6, and then m = 1

2 .
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Thus we define
k = Γ 1/6k+ + Γ −1/3k++ + · · · (5.4)

and we are led to the following WKBJ expansion of (U,V):(
U,

V
Γ 1/3

)
= [(U0(Φ, η),V0(Φ, η)+ Γ −1/2(U1(Φ, η),V1(Φ, η)+ · · · ]

× exp
(
Γ 1/2Θ(Φ, η)

)
. (5.5)

The leading-order approximations to (2.28) and (2.29) both require that

ηΘΦ − 2ik+η−1 cos
[
Φ − π

6

]
= 0. (5.6)

It follows that

Θ = 2ik+

η2 sin
[
Φ − π

6

]
+ θ(η), (5.7)

where θ is to be determined. At next order we obtain the following pair of equations for
(U0,V0): [

η
∂

∂Φ
+ k+2 − S2(Φ, η)

]
U0 = −V0, (5.8)

[
η
∂

∂Φ
+ k+2 − S2(Φ, η)(S2 − k+2

)V0

]
= 4ik+

η
sin

[
Φ − π

6

]
SU0. (5.9)

Here, S is defined by

S =
(
θ ′ − 4ik+

η3 sin
[
Φ − π

6

])
. (5.10)

The above equations can be combined to give a second-order ordinary differential equation
with coefficients periodic inΦ and we require solutions of that equation which are periodic
in Φ. The quantity θ ′ plays the role of a Floquet exponent in that equation and for given
values of η and k+ a complex value of θ ′ must be chosen so that a periodic solution
can be found. Of course, for any (k+, η) there will be a number of possible values of θ ′
and so (5.5) should be summed over the different values in order to satisfy the boundary
conditions at 0,∞. The system (5.8)–(5.9) has the property that if θ ′ is a real eigenvalue
then −θ ′ is also an eigenvalue and for our purpose here we concentrate on solutions having
θ ′ real, complex eigenvalues exist but they are not relevant in the large Γ limit.

Figure 11(a) shows some real eigenvalues θ ′ > 0 for different values of k+ over a range
of values of η. We see that when η decreases the eigenvalue decreases towards a minimum
before becoming large at small vales of η. When k+ is decreased then the minimum
approaches zero and when k+ = k̄ = 0.797407, η = η̄ = 1.73885 we find that θ ′ vanishes
as the eigenvalues ±θ ′ coalesce. Figure 11(b) illustrates the behaviour of the eigenvalues
just before coalescence. Thus the WKBJ solution has a second-order turning point at η = η̄

for k̂ = k̄ and therefore the solution will localise there. A similar structure is observed in
the small wavelength Görtler vortex problem; see Hall (1982).

The localised solution is found by constructing a transition layer connecting the
branch with θ ′ ∼ −(η − η̄) to the right of η = η̄ with the same branch to the left of η̄.
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Figure 11. (a) The function θ ′ as a function of η for different values of the wavenumber k+. (b) An enlargement
of panel (a) and the corresponding negative root near the point of coalescence. (Black, blue, green, red
correspond to k+ = 0.7977, 0.7976, 0.7975, 0.797407, respectively.)

That connection produces a localised solution since exponential decay is achieved when
η → ±∞; see Hall (1982) for a detailed discussion of the related Görtler problem.

It can be shown that the transition layer is of thickness Γ 1/12 so the appropriate transition
layer variable is ζ = Γ −1/12(Y − Ȳ), where Ȳ = Γ 1/3η̄. Within the transition layer the
disturbance amplitude satisfies the parabolic cylinder equation and, written in terms of
Y , the leading eigenfunction is simply e−cΓ −1/6(Y−Ȳ)2 where c = θ ′(η̄)/2, which can be
estimated from figure 11(b). It follows that, as usual, at the second-order turning point the
solution in terms of the transition layer variable is exactly the asymptotic form predicted
by the WKB solution to the left and right of the turning point.

