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Abstract

We examine how research and development (R&D) incoming spillovers affect long-run
firm performance following firms’ R&D increases. We use a stochastic frontier produc-
tion method to capture R&D incoming spillover effects. Firms reaping more benefits from
R&D investment made by other firms experience more improvement in profitability and
more favorable long-run stock performance in the post-R&D-increase period. Firms with
higher levels of R&D incoming spillovers recruit more key employees from other firms,
suggesting that obtaining know-how through hiring is an important source of incoming
spillovers. The evidence also shows that firms experiencing more R&D outgoing spillover
effects tend to underinvest in R&D.

I. Introduction

A firm’s research and development (R&D) investment is usually associated
with superior performance. Chan, Martin, and Kensinger (1990) and Szewczyk,
Tsetsekos, and Zantout (1996) find a positive short-term stock market reaction to
announcements of increased R&D investment. Eberhart, Maxwell, and Siddique
(2004), (2008) show that firms with significant R&D increases experience posi-
tive long-run abnormal stock returns and improved operating performance. These
results suggest that investors underreact to R&D increases, and that R&D in-
creases are, on average, even better investments than the market expects when the
information is released.

The nature of R&D suggests that the performance of a firm is affected not
only by its own R&D investment but also by the R&D investment of other firms.
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R&D usually has strong positive externalities (termed R&D spillover effects). By
R&D spillover we mean that a privately owned firm does not or cannot appropri-
ate all the positive outcomes of its own R&D investment. Griliches (1979) and
Bernstein and Nadiri (1988) document that although a firm’s R&D investment
reduces its own production costs, costs of other firms also decline as a result of
R&D spillover. Jaffe (1986) shows that when the potential R&D spillover pool in-
creases by 1%, profits of other firms increase by 0.3%. These studies indicate that
R&D investment produces benefits that accrue to parties other than the firm gen-
erating it. The reason may be that R&D investments (e.g., new technologies and
innovations) are usually intangible and not always difficult for others to reverse
engineer or steal.! Once a firm takes advantage of know-how created by other
firms, a given R&D investment affects both the R&D investing firm and other
firms.

Given the positive externalities of R&D investment, we argue that there is a
positive relation between R&D incoming spillovers and firm performance. That
is, when a firm reaps more spillover benefits from other firms’ R&D investment,
we expect it to experience more improvement in performance. Cassiman and
Veugelers (2002) suggest that R&D spillovers can be seen from two perspec-
tives: 1) incoming spillovers, which assess a firm’s ability to take advantage of
innovations created by other firms; and ii) appropriability of a firm’s own R&D,
which evaluates a firm’s ability to profit exclusively from its new technologies.
The extent of incoming spillovers is influenced by the firm’s absorptive capacity
of R&D. R&D-increase firms that are associated with better learning and absorp-
tive capabilities are more likely to benefit from R&D spillover effects (Cohen
and Levinthal (1989)). They hence may experience greater improvements in prof-
itability and higher market valuation.

R&D incoming spillovers might not have an immediate impact on firm val-
uation when there is an unexpected increase in R&D, because investors may
have difficulty measuring the extent of the firm-specific incoming spillover effect
(Griliches (1992), Henderson and Cockburn (1996), and Cassiman and Veugelers
(2002)). Firms have different incoming spillovers, depending on technology flows
from specialized conferences or meetings, foreign direct investment flow from in-
ternational channels, an R&D investment itself, and the location of R&D gener-
ator and receiver (Jaffe (1986), Cohen and Levinthal (1989), Jaffe, Trajtenberg,
and Henderson (1993), Cassiman and Veugelers (2002), and Alcdcer and Chung
(2007)). In other words, the complicated nature and variety of R&D incoming
spillovers suggest that in general investors cannot concretely measure spillover
effects on a firm’s profitability. Thus, investors are likely slow to recognize the

IWhile patents and copyrights can be used to prevent this type of activity, they are not always
effective. Levin, Klevorick, Nelson, Winter, Gilbert, and Griliches (1987) argue that patents are par-
ticularly effective in chemical industries because clear standards can be applied to assess a chemical
patent’s validity and to defend against infringement. In the case of advanced technologies, it is more
difficult to prove infringement. One notable case is the graphical user interface (GUI) for Macin-
tosh and Microsoft Windows. In 1988, Apple sued Microsoft for copyright infringement of the Apple
Macintosh GUI. Despite its copyrights, almost all of Apple’s claims were denied by the court on a
contractual technicality.
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full benefit of positive R&D externalities.? If investors underreact to the positive
information of externalities conveyed in an R&D increase, we would expect the
R&D incoming spillover effect to relate to long-run firm performance following
the R&D increase. That is, a positive relation between R&D incoming spillovers
and the long-run abnormal stock returns of R&D-increase firms would indicate
that the market does not immediately incorporate positive R&D externalities into
stock valuations, contrary to the efficient market hypothesis.

This study attempts to measure the R&D incoming spillover effect and its
association with the long-run performance of R&D-increase firms. As there are
various R&D spillover channels, we adopt a stochastic frontier production func-
tion to capture the R&D spillover effect. We model this effect, which is a nonneg-
ative stochastic random variable, as part of the production function, because the
positive effects of R&D spillovers appear primarily in manufacturing technology.
From estimates of the production function, we can measure the effect of R&D
spillovers for each firm observation and then investigate the relation between the
incoming spillover effect and the long-run performance of R&D-investing firms.

To investigate the incoming spillover effect, we collect 7,554 U.S. firm-year
observations of unexpected and significant increases in firm R&D between 1977
and 2005. Following Eberhart et al. (2004), we require firms in the sample to
have an R&D intensity of more than 5% and an R&D increase of over 5%. We
focus on these firms because they are the most likely to experience R&D incoming
spillovers (Cohen and Levinthal (1989), Henderson and Cockburn (1996)). A firm
with little R&D spending is less able to learn from the outside knowledge pool
generated by other firms” R&D efforts.

To see whether our stochastic frontier production method captures the R&D
incoming spillover effect, we examine recruiting news about our sample firms,
because the hiring of key employees from other firms is a major source of R&D
incoming spillovers (e.g., Levin et al. (1987), McEvily and Chakravarthy (2002),
and Agarwal, Ganco, and Ziedonis (2009)). Sample firms with a higher level of
incoming spillovers tend to recruit more key employees from other firms. This
evidence implies that firms that hire more key personnel and hence take advantage
of more know-how from other firms tend to enjoy more R&D incoming spillover
effects.

We calculate the 5-year long-run abnormal return of our sample firms sorted
by R&D incoming spillover. We use the standard Fama and French (1993)
3-factor model and the Carhart (1997) 4-factor model to estimate abnormal stock
returns. The average monthly abnormal return following R&D increases is 0.67%
to 1.08% for firms with the highest level of incoming spillover, compared to only
0% to 0.58% for firms with the lowest level of incoming spillover, depending on
model and weighting scheme. The results overall support a positive relation be-
tween the R&D incoming spillover effect and the long-run performance of R&D-
increase firms. Our results are robust to alternative measures of abnormal stock
returns and various stochastic R&D spillover specifications. Evidence confirms
as well that R&D investments are beneficial to other firms, but that the market

Research on cognitive behavior also predicts that investors may underreact to complex informa-
tion (e.g., Barberis, Shleifer, and Vishny (1998), Hong and Stein (1999), and Hirshleifer (2001)).
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is slow to recognize the full extent of this benefit, contrary to what the efficient
market hypothesis would predict.

To see if the abnormal returns we observe reflect risk factors that are not
accounted for by our benchmarks, we follow Denis and Sarin (2001), Chan,
Ikenberry, and Lee (2004), and Titman, Wei, and Xie (2004), and examine ab-
normal stock returns surrounding earnings announcements over the 5 years after
R&D increases. We find significantly positive earnings-announcement abnormal
returns for firms with high incoming spillovers but not for firms with low incom-
ing spillovers. This result suggests that the long-run outperformance of R&D-
increase firms with high incoming spillovers is not likely to be generated by the
benchmark measurement errors suggested by Lyon, Barber, and Tsai (1999).

Evaluation of the operating performance of firms following significant R&D
increases provides further evidence on the potential benefit of R&D incoming
spillovers. We show that R&D-increase firms with high incoming spillovers tend
to experience greater improvement in operating performance than firms with low
incoming spillovers. This evidence again supports the importance of R&D incom-
ing spillovers in explaining long-run firm performance following R&D increases.

Examination of R&D outgoing spillover effects indicates that sample firms
with a higher level of R&D outgoing spillovers are more likely to display sig-
nificantly negative abnormal R&D investment. This finding indicates that R&D
outgoing spillovers cause an underinvestment in R&D because of the imperfect ap-
propriability of benefits from such investment (Arrow (1962), Jones and Williams
(1998)). We also find that R&D outgoing spillover effects are significantly nega-
tively related to firm size and advertisement expenditure, and significantly posi-
tively related to industry R&D dispersion. Our results suggest that smaller firms,
firms with less spending on brand name, and firms in industries with greater
R&D dispersion are likely to experience R&D outgoing spillovers that make
it harder for them to appropriate returns from R&D (Cassiman and Veugelers
(2002), Feinberg and Gupta (2004), and Franco and Gussoni (2010)).

Our research makes two valuable contributions to the literature. First, we
find that the market appears to underreact to R&D incoming spillover effects.
Investors have difficulty in measuring the extent of these effects, given their com-
plicated nature. Using a stochastic frontier production function to estimate R&D
incoming spillovers, we show that the long-run performance of R&D-increase
firms is positively related to the incoming spillover effect. This evidence suggests
that the market is slow to incorporate positive R&D externalities into firm val-
uations. Second, we find that firms that are less able to appropriate their R&D
benefits are also less likely to undertake R&D investment in the future. Using
the production function to estimate R&D outgoing spillover effects, we show that
firms with higher levels of R&D outgoing spillovers tend to experience nega-
tive abnormal R&D investment. We also discover several factors that significantly
affect R&D outgoing spillovers.

The paper is organized as follows: In Section II, we review the literature
and discuss the procedures we use to estimate the R&D incoming spillover ef-
fect. Section III describes the data and methodology. We examine how R&D in-
coming spillovers relate to post-R&D-increase stock performance in Section IV
and to post-R&D-increase earnings-announcement stock returns and operating
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performance in Section V. Section VI provides additional evidence. The final sec-
tion concludes.

