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We present a study of Lagrangian intermittency and its characteristic time scales.
Using the concepts of flying and diving residence times above and below a given
threshold in the magnitude of turbulence quantities, we infer the time spectra of
the Lagrangian temporal fluctuations of dissipation, acceleration and enstrophy by
means of a direct numerical simulation in homogeneous and isotropic turbulence. We
then relate these time scales, first, to the presence of extreme events in turbulence
and, second, to the local flow characteristics. Analyses confirm the existence in
turbulent quantities of holes mirroring bursts, both of which are at the core of
what constitutes Lagrangian intermittency. It is shown that holes are associated
with quiescent laminar regions of the flow. Moreover, Lagrangian holes occur over
few Kolmogorov time scales while Lagrangian bursts happen over longer periods
scaling with the global decorrelation time scale, hence showing that loss of the
history of the turbulence quantities along particle trajectories in turbulence is not
continuous. Such a characteristic partially explains why current Lagrangian stochastic
models fail at reproducing our results. More generally, the Lagrangian dataset of
residence times shown here represents another manner for qualifying the accuracy of
models. We also deliver a theoretical approximation of mean residence times, which
highlights the importance of the correlation between turbulence quantities and their
time derivatives in setting temporal statistics. Finally, whether in a hole or a burst,
the straining structure along particle trajectories always evolves self-similarly (in a
statistical sense) from shearless two-dimensional to shear bi-axial configurations. We
speculate that this latter configuration represents the optimum manner to dissipate
locally the available energy.

Key words: topological fluid dynamics, turbulence simulation

1. Introduction
Turbulence is a complex fluid flow phenomenon which emerges from the continuous

reorganisation of the kinetic energy spatial distribution via local shear. The ubiquity of

† Email address for correspondence: romainwatteaux@gmail.com
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turbulence in nature entails that many manmade or biological entities are compelled
to deal with it, influencing the dispersion in the oceans of contaminants (Toschi &
Bodenschatz 2009; Cozar 2014) and controlling the formation of water droplets in
clouds (Grabowski & Wang 2013; Sardina et al. 2015), prey/predator encounter rates
(Kiorboe 2008; Pecseli, Trulsen & Fiksen 2012) or interactions of microplastics with
local biota (Galloway, Cole & Lewis 2017).

All these examples are characterised by the interaction between a turbulent flow
and other entities which we will generically refer to as particles. Central to a proper
understanding of particle–turbulence interactions is an accurate definition of the
various time scales at play. Particle behaviour is necessarily associated with specific,
case-dependent time scales. Turbulence, on the other hand, follows universal laws,
at least when far from the boundary conditions and in homogeneous and isotropic
conditions (Pope 2000). A schematic view of turbulence is that it results from the
multiple interactions between large- to intermediate-scale eddies which continuously
transfer kinetic energy down to small scales, a process dubbed the inertial cascade
of energy. At small scales, this energy is dissipated into heat down to the viscous
scale (the so-called Kolmogorov length scale (Kolmogorov 1958) ηK = (ν

3/〈ε〉)1/4

along with the corresponding time scale τK =
√
ν/〈ε〉, with ν the fluid kinematic

viscosity and 〈ε〉 the averaged dissipation) where no turbulent kinetic energy remains
and the flow is therefore laminar. When travelling in the flow, a particle encounters
various flow structures related to these eddies and viscous scales and undergoes
rapidly changing dynamics. The resulting interaction of particles with turbulence
can be direct (the particle size is larger than ηK) or indirect (smaller than ηK), and
depends on whether the body is inertial and/or active, namely whether it acts or
reacts against the flow (Toschi & Bodenschatz 2009). Here, we focus on non-inertial
passive particles smaller than ηK , and therefore neglect any potential feedback of the
particle on the fluid.

Since particles are considered small, a first characteristic scale that could be
considered for particle–turbulence interactions is the Kolmogorov scale; however, such
a theoretical scale is derived from averaged quantities, hence losing the information
on local spatial and temporal fluctuations of dissipation (Meneveau 1996; Yu &
Meneveau 2010), with the result that ηK does not accurately characterise the small
scales of turbulence (Lazier & Mann 1989). These small-scale fluctuations are
witness to the undergoing complex physics in turbulence. Namely, they cannot be
simply modelled by Gaussian statistics, which, in light of the central limit theorem,
implies that small-scale fluctuations are not independent from one another. Such a
characteristic of turbulence is called intermittency (Chevillard et al. 2012).

The spatial and temporal characteristics of turbulence are usually studied respectively
by considering the flow at fixed points (i.e. Eulerian frame of reference) and
by following a given particle in the flow (Lagrangian frame of reference) (Pope
2000). While Eulerian turbulence has been extensively studied for the past two
centuries, deciphering the Lagrangian turbulence is on the contrary a younger topic
only developed thanks to the combination of recent improvements in experimental
techniques, used to track particles and measure the local properties of turbulence,
continuous increases in computational power and development of new theoretical
approaches (Toschi & Bodenschatz 2009). Statistical and scaling analyses using
heavy numerical simulations along with theoretical modelling allowed for great
improvements of our understanding of Lagrangian turbulence (Toschi & Bodenschatz
2009). We summarise below two significant characteristics of Lagrangian intermittency
and related open questions to which we believe our study brings new information.
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FIGURE 1. (Colour online) (a) Density profile of a Lagrangian turbulent quantity ϕ
with log-normal approximation (dashed line). Bursts and holes create a departure from
log-normal statistics. (b) Trajectory of a particle evolving in homogeneous isotropic
turbulence (HIT). The colour map is ln ϕ/〈ϕ〉. (c) Time series corresponding to the
trajectory in (b). Given a threshold ϕt, flights and dives correspond to periods above (with
maximum value in pure red) and below (with minimum value in light red) ϕt, respectively.
Bursts and holes represent periods of large and small magnitude in ϕ. Finally, for both
periods of bursts and holes, the computation of the various conditioned joint distributions
of flights, transitions to dive, dives and transition to flight, shown in figure 8, is done by
considering values associated with pure red, grey, light red and black dots, respectively.

First, the phenomenology of turbulence intermittency is usually linked to the random
appearance (both in space and time) of bursts, namely, local and ephemeral events
where properties of the flow such as the quantities of dissipation or acceleration attain
very large magnitudes compared with their mean values (Pope 2000). Eulerian studies
on dissipation have suggested that, mirroring bursts, there also exist rare localised
regions where quantities become very small, i.e. holes (Dubrulle 1994; She & Leveque
1994; She & Waymire 1995; Gledzer et al. 1996). The simple consideration that
turbulent quantities exhibit close to log-normal Lagrangian and Eulerian statistics
(Yeung et al. 2006a; Mouri 2015) (i.e. the order of magnitude of turbulent quantities
have normal/Gaussian statistics) shows that there indeed exist a range of very low
magnitudes which necessarily imply the presence of holes (figure 1a). It is believed
that holes are linked with intense vortical structures (She & Leveque 1994; Gledzer
et al. 1996), but such an assertion has never been investigated. Yet, the flow structures
in turbulence are known to influence more the dynamical behaviour of Lagrangian
particles than the detailed time history of the velocity field (Elhmaidi, Provenzale &
Babiano 1993; Manikandan et al. 2007). The characteristics of flow structures can be
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derived from the velocity invariants (Cantwell 1993; Soria et al. 1994; Martin et al.
1998; Ooi et al. 1999).