Figure 12(a) shows the functions U0,V0 as functions of Φ and panel (b) shows a
comparison of the neutral value of k computed from the full equations with the first term
of the large Γ result

k = 0.797407Γ 1/6 + Γ −1/3k++ + · · · . (5.11)

We see there is excellent agreement between the asymptotic and exact results. The second
term in (5.11) is fixed by requiring exponential decay for large |ζ | of the solution in
the transition layer. More precisely, it is found that, within the transition layer, the
eigenfunction will satisfy the equation

d2f
dζ 2 −

[
a − cζ 2

4

]
f = 0, (5.12)
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Figure 12. (a) The eigenfunctions U0,V0 as functions of Φ for the turning point values of k and η.
(b) A comparison of the large Γ asymptotic prediction with the finite Γ calculations.

where a is proportional to k++. The equation for f must be solved solved with f →
0, ζ → ±∞ so that there is an infinite sequence of eigenvalues a = [−n − 1

2 ]c1/2 for
n = 0, 1, 2, . . ..

The least stable mode corresponds to n = 0 and that is the mode which connects with
our finite Γ calculations. However, our analysis of the limit k 
 1 showed that there is a
single neutral value of Γ 
 1 in that limit which connects with the single neutral mode
found in H2. It follows that the higher-order eigenvalues of the large Γ solution must
connect with neutral curves which do not connect with solutions of the full problem with
vortex wavenumbers comparable to the wall wavelength.

We recall that, for finite k, Γ we march (2.28)–(2.29) in Φ until the solution is
dominated by the least stable mode. That procedure produces a neutral curve which, from
figure 12, is seen to connect with (5.11). All the calculations carried out in the unstable
regime suggest that higher modes present for large k are always less unstable than the
mode corresponding to the neutral curve of figure 2(b). Thus, the fate of the higher modes
found at large k requires the calculation of all eigenvalues of (2.28)–(2.29) by a direct
method. In fact, as mentioned earlier, before solving (2.28)–(2.29) by marching we used
a shooting method to solve the eigenvalue problem. That approach had limited success
because the system is stiff, but certainly at moderate values of k there was evidence that
multiple neutral modes exist. But for the reasons discussed above the higher modes cannot
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have Γ → 0 when k → 0, so it is likely that the higher modes all have Γ → ∞ when
k → 0.

Within the transition layer the leading-order approximation to (U,V) and the streamwise
vorticity written in terms of Y are found to be

(U,V) ∼ (U0, Γ
1/3V0)eQ(Φ,Y) + · · · , (5.13)

ωx ∼

⎛
⎜⎝4

Γ 5/3

Y5 sin
(

2
[
Φ − π

6

])
U0 −

⎛
⎜⎝1 +

16Γ 2 sin2
[
Φ − π

6

]
Y6

⎞
⎟⎠ V0

⎞
⎟⎠ eQ(Φ,Y) + · · · ,

(5.14)

where

Q(Φ, Y) = 2iΓ k
Y2 sin

[
Φ − π

6

]
−cΓ −1/6(Y − Ȳ)2. (5.15)

Figure 13 shows contours of U,V in the Φ − Y plane and isosurfaces of the streamwise
vorticity as calculated from the asymptotic forms (5.13)–(5.14) for the point on the neutral
curve with Γ = 100. The results compare well with the results shown in figure 7 as
calculated by marching from the full equations. Equations (5.13)–(5.15) explain the origin
of the increasingly rapid variations of the velocity and vorticity fields with Φ at large
Γ as Y decreases. The variation is due to the first term on the right-hand side of (5.15)
which, since Y is of order Γ 1/3, is of size Γ 1/2 and increasing in size as Y decreases.
This explains why the variations in Φ increase in the lower part of the layer where the
disturbance is trapped.

In order to demonstrate this effect even more clearly we have in figure 14(a) shown
the isosurfaces of the streamwise vorticity as calculated from the full equations on the
neutral curve with Γ = 1000. Figure 14(b) shows the corresponding vorticity isosurfaces
as calculated from the asymptotic solution. We see excellent agreement between the two
results. In figure 14(c) we have plotted the isosurfaces calculated from the asymptotic
solution at Γ = 10 000. We observe the increasingly large number of foliations due to the
first term on the right-hand side of (5.15).