[I. R&D Spillovers
A. Literature Review on R&D Spillovers

An R&D spillover occurs when privately owned firms are unable to fully
appropriate returns from their R&D investment. Arrow (1962) and Jones and
Williams (1998) argue that R&D spillovers cause R&D investment to deviate
from its optimal level. In this view, R&D spillovers promote underinvestment
in R&D. Imperfect appropriability allows firms to take advantage of other firms’
R&D to reduce production costs or enhance profitability.

According to the literature, there are several ways R&D know-how can spill
over. R&D results may be copied or mimicked because know-how and innovation
are usually intangible assets. To some extent, the knowledge spillover that Hanel
and St-Pierre (2002) suggest is similar to this notion. That is, R&D results may be
found in publicly available information. Protection by intellectual property rights
could deter such potential knowledge transfer, but it is unlikely that all possible
knowledge transfers can be limited this way (Arrow (1962)).

Moreover, the know-how generated by R&D activities may pass from a firm
to a partner such as its subsidiary. If a manager moves from a firm to an embry-
onic organization, this migration may create knowledge spillovers, including the
transfer of rules, routines, and procedures from the parent firm. Agarwal, Echam-
badi, Franco, and Sarkar (2004) call this the parent-progeny knowledge transfer
relation. They find that new firms receiving technology from parent firms tend to
perform better than other entrants.

Positive externalities from R&D are widely investigated in the literature, al-
though there are different channels to spread the knowledge of R&D. Griliches
(1979) and Bernstein and Nadiri (1988) argue that one firm’s R&D investment
could reduce the costs for other firms. Jaffe (1986) suggests that firms’ net income
will increase when the potential spillover pool increases. Megna and Mueller
(1991), Geroski, Machin, and Reenan (1993), and Zantout and Tsetsekos (1994)
find similar results. Henderson and Cockburn (1996) find a stronger R&D incom-
ing spillover effect for firms with higher levels of R&D intensity. This finding
confirms the conclusion of Cohen and Levinthal (1989) that a firm’s R&D in-
vestment makes it better able to learn new technologies. Overall, the research
documents the existence of an R&D spillover effect: The R&D of one firm can
benefit the performance of other firms.

B. Stochastic R&D Spillover Effects

We use a production function to estimate the R&D incoming spillover effect
for a specific firm because a firm’s ability to absorb outside R&D knowledge
should be reflected in its productivity. In a given year, we assume that firm i uses
inputs including capital (K), labor (L), and research and development (RD) to
produce output (Y), according to a Cobb-Douglas production function technique
as follows:

ssaud Aissanun abpuguied Aq auluo paysliand #£5000€ L060122005/£101°01/610"10p//:sdny


https://doi.org/10.1017/S0022109013000574

1612  Journal of Financial and Quantitative Analysis

(D) logY; = ap+alogK;+aylogL;+aszlogRD;
+ a4,TIME_TREND + u; + v;.

This setting suggests that the output level ¥; depends on a set of production factors
(K;, L;, and RD;); a time trend variable to capture general growth over time (Bat-
tese and Coelli (1992)); and two unobservable disturbance terms, u; and v;. We
follow the stochastic frontier production analysis of Aigner, Lovell, and Schmidt
(1977) in including the two error terms.? Here, v; represents the symmetric dis-
turbance and is assumed to be independent and identically distributed (i.i.d.) as
N(O, 05); v; is independent of the error term u;, which is assumed to be i.i.d.
half-normal distribution |U|, given U ~ N(0, ¢2).

The economic implications of the production function in equation (1) are de-
scribed as follows: The random variable u; captures the incoming spillover effect
of firm i from other firms, and the white noise v; captures the impact of other ran-
dom factors on the shocks of output. Here, u; is nonnegative because the spillover
effect represents a positive R&D externality. To provide a better understanding
of u;, we further interpret u; = Zjvzl i SiRDj +w;, indicating that the incoming
spillover effect of firm i can be decomposed into two terms. The first term relates
the incoming spillover effect of firm i to RD; and s;, where RD; is the R&D level
of firm j, and s; is the extent to which firm i absorbs the R&D spillover effect
from firm j (Cassiman and Veugelers (2002)). We require s; to be nonnegative be-
cause spillover effects are positive by nature. The second term w; represents the
unobservable random source.

We follow Aigner et al. (1977) and estimate equation (1) using the maximum
likelihood (ML) method. Given the distribution assumptions for u#; and v; and the
independence assumption between u; and v;, we can express the density function
OfE,' =u; +v;as

@ fler) = zso(g")@(g’“),

g g g

where 0 = /o2 + 02 and A\ = 0,/0,; ¢ and ® denote the standardized normal
density and distribution functions. The log-likelihood function is

s
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Accordingly, we are able to use the ML method to estimate parameters following
the algorithm of quasi-Newton optimization.

In our estimation, output Y; is measured by gross profit (i.e., sales minus cost
of goods sold); capital K; is measured by property, plant, and equipment (PPE);

3Stochastic frontier analysis is typically designed to estimate the technical efficiency of a firm.
Researchers in finance have applied this stochastic frontier method to investigate various issues, in-
cluding initial public offering (IPO) underpricing, agency costs, and trading costs (e.g., Hunt-McCool,
Koh, and Francis (1996), Habib and Ljungqvist (2005), and Green, Hollifield, and Schiirhoff (2007)).

ssaud Aissanun abpuguied Aq auluo paysliand #£5000€ L060122005/£101°01/610"10p//:sdny


https://doi.org/10.1017/S0022109013000574

Chen, Chen, Liang, and Wang 1613

labor L; is number of employees; and RD; is R&D expenditure.* To estimate
the R&D incoming spillover effect of firm i, we use the conditional mean of u;
given ¢;:

¢(—#*i/0*)>
P(psifox) )’

where p1,; = £;(02 /0?) and 0, = 0,0,/0. We obtain the estimated u; by replacing
€;, 0;, and o, with their estimated values in equation (4). We sort sample firms into
quintiles according to the estimated value of u;. Firms with the lowest u; values
are placed in quintile 1, and firms with the highest u; values in quintile 5.

4) E(ule) = u*i+cr*<

[ll. Data and Methodology
A. Data

We begin by collecting data for U.S. firms listed on the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), or the National
Association of Securities Dealers Automated Quotation (NASDAQ). We exclude
American depositary receipts and noncommon stocks. We obtain stock return in-
formation from the Center for Research in Security Prices (CRSP) and company
financial information from Compustat. We require sample firms to have positive
market capitalization and total assets. The sample period runs from Jan. 1977
through Dec. 2005.°

We examine the relation between the R&D incoming spillover effect and
post-R&D-increase firm performance using a sample of firms that unexpectedly
increase their R&D expenditures by an economically significant amount. Eberhart
et al. (2004) define an unexpected R&D increase as an increase in a firm’s R&D
intensity (i.e., the ratios of R&D to assets and R&D to sales). They also argue
that firms with an R&D intensity of more than 5% and an R&D increase of over
5% are likely firms that experience an economically significant R&D increase.
Thus, we follow them and identify sample firms that meet five selection criteria:
i) Their ratios of R&D expenditures to sales are over 5%; ii) their ratios of R&D
expenditures to average total assets (beginning plus end-of-year assets divided
by 2) are over 5%; iii) changes in their ratios of R&D expenditures to sales are
over 5%; iv) changes in their ratios of R&D expenditures to average total assets
are over 5%; and v) their percentage changes in R&D expenditures are over 5%.
The final sample includes 7,554 firm-year observations.

Panel A of Table 1 presents summary statistics. Firm size is measured by the
market value of common equity converted to 1980 dollars using the Consumer

4We follow the traditional stochastic frontier literature (e.g., Aigner et al. (1977), Battese and
Coelli (1988), (1992)) and do not scale the input and output variables by a variable such as sales or
book assets. Our conclusions are unchanged if we use a sales- or assets-scaled stochastic production
function.

SOur sample period starts in 1977 because i) accounting treatment of R&D expense reporting was
standardized in 1974 (Financial Accounting Standards Board Statement No. 2), and ii) there are too
few observations with available information for the production function estimation during the period
1974-1976.
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Price Index. The average firm size is $407 million, indicating that sample firms
tend to be small. BM is the book value of common equity divided by the market
value of common equity. The average BM is 0.52, suggesting that sample firms
tend to be high-growth firms. When we divide the sample into five groups on the
basis of R&D incoming spillover, we find that their R&D intensities are simi-
lar. Return on assets (ROA), defined as EBITDA (earnings before interest, taxes,
depreciation, and amortization) divided by average total assets, tends to be higher

TABLE 1
Summary Statistics and Sample Distribution

Table 1 presents summary statistics and distribution for a sample of firms that unexpectedly increase their R&D expen-
ditures by a significant amount between 1977 and 2005. The sample is identified according to the procedure described
in Section llI.A. Panel A reports mean and median firm characteristics (medians are reported in parentheses). The R&D
incoming spillover is obtained from the residual (u;) in the following Cobb-Douglas production function:

log Y; = ap + a1 log Kj + as log Lj + az log RD; + a4 TIME_.TREND + u; + v,

where Y; is gross profit; K; is property, plant, and equipment; L; is number of employees; RD; is R&D expenditure; and
TIME_TREND is the tth year since 1977. Residual u; obeys half-normal |U| given U ~ N(O, 05), and residual v; obeys
Normal N(O, 0'\2,)‘ We sort our sample firms into quintiles according to the estimated value of u;. Firms with the lowest u;
values are placed in quintile 1, and firms with the highest u; values in quintile 5. Firm size is the market value of common
equity converted to 1980 dollars using the Consumer Price Index. BM is the book value of common equity divided by
the market value of common equity. Gross profit is sales minus cost of goods sold. R&D intensity is R&D expenditures
divided by average total assets or sales. R&D growth rate is the percentage change in R&D expenditures. Return on
assets (ROA) is EBITDA (earnings before interest, taxes, depreciation, and amortization) divided by average total assets.
Panel B reports sample distribution by industry based on the primary 1-digit SIC code in Compustat (percentages are
reported in parentheses). Panel C reports the number and proportion of R&D-increase firms that recruited top executives
or key employees from other firms (proportions are reported in parentheses). We hand-collect recruiting news from the
LexisNexis database for the 3,001 R&D-increase firms with the highest and lowest R&D incoming spillovers. Large firms
are defined as firms with a market capitalization of over $100 million. We use Fisher's exact test to test the significance of
differences in proportions; p-values are reported in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels, respectively.