Second, intermittency results from the non-trivial combination of the dynamics of
inertial (large to intermediate) and dissipative (small) scales. In the inertial range, the
dynamics behind eddy interactions is self-similar (Kolmogorov 1958), namely, it can
be captured by considering that eddies behave equivalently regardless the eddy scale
and that therefore only the magnitude of turbulent fluctuations varies. This feature can
be modelled by considering eddy interactions as a multiplicative process across scale,
hence explaining why the statistics of the turbulent quantities are close to log-normal
(Yeung et al. 2006a; Mouri 2015). However, the departure from log-normal (figure 1a)
at small and large magnitudes shows that holes and bursts have a more complex
dynamics and that the multiplicative vision of turbulence only holds somewhat true
for moderate magnitudes of turbulent quantities. Besides, even at moderate magnitude,
the multiplicative approach fails to give good predictions for high moments of the
fluctuations (Benzi et al. 1993, 2010). By being responsible for the departure from log-
normal statistics, holes and bursts are therefore at the core of turbulence intermittency
and the non-self-similar patchy and inconstant nature of the flow. The multifractal
formalism (associated with generalised multiplicative processes) accurately captures
this non-self-similar characteristic of turbulence in the inertial cascade (Frisch 1983;
Benzi et al. 1984; Meneveau & Sreenivasan 1987), but other methods can also be
good predictors (Huang et al. 2013).

Along with the impact of the inertial range on bursts and holes is that of the
dissipative range, where large fluctuations of quantities due to eddy interactions are
smoothed out by viscosity. Classical multifractal formalism considering only one
scale (ηK) fails to capture the local dynamics of dissipation in the dissipative range,
and only by considering a local and variable scale can one capture the Lagrangian
statistics at small scale (Sirovich, Smith & Yakhot 1994; Meneveau 1996; Arneodo
et al. 2008; Benzi et al. 2010; Yu & Meneveau 2010). Such statistics, the so-called
anomalous statistics, emerge in Lagrangian turbulence on time scales of [1–10]τK

(Biferale et al. 2005; Arneodo et al. 2008). Yet, how exactly inertial and dissipative
scales generate such dynamics and how it relates to the presence of both bursts and
holes is still not clearly understood. Such an unknown is however believed to be
one of the greatest barriers to overcome in both stochastic modelling and theory
of Lagrangian turbulence (Sawford 2001; Yakhot & Sreenivasan 2005; Zybin et al.
2008; Benzi et al. 2010).

Central to these open problems is the small-scale temporal structure of the
Lagrangian turbulence properties i.e. Lagrangian intermittency. Deciphering its
characteristics has been a point of attention for a few decades (Yeung 2002; Toschi
& Bodenschatz 2009) and we shall now briefly explain the various findings (however
in a non-exhaustive manner) and the questions that remain on hold to which we
believe this study brings some elements of an answer. Lagrangian intermittency
was mainly studied by focusing on the moments of the fluctuations of the velocity
〈(v(t+ τ)−v(t))p〉 (i.e. the Lagrangian structure functions of order p) (e.g. Benzi et al.
1984; Meneveau & Sreenivasan 1987; Yeung 2001; Boffetta, De Lillo & Musacchio
2002; Ouellette et al. 2006; Arneodo et al. 2008; Biferale et al. 2008; Chevillard
et al. 2012) which helped to detect the aforementioned so-called anomalous statistics.
Because of the averaging process, the structure functions are a powerful tool to
investigate the global change of turbulence but cannot detect recurrences. Moreover,
study of (i) the Lagrangian Taylor time scale, i.e. the time scale associated with the
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variation rate of the velocity for short periods of time (e.g. Tennekes 1975; Yeung &
Pope 1989; Ishihara & Kaneda 1993; Kaneda 1993; Yeung 2001)

τL,v =
σv

σdv/dt
, (1.1)

and (ii) the decorrelation time scale of different tubulence quantities (velocity,
dissipation, etc.), i.e. the time window after which information of the previous
fluctuations of ϕ is lost (e.g. Pope 1990; Squires & Eaton 1991; Mordant et al.
2002) Tϕ =

∫
∞

0 ρϕ(τ ) dτ with ρϕ the autocorrelation coefficient of ϕ, also highlighted
a complex physics lying behind Lagrangian intermittency with a strong dependency
on the level of turbulence. However, both the dimensional scaling and statistical
averaging used to infer τL,ϕ and Tϕ destroy part of the physical information potentially
relevant for understanding Lagrangian intermittency and, as a consequence, these two
time scales may mix scaling relations of different regimes (Wang 2014). This, in
turn, makes it difficult to understand what these time scales exactly represent to the
travelling particle subjected to Lagrangian fluctuations and how they relate to the
local and ephemeral bursts and holes.

With the aim of disentangling the various multiscale contributions to turbulence
and potentially characterising better the dynamics behind Lagrangian fluctuations and
its relation to flow structures, other methods have been used, consisting essentially
in decomposing the signals following a given procedure. A first approach was to
study the power spectra of Lagrangian signals using the widespread discrete Fourier
transform (Tennekes & Lumley 1972; Sreenivasan & Stolovitzky 1995; Yeung 2001),
revealing a range of frequencies in which exists a constant scaling (and where
therefore the dynamics is self-similar). This former range is however much narrower
than the inertial range, reflecting spurious contributions from regimes of other scales
(either large or small) that the Fourier transform could not disentangle. Such an
issue is also present in the statistics of structure functions (Sawford & Yeung 2011),
thus showing the impact of the methods of analysis for the study of multiscale
physical phenomena. A new method based on empirical mode decomposition, called
the Hilbert–Huang Transform (HHT) (Huang et al. 1998), was applied to Lagrangian
fluctuations (Huang et al. 2013) and revealed a clear inertial-range unique scaling,
but explaining the phenomenology of the flow from HHT is still in the early stages.

In order to avoid potential transformation-based discrepancies and to use more
quantitative methods, various more direct methods were developed to cut the
Lagrangian signals into segments and study the distribution of the corresponding
time scales. Since Lagrangian intermittency is tightly linked to the flow structures,
some methods cut the Lagrangian signals following physical considerations based
on the Eulerian flow structures (Martin et al. 1998; Ooi et al. 1999; Liberzon et al.
2012; Wang 2014; Bhatnagar et al. 2016). For instance, Wang (2014) cuts the signals
into segments using extrema of the acceleration, considered as a proxy for passage
from the vortex- to the stretching-dominated regions. By deriving the time distribution
corresponding to the segments and conditioning the velocity and dissipation statistics
to this time of transition, this method revealed a constant scaling across the inertial
range, therefore showing that conditioning the statistics on the flow structures could
help in removing the multiscale contamination. The mean time of transition between
vortical and straining structures scales was the viscous scale τK , showing that studying
the extrema of acceleration sheds light primarily on small-scale dynamics. On the
contrary, other studies focused on large-scale dynamics of Lagrangian fluctuations by
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using velocity invariants to study the time distribution of the residence (or persistence)
times in the various vortical and straining flow structures (Martin et al. 1998; Ooi
et al. 1999; Bhatnagar et al. 2016) with the outcome that particles mainly remain
in specific flow structures on the time scale of large eddies with power-law or
exponential time distributions.

