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Abstract

Ponderomotive non-linearities arising by propagation of a linearly polarized laser beam through high-density quantum
plasma are studied. The intense laser beam sets the plasma electrons in quiver motion and consequently ponderomotive
non-linearity sets in leading to electron density perturbation inside the plasma. The interaction formalism has been
built using the quantum hydrodynamic model. Laser beam traversing through high-density quantum plasma acquires an
additional focusing tendency due to the perturbation induced by ponderomotive force in the plasma density. The
ponderomotive force causes the beam to focus and the quantum effects contribute in focusing. The transverse
magnetization of quantum plasma enhances the self-focusing and increase in magnetic field limits the spot size.
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1. INTRODUCTION

The field of laser–plasma interaction dynamics is a highly
motivating area of research. When a laser pulse propagates
through uniform plasma embedded in a uniform magnetic
field, the plasma electron motion is modified due to the mag-
netic field (Tajima & Dawson, 1979a; 1979b; Ashour-
Abdalla et al., 1981; Joshi et al., 1981; Sullivan & Godfrey,
1981; Katsouleas & Dawson, 1983; Lawson, 1983; Joshi
et al., 1984; Tang et al., 1984; 1985; Horton & Tajima,
1985; Fuchs et al., 1998; Najmudin et al., 2001) and gives
rise to changes in the dispersion of the laser beam, non-linear
effects such as self-modulation (Antonsen et al., 1992;
Andreev et al., 1995), self-focusing (Sun et al., 1987; Jha
et al., 2004a; 2004b), Raman scattering, and various para-
metric instabilities (Drake et al., 1974; Jha et al., 2004a;
2004b). These processes govern experiments in inertial con-
finement fusion (ICF) (Deutsch et al., 1996; Borghesi et al.,
1998; Regan et al., 1999), x-ray lasers (Burnett & Corkum,
1989; Amendt et al., 1991; Wilks et al., 1992), optical har-
monic generation (Sprangle et al., 1990; Lin et al., 2002),
and laser-driven accelerators (Hegelich et al., 2002; Gorbu-
nov et al., 2003). It is believed that the self-focusing
appear as a genuinely non-linear phenomena arising out of
non-linear response of material leading to the modification

in refractive index (Max et al., 1974; Sprangle et al., 1987;
Sun et al., 1987). Specifically in laser–plasma interaction,
the generic process of self-focusing of the laser beam has
been focus of attention as it affects many other non-linear
phenomena. In non-linearity induced by ponderomotive
force, electrons are expelled from the region of high-intensity
laser field, on the other hand self-focusing results from the
effect of quiver motion leading to reduced local frequency.
The self-focusing is counter balanced by the tendency of
the beam to spread because of diffraction. In the absence
of non-linearity, the beam will spread substantially within
the Rayleigh length. The propagational characteristics of an
intense laser pulse is completely determined by the degree
of diffraction, non-linear defocusing, and self-focusing suf-
fered by the beam as it traverses through the plasma. In the
classical rigime, laser self-focusing effects have been studied
in homogeneous and inhomogeneous plasmas by many re-
searchers (Upadhyay et al., 2002; Varshney et al., 2006;
Kaur & Sharma, 2009; Sharma & Kourakis, 2010).
Recently, studies of plasma systems where the quantum ef-

fects are important have gained momentum due to their rele-
vance to astrophysical plasma and cosmological environment,
nanotechnology, quantum dots, laser–solid interaction, X ray,
free electron laser (FEL), etc. (Barnes et al., 2003; Shpatakov-
skaya, 2006; Stenflo et al., 2006; Shukla & Eliasson, 2007;
2010; Wei &Wang, 2007). In the quantum plasma, Fermi–Dir-
ac statistical distribution is employed rather than widely used
Boltzmann–Maxwell distribution in a classical plasma. In the
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present work, we focus on the recently developed quantum hy-
drodynamic (QHD) model (Gardner & Ringhofer, 1996;
Shukla & Eliasson, 2006; 2010). The QHD model consists of
a set of equations describing the transport of charge, momen-
tum, and energy in a charged particle system interacting through
a self-consistent electrostatic potential (Tyshetskiy et al., 2011).
Within the quantum hydrodynamical descripion, quantum ef-
fects are elgantly modeled by the Bohm potenital, Fermi pres-
sure, and electron −1/2 spin.
In Section 2, the formulation of the non-paraxial wave

