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Dropping plates

DAVID HOPKINS

A friend of mine [1] mentioned a problem to me, which he was told had
an interesting solution involving an unexpected square root. I have not seen
this problem described elsewhere, so I have carried out my own analysis,
which I will present here. In fact the solution involves not only square roots,
but also higher roots … and a logarithm.

The problem
You have available a limited number of identical objects, which will

break if you drop them from above a certain height. You live in a block of
flats and you want to establish with certainty the highest floor you can drop
the objects from without them breaking. What is the most effective strategy
to establish the answer, i.e. the strategy that minimises the expected number
of trials required? Any objects that do not break when you drop them will be
undamaged and can be reused.

In the version my friend was told, the objects were plates, and my guess
is that this problem was dreamed up by a group of inebriated students eating
by a window at a party – possibly influenced by jokes about flying saucers.
If, like me, you think this problem is trivial because a defenestrated china
plate would always break, you can substitute a more durable object of your
choice, or you can assume that the ground below has a soft surface that
cushions the impact to some extent.

Note that the strategy used must establish the answer with certainty in
all cases.

Example
As an example, suppose I live in a three-storey block with the floors

numbered as in Figure 1. (Numbering the ground floor as floor 1, rather than
floor 0, avoids negative numbers entering the equations.) I also have a
supply of objects to drop. We are assuming that the highest floor they can
survive from is the same for each of our objects, but we do not know which
that floor is.

https://doi.org/10.1017/mag.2022.59 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/mag.2022.59&domain=pdf
https://doi.org/10.1017/mag.2022.59


194 THE MATHEMATICAL GAZETTE

Floor 3   

Floor 2   

Floor 1   

FIGURE 1: Dropping objects from a 3-storey block

Here there are four possibilities for the survivability of the objects:
(1) An object will break even when dropped from Floor 1. Answer = 0.
(2) An object can survive a drop from Floor 1, but no higher. Answer = 1.
(3) An object can survive a drop from Floor 2, but no higher. Answer = 2.
(4) An object can survive a drop from Floor 3 (and possibly higher). Answer = 3.
Note that, although the floors here are numbered from 1 to 3, the outcomes
can take values from 0 to 3.

With just one object, the only sure strategy is to work up floor by floor
from the bottom. If we were to skip a floor and the object broke, we would
have no more objects to establish the precise answer.

To calculate the expected number of throws required with this strategy,
I will assume that each of the four outcomes above is equally likely. This
assumption has been chosen purely for simplicity. In reality, if the objects
are quite delicate, our prior belief would put much higher probabilities on
lower floors, whereas if the objects are quite robust, they may well be able
to survive a drop from a much higher floor.

With this assumption, each of the four possibilities above has
probability  and the expected number of trials required to determine the
answer is .

1
4

1
4 × 1 + 1

4 × 2 + 1
4 × 3 + 1

4 × 3 = 21
4

Mathematical model
To set up a more general model I will use the following notation:

= total number of floors in the buildingn
= total number of objects we have availabler
= a candidate floor to try nextm
= the optimal floor to try nextm̂
= expected number of trials required using the optimal strategy.E (n, r)

As well as assuming that each of the  possibilities is equally
likely, I will also assume that the objects are not weakened by previous trials
and that other ‘obvious’ simplifying assumptions can be made.

n + 1
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One object
As we saw in the example above, when  the only sure strategy is to

work up floor by floor from the bottom and the expected number of trials is then
r = 1

E (n,  1) =
1

n + 1
× (1 + 2 +  …  + (n − 1) + n + n)

=
1

n + 1
× ({1 + 2 +  …  + n + (n − 1)} − 1)

=
1

n + 1
× (1

2 (n + 1) (n + 2) − 1) =
n (n + 3)
2 (n + 1)

. (1)

Asymptotically, as , this becomes .n → ∞ E (n,  1) ∼ 1
2n

Several objects
With more than one object we can afford to adopt a more risky strategy

until we are down to the last object. Here the optimal strategy is less
obvious. Trying higher floors to find the cut-off point more quickly would
risk using up too many objects, but playing safe by selecting low floors and
moving up slowly would be more time-consuming. To find the answer in
this case, we can use the following iterative argument.

With  floors in the full building we can select any floor
for the next trial. Depending on the outcome, this will reduce the problem to
one of pinning down the highest survivable floor in either the top ‘half’ or
the bottom ‘half’ of the building (i.e. above or below floor ). We can then
say that  equals 1 (the trial we've just used up) plus the expected
number of trials starting from the new ‘reduced’ position.

n m = 1,  2, … , n

m
E (n, r)

To make sure we get the precise details correct, let's use an example with
 floors and  objects, and let's suppose that we try floor  first.