Another method of interest used to study intermittency is to derive the distribution
of the zero-crossing time scales, namely, the distribution of residence times above
and below zero velocity. Such a method has been used to characterise Eulerian bursts
and fine-scale intermittency in turbulent boundary layers (Narahari Rao, Narasimha &
Badrinarayanan 1971; Badrinarayanan, Rajagopalan & Narasimha 1977; Sreenivasan,
Prabhu & Narasimha 1983; Sreenivasan 1985; Kailasnath & Sreenivasan 1993).
These studies also relied on the accompanying theory of zero crossings (Rice 1945;
Liepmann 1949; Ylvisaker 1965) which states, among other things, that if g is
a Gaussian process with mean gm (taken originally to be 0), then the associated
mean frequency of gm-crossings, Ngm (with 1/Ngm the mean time spent between two
successive crossings), is proportional to the Taylor-type time scale, following

τE,g =
σg

σdg/dt
=

1
πNgm

. (1.2)

Hence, considering τL,g as the Lagrangian version of τE,g, one has that, for a
Gaussian process, τE/L,g scales with the mean residence time spent above or below
its mean value. The rescaled Eulerian Taylor time scale πτE,g has been shown to
be a good approximation of the mean residence time also for various non-Gaussian
distributions (Sreenivasan et al. 1983). In these studies, most of the attention has
been given to finding the appropriate parameters to characterise mathematically
turbulent intermittency. Here, we mainly study the phenomenology of Lagrangian
intermittency and we shall only mention the outcomes that bear interest for our
purposes. First, it has been found that the relationship between the Taylor scale
and 0-crossing frequency holds true enough even for a non-Gaussian process,
such as the turbulent velocity along a boundary layer, possibly due to the fact
that the highly probable events of u behind the zero crossings follow a Gaussian
distribution (by considerations of the central limit theorem) even if the overall
probability density function (p.d.f.) is non-Gaussian (Kailasnath & Sreenivasan 1993).
Second, the distribution of zero-crossing intervals can be separated into two different
exponentially decreasing parts at large and small time intervals (Sreenivasan et al.
1983), supposedly reflecting the long intervals of passage inside large-scale structures,
each passing being independent of the others, while the short intervals are due to
the small-scale dissipative structures riding on the large structures (Sreenivasan et al.
1983; Kailasnath & Sreenivasan 1993). Such an interpretation suggests that a selective
conditional sampling technique based on zero crossings can be useful in separating
the properties of large and small structures in turbulent shear flows (Sreenivasan
et al. 1983; Kailasnath & Sreenivasan 1993; Cava & Katul 2009; Cava et al. 2012;
Chamecki 2013). Finally, Eulerian bursts in signals were analysed (Narahari Rao
et al. 1971; Badrinarayanan et al. 1977; Sreenivasan et al. 1983; Sreenivasan 1985).
Bursts were considered as high-frequency pulses and their detection was made by
determining the threshold above zero velocity at which the crossing frequency of
the envelope of the signal (i.e. the signal obtained by considering only the maxima
of fluctuations) was the highest. Such a technique was employed by considering
the envelope of various bandpass filters of the Eulerian turbulent signals. Although
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this technique was useful in dissecting regions of high activity in the signal, it is
computationally heavy to apply when considering millions of trajectories, and its
complexity renders difficult the physical interpretation of results (Sreenivasan 1985).
Hence, the results were mainly interesting in regard to setting and studying some
of the intermittency parameters as functions of the crossing level (and indirectly the
bandpass filtering); however, conclusions about the characterisation of the dynamics
underlying the signal fluctuations remained preliminary and bound to the crucial
question raised by Sreenivasan (1985), that is, ‘What is the correct threshold setting
that one should choose to define the parameters of intermittency?’, the answer to
which depends on the dynamical characteristics of the signal. Finally, the technique
suffers from its dependency on Fourier transforms which, as previously mentioned,
do not separate properly the small to large scales.

Despite the clear interest of the theory of zero crossings and its results, to our
knowledge, only a few studies, focusing on aggregate break-ups in turbulence, have
used the method of crossing frequencies in a Lagrangian framework to study ‘diving’
residence times below various magnitudes of dissipation (Babler, Biferale & Lanotte
2012; Babler et al. 2014). Yet, temporal statistics emerging from the zero-crossing
approach represent another interesting manner to detect and study Lagrangian
intermittency in turbulence and to assess the accuracy of Lagrangian stochastic models.
Here, we study the Lagrangian fluctuations of homogeneous isotropic turbulence (HIT)
by analysing the flying and diving Lagrangian probability density functions (flying
LPDF and diving LPDF) and corresponding flying and diving joint distributions of
velocity invariants of various turbulent quantities. Given the time evolution of any
quantity ϕ along a Lagrangian trajectory, the flying and diving LPDFs PF

ϕt
(τ ) and

PD
ϕt
(τ ) represent the density of probability that ϕ spends some time τ above (a flying

event) and below (a diving event) a chosen threshold ϕt (figure 1b,c). In order not to
make notations heavier, i.e. PF

ϕt,ϕ
(τ ), ϕt indicates both the threshold and the quantity

ϕ considered. For each quantity, flying and diving LPDFs are inferred for various
crossing thresholds scanning the entire range of available magnitudes, hence avoiding
the problem of defining one specific threshold to detect bursts and holes. Our analysis
then focuses on properties of the temporal statistics of Lagrangian bursts and holes
which consistently appear across the range of large and small thresholds, respectively.
Study of the corresponding flying and diving joint distributions of velocity invariants
allows us to describe the local Eulerian flow characteristics surrounding the particle
during flights and dives across the chosen thresholds used to detect the Lagrangian
bursts or holes. We end our study by developing a theoretical approximation of the
mean flying and diving times in HIT and using the newly computed Lagrangian
statistics to assess the accuracy of existing Lagrangian stochastic models.

Finally, turbulence is a multiscale process both in space and time and, as such,
it is fair to suppose that the sensitivity of such a process is also scale dependent.
For instance, diving times of 30τK and 40τK hold the same large-scale physical
information while diving times of τK and 10τK (viscous and inertial scales) do not.
This suggests that PD

ϕt
(τ ) can be a relevant distribution when focusing on a specific

physics, either on a small or large scale (as pointed out by Sreenivasan et al. (1983)),
but not for the inertial range where the multiscale aspect of turbulence is strongest.
In statistical terms, this means that it is more relevant to compare probabilities with
relative uncertainties, for instance, to compare the probability of a diving time of
35τK ± 5 % and that of 5τK ± 5 % rather than those of 35τK ± 5τK and 5τK ± 5τK .
Such requirements are easily fulfilled with continuous density functions by studying
PD
ϕt
(ln τ) instead of PD

ϕt
(τ ). Such an assumption has already been made for distance
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in the Eulerian framework by Sreenivasan & Bershadskii (2006) for whom this
approach seemed reasonable because the scale-to-scale energy transfer in turbulence
is presumed to occur in logarithmically equal intervals. We believe the same occurs
with time.

2. Setting of the study
We study the temporal statistics of three turbulence quantities commonly used to

study intermittency (Yeung & Pope 1989; Yeung, Pope & Sawford 2006b; Liberzon
et al. 2012), namely, acceleration, ai = dui/dt, rate-of-strain Sij = (Aij + Aji)/2 and
rate-of-rotation, W ij = (Aij − Aji)/2, where t is time and Aij = ∂iuj is the velocity
gradient tensor. Their respective magnitudes can be quantified using the norm of the
acceleration |a|, the dissipation rate of turbulent kinetic energy ε = 2νSijSij and the
enstrophy ω = 2νW ijW ij, where ν is the kinematic viscosity. We therefore study the
flying LPDF and diving LPDF, PF

ϕt
(ln τ) and PD

ϕt
(ln τ), for ϕ = ε, |a| (henceforth

called a) and ω at various thresholds ϕt. It is important to note that the flying and
diving LPDFs are transformation invariants e.g. PF

ϕt
(ln τ)=PF

ln ϕt
(ln τ). This interesting

property will be used below for theoretical derivation of the mean times. Finally, the
flying and diving joint probability density functions of the velocity invariants are
derived for all three quantities using various thresholds to isolate bursts and holes.