Panel A. Summary Statistics

Incoming Gross
Spillover Firm Size Profit R&D Growth Incoming
Group N ($millions) BM ($millions) R&D/Assets R&D/Sales Rate ROA Spillovers
All 7,554 407 0.52 85.47 0.16 0.21 0.71 0.02 1.26
(51) (0.40) (14.27) (0.13) (0.13) (0.41) (0.08) (1.23)
Quintile 1 1,489 320 0.55 67.25 0.15 0.31 0.81 —0.10 0.50
(42) (0.42) (4.67) (0.11) (0.14) (0.47) (—0.04)  (0.49)
Quintile 2 1,502 465 0.60 110.94 0.14 0.20 0.67 0.01 0.90
(54) (0.47) (15.46) (0.11) (0.11) (0.36) (0.09) (0.89)
Quintile 3 1,518 654 0.52 137.30 0.15 0.17 0.63 0.05 1.24
(72) (0.40) (22.74) (0.12) (0.12) (0.36) (0.11) (1.24)
Quintile 4 1,533 358 0.51 70.14 0.17 0.19 0.70 0.05 1.59
(52) (0.39) (17.77) (0.15) (0.14) (0.43) (0.10) (1.59)
Quintile 5 1,512 235 0.43 41.64 0.19 0.19 0.75 0.09 2.05
(46) (0.33) (14.58) (0.16) (0.14) (0.47) (0.13) (2.04)

Panel B. Sample Distribution by Industry and Decade

1-Digit SIC Code

Decade All 0 1 2 3 4 5 6 7 8 9

Al 7,554 94 11 823 4,588 61 126 31 1,651 167 2
(100.0%) (1.2%) (0.2%) (10.9%) (60.7%) (0.8%) (1.7%) (0.4%) (21.9%) (2.2%) (0.0%)

1970s 305 52 0 33 196 0 1 1 21 1 0
(4.0%) (0.7%) (0.0%) (0.4%) (2.6%) (0.0%) (0.0%) (0.0%) (0.3%) (0.0%) (0.0%)

1980s 2,268 41 7 248 1590 12 27 9 305 29 0
(30.0%) (0.5%) (0.1%) (3.3%) (21.1%) (0.2%) (0.4%) (0.1%) (4.0%) (0.4%) (0.0%)

1990s 3,601 1 4 337 2,083 30 71 11 981 81 2
(47.7%)  (0.0%) (0.1%)  (4.5%) (27.6%) (0.4%) (0.9%) (0.2%) (13.0%) (1.1%) (0.0%)

2000s 1,380 0 0 205 719 19 27 10 344 56

0
(18.3%) (0.0%) (0.0%) (2.7%) (9.5%) (0.3%) (0.4%) (0.1%) (46%) (0.7%) (0.0%)
(continued on next page)
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TABLE 1 (continued)
Summary Statistics and Sample Distribution

Panel C. Number and Proportion of Firms with Recruiting News

Subsample by Firm Size Recruiting from Other
Incoming Firms in the Same
Spillover Recruiting from Large Small Recruiting from Other 3-Digit SIC
Group Other Firms Firms Firms R&D-Intensive Firms Industry
Quintile 1 67 42 25 35 13
(4.50%) (7.22%) (2.76%) (2.35%) (0.87%)
Quintile 5 92 55 37 54 25
(6.08%) (8.47%) (4.29%) (3.57%) (1.65%)
Difference —25 —13 —12 —19 —12
(—1.58%) (—1.26%) (—1.53%) (—1.22%) (—0.78%)
[0.010]*** [0.061] [0.023]** [0.011]** [0.021]**

for sample firms with higher R&D incoming spillovers, probably because stochas-
tic spillovers are estimated from the production function. Panel B of Table 1
presents sample distribution by industry and decade. As in Eberhart et al. (2004),
most of our sample firms come from the manufacturing industry (Compustat
1-digit Standard Industrial Classification (SIC) code 3).

Other studies using survey data suggest that the hiring of key employees
from other firms is an important source of R&D incoming spillovers (e.g., Levin
et al. (1987)). If our estimated u; captures the R&D spillover effect, we should ex-
pect firms with the highest level of incoming spillovers to be associated with more
recruiting news than firms with the lowest level of incoming spillovers. Panel C
of Table 1 gives the number and proportion of R&D-increase firms that over the
sample period recruited top executives or key employees from other firms.® We
retrieve articles from the LexisNexis database to hand-collect recruiting news for
the 3,001 R&D-increase firms with the highest and lowest levels of R&D incom-
ing spillovers in our sample. The numbers (proportions) of firms that recruit key
persons from other firms are 67 (4.50%) and 92 (6.08%) for the lowest and high-
est spillover groups, respectively.” The difference of —1.58% between the two
proportions is statistically significant at the 1% level, using Fisher’s exact test.
This finding holds for both large and small firms, where large firms are defined
as firms with a market capitalization of over $100 million. Panel C also shows
that our results remain unchanged when the recruiting of key persons is limited
to other R&D-intensive firms (firms with ratios of R&D to assets of over 5%) or
other firms in the same 3-digit SIC industry.® The overall evidence in Panel C
supports a conclusion that one important source of R&D spillovers is recruitment

SExamples of key employees are vice president of R&D, chief technology officer, president and
chief operating officer, pharmaceutical director, managing director, senior director for global medical
affairs, and executive vice president of sales and operations.

7 Among the 3,001 R&D-increase firms with the highest and lowest incoming spillovers, we can
find only 159 firms that have recruiting news. This low proportion is probably due to the limited media
coverage of R&D-increase firms. For example, Chan et al. (1990) find only 167 announcements of
R&D increases in the Dow Jones News Retrieval Service database from June 1979 through June 1985,
and Szewczyk et al. (1996) find only 252 such announcements in the same database between June
1979 and Dec. 1992.

8Results are similar if R&D-intensive firms are firms with ratios of R&D to sales of over 5%.
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of key employees from other firms and that our estimation procedure based on
stochastic frontier analysis is able to capture the R&D spillover effect.

B. Long-Run Performance Measures

We follow Eberhart et al. (2004) and use the Fama and French (1993)
3-factor model and the Carhart (1997) 4-factor model to measure abnormal return
performance over the 5-year period after an R&D increase. We measure long-
run abnormal stock returns at the beginning of the 5th month following the fiscal
year-end in which the firm increases its R&D because our R&D increases are
based on accounting data, and a 4-month lag allows the market to be informed of
the accounting data. As Berk, Green, and Naik (2004) document that an invest-
ment in R&D may lead to a change in a firm’s systematic risk, we also follow
Eberhart et al. (2004) and estimate the 3-factor and 4-factor models using rolling
regression estimates of each factor loading.” To avoid a bad model problem or po-
tential bias in the estimation of long-run return performance, we further examine
abnormal returns for the short period in which quarterly earnings announcements
occur, an approach widely used in the literature (e.g., Chopra, Lakonishok, and
Ritter (1992), La Porta, Lakonishok, Shleifer, and Vishny (1997), Denis and Sarin
(2001), Chan et al. (2004), and Titman et al. (2004)). We compute abnormal stock
returns over a 5-day (—2, +2) window centered around quarterly earnings an-
nouncement dates for 20 quarters following the end of the fiscal year in which the
firm increases its R&D, where the abnormal return is the difference between the
sample firm’s announcement-period return and its size/book-to-market matching
firm’s return. If there are positive long-run abnormal returns following R&D in-
creases, we are likely to see positive subsequent earnings announcement abnormal
returns, as the stock valuation adjusts to new information.

Following Barber and Lyon (1996) and Lie (2001), we measure operating
performance by ROAs with two adjustments. We add after-tax R&D to EBITDA
(as in Eberhart et al. (2004)) because R&D expenses reduce profit. We also sub-
tract cash from assets because cash is not productive. The abnormal ROA is the
ROA of the sample firm minus the ROA of its matching firm, where the matching
firm is selected by ROA and industry.'” We use the 5-year change in abnormal
ROA following an R&D increase as the operating performance measure.

IV. R&D Incoming Spillovers and Long-Run Stock
Performance Following R&D Increases

Table 2 presents the long-term abnormal stock return test results. For both
standard 3-factor and 4-factor models and equal- and value-weighted measures,

9To save space, we describe the details of measuring long-run abnormal stock returns in the leg-
end of Table 2. We thank Kenneth French for making risk factors publicly available at his Web site
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/).

10For each sample firm we select all non-R&D-increase firms in the same 2-digit SIC industry
that have ROA within +-20% or within 4-0.01. If no firms meet this criterion, we relax the industry
criterion to a 1-digit SIC. If still no firms meet the criterion, we disregard the SIC code. From these
firms, we select the firm with the lowest |ROASAMPLEJ:IRM — ROAMATCHING_FIRM ‘
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the average abnormal returns for the whole sample over the 5 years after R&D
increases range from 0.32% to 0.91% per month, all statistically significant at
the 1% level. The rolling regression results indicate our results are robust to ac-
counting for changes in risk over time. This evidence suggests that our sample
firm shareholders experience significantly positive long-term abnormal stock re-
turns following economically significant R&D increases, consistent with findings
in Eberhart et al. (2004).!!