This will result in one of two outcomes, as illustrated in Figure 2.
n = 10 r = 3 m = 4

      
    
    
    

 
 

  
     

     
    

     
      

Try floor 4   Bottom ‘half’ Top ‘half’

 
 
Renumber 

Floor 10
Floor 9 

Floor 7 
Floor 6 

Floor 4 

Floor 1
oor  Fl 2
oor  Fl 3

oo   Fl r 8

oor Fl 5

Floor 3 
Floor 2 
Floor 1 

Floor 10
Floor 9 
Floor 8 
Floor 7 
Floor 6 
Floor 5 
Floor 4 

Floor 6 
Floor 5 
Floor 4 
Floor 3 
Floor 2 
Floor 1 

FIGURE 2: Iterative argument for 10 floors if we try Floor 4

Outcome 1: If the object breaks, we have limited the highest ‘survivable’
floor to 0, 1, 2 or 3, and we can now apply the optimal strategy for a
building with 3 floors using the 3 − 1 = 2 remaining objects, which will take
an expected number of trials of , i.e. .E (3,  2) E (m − 1, r − 1)
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Outcome 2: If, on the other hand, the object survives the fall, we have
limited the highest ‘survivable’ floor to one from 4 to 10, a total of 7
possible floors. If we subtract 4, we can renumber these floors as 1 to 6
(with 0 corresponding to survival from the original Floor 4). We then need
to apply the optimal strategy for the 3 remaining objects and 6 floors, which
will take an expected number of trials of , i.e. .E (6,  3) E (n − m, r)

With 10 floors there are 11 possible answers (0, 1, 2, … , 10). So each
of the original 10 floors has a probability of  of being the correct answer,
which means that outcome 1 had a probability of  and outcome had a
probability of .

1
11

4
11

7
11

So, for this choice of , we would require 1 trial plus an expected
additional number of . For the optimal strategy, we
need to choose the value of  so as to minimise the overall expected
number. So we need to apply a minimum over all the possible values of
running from 1 to 10.

m
4

11E (4,  2) + 7
11E (6,  3)

m
m

This method leads us to the following general iterative equation

E(n, r) = 1 + min
1 ≤m≤ n

{ m
n + 1

E(m − 1, r − 1) + (1 −
m

n + 1)E(n − m, r)} . (2)

Equation (2) enables us to calculate the values of  for
from the corresponding values of . The first and last terms in the
minimum require values for  and , which both need to be
interpreted as 0 to make the equations correct.

E (n, r) n = 1,  2,  …
E (n, r − 1)

E (0, r − 1) E (0, r)

We can reduce the relationship in (2) to a simpler form if we multiply
through by  and define  to obtainn + 1 G (n, r) = (n + 1) E (n, r)

(n + 1)E(n, r) = (n + 1) + min
1 ≤m≤ n

{mE(m − 1, r − 1) + (n − m + 1)E(n − m, r)}

G(n, r) = (n + 1) + min
1 ≤m≤ n

{G(m − 1, r − 1) + G(n − m, r)} , n ≥ 1, r ≥ 2. (3)

For  we already know from (1) that . We can
now move on to  and apply (3) iteratively to calculate values of

 for each value of , and so on. As above, we apply the boundary
conditions . Note that all the values of the
function  will be integers, since the right-hand side of (3) just involves
adding integers.

r = 1 G (n,  1) = 1
2n (n + 3)

r = 2
G (n,  2) n

G (0, r − 1) = G (0, r) = 0
G

To find the expected number of trials  we can then just divide by
.

E (n, r)
n + 1

These functions can be calculated very neatly using the recursive
functions feature in Mathematica by entering the following commands. Note
that it is important here to include the fourth line. Although this line
produces no output, it forces Mathematica to precalculate all the values in
sequence and to store the results, which we can then print out in the final
line. Without the fourth line, we would be attempting to evaluate a very
large number of heavily nested calculations.
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g[0,r_]:= 0; g[n_,1]:= n(n+3)/2
g[n_,r_]:= g[n,r] = n+1+Min[Table[g[m-1,r-1]+ g[n-m,r],{m,1,n}]]
e[n_,r_]:= g[n,r]/(n+1); infinity = 10;
Table[Table[g[n,r],{n,1,200}],{r,2,infinity}]; ←Do not omit!