equation having linear and non-linear source terms, which in-
clude contributions due to the ponderomotive force under the
influence of quantum effects and perturbations due to the
presence of uniformmagnetic field for quantumplasma is pre-
sented. In Section 3, an envelope equation for laser radiation
has been set up using the source-dependent expansion (SDE)
technique. Further, the evolution of spot size and the effect of
density perturbations on the process of self-focusing are stud-
ied. Section 4 is devoted to the summary and discussion.

2. LASER–PLASMA INTERACTION

Consider a linearly polarized laser beam represented by the
electric vector �E(r, t) = êxE0(r, t) cos (k0z− ω0t) (êx is the
unit vector of polarization), propagating in uniform high-
density quantum plasma. The plasma is embedded in a cons-
tant magnetic field �b = êyb. The laser beam is propagating in
a direction perpendicular to the electric field, which is per-
pendicular to the applied magnetic field. The �v × �B force
causes another velocity component and the beam becomes
partially longitudinal and partially transverse. The electric
vector traces out an ellipse in the x–y plane. In the high-
frequency limit (as in the case of high-density quantum plas-
mas), the beam becomes fully linearly polarized (Goldston &
Rutherford, 1995; Bastin, 2005; Bittencourt, 2008; Chen,
2008). The set of QHD equations governing the interaction
dynamics are (Misra et al., 2010)
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where m is the electron’s rest mass, h− is the Planck’s
constant divided by 2π, vF is the Fermi velocity, S is the spin
angular momentum with S0| | = h− /2, μ= (−g/2)μB and
μB = eh− /2mc being the Bohr magneton. The second term on
the right-hand side of Eq. (1) denotes the Fermi electron

pressure. The third term is the quantum Bohm force and is
due to the quantum corrections in the density fluctuation.
The fourth term is the spin magnetic moment under the influ-
ence of the applied magnetic field. The above equations are
applicable even when different spin states (with up and
down) are well represented by a macroscopic average. We
will focus on the regimes of strong magnetic fields and
high-density plasmas. The ponderomotive force of the
high-frequency laser pulse drives longitudinal waves with a
frequency much smaller than ω0. The ions form a neutralizing
background in dense plasma. Perturbatively expanding Eqs.
(1)–(3) for first order of the electromagnetic (EM) field, we get
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where n0 and n(1) are the ambient and first-order perturbed
plasma densities, respectively, �v (1) is the quiver velocity and
�S(1) is the first-order perturbed spin-angular momentum. Sol-
ution of the above equation gives the first-order quantities as,
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Following the similar procedure we get the second- and third-
order perturbed quantities and thereby first- and third-order
source current densities are defined as:
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and
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where J
⇀
C (=−ne�v ) is the free conventional current source

term and �JS(= (2μ/h− ) �∇ × (n�S)) is the current due to the

spinmagneticmoment. The plasma current density has contri-
butions from ponderomotive force, quantum effects, and per-
turbations due to the presence of uniform magnetic field,
respectively. The other quantities substituted in the source cur-
rent equations are,
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The wave equation describing the propagation of the laser
pulse through uniform quantum plasma in the presence of
linear and non-linear source terms is,

�∇
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�E(r, t) = 4π
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(1)(r, t)
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[ ]
. (9)

Now, considering only the first-order (linear) source term
in wave equation [Eq. (9)] and taking its Fourier transform,
we get
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2 + 4
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[ ]
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where Ê0(�r, ω− ω0) is the Fourier transform of the slowly
varying laser field amplitude E0 �r, t( ), r0 is the constant
minimum spot size,