TABLE 2
R&D Incoming Spillovers and Long-Run Stock Performance Following R&D Increases

Table 2 presents long-run abnormal stock returns (in percentage) for the sample of R&D increases. Standard Fama and
French (1993) 3-factor and Carhart (1997) 4-factor models are specified as follows:

ot — it = ap + Bp(rmt — rit) + SpSMB¢ + hpHML¢ + ept,
ot —re = ap+ Bplrmt — rt) + SpSMBt + hpHMLt + wpWML; + ept,

where rp is the value- or equal-weighted return on portfolio p in month t; rs is the return on 1-month T-bills in month t; rpy is
the return on a market index in month t; SMB; is the difference in the returns of a portfolio of small and big stocks in month t;
HML; is the difference in the returns of a portfolio of high book-to-market stocks and low book-to-market stocks in month t;
WML is the difference in the returns of a portfolio of prior-year high return stocks and prior-year low return stocks in month
t; and ep, is the error term for portfolio p in month t. We include a sample stock in portfolio p if month t is within the 60-
month period following its R&D increase. We measure long-run abnormal stock returns at the beginning of the 5th month
following the fiscal year-end in which the firm increases its R&D. The estimated intercept from the regression captures
the average monthly abnormal return over the 5-year period following R&D increases. We also estimate the equations
with rolling regression estimates of each factor loading. We use the first 60 months of portfolio returns to estimate the
factor loadings and then obtain the expected portfolio return in month 61 by multiplying the factor loadings estimated over
the previous 60 months by their respective month 61 factor returns. The abnormal return in month 61 is the difference
between the actual portfolio return and the expected portfolio return. We repeat this step for every month. We then average
the time series of monthly abnormal return estimates and perform a significance test based on the time-series volatility of
these estimates. The measure of R&D incoming spillover is described in Table 1. Firms with the lowest level of incoming
spillovers are placed in quintile 1, and firms with the highest level of incoming spillovers in quintile 5. The t-statistics are
reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Value-Weighted Equal-Weighted
) 3-Factor 4-Factor 3-Factor 4-Factor
Incoming Model Model Model Model
Spillover
Group Standard Rolling Standard Rolling Standard Rolling Standard Rolling
All 0.3247 0.2072 0.3336 0.1956 0.6494 0.5243 0.9120 0.6552
(2.86)** (1.83)* (2.86)** (1.67)* (3.63)** (2.83)** (5.28)** (3.68)**
Quintile 1 0.0230 —0.1411 —0.0002 —0.2185 0.3525 0.2977 0.5835 0.3851
(0.13) (—0.70) (—0.00) (—1.03) (1.77)* (1.45) (2.97)* (1.89)*
Quintile 2 0.3671 0.0354 0.3972 0.0135 0.6401 0.3743 0.8374 0.4755
(2.05)** (0.21) (2.17)* (0.08) (3.14)* (1.73)* (4.10)* (2.25)*
Quintile 3 0.2444 0.1981 0.2456 0.2350 0.5949 0.6042 0.8192 0.7574
(1.51) (1.22) (1.48) (1.37) (3.27)* (3.05)** (4.58)* (3.84)*
Quintile 4 0.6335 0.4110 0.6979 0.4109 0.8257 0.7058 1.1441 0.8717
(3.25)** (2.05)** (3.50)*** (2.00)** (4.41)** (3.40)** (5.98)*** (4.40)**
Quintile 5 0.9293 0.8818 1.0787 0.9518 0.6672 0.6563 1.0009 0.8233

(8.48) (3.10)** (3.97)** (8.26)** (3.00)*** (2.63)"** (4.68)"** (8.61)*

Table 2 also shows a positive relation between R&D incoming spillovers
and post-R&D-increase abnormal returns. For example, with the value-weighted
measure, the average monthly abnormal return for firms with the highest level of
incoming spillovers is 0.93% with the standard 3-factor model and 1.08% with the
standard 4-factor model (both statistically significant at the 1% level), compared

"'We also perform two robustness checks on the small-firm effect: i) We exclude firms smaller than
the sample median, or ii) we remove stocks in size decile 1. Our conclusion remains unchanged.
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to only 0.02% and 0% for firms with the lowest level of incoming spillovers (both
insignificantly different from 0). The results are similar for the equal-weighted
measure and the rolling regression method.!? The overall evidence in Table 2
indicates that firms with greater R&D incoming spillovers appear to reap more
technology benefits, producing higher abnormal stock returns.

In Table 3, we examine the long-run performance of R&D-increase firms
in the post-1990 period, particularly because of the expansion of technology in
electronics-related industries (Jorgenson and Stiroh (1999) and Stiroh (2002)).
Rapid growth in the technology of an economy suggests that not only R&D in-
vestment per se but also R&D spillovers may improve the technology levels of
individual firms. Table 3 shows that R&D incoming spillovers are still positively
related to the long-run abnormal return of R&D-increase firms, consistent with
the findings in Table 2.

TABLE 3

R&D Spillovers and Long-Run Abnormal Returns Following R&D Increases in the
Post-1990 Period

Table 3 presents long-run abnormal stock returns (in percentage) for the sample of R&D increases in the post-1990 pe-
riod. The measure of R&D incoming spillovers is described in Table 1, and the measure of abnormal returns is described
in Table 2. Firms with the lowest level of incoming spillovers are placed in quintile 1, and firms with the highest level of
incoming spillovers in quintile 5. The t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1%,
5%, and 10% levels, respectively.

Value-Weighted Equal-Weighted
. 3-Factor 4-Factor 3-Factor 4-Factor
Incoming Model Model Model Model
Spillover
Group Standard Rolling Standard Rolling Standard Rolling Standard Rolling
All 0.4228 0.3982 0.4232 0.3946 0.9225 0.9321 1.3040 1.1815
(3.47)*  (2.85)*** (8.37)** (2.79) (3.71)* (3.46)*** (5.69)** (4.66)
Quintile 1 0.1846 0.2522 0.1979 0.4117 0.7520 0.5030 1.0824 0.6034
(0.86) (0.99) (0.90) (1.55) (2.70)"** (1.18) (4.02)* (1.39)
Quintile 2 0.2951 0.2706 0.3887 0.2620 0.9112 0.9253 1.2442 1.1728
(1.73)* (1.51) (2.23)** (1.45) (3.67)** (3.44)* (5.28)** (4.57)*
Quintile 3 0.4157 0.3304 0.3876 0.3341 0.9595 1.0143 1.2773 1.2466
(2.15)** (1.56) (1.95)" (1.55) (3.88)* (2.71) (5.40)* (3.38)**
Quintile 4 0.7711 0.6169 0.8119 0.6323 1.0918 1.1400 1.5390 1.4874
(2.96)™**  (2.15)** (3.03)"** (2.11)* (3.95)*** (3.50)"** (6.12)*** (4.86)***
Quintile 5 1.0107 1.3039 1.2208 1.3198 0.9194 1.0955 1.4058 1.4139

(2.96)**  (2.93)™*  (3.53)"* (2.95)**  (2.98)™*  (297)**  (4.98)** (4.03)*

Table 4 presents long-run abnormal returns for high-tech and low-tech sub-
samples, according to the classification schemes of Chan et al. (1990) and Eberhart
et al. (2004)."* For high-tech firms, we find a positive relation between R&D
incoming spillovers and the long-run stock performance of R&D-increase firms.

2Following Shumway (1997) and Shumway and Warther (1999), we also correct for a delisting
bias for firms in our sample that are delisted for performance reasons. Our conclusions remain un-
changed for the delisted-adjusted sample.

I3High-tech firms include firms in such industries as pharmaceutical preparations; services-
computer programming; data processing; services-computer processing; data preparation; industrial
instruments for measurement, display and control of process variables; instruments for measuring and
testing of electricity and signals; laboratory analytical instruments; optical instruments and lenses;
surgical and medical instruments and apparatus; musical instruments; semiconductors and related
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The results hold for equal- and value-weighted measures and for standard fac-
tor models and the rolling regression method. We do not find an R&D incoming
spillover effect for low-tech firms. In general, low-tech firms do not earn signifi-
cant long-run abnormal returns across incoming spillover groups.

TABLE 4
R&D Spillovers and Post-R&D-Increase Abnormal Returns for High- and Low-Tech Firms

Table 4 presents long-run abnormal returns (in percentage) for subsamples of high-tech firms (Panel A) and low-tech
firms (Panel B) according to the classification schemes of Chan et al. (1990) and Eberhart et al. (2004). The measure of
R&D incoming spillovers is described in Table 1, and the measure of abnormal returns is described in Table 2. Firms with
the lowest level of incoming spillovers are placed in quintile 1, and firms with the highest level of incoming spillovers in
quintile 5. The t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,
respectively.

Value-Weighted Equal-Weighted

3-Factor 4-Factor 3-Factor 4-Factor

Incoming Model Model Model Model
Spillover
Group Standard Rolling

Standard Rolling Standard Rolling Standard Rolling

Panel A. High-Tech Firms

Quintile 1 0.1193 —0.0650 0.0481 —0.1588 0.3704 0.3356 0.6074 0.4287
(0.57) (—0.29) (0.22) (—0.69) (1.80)" (1.58) (2.98)"** (2.02)*
Quintile 2 0.3399 0.0082 0.3772 0.0011 0.6556 0.3786 0.8453 0.4757
(1.86)" (0.05) (2.02)** (0.01) (3.17)** (1.71)" (4.07)** (2.19)"*
Quintile 3 0.2465 0.2024 0.2497 0.2403 0.5995 0.6219 0.8261 0.7773
(1.50) (1.24) (1.48) (1.38) (3.24) (3.10)** (4.54) (3.88)"**
Quintile 4 0.6423 0.4148 0.7100 0.4294 0.8163 0.6804 1.1387 0.8514
(3.24) (2.04) (3.50)"** (2.06)** (4.05)** (3.25)** (5.94)"** (4.22)"**
Quintile 5 0.9416 0.8749 1.0886 0.9426 0.6652 0.6433 1.0007 0.8071
(3.48)** (3.04)* (3.95)"** (3.18)** (2.96)** (2.55)* (4.63)"** (3.49)***
Panel B. Low-Tech Firms
Quintile 1 —0.4231 —0.4228 —0.4450 —0.3329 —0.3747 —0.4034 —0.1340 —0.1896
(—1.14) (—1.12) (—1.17) (—0.86) (—0.88) (—0.93) (—0.31) (—0.43)
Quintile 2 —0.0816 —0.4704 0.2274 —0.1486 —0.0449 —0.0779 0.2715 0.2324
(—0.18) (—0.99) (0.50) (—0.31) (—0.12) (—0.19) (0.72) (0.56)
Quintile 3 0.4194 —2.2919 0.6082 —1.8648 0.6274 —2.1073 0.9188 —1.6691
(0.78) (—1.30) (1.10) (—1.03) (1.37) (—1.21) (1.98)*  (—0.94)
Quintile 4 0.1072 0.1603 0.4000 0.2428 0.3938 0.3566 0.8842 0.6475
(0.22) (0.26) (0.82) (0.37) (0.76) (0.54) (1.71)" (0.94)
Quintle 5 —0.1598 —0.1954 0.0477 0.3228 0.4763 0.4096 0.6632 0.9317
(—0.24) (—0.27) (0.07) (0.44) (0.80) (0.63) (1.09) (1.41)

We also examine long-run stock performance for subsamples of value firms

and other firms, where firms in the top book-to-market quintile are classified as
value firms. The results (untabulated) show that the abnormal returns of value
firms are not statistically significant, while the other firms earn positive abnormal
returns. We also find that the R&D incoming spillover effect exists only for the
other-firm category.