Table[Table[e[n,r],{r,{1,2,3,4,infinity}}],
 {n,{1,2,3,4,5,6,7,8,9,10,100,163,200}}]//TableForm

This calculation produces the values shown in Table 1. (The three dots
‘…’ indicate values that repeat across the rows.) I’ve included
because the building with the highest number of storeys is currently the Burj
Khalifa in Dubai, which has 163 floors – coincidentally, the same number of

 fame!

n = 163

eπ 163

E (n, r) r = 1 r = 2 r = 3 r = 4 r = 5 r → ∞

n = 1 1.00 … … … … 1.00

n = 2 1.67 … … … … 1.67

n = 3 2.25 2.00 … … … 2.00

n = 4 2.80 2.40 … … … 2.40

n = 5 3.33 2.67 … … … 2.67

n = 6 3.86 2.86 … … … 2.86

n = 7 4.38 3.13 3.00 … … 3.00

n = 8 4.89 3.33 3.22 … … 3.22

n = 9 5.40 3.50 3.40 … … 3.40

n = 10 5.91 3.64 3.55 … … 3.55

n = 100 50.99 10.35 7.47 6.83 6.74 6.73

n = 163 82.49 12.98 8.65 7.67 7.49 7.44

n = 200 101.00 14.28 9.20 8.10 7.77 7.73

TABLE 1: Expected number of trials, E (n, r)

As we would expect, as we increase the number of floors , the
expected number of trials we need increases.

n

As we increase the number of objects , the expected number of trials
we need decreases, since we can afford to break a few more objects along
the way. But once the number of available objects reaches , there is no
advantage in having any more, since we could if necessary test every floor
without running out of objects. The expected number of trials is then equal
to the limiting value shown in the right-hand column. We will see later that

r

n
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we can actually reduce  to , as suggested by the
entries in the rows for ,  and .

r → ∞ r ≥ log2 (n + 1)
n = 1 n = 3 n = 7

The optimal strategy
To determine the optimal strategy, we need to identify the value of ,

the value of  that generates the minimum value in (3). I have used an Excel
spreadsheet to examine the individual components of each calculation,
which gives the results in Table 2. This shows that for most values of  there
is a range of consecutive values of  that all give the same minimum value.
Any of these values would offer an equally good strategy to follow. For
example, if we are in a 10-storey building with 3 objects, we can optimally
try any floor from 4 to 7 first.

m̂
m

n
m

m̂ r = 1 r = 2 r = 3 r = 4 r = 5 r → ∞

n = 1 1 … … … … 1

n = 2 1 1−2 … … … 1−2

n = 3 1 2 … … … 2

n = 4 1 2−3 … … … 2−3

n = 5 1 2−3 2−4 … … 2−4

n = 6 1 3 3−4 … … 3−4

n = 7 1 3 4 … … 4

n = 8 1 3−4 4−5 … … 4−5

n = 9 1 3−4 4−6 … … 4−6

n = 10 1 4 4−7 … … 4−7

n = 100 1 13−14 29−37 42−44 38−57 37−64

n = 163 1 17−18 37−46 64−65 57−99 64−100

n = 200 1 19−20 46−56 64−93 81−99 73−128

TABLE 2: The optimal floor to try next, m̂

Exact formulae
We have already established that when  (when we have just one

object),  and , but how does this extend to

higher values of ?

r = 1

m̂ = 1 E (n,  1) =
n (n + 3)
2 (n + 1)

r

Two objects ( )r = 2
Now consider when we have  objects. Figure 3 below shows

graphically the results from Table 2. For example, when  is in the range
r = 2

n
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,  is one of the optimal floors to try last. For most values
of  there are two possible values for , but for some (indicated by the bold
dots), e.g. , , there is a unique value of  that gives the
minimum expectation. These unique values are tabulated in Table 3 below.