ηL(ω) = 1− 4c2

ω2r20

( )
− ω2

p

ω2

( )[

× 1+ 2Xqn0k0
ω(1− 2Xqn0k0/ω0) +

4μ2S0k30
e2h− 2ω

{ }]1/2

is the linear refractive index having contributions from bound
atomic electrons, free plasma electrons, and finite spot size of
the laser radiation with ωp= (4πe2n0/m)

1/2 being the plasma
frequency. Defining, β(ω)= ωηL(ω)/c the mode propagation
constant, Eq. (10) can now be rewritten as
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In the limit that the mode propagation constant is close to the
unperturbed wave number (k0), we can write (β2(ω) − k20)/
2k0 ≈ β(ω) − k0. Substituting the Taylor series expansion of
β(ω) about ω0 (in terms of various orders of dispersion pa-
rameters) into Eq. (11) and taking its inverse Fourier

transform, we obtain
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where β2
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pr
2
0/4c

2] is the group velocity
dispersion (GVD) parameter having contributions from
plasma electrons and finite spot size effect. Now substituting
time derivative of current density in Eq. (12), the non-
paraxial non-linear wave equation for laser beam propagating
in uniform high-dense quantum plasma is given by,
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where a(�r, t) = e| |E0(�r, t)/mcω0[ ] is the normalized electric
field amplitude.

3. SPOT SIZE

The spot size of the laser pulse inside the plasma is evaluated
by taking transformation from spatial and temporal coordi-
nates (z, t) in laboratory frame to coordinates (z, ζ) in the
pulse frame, where ζ= z− vgt and vg is the group velocity.
Equation (13) reduces to
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The potential a(r, z, ζ)(= as(z, ζ)eiψ−[1−iφ]r2/r2s ) represents the
Gaussian beam profile of the laser with amplitude, phase,
wavefront curvature, and spot size given by as, ψ, φ, and
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rs, respectively. Introducing the source term in the above
equation, we get
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In the SDE method, we can describe the optical beam by
four-coupled first-order differential equation for the beam
parameter as function of the variable z, which are
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Using the above equations the envelope equation is given by,
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The terms on the right-hand side are the contributions to the
envelope evolution from diffraction, ponderomotive effects
and new contributions due to perturbed plasma density and
quantum effects, respectively.

For a laser beam in the long pulse limit, a(z, ζ)rs(z, ζ)=
as0r0, where as0 and r0 are the amplitude and minimum
spot size, respectively. Now Eq. (22) can be solved to give
the spot size evolution in uniform magnetized quantum
plasma as,

r2s = r20 1+ 1− ω0

2
ωp

4c

( )2{[

×
{
4χ5 +

8μ
h− χ7 + χ9 +

χ1k
2
0S0μ

2h− ω2
0

+ k0S0χ3

( )}

×
(
mcω0

e

)2

a2s0r
2
0

}
z2

Z2
R0

]
,

(23)

where ZR0 = k0r20/2 is the Rayleigh length associated
with the spot size r0. Using Eq. (23) we obtain the power
for non-linear focusing under the present model.
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(24)

where P0 is the total critical power for non-linear focusing in
uniform quantum plasma. The critical power can be much
greater than unity and scales with laser frequency and
plasma density. It may be noted that in the absence of mag-
netic field and the quantum terms, Eq. (24) reduces to the
critical power required for self-focusing of a laser beam in
a unmagnetized classical plasma (Esarey et al., 1997). The
total critical power P0 is plotted against ωc/ω0 in Figure 1.
It may be noted that an increase in magnetic field leads to
a significant increase in power. Equation (23) may be simpli-
fied to give,

r2s = r20 1+ 1− P0{ } z2

Z2
R0

[ ]
. (25)

Fig. 1. Variation in total critical power P0 with ωc/ω0 for as0= 0.271,
ωp/ω0= 0.8, and n0= 1028 cm−3.
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For P0 <1, the laser beam diffract with an effective Rayleigh
length given by (1− P0)