In Table 5, we follow Eberhart et al. (2004) and examine long-run abnor-
mal returns using the zero-investment portfolio regression. Daniel and Titman
(1997) argue that a firm’s characteristics (e.g., size and book-to-market ratio) are

devices; telephone and telegraph apparatus; radiotelephone communications; telephone communi-
cations; telegraph and other message communications; cable and other pay television services; and
services-telephone interconnect systems.
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TABLE 5

R&D Spillovers and Long-Run Abnormal Returns Following R&D Increases:
Zero-Investment Portfolios

Table 5 presents long-run abnormal returns (in percentage) using the zero-investment portfolio regression, where the return
of ahedging portfolio (a long position in R&D-increase firms and a short position in their size/book-to-market matching firms)
is used as the dependent variable. We obtain the abnormal return (Jensen's «) based on the regression models

ot —rgt = a+(Bp — Bq)(rmt — rit) + (Sp — 8q)SMB¢ + (hp — hg)HML; + ey,
Ipt — Iqt = a+(Bp — Bg)rmt — 1) + (Sp — 8q)SMBt + (hp — hg)HML; + (wp — wq)WML; + e,

where p and g denote portfolios of R&D-increase firms and matching firms, and (8p — Bq), (Sp — 8q). (hp — hg), and
(wp — wgq) are differences in factor loadings on market risk, size, book-to-market, and momentum premiums. See Table 2
for a detailed discussion of these regression tests. The measure of R&D incoming spillovers is described in Table 1. Firms
with the lowest level of incoming spillovers are placed in quintile 1, and firms with the highest level of incoming spillovers
in quintile 5. The t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,
respectively.

Value-Weighted Equal-Weighted
. 3-Factor 4-Factor 3-Factor 4-Factor
Incoming Model Model Model Model
Spillover
Group Standard Rolling Standard Rolling Standard Rolling Standard Rolling
All 0.2572 0.1108 0.2987 0.1159 0.6295 0.3929 0.7426 0.4217
(1.75)* (0.75) (1.98)* (0.78) (4.18)** (2.67)** (4.88)** (2.84)**
Quintile 1 —0.0308 —0.1488 —0.0467 —0.2576 0.4131 0.2296 0.4776 0.1876
(—0.14) (—0.63) (—0.21) (—1.04) (2.36)* (1.29) (2.66)** (1.04)
Quintile 2 0.4054 0.0308 0.4462 0.0032 0.6215 0.2696 0.6386 0.2361
(2.01) (0.16) (2.16)** (0.02) (3.17)* (1.31) (3.17) (1.14)
Quintile 3 0.0974 0.0464 0.1505 0.1420 0.5927 0.4973 0.6313 0.4969
(0.51) (0.24) (0.77) (0.70) (3.45)* (2.73)** (3.58)** (2.62)**
Quintile 4 0.7785 0.4833 0.8746 0.4383 0.8392 0.5768 0.9277 0.5773
(2.99)* (1.82) (3.28)** (1.63) (4.55)* (3.12) (4.93)* (3.09)**
Quintile 5 0.7017 0.5303 0.9521 0.6436 0.6092 0.4383 0.7330 0.4398
(2.09)** (1.51) (2.81)** (1.80)* (2.96)** (1.94)* (3.50)*** (2.05)*

associated with its stock return even after controlling for the general Fama and
French (1993) common risk factors. To capture any potential effect of firm char-
acteristics, we perform a zero-investment portfolio regression using the return of
a hedging portfolio (i.e., a long position in R&D-increase firms and a short posi-
tion in their size/book-to-market matching firms) as the dependent variable. We
again find positive long-run abnormal returns for R&D-increase firms, although
the results are weaker. Eberhart et al. (2004) also show weaker results when they
use a zero-investment portfolio regression. We further find that R&D incoming
spillovers still affect the market valuation of R&D-increase firms. There is a pos-
itive relation between incoming spillovers and long-run abnormal returns.

V. R&D Incoming Spillovers and Post-R&D-Increase
Earnings Announcement Returns and Operating
Performance

A. Abnormal Returns Surrounding Earnings Announcements

Table 6 presents average 5-day announcement-period abnormal returns cen-
tered around quarterly earnings announcement dates over the entire 5 years and in
each year following R&D increases. For the whole sample, the average earnings

ssaud Aissanun abpuguied Aq auluo paysliand #£5000€ L060122005/£101°01/610"10p//:sdny


https://doi.org/10.1017/S0022109013000574

Chen, Chen, Liang, and Wang 1621

TABLE 6
Earnings Announcement Abnormal Returns Following R&D Increases

Table 6 presents average 5-day (—2, +2) announcement-period abnormal returns (in percentage) centered around quar-
terly earnings announcement dates over the entire 5 years and in each of the 5 years following R&D increases. We measure
the abnormal return by the difference between the sample firm's 5-day announcement-period return and its size/book-to-
market matching firm’s return. To mitigate the effects of outliers, we winsorize the top and bottom 0.5% extreme values.
R&D incoming spillovers are described in Table 1. Firms with the lowest level of incoming spillovers are placed in quintile
1, and firms with the highest level of incoming spillovers in quintile 5. The t-statistics are reported in parentheses. ***, **,
and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Incoming

Spillover Entire

Groups 5 Years Year 1 Year 2 Year 3 Year 4 Year 5

All 0.28 0.33 0.37 0.16 0.27 0.25
(6.48)*** (8.72)** (3.98)*** (1.65)* (2.60)** (2.26)"*

Quintile 1 —0.32 —0.45 —0.08 —0.39 —0.48 —0.19

(—3.28)"** (—2.27)* (—0.39) (—1.83)" (—2.02)** (—0.74)

Quintile 2 0.22 0.56 0.19 —0.05 —0.13 0.45
(2.42)** (3.09)** (0.98) (—0.26) (—0.62) (2.03)**

Quintile 3 0.43 0.54 0.75 0.02 0.28 0.52
(4.71) (2.86)** (3.81)** (0.12) (1.27) (2.24)*

Quintile 4 0.53 0.66 0.52 0.52 0.73 0.06
(5.30)** (3.30)** (2.43)"* (2.34) (3.12) (0.22)

Quintile 5 0.52 0.28 0.43 0.68 0.93 0.38
(4.99)** (1.35) (1.97) (2.93)** (3.70)** (1.39)

announcement abnormal return over the entire 5 years in the post-R&D-increase
period is 0.28%, statistically significant at the 1% level. Average abnormal returns
for the whole sample are 0.33%, 0.37%, 0.16%, 0.27%, and 0.25% in the 1st-5th
years after R&D increases, respectively, all statistically significant at the 10%
level or better.

Table 6 also shows that R&D incoming spillovers are positively related to
earnings announcement abnormal returns. Over the entire 5 years after R&D in-
creases, firms with the highest level of incoming spillovers experience an aver-
age earnings announcement abnormal return of 0.52% (statistically significant at
the 1% level), compared to —0.32% for firms with the lowest level of incoming
spillovers (statistically significant at the 1% level). In each of the 5 years follow-
ing R&D increases, firms in the top spillover quintile earn significantly positive
abnormal returns in the 2nd, 3rd, and 4th years, while firms in the bottom spillover
quintile experience significantly negative abnormal returns in the 1st, 3rd, and 4th
years. The evidence in Table 6 suggests that the positive relation between R&D
incoming spillovers and the long-run stock performance of R&D-increase firms
is not likely to be generated by benchmark measurement errors.

B. Abnormal Operating Performance

Table 7 presents cross-sectional regression analyses of the changes in abnor-
mal operating performance over the 5-year post-R&D-increase period. In Model 1,
our measure of RD_INCOMING_SPILLOVERS is the explanatory variable. As
the mean reversion process of profitability is highly nonlinear, we include nonlin-
earity controls by incorporating expected earnings, past earnings changes, and
their nonlinear ingredients (as in Fama and French (2000)). We include year
dummy variables to control for the potential effects of year-specific differences.
Model 1 shows that the coefficient on the RD_INCOMING_SPILLOVERS
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TABLE 7

Cross-Sectional Regression Analyses of Changes in Abnormal Operating
Performance Following R&D Increases

Table 7 presents cross-sectional regression analyses of the changes in abnormal operating performance over the 5 years
following R&D increases. Operating performance is measured by the sum of EBITDA and after-tax R&D divided by
assets minus cash. Abnormal operating performance is operating performance of the sample firm minus its match-
ing firm’s, where the matching firm is selected based on operating performance and the industry. The measure of
RD_INCOMING-SPILLOVERS is described in Table 1. SIZE is the market value of common equity. BM is the book-to-
market ratio. PRIOR-RETURN is the buy-and-hold return over the year prior to the R&D increase. RD_INTENSITY is the ratio
of R&D to assets. ACCRUALS are earnings minus cash flows from operating activities. HHI is the Herfindahl-Hirschman
Index, which is defined as the sum of the squared fraction of industry sales by all firms in the 3-digit SIC industry. Since the
mean reversion process of profitability is highly nonlinear, we include nonlinearity controls by incorporating expected earn-
ings, past earnings changes, and their nonlinear ingredients (as in Fama and French (2000)). The t-statistics are reported
in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Independent Variable Model 1 Model 2 Model 3
Intercept —12.5656 —7.0480 —1.2900
(—1.32) (—0.62) (—0.11)
RD_INCOMING_SPILLOVERS 4.4153 3.5154 3.4191
(2.96)** (2.34)* (2.17)
SIZE 0.1448 0.0230
(0.33) (0.05)
BM —4.6101 —4.8941
(—2.65)** (—2.74)*
PRIOR-RETURN —0.8682 —0.9546
(—0.89) (—0.95)
RD-INTENSITY —24.0563
(—1.49)
ACCRUALS —8.0928
(—1.11)
HHI —10.4154
(—1.58)
Nonlinearity controls Yes Yes Yes
Year dummies Yes Yes Yes
Adj. = 0.1292 0.1339 0.1322

variable is positive and statistically significant at the 1% level. This result indi-
cates a more favorable improvement in post-R&D-increase abnormal operating
performance for firms with high R&D incoming spillovers.