4 ≤ n ≤ 9 m̂ = 3
n m

n = 10 m̂ = 4 m̂

These values of  are easily recognisable as the triangular numbers and,
perhaps not quite so obvious, the values of  are double the
tetrahedral numbers [2]. Assuming this pattern continues for higher values
of , the entries for  and  in the  th column of Table 3 will be

n
G(n,  2)

n n G(n,  2) i

n = 1
2i (i + 1) and  G (n, 2) = 1

3i (i + 1) (i + 2) . (4)
(In this case the column number  is the same as , but we will see that this
is not the case when we consider higher values of .)

i m̂
r

0 10 20 30 40 50 60 70

m

n0

5

15

10

nˆ 1 3 6 10 15 21 28 36

m̂ 1 2 3 4 5 6 7 8

G (n, 2) 2 8 20 40 70 112 168 240

E (n, 2) 1.00 2.00 2.86 3.64 4.38 5.09 5.78 6.49

FIGURE 3: Values of  when  (with unique values shown as black dots)m r = 2

The equation for  in (4) can be inverted to give , so thatn i = 1
2 ( 8n + 1 − 1)

G(n, 2) = n(1
3 ( 8n + 1 + 1) and  E(n, 2)=

n
n + 2

(1
3 8n + 1 + 1). (5)

We can use induction to show that these formulae give upper bounds for
 and  for this subset of ‘unique’ values. To do this, we start

by assuming that  for .
Then, using (3), we can proceed as follows, where the inequality step
follows because the minimum of a set of values can never exceed the value
of any one individual element.

G (n, 2) E (n, 2)
G (1

2i (i + 1) , 2) ≤ 1
3i (i + 1) (i + 2) 1 ≤ i ≤ k − 1

G(1
2k (k + 1)) = 1

2k (k + 1) + 1 min
1 ≤m≤ 1

2k(k + 1)
{G(m − 1, 1) + G(1

2k (k + 1) − m, 2)}

≤ 1
2k (k + 1) + 1 + {G(m − 1, 1) + G(1

2k (k + 1) − m, 2)} |m= k
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= 1
2k (k + 1) + 1 + {G(k − 1, 1) + G(1

2 (k − 1)k, 2)}
= 1

2k (k + 1) + 1 + {1
2 (k − 1)(k + 2) + G(1

2 (k − 1)k, 2)}
= k (k + 1) + 1

3 (k − 1)k (k + 1)

= 1
3k (k + 1)(k + 2).

This leads us to the correct inequality for , and so proves the upper bound.
To prove that this formula gives the exact value, we would also need to
establish that the term corresponding to  gives the minimum value,
which is not so easy. An examination of my spreadsheet calculations shows
that there is a clear pattern and that this is indeed true. However, one thing
that I have learned from this project is that proving a pattern that is
‘obvious’ from a spreadsheet can be far from trivial.

k

m = k

My spreadsheet calculations also appear to show that, when
 is not an integer, the two possible values of  are the two

neighbouring integers, each of which gives the same value in the minimum
calculation. I will give exact formulae below for these values of  as part of
a more general result.

1
2 ( 8n + 1 − 1) m̂

m̂

When , for large values of  that correspond to a unique value of
, we have

r = 2 n
m̂

m̂ = i = 1
2 ( 8n + 1 − 1) ≈ 2n and  E (n, 2) ≈

23/2

3
n1/2 = 0.94 n.

This confirms that, with 2 objects, and a tall building, the optimal strategy
does indeed involve a square root.

Three or more objects ( )r ≥ 3
Moving to the case where , and using a similar approach, we find

that we get unique values of  for the values shown in bold in Figure 4.
r = 3

m̂
In this case the values of  are not sequential, i.e.  is not equal to the

column number as before. A little experimentation suggests that the entries
in the  th column of the table within Figure 4 are in fact

m̂ m̂

i

n = ( ) + ( ) + ( ) = 1
6i (i2 + 5), m̂ = ( ) + ( ) + ( ) (6)i

1
i
2

i
3

i − 1
0

i − 1
1

i − 1
2

and

G (n, 3) = 2 ( ) + 4 ( ) + 6 ( ) + 3 ( ) . (7)i
1

i
2

i
3

i
4

I have not proved these formulae, but I have checked numerically that they
work correctly for .n ≤ 200

For higher values of , my spreadsheet shows similar patterns and
suggests the following general formulae for the unique values of :

r
m̂

n = ∑
r

k = 1
( ) , m̂ = ∑

r − 1

k = 0
( ) , G (n, r) = ∑

r

k = 1

2k ( ) + r ( ) .  (8)i
k

i − 1
k

i
k

i
r + 1
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0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

m

n

i = 5

i = 6

i = 7

i 1 2 3 4 5 6 7 8

nˆ 1 3 7 14 25 41 63 92

m̂ 1 2 4 7 11 16 22 29

G (n, 3) 2 8 24 59 125 237 413 674

E (n, 3) 1.00 2.00 3.00 3.93 4.81 5.64 6.45 7.25

FIGURE 4: Values of  when  (with unique values shown as black dots)m̂ r = 3

Ranges for m̂
A more detailed examination of the spreadsheet calculations shows that,

as we progress through the values of , the upper and lower bounds of the
range of optimal values  change gradually, increasing by 1 when the value
of  takes certain forms. For example, when , as in Figure 4, the upper

bound increases whenever  is of the form ,

where  and  are integers with  and . This leads to
the following formulae for  and , the upper and lower bounds of .
Here  denotes an indicator function taking the value 1 if its argument
is true and 0 if it is false.