−1/2ZR0. For P0= 1, diffractive
spreading balances non-linear focusing and a matched self-
guided beam is obtained; however, small deviation from
P0= 1 results in loss of equilibrium. For P0>1, the laser
beam self-focuses.
The variation of the spot size (rs/r0) with propagation

length is shown in Figure 2 for n0= 1028 cm−3, ωc/ωo=
0.3, ωp/ω0= 0.8, and as0= 0.271. The variation has been
studied for ponderomotive non-linearity, which tends to de-
crease the spot size (catastrophic focusing), while the laser
beam traverses the interaction region for P0>1 and for
P0 <1 the beam diffracts. The ponderomotive non-linear ef-
fects cause the beam to focus when laser power is greater
than the critical power or total critical power is greater than
unity, which is counter balanced by natural diffraction.
To study the influence of the external magnetic field, the

variation of the spot size with ωc/ω0 is shown in Figure 3.
The increase in magnetization gradually reduces the spot
size and contributes to focusing of the beam. The variation

of spot size with the total critical power P0 has been plotted
in Figure 4. The spot size reduces with an increase in the total
critical power. The variation of spot size with propagation
length is in agreement with Figure 2. The value of total crit-
ical power for which the beam is fully focused decreases with
increase in propagation length.

4. SUMMARY AND DISCUSSION

The ponderomotive force of the laser beam that is slightly
more intense along the axis, pushes the electrons away
from the axis leaving behind a region of lowered electron
density. Since, the refractive index of a plasma depends on
the local electron density, the depletion of electrons from
the axial region raises the refractive index on the axis. This
reduces the phase velocity and causes the wavefronts to
curve. As a result the beam is focused toward the axis result-
ing in ponderomotive self-focusing.

In this paper, the effect of ponderomotive non-linearities
on propagation of a linearly polarized laser beam through a
uniform high-density ionized quantum plasma embedded
in a constant magnetic field has been studied using the
QHD model. The combined source for the wave equation
is a superposition of linear, non-linear (ponderomotive),
and perturbed (due to magnetic field) current densities. It is
found that the laser beam traversing through high-density
quantum plasma acquires an additional focusing tendency
due to the perturbation induced in the plasma density. The
ponderomotive force non-linearities cause the beam to
focus and the quantum effects contribute in focusing. The
ponderomotive non-linearity decreases the spot size (cata-
strophic focusing), while the laser beam traverses the interac-
tion region for total critical power of the beam being greater
than unity. The transverse magnetization of quantum plasma
enhances the self-focusing and increase in magnetic field de-
creases the spot size. The transverse magnetic field also

Fig. 2. Variation in spot size rs/r0 with z/ZR0 for ωc/ω0= 0.3, ωp/ω0=
0.8, as0= 0.271, and for n0= 1028 cm−3.

Fig. 3. Variation in rs/r0 with ωc/ω0 for P0= 1.7, as0= 0.271, ωp/ω0=
0.8, and n0= 1028 cm−3.

Fig. 4. Variation in rs/r0 with total critical power P0 for ωc/ω0= 0.3, as0=
0.271, ωp/ω0= 0.8, n0= 1028 cm−3; and (a) z/ZR0= 3, (b) z/ZR0= 2, and
(c) z/ZR0= 1.
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significantly enhances the total critical power for non-linear
focusing. The influence of the quantum terms on the refrac-
tive index results in a stronger pinching effect as a conse-
quence of which the laser self-focusing in quantum plasma
becomes stronger than it is in classical plasma. In fact,
after initial focusing of the laser, the quantum effects will
be more pronounced in the region of increasing plasma den-
sity. The self-focusing length for quantum plasma decreases
by about 37% and minimum laser spot size is reduced by
about 21% than the classical plasma (in the limit h− = 0).
If this focusing due to ponderomotive non-linearity, quantum
effects, and defocusing due natural diffraction are properly
balanced, then a self-guided laser pulse can be formed and
propagated over extended distance.
The present study will be useful in understanding the prop-

agation of high-frequency EM waves in dense quantum plas-
mas existing in astrophysical objects such as magnetars,
white dwarfs, neutron stars, etc., as well as in the next gener-
ation of intense laser–high-density plasma interaction exper-
iments, FELs, and ICF experiments.
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