In Models 2 and 3, we add several control variables. SIZE is the market value
of common equity. BM is the book-to-market ratio. PRIOR_RETURN is the buy-
and-hold return over the year prior to the R&D increase. RD_INTENSITY is the
ratio of R&D to assets. We control for these four variables because they are impor-
tant asset pricing factors (Fama and French (1992), Jegadeesh and Titman (1993),
Lakonishok, Shleifer, and Vishny (1994), and Chan, Lakonishok, and Sougiannis
(2001)). ACCRUALS are earnings minus cash flows from operating activities,
which we control for because future earnings are associated with current account-
ing accruals (Sloan (1996)). HHI is the Herfindahl-Hirschman Index, defined as
the sum of the squared fraction of industry sales by all firms in the 3-digit SIC
industry. HHI measures the potential effect of industry competition.'#

14Massa, Rehman, and Vermaelen (2007) argue that firms in concentrated industries tend to respond
aggressively to the share repurchase announcements of their industry counterparts. This mimicking ef-
fect may result in lower stock market reactions to share repurchase announcements. Similarly, firms in
concentrated industries may increase R&D to undo the negative valuation effect of their competitors’
R&D increases. This mimicking behavior may reduce the profitability of R&D-increase firms.
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In Model 2, we control for the three variables used for matching in our esti-
mation of abnormal stock returns (SIZE, BM, and PRIOR_RETURN).
After including these control variables, we still find that R&D-increase firms with
higher levels of incoming spillovers tend to experience greater improvement in
subsequent abnormal operating performance. In Model 3, we add the controls
for RD_INTENSITY, ACCRUALS, and HHI. Results in Model 3 are consistent
with the results so far. As the economic benefits associated with R&D incoming
spillovers are reflected in firms’ operating performance in the post-R&D-increase
period, the overall evidence in Table 7 supports a conclusion that R&D incoming
spillovers are important in explaining long-run firm performance following R&D
increases."”

VI. Additional Evidence
A. Fama and MacBeth Regressions

We investigate the impact of R&D incoming spillovers on the sample firms’
long-run performance using the Fama and MacBeth (1973) regression method-
ology. This methodology allows us to control for other potential influences. We
use the 60 post-R&D-increase monthly stock returns for each sample firm as the
dependent variable.

We control for other asset pricing factors beyond the control variables in
Table 7.'© ASSETS_GROWTH is change in book assets divided by beginning-year
assets. TURNOVER is trading volume divided by shares outstanding. CAPITAL_
INVESTMENT is (the capital expenditures-to-sales ratio divided by its last
3-year average) minus 1 (as in Titman et al. (2004)). CAPITAL_INVESTMENT-
MISSING_DUMMY equals 1 if CAPITAL_INVESTMENT is not available, and
0 otherwise. NET_SHARE_ISSUE is the 1-year change in stock split-adjusted
shares outstanding (as in Pontiff and Woodgate (2008)). NET_SHARE_ISSUE_
MISSING_DUMMY equals 1 if NET_SHARE_ISSUE is not available, and
0 otherwise. ROA_CHANGE is the 1-year change in return on assets. HIGH-
TECH-DUMMY equals 1 for a high-tech firm, and O otherwise. We control for the
potential effects of industry-specific differences by including 1-digit SIC dummy
variables in the regression. All regression coefficient estimates are averaged over
time and tested by the time-series volatility using Newey and West (1987)
heteroskedasticity and autocorrelation adjustments.

Table 8 presents the results of Fama-MacBeth (1973) regressions. Model
1 shows that the coefficient on RD_INCOMING_SPILLOVERS is positive and
statistically significant at the 1% level. In Model 2 with all the control variables,
the coefficient on RD_INCOMING_SPILLOVERS remains statistically signifi-
cantly positive. In Model 3, we add an interaction term, RD_INCOMING._
SPILLOVERS x ROA_CHANGE. If R&D incoming spillovers positively affect

I5We obtain similar results in Table 7 if we replace RD_INCOMING_SPILLOVERS by RD_
INCOMING_SPILLOVER_RANK based on quintile.

16See Sloan (1996), Chan et al. (2001), Pastor and Stambaugh (2003), Titman et al. (2004), Cooper,
Gulen, and Schill (2008), and Pontiff and Woodgate (2008).
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the stock returns of R&D-increase firms because of improved profitability, this
interaction term should be positive. This coefficient is positive and statistically
significant at the 1% level, providing further support for the relation between
R&D incoming spillovers and long-run stock returns following R&D increases.!”

TABLE 8
Fama-MacBeth Regressions

Table 8 presents the results of Fama-MacBeth (1973) regressions. We use the 60 post-R&D-increase monthly stock re-
turns to each sample firm as the dependent variable. The measure of RD_INCOMING_SPILLOVERS is described in Table 1.
SIZE, BM, PRIOR-RETURN, RD_INTENSITY, ACCRUALS, and HHI are defined in Table 7. ASSETS.GROWTH is change
in book assets divided by beginning-year assets. TURNOVER is trading volume divided by shares outstanding. CAPITAL-
INVESTMENT is (the capital expenditures-to-sales ratio divided by its last 3-year average) minus 1. CAPITAL.
INVESTMENT_MISSING_DUMMY equals 1 if CAPITAL_INVESTMENT is not available, and O otherwise. NET_SHARE_ISSUE
is the 1-year change in stock-split-adjusted shares outstanding. NET_SHARE_ISSUE_MISSING.DUMMY equals 1 if
NET_SHARE.ISSUE is not available, and O otherwise. ROA.CHANGE is the 1-year change in return on assets. HIGH-
TECH-DUMMY equals 1 for a high-tech firm, and O otherwise. We control for the potential effects of industry-specific
differences by including 1-digit SIC dummy variables in the regression. All regression coefficient estimates are averaged
over time and tested by the time-series volatility using Newey and West (1987) heteroskedasticity and autocorrelation ad-
justments. The t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,
respectively.

Independent Variable Model 1 Model 2 Model 3
Intercept 0.0106 0.0234 0.0237
(1.97) (3.11) (3.03)**
RD_INCOMING_SPILLOVERS 0.0017 0.0017 0.0015
(2.80)** (1.99)* (1.77)*
SIZE —0.0015 —0.0015
(—4.35)*** (—4.33)**
BM 0.0087 0.0086
(10.35)** (9.90)**
PRIOR_RETURN 0.0005 0.0002
(0.45) (0.20)
RD_INTENSITY —0.0041 —0.0046
(—1.15) (—1.18)
ACCRUALS —0.0048 —0.0055
(—1.45) (—1.89)
HHI —0.0085 —0.0084
(—4.65)*** (—4.71)*
ASSETS_.GROWTH —0.0057 —0.0058
(—6.14)* (=5.71)*
TURNOVER 0.0002 0.0001
(0.20) (0.13)
CAPITALLINVESTMENT 0.0050 0.0040
(0.82) (0.74)
CAPITAL-INVESTMENT_MISSING_-DUMMY —0.0051 —0.0051
(—2.08)** (—2.06)*
NET_SHARE_ISSUE —0.0064 —0.0065
(—6.94)*** (—6.86)"**
NET_SHARE_ISSUE_-MISSING_DUMMY —0.0009 0.0010
(=0.37) (0.64)
ROA_CHANGE 0.0101 0.0084
(1.59) (1.19)
HIGH-TECH.DUMMY 0.0010 0.0011
(0.64) (0.68)
RD_INCOMING_SPILLOVERS x ROA_.CHANGE 0.0209
(3.80)"**
Industry dummies Yes Yes Yes
Avg. R? 0.0289 0.1050 0.1112

"The results in Table 8 are similar if we replace RD_INCOMING_SPILLOVERS by RD_
INCOMING_SPILLOVER_RANK.
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B. Robustness Checks for Various Stochastic R&D Spillover
Specifications

We use various stochastic R&D spillover estimations to check the robust-
ness of our results. We change the assumption for #; by replacing the half-normal
distribution with an exponential or a truncated normal distribution. We also use
the translog production function in Christensen, Jorgenson, and Lau (1973) to
estimate the incoming R&D spillover effect:

(5) log¥; = ag+ajlogK;+aylogL;+azlogRD; +aj (log K;)?
+ ax(log L,')2 + asz(log RD;)2
+aplogK;logL; + ax;log L; log RD;
+ a3 log K; log RD; + a4 TIME_TREND + u; + v;,

where the input variables and random variables are as defined in equation (1).

Table 9 presents the results of these robustness checks for post-R&D-increase
long-run abnormal stock returns estimated by factor models. Panels A and B
present the abnormal returns sorted by R&D incoming spillovers using the as-
sumptions of exponential distribution and truncated normal distribution for u;.
Panel C gives the results using the translog production function to estimate the
spillover effect. The overall results again document a positive relation between
R&D incoming spillovers and the long-run stock performance of R&D-increase
firms.

In untabulated results, we specify the u; term using the exponential or trun-
cated normal distribution in the translog production function. We also use different
algorithm methods in ML optimization, including the conjugate gradient method,
trust region method, double-dogleg method, Nelder-Mead simplex method, and
Newton-Raphson method with ridging. Our conclusions remain unchanged.

As our purpose in this study is to examine the relation between R&D incom-
ing spillovers and the long-run performance of R&D-increase firms, we require
s; and u; in the production function (1) to be positive to capture the effect of
incoming spillovers. R&D investments by one firm may enhance its competitive
advantage and have negative effects on other firms in the same industry (Chan
et al. (1990)). In our setting, this competitive effect, if any, is included in the ran-
dom error term v;. The stochastic frontier model developed by Aigner et al. (1977)
and Battese and Coelli (1992) does not allow for a third random term to capture
the competitive effect.