2.1. Numerical simulation set-up
We use a combined Eulerian–Lagrangian framework to compute a homogeneous
isotropic turbulent (HIT) flow. The computational domain is a cube with periodic
boundary conditions in all three spatial directions. The same numerical code as in
Sardina et al. (2015) is used, with the difference that a component-specific volume
forcing term fi is used, following in Fourier space

f̂i(ki, t)=


〈ε〉

ûi(ki, t)∑
|ki|

3|ûi(ki, t)|2
for kmin 6 |ki|6 kmax,

0 otherwise,

(2.1)

where the symbol ∗̂ indicates the Fourier transformation of the generic real function *,
〈ε〉 is the prescribed turbulent dissipation rate, kmin and kmax are the wavelengths limits
influenced by the forcing. Such a forcing method, already successfully used for the
computation of HIT (Carati, Ghosal & Moin 1995; Watteaux, Stocker & Taylor 2015),
has the advantage of adjusting independently the three velocity components in order
to achieve an accurate isotropic flow. Here, we force all Fourier components between
kmin = 2.44 and kmax = 3.09. Our spatial resolution consists of 10243 grid points,
chosen to give a Taylor Reynolds number of Reλ of 240 according to the constraints
previously prescribed for direct numerical simulation (DNS) of HIT (Donzis, Yeung &
Sreenivasan 2008). While not the finest resolution used for the study of Lagrangian
statistics in HIT (Yeung et al. 2006b), it still creates a flow that can largely be
considered turbulent. The time step is τK/40 and therefore ensures a well-resolved
temporal sampling of the Lagrangian statistics. The total simulation time corresponds
to T = 245τK and to 2.6Tu. Approximately 106 particles were tracked, saving all the
relevant observables along their trajectories at every time step. This large number of
particles ensures that our one-particle one-time Lagrangian statistics are equivalent to
single-point Eulerian statistics. The same simulation at Reλ = 90 was conducted in
order to assess the dependency of our results on the Reynolds number.
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FIGURE 2. The principal direction of p2(ε, ε̇) can be approximated by the relation
ε̇ = ε/CετK(ε) where τK(ε) = (ν/ε

3)1/4 is the local viscous scale and Cε the coefficient
to be determined. The Lagrangian time series are noisy due to discrepancies in the
interpolation method and a weighted moving filter with characteristic time TA is applied to
the signals. The coefficient Cε is derived by taking the principal orientation of the filtered
p2. (a) Cε as a function of TA which stabilises at 3.6 for TA= τK/3, and (b) p2(ε, ε̇) using
TA = τK/3 with, in solid line, the corresponding scaling ε/CετK(ε) using Cε = 3.6 and in
the dashed line that of p2 when using raw data. When not filtering dissipation, fluctuations
in time are larger and therefore Cε decreases.

2.2. Filtering of spurious Lagrangian statistics
Physical turbulence quantities at particles position are inferred from the Eulerian grid
using a tri-linear interpolation. While such a scheme represents a quick and accurate
method for interpolation of the velocity, it is known to create unphysical noise in the
Lagrangian time series of higher-order quantities (van Hinsberg et al. 2013) which in
turn parasites the flying and diving LPDFs. To circumvent this issue, we convolute all
Lagrangian time series with a weighted moving average filter of the form

A(t)=

(t+ TA)/T2
A if − TA < t< 0,

−(t− TA)/T2
A if 0< t< TA,

0 elsewhere.
(2.2)

Filtering time TA was determined by studying the convergence of the local scaling
of the joint distribution of dissipation and its time derivative p2(ε, ε̇), namely,
ε̇ ≈ ε/CετK(ε) (Babler et al. 2012), where τK(ε) is the local Kolmogorov time scale
and Cε is a coefficient of proportionality to define that depends on TA. Figure 2(a)
shows values of Cε with respect to TA. Without any filtering applied to the time
series (TA = 0), Cε is approximately 2 (figure 2b). The coefficient Cε stabilises at
approximately 3.6 (figure 2a,b) for a filtering time of TA = τK/3, a time actually
previously used to smooth Lagrangian signals of acceleration (Wang 2014). We thus
consider the same filtering time for all turbulence quantities computed here.

2.3. Extension of temporal statistics beyond numerical limits
The flying and diving LPDFs, inferred from the Lagrangian time series, are affected
both by the temporal resolution of the simulation, giving a minimal residence time of
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FIGURE 3. (Colour online) (a) Maximum of diving (squares) and flying (circles) residence
times detected for various dissipation thresholds, with our simulation length of T = 245τK .
(b) Percentage of diving (squares) and flying (circles) residence times equal to T with
respect to the total number of detected diving and flying times. The numerical limitations
in time affects the results in a wide range of threshold values considered here. (c) Flying
LPDFs at two dissipation thresholds. The last point has a large density and corresponds
the simulation length T . The extrapolation method removes this point and extrapolates the
remaining LPDF with reasonable success. (d) Profiles of mean flying and diving times
for various dissipation thresholds inferred from the raw LPDFs (dashed black lines), the
extrapolated LPDFs (in pure red circles and light red squares, respectively) and the Rice
theorem (equation (3.1); pure and lighter colours, respectively). Without the extrapolation,
mean statistics saturate at the numerical limits due to the time step 21t= τK/20 and T .

21t= τK/20, and by the simulation time length, T = 245τK . For instance, figure 3(a)
shows the maximum value of both diving and flying residence times, found in
flying and diving distributions for various dissipation thresholds. Only the range
εt/〈ε〉 = [0.2–1.0] is exempt from the influence of numerical limitations. Even the
percentage of residence times equal to the numerical limits (21t or T) with respect
to the total number of residence times gives the region of influence εt/〈ε〉 < 0.1
for flying times and εt/〈ε〉 > 7 for diving times (figure 3b). The flying and diving
LPDFs are consequently affected by an artificially large density at 21t or T , and the
corresponding mean flying and diving times saturate accordingly (figure 3c,d).
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Residence times on the scale of 21t are spurious statistics with no physical interest
and are therefore not considered when constructing the LPDFs. To remove the non-
physical saturation in LPDFs at T , and therefore have access to mean times larger
than T , we first apply a weighted moving average filter on PD

εt
(ln τ) and PF

εt
(ln τ)

(equation (2.2) with TA being half a decade) for times lower than T . Second, a linear
extrapolation of the LPDF is done for residence times larger than T by considering the
evolution of the LPDF over the last decade. The latter range is a trade-off between the
need to have enough points to extrapolate the appropriate trend of the LPDF without
depending on the noise and the need not to consider too many points so that potential
variations in the trend would not be taken into account. Extrapolation is done until the
integration of the LPDF reaches unity. Figure 3(c) shows the LPDFs PF

εt
for thresholds

εt/〈ε〉 = 1/100 and εt/〈ε〉 = 1/20. At the smallest dissipation threshold, the trend of
the LPDF is clear and the resulting extrapolation accurately reproduces the ongoing
increase of the flying density for larger time residence. On the contrary, at threshold
1/20, one can see a slight artificial change of slope due to the fall over the last few
points. However, at this stage, the extrapolated part of the LPDF does not contribute
much to the mean time.

The mean times can also be inferred from the Rice theorem (Rice 1945; Babler
et al. 2012) described in the next section (equation (3.1)). This theorem uses
distributions of the considered quantity and is therefore free of the influence of
numerical temporal resolutions. Figure 3(d) compares mean flying and diving times
obtained from the raw and extrapolated LPDFs and from the Rice theorem. While the
aforementioned operation to clean and extrapolate the LPDFs may seem somewhat
simplistic, it shows remarkable efficiency with good agreement between Lagrangian
results and the Rice theorem.

3. Mean flying and diving times TF and TD

We first investigate the mean time scales of Lagrangian intermittency at various
magnitudes of dissipation, acceleration and enstrophy. The mean flying and diving
times TF(ϕt) and TD(ϕt) for the quantities ϕ = ε, a and ω are inferred using two
different approaches: (i) from the integration of PF

ϕt
(ln τ) and PD

ϕt
(ln τ), and (ii) from

the Rice theorem defining the mean flying (diving) time as the ratio between the
fraction of time spent above (below) the threshold ϕt and the mean time derivative
ϕ̇ at ϕt, which in terms of distributions reads

TF(ϕt)=

∫
∞

ϕt

p(ϕ) dϕ∫
∞

0
ϕ̇p2(ϕt, ϕ̇) dϕ̇

, TD(ϕt)=

∫ ϕt

0
p(ϕ) dϕ∫

∞

0
ϕ̇p2(ϕt, ϕ̇) dϕ̇

. (3.1a,b)

As already mentioned in the previous section, the Rice theorem quantifies more
accurately the mean times for extreme thresholds since Lagrangian statistics suffer
both from lack of data and discrepancies in the extrapolation method. Profiles of
mean times obtained from Lagrangian statistics are in good agreement with those
calculated with the Rice theorem (figure 4a–c). For all three quantities, the profiles
TF and TD exhibit a globally symmetrical behaviour on a log scale (figure 4a–c). This
entails two noteworthy characteristics of Lagrangian temporal statistics.