6. Conclusion

The near-wall streamwise vortex instability of the flow over a wavy wall of small amplitude
at high Reynolds has been considered. The problem has been formulated for the regime
when the wave crests are not perpendicular to the basic flow direction near the wall. In
addition, the wall wavelength is assumed small compared with the typical length scale
over which the basic state varies when the wall is flat. In that regime the basic state near
the wall is a uniform shear flow and the global properties of the unperturbed flow enter only
through the friction velocity. The problem considered is thus applicable to quite arbitrary
shear flows.

The problem is motivated by the surprising result found in H2 that shear flows over wavy
walls have a short-wave instability when the wave crests are not perpendicular to the flow
direction. In H2 the disturbance spanwise wavelength is assumed comparable to the wall
wavelength and, although instability occurs first at a finite value of the vortex wavelength
for a fixed wall amplitude as the Reynolds number is increased, the largest growth rates
always occur for smaller wavelengths. In fact the growth rates of the short-wave modes
described in H2 increase like the inverse square of the vortex wavelength so that, at some
stage, higher-order effects must come into play to stop that unbounded growth.
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Figure 13. Results for Γ = 100 as predicted by the large Γ solution. (a–d) The real and imaginary parts
of U,V in the first and second rows, respectively. (e) The ±60 % isosurfaces of the streamwise vorticity for
Γ = 100.

Our analysis here has shown how the short-wave instability is regularised by viscous
effects as its wavelength approaches the depth of the viscous wall layer where the flow
adjusts to the wavy wall. The wall amplitude associated with the regularised short-wave
instability is larger by a factor

√
log R than the minimum amplitude needed for vortices of

wavelength scaling with the wall wavelength to become unstable. But the growth rates of
the vortices in the near-wall regime, i.e. the regularised regime, are much larger than those
in the minimum configuration so will likely dominate the transition problem.

In the small wavenumber limit of disturbances of wavelength comparable to the viscous
layer we recover the high wavenumber limit results of H2. Thus for small wavenumbers the
disturbance develops a two layer structure with an outer region occupied by a streamwise
vortex independent of x at leading order and a viscous sublayer where the vortex is
sustained. In the large wavenumber regime, the disturbance moves away from the wall
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Figure 14. Isosurfaces of 60 % of the minimum and maximum vorticity for Γ = 1000. (a) The results from
the full eigenvalue calculation and (b) the corresponding high Γ prediction. (c) The asymptotic prediction of
the same isosurfaces for Γ = 10 000.

and develops an increasingly rapid variation in the Φ–Y plane. That rapid variation is
associated with the phase function of the WKB description of the disturbance there. The
new structure emerging for large k, Γ is already clearly visible in figure 7 at Γ = 100.
Indeed, the asymptotic form of the disturbance for large Γ found in § 5 captures the
essential details of figure 7; see figure 13.

Figure 14 shows the asymptotic form of the isosurfaces of the streamwise vorticity
when Γ = 10 000 on the neutral curve. The figure demonstrates clearly that, at this stage,
the disturbance has now lost the typical properties of streamwise vortices. But note that,
since Φ = αx + βz, where x and z have been scaled on the wall wavelength whilst Y
has been scaled on bR−1/3, the relatively rapid variations in Φ are not as pronounced in

944 A37-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.462


P. Hall

physical space. However, the rapidly shortening length scales of the large Γ structure as
it is pushed further away from the wall might have some role to play in the generation of
exact coherent structures.

It is perhaps surprising that there appears to have been no previous investigations of the
instability of wavy walls with wave crests aligned at an angle to the unperturbed shear flow.
Certainly in most engineering or geophysical problems it is unlikely that the unperturbed
flow will be along or perpendicular to the wave crests. There has been some interest in the
effect of obliquely inclined wavy walls on turbulent shear flows. In particular, Ghebali,
Chernyshenko & Lechziner (2017) discuss the use of obliquely inclined walls in reducing
turbulent drag. The latter authors argue that the ‘spatial Stokes layer’ induced by oblique
wavy walls might have the same effect as the Stokes layer induced by spanwise wall
oscillations; see Choi (2002). In fact, the ‘spatial Stokes layer’ introduced by Ghebali et
al. (2017) is the spanwise velocity field associated with w1 in (2.7). In fact, w1 is given
by (2.9a,b) and, since the decay of the Scorer function of increasingly large argument is
algebraic and non-oscillatory, the spatial Stokes layer differs considerably from the Stokes
layer which decays exponentially and oscillates. We stress that, in the present problem, it
is the velocity field w1 which drives the instability described, and that field only exists in
the non-aligned case β /= 0.