As a robustness check, we include an interaction variable in the production
function (1) to control for the potential competitive effect of R&D. The competi-
tive effect is likely to be stronger in industries with a lower degree of competition
and a stronger propensity to spend on R&D. The less competitive an industry is,
the greater the rents that can be extracted from rival firms, because of the change
in the competitive position of the R&D investing firm (Lang and Stulz (1992)
and Chen, Ho, and Shih (2007)). Also, R&D innovation plays a more crucial
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TABLE 9

R&D Incoming Spillovers and Long-Run Stock Performance Following R&D Increases:
Various Robustness Checks

Table 9 presents robustness checks of our results using various stochastic R&D spillover estimations. The measure of
R&D incoming spillovers is described in Table 1, and the measures of abnormal returns (in percentage) based on factor
models are described in Table 2. In Panels A and B, we use the assumptions of exponential distribution and truncated
normal distribution for ;. In Panel C, we use a translog production function as in Christensen et al. (1973) to estimate the
incoming R&D spillover effect:

)2

log Y; = ap + a1 log Kj + ap log Lj + a3 log RD; + ay1(log K,‘)2 + apo(log L) + aszz(log F?D,)2

+ aip log Kjlog Lj + az3 log L log RD; + a13 log Kjlog RD; + a4 TIME_TREND + u;j + v;,
where the input variables and random variables are as defined in equation (1). In Panel D, we use the following production
function:
logY; = ap + a1 log Kj + az log Lj + ag log RD; + a4 TIME_-TREND
+ biHHI; x INDUSTRY_RD_INTENSITY; + uj + vj,

where HHI is the sales-based industry Herfindahl-Hirschman Index and INDUSTRY_RD_INTENSITY is the R&D intensity of
the industry (measured by the average ratio of R&D expenditures to book assets for all firms in the 3-digit SIC industry).
Firms with the lowest level incoming spillovers are placed in quintile 1, and firms with the highest level of incoming spillovers
in quintile 5. The t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,
respectively.

Value-Weighted Equal-Weighted
_ 3-Factor 4-Factor 3-Factor 4-Factor
Incoming Model Model Model Model
Spillover
Group Standard Rolling Standard Rolling Standard Rolling Standard Rolling

Panel A. Assuming u; Obeys Exponential Distribution

Quintile 1 —0.0122 —0.0645 0.0781 0.0076 0.2682 0.2777 0.5576 0.3849
(—0.08) (—0.41) (0.50) (0.05) (1.32) (1.31) (2.83)** (1.86)*
Quintile 2 0.3021 0.0354 0.2898 0.0189 0.5544 0.4110 0.7672 0.5403
(1.71)* (0.22) (1.60) (0.11) (2.83)* (2.00)* (3.94) (2.66)**
Quintile 3 0.5652 0.3337 0.4733 0.3164 0.7811 0.6936 1.0035 0.8705
(2.72)** (1.58) (2.23)"* (1.45) (4.00)** (8.30)*  (5.18)"*  (4.22)***
Quintile 4 0.5251 0.5140 0.6848 0.4470 0.7899 0.6242 1.0781 0.7435
(2.03)** (1.94)* (2.61) (1.65)* (3.51)* (2.72)* (4.89) (3.35)*
Quintile 5 1.1338 0.9738 1.2010 1.0147 0.7941 0.6172 1.0794 0.8175
(4.82)** (3.95)**  (4.98)"* (4.06)**  (3.81)* (2.72)**  (5.33)"*  (3.67)"**
Panel B. Assuming uj Obeys Truncated Normal Distribution
Quintile 1 —0.0042 —0.0439 0.0553 —0.0239 0.2542 0.2921 0.5511 0.3982
(—0.02) (—0.22) (0.28) (—0.11) (1.13) (1.25) (2.52)** (1.72)*
Quintile 2 0.1012 —0.1114 0.2251 —0.0356 0.5186 0.3811 0.7386 0.5371
(0.56) (—0.64) (1.22) (—0.20) (2.61) (1.81)* (3.74) (2.58)*
Quintile 3 0.4555 0.1009 0.4147 0.0138 0.8897 0.7013 1.1168 0.7716
(2.00)** (0.46) (1.78)* (0.06) (3.98)** (3.14)* (5.01)** (3.54)**
Quintile 4 0.3141 0.2351 0.2767 0.2251 0.7237 0.6507 0.9922 0.8172
(1.82)* (1.33) (1.56) (1.20) (3.72) (3.22) (5.25)** (4.147)
Quintile 5 0.9962 0.8687 1.0751 0.9246 0.7563 0.5836 1.0453 0.7962
(4.51)* (3.78)** (4.76)** (3.95)* (3.86)*** (2.79) (5.54) (3.92)
Panel C. Using Translog Production Function
Quintile 1 —0.0480 —0.2673 0.0703 —0.2004 0.3400 0.2178 0.6326 0.3438
(—0.22) (—1.09) (0.32) (—0.80) (1.46) (0.87) (2.77)* (1.34)
Quintile 2 0.1485 0.0072 0.1513 —0.0580 0.6480 0.6685 0.8424 0.7726
(0.72) (0.03) (0.72) (—0.25) (3.38)*** (3.29)™* (441 (3.89)**
Quintile 3 0.2537 0.2896 0.2353 0.3068 0.5865 0.6093 0.8189 0.7344
(1.33) (1.54) (1.20) (1.58) (2.85)** (2.84)* (4.01)* (3.45)*
Quintile 4 0.4810 0.2549 0.4797 0.1803 0.7468 0.5809 1.0259 0.7153
(2.44) (1.40) (2.37) (0.97) (3.66)** (2.65)* (5.16)** (3.34)
Quintile 5 0.6871 0.4684 0.7445 0.5292 0.7633 0.6060 1.0720 0.8481
(3.44) (2.48)** (3.64)* (2.76)* (3.78)* (2.87)** (5.54)** (4.13)

(continued on next page)
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TABLE 9 (continued)

R&D Incoming Spillovers and Long-Run Stock Performance Following R&D Increases:
Various Robustness Checks

Value-Weighted Equal-Weighted
) 3-Factor 4-Factor 3-Factor 4-Factor
Incoming Model Model Model Model
Spillover
Group Standard Rolling Standard Rolling Standard Rolling Standard Rolling

Panel D. Using Production Function That Includes an Interaction Variable to Capture the Potential R&D Competitive Effect

Quintle 1 —0.0077  —0.2215 0.0596 —0.1541 0.3610 0.1923 0.6875 0.4161
(—0.04) (—0.54) (0.28) (—0.37) (1.45) (0.66) (2.87)* (1.45)
Quintile 2 0.0417  —0.1319 0.1820 0.0037 0.5052 0.2340 0.7745 0.4281
(0.27) (—0.55) (1.19) (0.02) (2.47)* (0.76) (3.94)* (1.41)
Quintile 3 0.3591 0.0516 0.3881 0.0050 0.6286 0.3468 0.9460 0.5606
(2.25)* (0.19) (2.37) (0.02) (3.08)*  (0.82) (4.98)* (1.34)
Quintile 4 0.3316 0.1571 0.2992 0.1708 0.7045 0.4510 1.0312 0.6779
(1.85)* (0.76) (1.63) (0.81) (343 (1.12) (5.40)* (1.71)*
Quintile 5 0.8612 0.7822 0.9234 0.7874 0.6805 0.6345 1.0183 0.8955
(3.91)* (3.22)*  (4.10)™ (3A9)™*  (3.24)™*  (2.40)*  (5.23)™* (3.54)*

role in competition in a higher-R&D-intensive industry (Arrow (1962), Krugman
(1991)). We modity the production function as follows:

(6) logY; = aop+alogK;+aylogL;+aszlogRD; + a4TIME_-TREND
+ biHHI; x INDUSTRY _RD_INTENSITY; + u; + v;,

where HHI is the sales-based industry Herfindahl-Hirschman Index and INDUS-
TRY_RD_INTENSITY is the R&D intensity of the industry (measured by the
average ratio of R&D expenditures to book assets for all firms in the 3-digit SIC
industry).'® Panel D of Table 9 shows that the same results hold. R&D-increase
firms with higher levels of R&D incoming spillovers still experience more favor-
able long-run stock performance. The coefficient on the interaction term HHI X
INDUSTRY _RD_INTENSITY is —0.72 (statistically significant at the 5% level),
indicating that this interaction variable captures the potential R&D competitive
effect.

C. R&D Outgoing Spillover Effects

We note at the outset that R&D spillovers may result in an underinvest-
ment in R&D because of the free rider problem. This underinvestment feature
has to do with the appropriability of R&D results rather than incoming spillovers
(Cassiman and Veugelers (2002)). A firm that is less able to appropriate R&D ben-
efits would be more likely to have R&D outgoing spillover effects. Thus, R&D
outgoing spillover effects could lead to firm underinvestment.

We use the production function to estimate the outgoing spillover effect
for each of our firm-year observations. We run a regression using the pre-R&D-
increase time-series data:

18The results are similar if we use a sales-scaled industry R&D intensity or if we exclude sample
firm i when computing INDUSTRY _RD_INTENSITY.
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(7 Z uy = ao+aRD; +alogSALE, + &,
JFi

where RD, is R&D expense in year ¢, logSALE; is the logarithm of sales in year ¢,
and &, is white noise. Here, ; is the incoming spillover effect for firm j that has a
positive R&D expenditure. We then sum up the u; for each 2-digit SIC industry.
Thus, a; reflects how much a firm’s R&D investment spills over to its industry
peers; a higher value indicates more outgoing spillover effects. Similar to the pro-
cess examining R&D incoming spillover effects, we rank sample firms according
to the estimated value of a;. Firms with the lowest a; values are placed in quintile
1, and firms with the highest a; values are in quintile 5.

We use abnormal R&D investment to measure to what extent R&D invest-
ment deviates from the optimal level. We calculate the abnormal level of R&D as
the difference in R&D-to-assets ratios between sample firms and their matching
firms. We identify matching firms using size, BM, and the R&D-to-assets ratio.