n
m̂

n r = 3

n ( ) + ( ) + ( ) + yx + 1
1

x + 1
2

x + 1
3

x y x ≥ 0 1 ≤ y ≤ x + 1
m̂U m̂L m̂

I (… )

m̂U (n, r) = 1 + ∑
∞

x = 0
∑

∑
r − 2

p = 0
( )

y = 1

I ( ∑r

q = 1
( ) + y ≤ n) (9)

x
p

x + 1
q
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m̂L (n, r) = 1 + ∑
∞

x = 0
∑

∑
r − 2

p = 0
( )

y = 1

I ( ∑r

q = 0
( ) − y ≤ n) (10)

x
p

x + 1
q

G (n, r) = n + ∑
∞

x = 0
∑

n

k = 1

I ( ∑r

q = 0
( ) ≤ k) . (11)
x
q

These formulae involve the partial sums of the entries in the rows of Pascal's
triangle.

By counting the precise number of terms in the inner sums, we find that
equations (9), (10) and (11) can be written in the following equivalent
forms, which allow the values of , ,  and  to be calculated much
more efficiently:

m̂U m̂L G E

m̂U (n, r) = 1 + ∑
∞

x = 0

max
⎡
⎢
⎣
min(n − ∑

r

q= 1
( ), ∑

r −2

p= 0
( )), 0

⎤
⎥
⎦

(12)
x + 1

q
x
p

m̂L(n, r) = 1 + ∑
∞

x = 0

max
⎡
⎢
⎣
min(n + 1 − ∑

r

q= 0
( ), 0) + ∑

r −2

p= 0
( ), 0

⎤
⎥
⎦

(13)
x + 2

q
x
p

G(n, r) = n + ∑
∞

x = 0

max(n + 1 − ∑
r

q= 0
( ), 0). (14)
x
q

For example, the lower bound  can now be calculated almost
instantaneously in Mathematica using the following function definition:

m̂L (n, r)

mLower[n_,r_]:=
Block[{t = 1,s = 0,x = 0},While[t>0,{t = Sum[Binomial[x,p],{p,0,r−2}]+
Min[n−Sum[Binomial[x+2,q],{q,0,r}]+1,0],s = s+Max[t,0]};x++];1+s]

More efficient Mathematica formula for m̂L (n, r)

Asymptotic results and approximations
The limiting values of  and  for large  and large  are interesting.m̂ E n r

Fixed , large r n
When , the equation for  in (8) cannot easily be inverted to find

, which would allow us to express  directly in terms of . However, we
can use the leading terms to deduce some asymptotic relationships, e.g.
when , equations (6) and (7) give ,  and
so that  and . So, with
3 objects, the optimal strategy involves (approximately) a cube root.

r ≥ 3 n
i m̂ n

r = 3 n ∼ 1
6i3 m̂ ∼ 1

2i2 G(n, 3) ∼ 1
8i4

m̂ ∼ 62/2

2 n2/3 = 1.65n2/3 E (n, 3) ∼ 64/3

8 n1/3 = 1.36n1/3

Using the same approach (again based on the values of  where the
value of  is unique), we can deduce asymptotic relationships for general

n
m̂
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values of . This gives  and  for

large .

r m̂ −
r

(r!)1/r  n
1 − 1/r E (n, r) ∼

r (r!)1/r

r + 1
n1/r

n

r = 2 r = 3 r = 4 r = 5 r = 10 r → ∞

m̂ ∼ 1.41n1/2 ∼ 1.65n2/3 ∼ 1.81n3/4 ∼ 1.92n4/5 ∼ 2.21n9/10 en

TABLE 3: Asymptotic formulae for  for large m n

However, these formulae are unsuitable for approximating the values of
 as they significantly overestimate the true values unless  is very large.