The effect of surface roughness on turbulent flows has been a subject of considerable
interest dating back to Hagen (1854) and Darcy (1857). A recent review of the state of
knowledge in this area is given by Kadivar, Tormey & McGranaghan (2021).

In the viscous sublayer of a turbulent flow the flow is dominated by a uniform shear flow
so that the discussion given in the present paper applies to turbulent flows over roughness
in the form of wavy walls of amplitude small compared with the sublayer thickness.
Kadivar et al. (2021) argue that roughness increases flow instability close to the wall and
that instability leads to increased localised turbulence which disrupts the viscous sublayer.
That disruption generates a roughness sublayer which itself modifies the pressure drop
and heat transfer. Therefore, it is of interest to question whether the instability investigated
in the present paper, or indeed that discussed in H2, would likely leading to localised
transition.

In H2 and the low wavenumber limit of the disturbances investigated here the instability
is predominantly in the form of streamwise vortices independent of the streamwise
coordinate. These vortices have the characteristic scaling and form of Taylor–Görtler
vortices and so will be subject to secondary instabilities in the form of travelling waves
which lead to transition to turbulence; see Davey et al. (1968) for the Taylor problem and
Hall & Horseman (1991) for the Görtler problem. So it would certainly seem that the
instability described in H2 for both the aligned and non-aligned problems would lead to
transition to turbulence within the sublayer.

Now let us consider the instability mode discussed in the present paper when its
wavenumber is O(1) or large. Here, the instability in the lower wavenumber range
again has a Taylor–Görtler structure but, as the wavenumber increases, an increasingly
strong variation in the Φ = αx + βz direction develops until, at large wavenumbers, the
instability attains the increasingly complex structure seen in figure 14. At that stage,
it would be quite remarkable if the disturbance with its multitude of inflection points
in the Φ, Z directions was not highly unstable. Note that the high wavenumber regime
corresponds to the large roughness limit so it appears that for mild roughness transition
to turbulence would result from secondary instabilities of Taylor–Görtler vortex-like
structures whereas at higher roughnesses the initial instability itself has such a complex
structure that it would also lead to localised transition to turbulence.
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Near-wall length scale vortex instabilities

The differences of the form of the instability between mild and large roughness values
merits further comments. Firstly, the instability discussed in the present paper arises only
in the non-aligned configuration. Thus, large roughness varying only in the streamwise
direction does not trigger the instability. Secondly, the instability we describe here is
initially spread throughout the viscous sublayer whereas for large roughness the instability
is trapped in a layer which moves progressively further from the wall. Thus, for a turbulent
flow, the roughness-induced instability will likely interfere more with the turbulent
flow structure above the sublayer, that possibility could be investigated within a direct
Navier–Stokes approach. However, it appears that roughness in the form of non-aligned
waves is able to have a more profound effect on the viscous sublayer.

Acknowledgements. The author thanks the referees for their constructive comments.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Philip Hall https://orcid.org/0000-0001-5175-3115.

REFERENCES

BASSOM, A.P. & HALL, P. 1991 Vortex instabilities in three-dimensional boundary layers: the relationship
between Görtler and crossflow vortices. J. Fluid Mech. 232, 647–680.

CHARRU, F., ANDREOTTI, B. & CLAUDIN, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45,
469–493.

COTRELL, D.L., MCFADDEN, G.B. & ALDER, B.J. 2008 Instability in pipe flow. Proc. Natl Acad. Sci. USA
105, 428–430.

CHOI, K.S. 2002 Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids
14, 2530–2542.

DARCY, H. 1857 Recherches Experimentelle Relatives au Mouvement de l’eau dans les Tuyaux.
Mallet-Bachelier.

DAVEY, A., DIPRIMA, R.C. & STUART, J.T. 1968 On the instability of Taylor vortices. J. Fluid Mech. 31,
17–52.

FAGE, A. 1943 The smallest size of a spanwise surface corrugation which affects the drag of a laminar flow
aerofoil. ARC Reports and Memoranda No. 2120. HM Stationery Office.