First, for all three quantities, the axis of symmetry, where TF = TD, is located
at a threshold ϕs

t which is different than the mean value 〈ϕ〉. Recalling that flying
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FIGURE 4. (Colour online) (a–c) Normalised mean flying and diving residence times,
TF/τK and TD/τK , with respect to thresholds (a) εt/〈ε〉, (b) at/〈a〉 and (c) ωt/〈ω〉. Pure
and lighter colours are flying and diving statistics, respectively. See encapsulated legend
for details. The approximate global symmetry between TF and TD reflects the presence of
holes, in contrast to bursts, during which magnitudes of at least one turbulent property can
fall by several orders of magnitudes. Instead, local departure from this symmetry reflects a
difference in the physics occurring during holes and bursts which characterises Lagrangian
intermittency. Dashed black lines are the theoretical approximations (3.2) and (3.3).

and diving LPDFs are transformation invariant, one can solve TF(ϕ
s
t ) = TD(ϕ

s
t ) by

considering the equality TF(ln ϕs
t /〈ϕ〉) = TD(ln ϕs

t /〈ϕ〉) and approximating ln ϕ/〈ϕ〉
with a Gaussian distribution in (3.1), leading to

ϕs
t ≈ 〈ϕ〉e

〈ln ϕ/〈ϕ〉〉, (3.2)

and 〈lnϕ/〈ϕ〉〉≈−σ 2
ln ϕ/2 (Pope & Chen 1990). The log-normal approximation is fairly

accurate for ϕ= ε and ω and acceptable for a (figure 14) and (3.2) is verified for all
three quantities with εs

t /〈ε〉e
−σ 2

ln ε/2 = 1.02, ωs
t/〈ω〉e

−σ 2
lnω/2 = 1.07 and as

t/〈a〉e
−σ 2

ln a/2 =

0.96. Hence, since ϕs
t can be well captured by the Gaussian approximation, it emerges

from the multiplicative aspect of intermittency. Corresponding mean flying and diving
times are approximately TF|D(ε

s
t ) = 7τK , TF|D(as

t ) = 5τK and TF|D(ω
s
t ) = 10τK . These

mean times are by construction equal to the inverse of the ϕs
t -crossing frequency,

1/Nϕs
t
, hence, since TF|D(ϕ

s
t /〈ϕ〉)= TF|D(ln ϕs

t /〈ϕ〉), one has Nϕs
t /〈ϕ〉
= Nln ϕs

t /〈ϕ〉
and, in
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the log-normal approximation, equation (1.2) considered in the Lagrangian framework
tells that

TF|D(ϕ
s
t /〈ϕ〉)≈πτL,ln ϕ, (3.3)

where τL,ln ϕ is the Lagrangian Taylor time scale of ln ϕ following (1.1). Results
from of our simulation show that (3.3) is quite accurate for ln ε and ln ω, with
TF|D(ε

s
t )/πτL,ln ε = 1.1 and TF|D(ω

s
t )/πτL,lnω = 1.2, respectively. On the contrary, the

Taylor Lagrangian time scale of ln a is smaller than the mean residence time with
TF|D(as

t )/πτL,ln a = 1.4. Considering ln a as a Gaussian process is therefore accurate
enough in order to infer as

t but not to infer τL,ln a. However, this result may not
be physical and may instead be explained by the known existing high-frequency
spurious oscillations in a at large magnitude (explaining the ‘bump’ in TF(at) in
figure 4b) due to the integration scheme van Hinsberg et al. (2013) which affect
more τL,ln a due to the computed time derivative than as

t . Note that by definition, for
any threshold, the number of flying events, NeF, necessarily equals that of diving
events, NeF = NeD = Ne/2, hence, given that Ne/2TF + Ne/2TD = T and that TF = TD
at ϕs

t , one has that the total flying and diving times are equal to half the total time,
Ne/2TF =Ne/2TD = T/2.

Second, the symmetry of the mean flying and diving times shows the existence in
all three quantities of holes mirroring bursts, as previously suggested (Dubrulle 1994;
She & Leveque 1994; She & Waymire 1995; Gledzer et al. 1996). Indeed, for periods
where particles undergo bursts of large magnitudes, the existing symmetry dictates
that there are periods of similar duration where particles undergo holes of small
magnitudes. Profiles of TF and TD show that the time scales of holes are however
slightly different than those of bursts. These differences are witness to Lagrangian
intermittency, and can be better seen when superposing the profiles of mean diving
times with those of flying times mirrored using ϕs

t as an axis of symmetry. For
dissipation (figure 4a), the mean time spent in holes is always larger than that spent
in bursts (the dashed line is always above the solid line), and surprisingly, the mean
diving time at large threshold, i.e. the time spent between bursts, is also always
larger than the mean flying time at small threshold, i.e. the time spent between holes.
Given that times spent in and between holes or bursts are complementary, such
findings are only possible with an occurrence of holes higher than that of bursts,
hence highlighting the different physics in play at small and large dissipation rates.
For acceleration and enstrophy, comparison between profiles of TF and TD show that
holes are shorter than bursts, hence highlighting here too Lagrangian intermittency,
but their occurrence seem similar since times spent between holes are larger than
times spent between bursts (figure 4b,c).

4. The flying and diving LPDFs of turbulent quantities
4.1. The flying and diving LPDFs of dissipation at εs

t

We first focus on the distributions of flights and dives of dissipation. Figure 5(a)
shows the flying and diving LPDFs of ε at εs

t , PF
εs

t
(ln τ) and PD

εs
t
(ln τ). A first result is

that, although one has TF = TD, the flying and diving LPDFs are not similar, showing
once again the different dynamics governing flights and dives of a fluid parcel, even
in HIT. Such asymmetry has already been detected in Eulerian statistics of turbulent
boundary layers (Chamecki 2013).

Both flying and diving LPDFs of dissipation exhibit a peak with a most probable
flying time of approximately 4τK and a most probable diving time of approximately
2τK . A probability of having either short or long dives higher than that of having short
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FIGURE 5. (Colour online) LPDFs PF
Cϕs

t
(pure colours) and PD

Cϕs
t

(lighter colours) of ε and
ξ inferred from DNS and inferred from time series computed using the stochastic model
of Pope & Chen (1990), Lamorgese et al. (2007). (a) Results for ε and ξ from DNS at
threshold ϕs

t (C= 1). The different position of the peak in PF
εs

t
and PD

εs
t

is explained by the
Reynolds stress. (b) LPDFs of ε for various values of C. Flying and diving LPDFs can be
paired following the approximate global symmetry with axis ϕs

t giving TF(Cϕs
t )≈TD(ϕ

s
t /C)

and TD(Cϕs
t ) ≈ TF(ϕ

s
t /C). (c) PD of ε, ξ and the stochastic model for C = 20. (d) PF

of ε, ξ and the stochastic model for C = 1/20. The emergence of a peak in the flying
LPDFs of dissipation and acceleration at ϕs

t shows the existence of a characteristic flying
time at about the Taylor time scale. The flying and diving LPDFs have two regimes. The
first regime (flat for ε, increasing/flat for ξ and decreasing for the model) at small time
scales represents the correlated events of bursts and holes and the second corresponds to
temporal statistics between uncorrelated events. Hence bursts in ε and ξ are events mostly
correlated over their respective global decorrelation time scale Tln ε and Tln ξ while holes
are shorter events over a few τK .