Table 10 presents the results for abnormal R&D investment sorted by R&D
outgoing spillover quintiles over the entire 5-year period and in each of the 5 years
following R&D increases. Firms in quintile 5 (firms with the highest level of
R&D outgoing spillovers) experience an average abnormal R&D investment of
—1.02% over the entire 5-year post-R&D-increase period (statistically significant
at the 1% level), compared to —0.16% for firms in quintile 1 (statistically in-
significantly different from 0). Table 10 also shows that firms in the top quintile
exhibit significantly negative abnormal R&D investment in the 3rd—5th years fol-
lowing R&D increases. The abnormal investment for firms in the bottom quintile

TABLE 10
R&D Outgoing Spillover Effects and Abnormal R&D Investment

Table 10 presents the abnormal R&D investment of sample firms sorted by R&D outgoing spillover quintiles over the entire
5-year period and in each of the 5 years following R&D increases. We use the production function to estimate the outgoing
spillover effect for each of our firm-year observations. We run a regression using the pre-R&D-increase time-series data:

> up = ao+aiRD; + aplogSALE: + &,
J#I

where RD is R&D expense in year t, logSALE is the logarithm of sales in year t, and &; is white noise. Here, uj is the incoming
spillover effect for firm j that has a positive R&D expenditure. We then sum up the u; for each 2-digit SIC industry. A higher
a4 indicates more outgoing spillover effects. We rank sample firms according to the estimated value of a1. Firms with the
lowest a1 values are placed in quintile 1, and firms with the highest a1 values in quintile 5. We calculate the abnormal level
of R&D as the difference in R&D-to-assets ratios between sample firms and their matching firms. We identify matching firms
using size, BM, and the R&D-to-assets ratio. The t-statistics are reported in parentheses. There are fewer observations in
this table because of data unavailability. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Outgoing

Spillover Entire

Groups N 5 Years Year 1 Year 2 Year 3 Year 4 Year 5

Quintile 1 1,448 —0.16% 0.35% —0.70% —0.34% —0.06% —0.05%
(—0.63) (0.82) (—1.00) (—0.63) (—0.09) (—0.09)

Quintile 2 1,231 —0.54% 0.34% —0.91% —1.08% —0.74% —0.43%
(—1.68) (0.69) (—1.11) (—1.17) (—1.27) (—0.62)

Quintile 3 1,634 —0.98% 0.42% —1.33% —1.90% —1.37% —0.87%
(—38.55)*** (0.87) (—2.29)** (—2.57)* (—2.03)** (—1.44)

Quintile 4 1,423 —0.01% 0.64% 0.51% —0.26% —0.79% —0.35%
(—0.01) (1.34) (1.01) (—0.44) (—1.28) (—0.56)

Quintile 5 1,441 —1.02% —0.37% —0.55% —0.98% —1.87% —151%

(—4.17) (—0.78) (—1.09) (—1.87) (—=3.07)* (—2.35)"
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is insignificantly different from O for each of the 5 years after the R&D increase.
The evidence in Table 10 suggests overall that firms experiencing more R&D
outgoing spillover effects tend to underinvest in R&D.

We also examine the factors that make it hard for firms with high outgo-
ing spillovers to appropriate R&D benefits. Levin et al. (1987) argue that patents
tend to be more effective in preventing R&D outgoing spillovers in the chemi-
cal industry because clear standards can be applied to assess a chemical patent’s
validity and to defend against infringement. Cassiman and Veugelers (2002) indi-
cate that firms may use brand names as strategic protection against R&D outgoing
spillovers. Feinberg and Gupta (2004) argue that the greater the dispersion of R&D
within an industry, the greater the potential outgoing spillover. Sanna-Randaccio
and Veugelers (2007) suggest that industry competition could raise the cost of
outgoing spillovers because rivals may have a greater absorptive capacity. Finally,
Franco and Gussoni (2010) argue that firm size is a crucial factor in determining
outgoing spillovers because large firms may have more resources to protect their
innovations.

In Table 11, we show cross-sectional regression analysis of the R&D out-
going spillover effect. The dependent variable is the R&D outgoing spillover
effect estimated from equation (7) or the rank of R&D outgoing spillover by
quintile. CHEMICAL_DUMMY equals 1 if a firm is in the chemical industry
(2-digit SIC code 28), and 0 otherwise. ADVERTISEMENT_EXPENSE is adver-
tisement expense divided by total assets, reflecting potential spending on brand
name. RD_HHI is the R&D-based Herfindahl-Hirschman Index, computed using
R&D expense. RD_HHI reflects the extent of R&D dispersion within an indus-
try. HHI and SIZE are as defined above. We control for the potential effects of
year-specific differences by including year dummy variables in the regression.

TABLE 11
Cross-Sectional Regression Analyses of R&D Outgoing Spillover Effects

Table 11 presents cross-sectional regression analyses of R&D outgoing spillover effects. The dependent variable is the
R&D outgoing spillover effect estimated from equation (7) or the rank of R&D outgoing spillovers based on the quintiles.
CHEMICAL_-DUMMY equals 1 if a firm is in the chemical industry (2-digit SIC code 28), and O otherwise. ADVERTISE-
MENT_EXPENSE is advertisement expense divided by total assets. RD-HHI is the R&D-based Herfindahl-Hirschman Index,

computed using R&D expense. HHI and SIZE are defined in Table 7. The t-statistics are reported in parentheses. ***,
and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable

Independent Variable RD-OUTGOING_SPILLOVERS RD-OUTGOING_SPILLOVER_-RANK
Intercept 12.8893 3.0422
(1.51) (16.09)**
CHEMICAL-DUMMY —1.0942 —0.1077
(—0.67) (—2.24)
ADVERTISEMENT_EXPENSE —35.5917 —0.6112
(—2.99)** (—2.05)**
RD_HHI —10.7221 —0.3238
(—1.76)* (—2.26)
HHI 2.2920 0.0109
(0.29) (0.06)
SIZE —2.2002 —0.0499
(—7.38)** (—6.81)**
Year dummies Yes Yes

Adj. R? 0.0443 0.0634
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The coefficients on ADVERTISEMENT_EXPENSE, RD_HHI, and SIZE in
Table 11 are all significantly negative, suggesting that firms spending less on brand
name, firms in industries with greater R&D dispersion, and smaller firms are
likely to suffer higher R&D outgoing spillovers. These results are consistent with
the predictions of Cassiman and Veugelers (2002), Feinberg and Gupta (2004),
and Franco and Gussoni (2010). The coefficient on CHEMICAL_DUMMY is sig-
nificantly negative only when we use the rank of R&D outgoing spillovers as the
dependent variable. Finally, we do not find that industry competition significantly
affects R&D outgoing spillovers.

D. Evidence without the Sample Restriction of R&D Intensities and
Increases

As our aim is to examine whether post-R&D long-term firm performance
reported in Eberhart et al. (2004), (2008) is partially attributable to R&D incoming
spillovers, we have looked at R&D-intensive firms that increase their R&D to be
consistent with these prior studies. Now, we relax this restriction and examine the
relation between R&D incoming spillovers and subsequent long-term abnormal
returns for all R&D investing firms. Table 12 reports the results.

TABLE 12

R&D Incoming Spillovers and Long-Run Stock Performance Following R&D Investment:
Relaxing the Sample Restriction

Table 12 presents long-run abnormal stock returns (in percentage) for all R&D investing firms by relaxing the restriction
that the sample firms are R&D-intensive and have increased their own R&D. The measure of R&D incoming spillovers is
described in Table 1, and the measures of abnormal returns based on factor models are described in Table 2. Firms with
the lowest level of incoming spillovers are placed in quintile 1, and firms with the highest level of incoming spillovers in
quintile 5. The t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,
respectively.

Value-Weighted Equal-Weighted
. 3-Factor 4-Factor 3-Factor 4-Factor
Incoming Model Model Model Model
Spillover
Group Standard Rolling Standard Rolling Standard Rolling Standard Rolling
All 0.1014 0.1043 0.1224 0.1274 0.1874 0.1616 0.4001 0.3306
(1.80)* (1.98)** (2.13)** (2.40)* (2.10)** (1.81)* (5.49) (4.69)*
Quintile 1 0.0997 0.0707 0.1136 0.0861 0.0082 0.0449 0.1293 0.1992
(1.47) (1.14) (1.64) (1.36) (0.09) (0.47) (2.15)* (2.32)**
Quintile 2 0.0717 0.1718 0.1436 0.2550 0.0814 0.0638 0.2812 0.2709
(0.81) (1.84)" (1.62) (2.83)** (0.85) (0.66) (3.08)*** (3.27)*
Quintile 3 0.2588 0.2962 0.2707 0.3394 0.1592 0.1430 0.3778 0.3177
(2.43)* (2.79)* (2.48)** (3.13)** (1.60) (1.44) (3.58)** (3.80)**
Quintile 4 0.3500 0.3216 0.4093 0.3389 0.3047 0.2844 0.4678 0.4327
(3.24) (2.36)* (3.74)* (2.49)* (2.87) (2.67) (3.25)** (4.87)
Quintile 5 0.3811 0.3920 0.4397 0.3963 0.4380 0.3131 0.4330 0.4687
(2.79)** (2.48)** (3.16)** (2.48)* (3.17)** (2.36)** (2.53)** (4.07)**

We find a positive relation between R&D incoming spillovers and long-term
abnormal returns for all R&D investing firms without imposing any requirements
on R&D intensity or increase. The results hold for equal- and value-weighted
measures and for standard factor models and the rolling regression method. This
evidence indicates that R&D investing firms with greater R&D incoming spillovers
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experience higher abnormal stock returns. The evidence is also consistent with our
findings on the relation between R&D outgoing spillovers and subsequent R&D
investment. That is, if firms do not need to do much R&D in order to benefit from
R&D spillovers, they are less likely to invest in R&D in the future when they are
less able to prevent R&D outgoing spillovers.

VIl. Conclusion

We examine how R&D incoming spillovers affect long-run firm performance
following R&D increases. Using a stochastic frontier production function and a
sample of firms with unexpected and significant increases in R&D between 1977
and 2005, we document a significantly positive relation between R&D incoming
spillovers and long-run abnormal stock returns of R&D-increase firms. The results
are robust to various approaches to measuring abnormal stock returns and various
estimations of stochastic R&D spillovers. We also show that R&D-increase firms
with higher levels of R&D incoming spillovers experience greater improvements
in subsequent abnormal operating performance. Our evidence suggests that firms
that benefit more from the R&D investment of other firms experience more im-
provement in profitability and more favorable long-run stock performance in the
post-R&D-increase period.

We also look for evidence in manager recruiting for our sample firms. Firms
with higher levels of R&D incoming spillovers tend to recruit more key employ-
ees from other firms. This result indicates that recruitment of managers as a way
to benefit from the know-how of other firms is an important source of R&D in-
coming spillovers.

Finally, we show that sample firms with a high level of R&D outgoing
spillovers tend to display significantly negative abnormal R&D investment. This
result indicates that R&D outgoing spillovers may cause firms to underinvest
in R&D. We also show that R&D outgoing spillover effects are significantly
negatively related to advertisement expenditure and firm size, and significantly
positively related to industry R&D dispersion. This evidence suggests that firms
that spend less on brand name, firms that are smaller, and firms that have more
industry R&D dispersion are likely to find it harder than others to appropriate
R&D benefits.
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