For example, when , the asymptotic values of  are actually greater
than  unless  and so cannot represent the optimal strategy as they
exceed  itself. The situation is even worse when , since  is
always greater than .

m̂ n
r = 10 m

n n > 2779
n r → ∞ en

n

Although the asymptotic formulae in Table 3 cannot be used to give
useful approximations for smaller values of  and , we can use this same
form of relationship to find formulae of the form  that give
accurate values for  for smaller values of . For example, the formulae
shown in Table 4, when rounded to the nearest integer, give optimal values
of  for all values of . As a check, the values of  illustrated here
for the case  can all be seen to fall within the optimal ranges shown
in Table 2.

n r
m̂ = αnβ

m̂ n

m̂ n ≤ 200 m̂
n = 163

r = 2 r = 3 r = 4 r = 5 r = 10 r = ∞

m̂ 1.38n0.5 1.07n0.73 0.85n0.85 0.67n0.93 0.53n0.99 0.5n

n = 163 18 44 65 76 82 82

TABLE 4: ‘Accurate approximations’ for  when m̂ 1 ≤ n ≤ 200

Fixed , large n r
When  (or, more specifically, when ), we would

effectively have an unlimited number of objects available. In this case  is
always equal to  since we could equally apply any given
strategy counting the floors from the top of the building. This can also be
seen from the symmetry of (3) if we use the substitution
to evaluate the minimum in the reverse order:

r → ∞ r ≥ n
m̂U

(n + 1) − m̂L

p = (n + 1) − m

G (n, ∞) = (n + 1) + min
1 ≤ m ≤ n

{G (m − 1, ∞) + G (n − m, ∞)}

⇔ G (n, ∞) = (n + 1) + min
1 ≤ p ≤ n

{G (m − p, ∞) + G (p − 1, ∞)} .

This means that, when , the midpoint of the range  is always
. This is confirmed by (8), since we now have

r ≥ n (m̂L, m̂U)
1
2 (n + 1)
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 and , so    that .

Here  and .

n = ∑
i

k = 1
( ) = 2i − 1
i
k

m̂ = ∑
i −1

k = 0
( ) = 2i −1i − j

k
m̂ = 1

2 (n + 1)

G (n, ∞) = i . 2i E (n, ∞) = i
The values of  when , i.e. with an unlimited number of

objects, are plotted in Figure 5. As we might expect, the optimal strategy
converges to a bisection technique where we go to the midpoint of the
remaining section each time. However, there is actually a fair amount of
flexibility in the precise point where we make each bisection. The optimal
strategy does not need to bisect exactly halfway.

m̂ r → ∞

In terms of the number of objects required to correctly identify the value
of , the ‘unique value’ points represent worst-case scenarios. With these
values, after each object is dropped we move directly from  to  and we
require a total of  objects. Since  at these unique points, we see
that for any value of , the maximum number of objects required is

. This is the same maximum as we find when applying a binary
search to an ordered list [3].

n
i i − 1

i n = 2i − 1
n

log2 (n + 1)
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i = 5

i = 6

i = 7

i 1 2 3 4 5 6 7 8

n 1 3 7 15 31 63 127 255

m̂ 1 2 4 8 16 32 64 128

G (n.∞) 2 8 24 64 160 384 896 2048

E (n.∞) 1 2 3 4 5 6 7 8

FIGURE 5: Values of  when  (with unique values shown as black dots)m̂ r → ∞

Other possible areas of application
Although the context of this problem seems frivolous, I can imagine that

the results derived here could be relevant to other situations where
destructive testing is required and the ‘stress’ applied comes in discrete
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units. Other analogous problems would be:

• How many people or vehicles can a structure support without breaking?
• How many units of a drug can be given to a patient without causing harm?
• How many adverts can you post before a customer stops looking at them?
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The answers to the Nemo page from March 2022 on polygons were:

1. John Buchan Mr Standfast Chapter 12
2. Charles Dickens The Pickwick Papers Chapter 53
3. GK Chesterton The Man who was Thursday Chapter  7
4. Philip Sidney Our Lady of May
5. Stella Gibbons Cold Comfort Farm Chapter III 
6. Thomas Hardy Tess of the d’Urbervilles Chapter 52

Congratulations to Bryan Thwaites on tracking all of these down. In this
section, we celebrate applied mathematics. Quotations are to be identified
by reference to author and work. Solutions are invited to the Editor by 23rd
September 2022.

1. Statistics were becoming dry to him, and love was very sweet.
Statistics, he thought, might be made as enchanting as ever, if only
they could be mingled with love.

2. “Probability is the bane of the age”, said M _  , now warming up.
“Every Tom, Dick or Harry thinks he knows what is probable.”

Continued on page 219.

https://doi.org/10.1017/mag.2022.59 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2022.59