or long flights explains why mean flying and diving times are equal despite a different
most probable residence time. Importantly, the most probable flying time of ε at εs

t

coincides with the Eulerian Taylor time scale, equal to τλ=〈(∂u/∂x)2〉−1/2
=
√

15τK in
HIT (Pope 2000). Such a result is confirmed with the low Reynolds number simulation
at Reλ = 90 (see appendix D). On the contrary, neither time scale τL,ε = 1.4τK nor
TF(ε

s
t ) ≈ πτL,ln ε ≈ 7τK represent any particular characteristic time of PF

εs
t

(figure 5a).
Thus, the time scale τλ associated with the Eulerian vortices in the inertial cascade
seems to be a good estimator for a wide range of Reλ of the Lagrangian most probable
flying residence time of dissipation above εs

t . Instead, numerical results (confirmed
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theoretically below in § 6) show that the mean flying and diving times at εs
t do not

scale with τλ (i.e. τλ/TF|D(ε
s
t ) is Reynolds dependent). This suggests that while the

peak of the flying LPDFs only emerges from the physics behind the inertial cascade
(characterised by τλ), the mean flying and diving times instead also encompass the
complex physics behind Lagrangian intermittency.

Interestingly, the flying LPDF of the pseudo-dissipation, a field usually considered
in Lagrangian stochastic models instead of the dissipation rate as it has more
favourable statistical properties such as Gaussianity, e.g. (Pope & Chen 1990; Sawford
1991; Lamorgese et al. 2007) and derived as ξ = ε − ν∂i∂juiuj (where uiuj is the
Reynolds stress which accounts for turbulent fluctuations in the flow), exhibits at
ξ s

t a less prominent most probable residence time at τλ (figure 5a). Moreover, the
difference in most probable time scale between flying and diving LPDFs has vanished
in the statistics of ξ , with diving times of ξ also equal to τλ. This result shows that
Lagrangian fluctuations of the Reynolds stress (represented by the term ∂i∂juiuj)
play a key role in breaking the symmetry between flights and dives. Surprisingly,
comparison between the statistics of ε and ξ shows that the Reynolds stress only
influences the time associated with the most probable diving time.

4.2. Insights into dissipation bursts
As the threshold is increased beyond εs

t , one gradually sees appearing the signature of
dissipation bursts in the LPDFs. Figure 5(b) shows PF

εt
and PD

εt
for various thresholds

εs
t /C and Cεs

t with C= 1/40, 1/20, 1, 20 and 40. Note that due to the symmetry at
εs

t , one has TF(Cεs
t ) ≈ TD(ε

s
t /C) and TD(Cεs

t ) ≈ TF(ε
s
t /C) (although the latter is less

accurate as can be seen in figure 4a). The impact of bursts is prominent on the flying
LPDF at large threshold, PF

20εs
t
. The most probable flying time is smaller, showing

the overall brevity of bursts. The density of the most probable time has increased
and, consequently, the range of possible flying times has decreased. Yet, even for a
threshold ten times larger than the mean dissipation (equivalent to 20ϕs

t ), particles can
sometimes undergo a strong shear for up to 15τK (at a density of approximately 10−5,
not shown here). For a larger threshold (C = 40), the most probable flying time is
slightly smaller but, interestingly, neither the corresponding density nor the variance
changes much. Only the maximum flying time available decreases. It is worth noting
that the peak of the LPDFs occurs at about the Kolmogorov time scale, however, this
time scale cannot be considered here as a relevant physical time scale to describe these
LPDFs since the local dissipation is much greater than the mean dissipation used to
determine τK .

The diving LPDFs at large thresholds, PD
20εs

t
and PD

40εs
t

(figure 5b in light red) also
bear information on the physics of bursts. Indeed, at small residence times, dives
are brief and can therefore belong to one specific event of burst (figure 1). One can
see that the diving LPDFs have two different regimes with the first being a constant
density for dives of up to 10τK and the second being a linearly increasing density
with slope unity. Interestingly, pseudo-dissipation ξ has the same temporal statistics
except in the first regime, where density is smaller for diving times below 2τK , thus
showing that the Reynolds stress adds more small-scale variations during dives in
bursts of Lagrangian dissipation (figure 5c), and potentially explaining the shift of the
diving LPDFs at ϕs

t (figure 5a). Using the Lagrangian stochastic model of dissipation
(Pope & Chen 1990; Lamorgese et al. 2007) based on a first-order autoregressive
model, we produced a set of time series and derived from it the flying and diving
LPDFs (see appendix C). Diving LPDFs at large threshold also exhibit two regimes
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separated at approximately 10τK (figure 5c). The corresponding change in regime can
only be dictated by the time scale prescribed to the model, namely, the decorrelation
time scale of the order of magnitude of the dissipation, Tln ε ≈ 12τK . Our results
show that the first regime in temporal statistics of dissipation at large threshold is
governed by the correlated fluctuations of dissipation, in part due to Reynolds stress.
These correlated fluctuations reflect an ongoing burst. Hence, the diving LPDF at
large threshold represents an interesting manner to detect the decorrelation time scale
of a burst. The combination of results on the statistics of flights and dives at large
threshold shows that, in Lagrangian turbulent dissipation, bursts are events likely
to happen over approximately Tln ε with small-scale fluctuations composed of flying
periods mainly taking place over τK and diving periods equally occurring over times
from one to Tln ε.

The second regime present in PD
εt

at large threshold shows the probability of the
time delay between two uncorrelated events and therefore tells us about the frequency
of the bursts. The most probable time period between two bursts is of several hundreds
of τK (figure 5b), showing that in a turbulent flow, extreme events have such a low
occurrence that, should the event of turbulence in a flow be finite in time, bursts would
not be undergone by most particles.

4.3. Insights into dissipation holes
At small threshold, statistics of residence times are mostly dictated by the realm
of holes (figure 1). Equivalently to results on bursts, the most probable diving time
in PD

εs
t /20 and PD

εs
t /40 has also decreased down to small time scales as well as the

variance of the distribution (figure 5b). Here too, despite the extreme context, the
particle can sometime undergo long quiet events for periods up to 35τK (at a density
of approximately 10−5, not shown here). However, differences exist with respect to
the flying LPDFs at large threshold, PF

20εs
t

and PF
40εs

t
, which explain the slight break

of symmetry between bursts and holes (figure 4a).
First, the most probable time of the LPDFs is less clearly defined and the variance

of the distribution is larger than that of flying times at large threshold, reflecting
a larger range of possible diving times. Second, as for bursts at large threshold,
events of holes below threshold εs

t /20 are predominantly occurring on a small time
scale, however, PF

εs
t /20 does not exhibit the same two regimes as in PD

20εs
t
. The first

regime of PF
εs

t /20 consists of a decrease of probability as the residence time increases,
and a second regime of linearly increasing probability starting at approximately 2τK
(figure 5b, red curve). This holds true also for larger thresholds (C = 40). As for
PD

20εs
t
, the second linear regime in PF

εs
t /20 is witness to dives between two uncorrelated

events of holes and therefore shows that two holes are most likely to be separated
by periods more than two orders of magnitude above τK (figure 5b).

The brevity of the first regime corresponding to the statistics of correlated events
tells us that events of holes are likely to happen in one shot over small time scales
of a few τK instead of the global decorrelation time scale. Here, PF

ξ s
t /20 behaves like

PF
εs

t /20 (figure 5d), which is logically explained by the fact that, at small threshold, the
corresponding Reynolds stress is small and therefore weakly influential.