FLORYAN, J.M. 2002 Centrifugal instability of flow over a wavy wall. Phys. Fluids 14, 301–322.
FLORYAN, J. 2003 Wall-transpiration-induced instabilities in plane Couette flow. J. Fluid Mech. 488, 151–188.
FLORYAN, J.M. 2015 Flow in a meandering channel. J. Fluid Mech. 770, 52–84.
GHEBALI, S., CHERNYSHENKO, S. & LECHZINER, M.A. 2017 Can large-scale oblique undulations on a solid

wall reduce the turbulent drag? Phys. Fluids 29, 105102.
GREGORY, N., STUART, J.T. & WALKER, W.S. 1955 On the stability of three-dimensional boundary layers

with application to the flow due to a rotating disk. Phil. Trans. R. Soc. Lond. A 248, 155–159.
GOLDSTEIN, M.E. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. J. Fluid Mech.

127, 59–81.
HAGEN, G. 1854 Über den Einfluss der Temperatur auf die Bewegung des Wassers in Röhren. Königliche

Akademie der Wissenschaften.
HALL, P. 1982 Taylor–Görtler vortices in fully developed or boundary layer flows: linear theory. J. Fluid Mech.

124, 475–494.
HALL, P. 1983 The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130,

41–58.
HALL, P. 1986 An asymptotic investigation of the stationary modes of instability of the 3D-boundary layer on

a rotating disc. Proc. R. Soc. Lond. A 406, 93–106.
HALL, P. 2020 An instability mechanism for channel flows in the presence of wall roughness. J. Fluid Mech.

899, R2.
HALL, P. 2021a Long wavelength streamwise vortices caused by curvature or wall roughness. J. Engng Maths

128, 2.
HALL, P. 2021b On the roughness instability of growing boundary layers. J. Fluid Mech. 922, A28.

944 A37-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-5175-3115
https://orcid.org/0000-0001-5175-3115
https://doi.org/10.1017/jfm.2022.462


P. Hall

HALL, P. 2022 A vortex-wave interaction theory describing the effect of boundary forcing on shear flows.
J. Fluid Mech. 932, A54.

HALL, P. & HORSEMAN, N.J. 1991 The linear inviscid secondary instability of longitudinal vortex structures
in boundary layers. J. Fluid Mech. 232, 357–375.

HALL, P. & OZCAKIR, O. 2021 Poiseuille flow in rough pipes: linear instability induced by vortex-wave
interactions. J. Fluid Mech. 913, A43.

HALL, P. & SMITH, F.T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition.
J. Fluid Mech. 227, 641–666.

KADIVAR, M., TORMEY, D. & MCGRANAGHAN, G. 2021 A review on turbulent flow over rough surfaces:
fundamentals and theories. Intl J. Thermofluids 10, 100077.

KANDLIKAR, S.G. 2008 Exploring roughness effect on laminar internal flow-are we ready for change?
Nanoscale Microscale Thermophys. Engng 12, 61–82.

LOH, S.A. & BLACKBURN, H.M. 2011 Stability of steady flow through an axially corrugated pipe. Phys.
Fluids 23, 111703.

PHILLIPS, W.R.C. 2002 Langmuir circulations beneath growing or decaying surface waves. J. Fluid Mech.
469, 317–342.

RUBAN, A.I. 1984 On Tollmien–Schlichting wave generation by sound. Izv. Akad. Nauk SSSR Mekh. Zhidk.
Gaza 5, 44–52.

SEMINARA, G. & HALL, P. 1976 Centrifugal instability of a Stokes layer: linear theory. Proc. R. Soc. Lond. A
350, 299–316.

SMITH, F.T. 1982 On the high Reynolds number theory of laminar flows. J. Appl. Maths 20, 207–281.

944 A37-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.462

	1 Introduction
	2 The instability equations
	2.1 Vortex wavelengths comparable to wall wavelength
	2.2 The modified basic state induced by the wavy wall
	2.3 The equations for near-wall disturbances

	3 Numerical results for O(1) values of k and 
	4 The small wavenumber--small roughness limit
	4.1 The outer layer solution
	4.2 The inner layer solution for Y=O(1)

	5 The large roughness limit 1
	6 Conclusion
	References