Finally, the stochastic model (6.1) used here (Pope & Chen 1990; Lamorgese et al.
2007) could not reproduce the flying LPDFs at large threshold (figure 5d). This
is explained by the fact that the model necessarily generates a signal continuously
correlated over Tln ε. Such a result shows that, in turbulence, the length of memory in
time of Lagrangian physics is event dependent and therefore varies across the flow.
While holes belong to a physics occurring with a memory over ∼ 2τK , bursts happen
over the large scale Tln ε.
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FIGURE 6. (Colour online) (a) Flying (pure colours) and diving (lighter colours) LPDFs of
dissipation, acceleration and enstrophy at their respective εs

t , as
t and ωs

t . As for dissipation,
the most probable flying time of acceleration at as

t is τλ. It is instead twice as large for
ω. (b,c) Flying and diving LPDFs for various values of C as in figure 5. Diving LPDFs
of both acceleration and enstrophy at large magnitude exhibit two regimes that can be
delimited by their respective decorrelation time scale.

4.4. The flying and diving LPDFs of acceleration and enstrophy
Results of temporal statistics of acceleration and enstrophy are globally equivalent to
those of dissipation, showing the presence of bursts and holes in these properties as
well. For both flying and diving times, statistics of acceleration at as

t have equivalent
flying and diving LPDFs as those of dissipation (figure 6a) and also exhibit two
regimes of dives and flights at large and small threshold respectively revealing the
presence of bursts and holes of acceleration (figure 6b). Such similarity with the
statistics of dissipation corroborates the presumed link between intermittency of
dissipation and acceleration (Lamorgese et al. 2007). However, one can see that
the amplitude of the fluctuations in acceleration seems more constrained and flights
above 40as

t are rare, inducing small densities of the corresponding LPDFs in the
observed range of time travel (figure 5b). Moreover, while the peak of PF

as
t

is located
at τλ in the case Reλ = 240, it is located at a smaller time in the low Reynolds
number simulation (Reλ= 90), hence showing a different dependency on Reλ than for
dissipation (figure 16b). It is therefore not possible to conclude at this stage whether
τλ is a time scale of convergence for acceleration.
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Instead, the statistics of enstrophy have a few differences with respect to dissipation
and acceleration. The most probable flying time for enstrophy at ωs

t is approximately
10τK (figure 6a), showing that fluctuations of the rate-of-rotation are slower than that
of the rate-of-strain. Moreover, the asymmetry between flights and dives is weaker
(figure 6a). The diving LPDFs at small thresholds (PF

ωs
t /20 and PF

ωs
t /40) show that holes

of enstrophy last longer up to 5τK while the flying LPDFs at large thresholds show
that a particle can travel for a long period of time (i.e. few tens of τK) across highly
enstrophic regions (figure 6c). Finally, for both acceleration and enstrophy, the first
regime is defined up to a time scale consistent with Tln a ≈ 9.5τK and Tlnω ≈ 12τK ,
respectively.

5. Flow structure characteristics during Lagrangian bursts and holes
In a turbulent flow, fluid particles travel across various flow structures which are

believed to be a cornerstone of turbulence formation (Chong, Perry & Cantwell 1990;
Meneveau 2011). The understanding of these geometries has significantly increased in
the past decades (Chong et al. 1990; Cantwell 1993; Perry & Chong 1994; Soria et al.
1994; Martin et al. 1998; Ooi et al. 1999; Wang et al. 2006; da Silva & Pereira 2008;
Meneveau 2011). In this section, we study whether events of Lagrangian bursts and
holes are linked to specific characteristics of the local Eulerian structure of the flow.

5.1. The various structures of HIT
The velocity field surrounding a fluid parcel is quantified by the velocity gradient
tensor Aij, which encodes information about the first-order near-future directions
taken by the parcel. In turbulence, this information holds for a time of the order of
the local viscous time scale τK(ε) = (ν/ε

3)1/4 (Meneveau 2011). The eigenvectors
and eigenvalues of Aij define the principal directions and magnitudes of influence
of velocity gradients, respectively. Each eigenvalue of Aij satisfies a characteristic
equation whose coefficients QA and RA are the velocity invariants and indicate
whether the fluid parcel is in a vortex or straining structure predominantly stretching
or compressing the flow (figure 7b). Similarly, the study of the non-zero invariants
of the tensors of rate-of-strain, Sij, and the rate-of-rotation, W ij, namely QS, RS and
QW , indicate the strain and rotation configuration of the flow structure (figure 7a,c).
Invariants QS and QW are directly related to dissipation and enstrophy such that
QS/〈QW〉 = −ε/〈ε〉 and QW/〈QW〉 = ω/〈ω〉. Details on the theoretical background
linking the invariants and the flow geometries in the context of HIT are given in
appendix B. Thus, the set of five invariants (QS, QW , RS, QA and RA) represents a
first-order description of the local flow structures. Specifically, the study of the joint
distributions (QW , QS), (RS, QS) and (RA, QA) tells whether the particle is within a
straining or vortical, and stretching or compressive flow structure (figure 7).

Total joint distributions of invariants obtained with our DNS (figure 7; see
appendix B for details) resemble those of previous studies (Soria et al. 1994; Martin
et al. 1998; Ooi et al. 1999). The joint distribution of (QA, RA) has a teardrop shape
highlighting the predominance of vortices and sheet-like structures in the flow. It
has been shown (Martin et al. 1998) that, in homogeneous isotropic turbulence, a
fluid parcel spends approximately 20 % of the time as part of a vortex stretching
flow structure, 20 % of the time as a vortex compressing topology, more than half
the time as a sheet-like straining structure and, finally, the remaining time as a
tube-like straining structure (figure 7b). Instead, irrotational dissipations, vortex sheets
and vortex tubes have a somewhat equal chance of existing in the flow (figure 7a).
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FIGURE 7. (Colour online) Flow geometries associated with the joint distributions of the
velocity gradient invariants (a) (QA, RA), (b) (−QS, QW) and (c) (QS, RS). The invariants
are normalised by 〈QW〉. Results are consistent with previous studies (Martin et al. 1998;
Ooi et al. 1999) and show that in HIT, there is a preference for stretching vortices and
sheet-like straining expansions.

Statistics of residence time in each region tend to follow exponentially decaying tails
(Bhatnagar et al. 2016). The slight inclination toward the axis of QW suggests that
highly enstrophic geometries occur with small straining and are possibly long lived
(Ooi et al. 1999). Finally, configurations of rate-of-strain can be differentiated with
the parameter s? = −3

√
6αSβSγS/(α

2
S + β

2
S + γ

2
S )

3/2 (Lund & Rogers 1994), where
αS, βS and γS are the principal strain rates of Sij (see appendix B). Isolines of s? are
drawn in the distribution (QS, RS) (figure 7c). Our results show that the preferred
straining geometry at large rate of strain is a sheet-like structure with a configuration
αS : βS : γS = 2:1: − 3 (figure 7a). Note that although this preferred configuration is
different than that found in the first studies on this topic (Ashurst et al. 1987; Lund
& Rogers 1994) i.e. 3:1: − 4, it is consistent with more recent work (Ooi et al. 1999).
As the Reynolds number of the simulations conducted in these aforementioned studies
was similar, the difference in small-scale configuration could be imputed to different
initial and forcing configurations as already suggested (Soria et al. 1994).
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FIGURE 8. (Colour online) Normalised joint distributions of the velocity gradient
invariants during bursts (main figure) and holes (inset) using (a–c) X = QW/〈QW〉, Y =
−QS/〈QW〉, (d–f ) RA/〈QW〉

3/2, QA/〈QW〉 and (g–i) RS/〈QW〉
3/2, QS/〈QW〉 for (a,d,g)

dissipation (C = 20 and C = 1/10), (b,e,h) acceleration (C = 10 and C = 1/5) and (c, f,i)
enstrophy (C= 20 and C= 1/10). Black, pure colour, grey and lighter colour distributions
are obtained by considering invariants at initial time of flights, times of maximum
magnitude during flights, initial time of dives and times of minimum magnitude during
dives, respectively (represented in figure 1). Distributions are inferred by only considering
flights and dives of less than 3τK , hence capturing bursts events (large C) and holes (small
C). Each joint distribution is normalised by the maximum density and isolines 0.90 and
0.05 are shown here. (a–c) In contrast to the global distributions shown in figure 7(b),
bursts of dissipation and acceleration occur mainly in irrotational structures. Flights and
dives of enstrophy are often correlated with an increase and decrease of QS. The joint
distributions are globally self-similar. (d–f ) For dissipation and acceleration, there are no
preferred structures relative to those in HIT (figure 7a). Dives tend however to equally
happen in stretching and compressing vortices. Finally, bursts of enstrophy occur mainly
in vortices where flights and dives correspond to travel from stretching to compressing
vortical structures. (g–i) For all three quantities, whether during bursts or holes, dives
are associated with two-dimensional (2-D) flow structures and flights to bi-axial straining
structures, showing the existence of a self-similar behaviour of Lagrangian intermittency.

5.2. Flow structures characteristics associated with Lagrangian bursts and holes
We now analyse the evolution of the joint distributions of invariants during events
of Lagrangian bursts or holes for dissipation, acceleration and enstrophy (figure 8).
For a given threshold, we derive the distributions at four different key times: (i) the
initial time of flight at ϕ = ϕt, (ii) the time of maximum value during the flight,
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(iii) the initial time of dive and (iv) the time of minimum value during the dive
(figure 1). The time delay between each key time is sufficiently small so that the
reconstructed evolution of the flow characteristics can be considered accurate enough
for our analysis (see § B.3). Events of bursts and holes are isolated by taking C= 20
and 1/10 respectively for ε and ω, and C = 10 and 1/5, for a. These coefficients
were chosen in order to have enough data for the distributions (see appendix B for
details). Since we are only interested in the characteristics of the local flow structure
during bursts or holes, we need to remove the statistics of invariants corresponding
to transition between two uncorrelated events. As previously shown (§ 4.2), flying
and diving LPDFs describe the temporal statistics of holes as mostly characterised by
flights and dives of up to a few Kolmogorov time scales (i.e. 2τK for ε and a and
4τK for ω; figures 5d and 6b,c). Instead, temporal statistics of bursts are also mostly
composed of flights shorter than a few τK but dives can be longer with events up to
the decorrelation time scale (i.e. approximately 10τK; figures 5d and 6b,c). Thus, we
computed the joint distributions of invariants considering, for holes, an upper bound
residence time of 3τK both for flights and dives and, for bursts, a limit of 3τK for
flights and 10τK for dives. Each of the resulting joint distributions was normalised by
the maximum density to allow comparison, and isolines 0.90 and 0.05 are drawn in
all subsequent figures. Finally, given our large number of long Lagrangian trajectories
(one million trajectories over 245τK), we believe we have statistically captured all
possible flow characteristics occurring during Lagrangian bursts and holes.

Figure 8(a–c) shows the joint distributions of QW and −QS during bursts (main
plots) and holes (insets) of dissipation, acceleration and enstrophy, respectively. Recall
that QW ∼ ω and −QS ∼ ε. Both bursts of dissipation and acceleration are mainly
linked to relatively small QS (isoline 0.9), reflecting irrotational geometries, although
some happen in highly enstrophic local regions (figure 8a,b). Interestingly, flights and
dives of acceleration during both bursts and holes are systematically correlated with
an increase and decrease of QS (figure 8b). This confirms again the link between
intermittency of dissipation and acceleration (Lamorgese et al. 2007). Finally, bursts of
enstrophy mainly occur in the invariant space characterising vortex tubes, also called
the worm-like vortical structures (Jimenez et al. 1993), and, the increase and decrease
of enstrophy are significantly correlated with QS i.e. dissipation (figure 8c).

For all quantities ε, a and ω, the joint distributions (QW, −QS) during holes
resemble those during bursts but occur at small magnitude, suggesting self-similarity
(figure 8; insets). Importantly, results show that the region of invariants scanned by the
particles during a hole of any of the three quantity is close to zero. Complementary
joint distributions between acceleration and QW or −QS during holes of dissipation or
enstrophy, respectively, show that acceleration is also bound to be low in magnitude
when dissipation and enstrophy are (figure 9). Since QS and QW scale with ε and
ω, respectively, this yields the conclusion that a hole of dissipation, enstrophy or
acceleration entails low magnitudes of dissipation and enstrophy. Thus, Lagrangian
holes mostly occur in quiescent regions far from turbulence. Moreover, since the
particles followed here are point-like and passive, a Lagrangian hole is necessarily
linked with an Eulerian hole and vice versa. Similar results have therefore been found
using the Eulerian dataset of our control simulation at Reλ = 90. Hence, our results
seem to contradict previous suggestions that Eulerian holes of dissipation were linked
to highly enstrophic filamentary vortex-like structures (She & Leveque 1994; Gledzer
et al. 1996).

Visualisation of the joint distributions of RA and QA during bursts of dissipation
and acceleration (figure 8d,e) shows no preferential flow characteristics relative
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FIGURE 9. (Colour online) Joint distributions of (a) X=QW/〈QW〉, Y= a/〈a〉 during holes
of dissipation (C= 1/10) and (b) −QS/〈QW〉, a/〈a〉 during holes of enstrophy (C= 1/10).
In both events of holes of dissipation or enstrophy, the three quantities ε, ω and a are
bound to be small.

to those generally preferred in HIT (figure 7b). Differences in joint distributions
show that bursts, when located in vortex local structures, have flights associated
with stretching local structures and dives associated with compressive ones. Such
behaviour corroborates previous findings on Lagrangian evolution of the invariants
(Chong et al. 1998) where it was shown that fluid particles initially located in a
stretching vortex local structure generally evolve towards the origin of (RA,QA) while
the local topology changes from stretching to a compressive vortex structure. This
clockwise spiralling motion of particles, also captured here by the joint distributions,
was found to appear with cycles on the scale of the eddy turnover time (Martin
et al. 1998) and was suggested to be induced by a change between small-scale- and
large-scale-dominated regions of the flow during travel (Ooi et al. 1999). This results
is also confirmed with the joint distribution associated with bursts of ω (figure 8f ),
where bursts are necessarily associated with enstrophic local structures, and flights
and dives mainly correspond to stretching and compressive structures, respectively,
with a passage across the more quiescent region near the origin during dives.

The behaviour captured for bursts of enstrophy calls for a closer look. Indeed,
flying LPDFs during bursts (figure 6c) exhibit two different regimes for residence
times up to Tlnω, one up to 3τK corresponding to increasing density and one up to
Tlnω corresponding to a flat density. Complementary joint distributions of (RA, QA)
during bursts of enstrophy by considering either τ < 3τK or 3τK <τ < 10τK shows two
different behaviours during dives, namely, dives with residence time 3τK < τ < 10τK
mostly correspond to the passage across zero structure (figure 10b) while dives shorter
than 3τK mostly correspond to a direct passage from a stretching to a compressive
vortex local structure (figure 10a), suggesting two different phenomena occurring
during bursts. Following previous studies (Chong et al. 1998; Martin et al. 1998; Ooi
et al. 1999), we speculate that the first regime is associated with transition between
small-scale stretching and compressing vortices while the second regime highlights
the effect of the large-scale flow structure.

Distributions of RA and QA during holes show that dissipation logically prefers
vortices while enstrophy prefers straining structures (figure 8d, f ; insets). Distributions
of acceleration holes have instead a similar shape to that of bursts (figure 8e; inset).
Here too, holes are always associated with regions of small magnitudes of invariants
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FIGURE 10. (Colour online) Joint distributions X = RA/〈QW〉
3/2, Y = QA/〈QW〉) during

bursts of enstrophy (C= 20) by considering flights shorter than 3τK and dives (a) shorter
than 3τK and (b) larger than 3τK and shorter than 10τK . Dives shorter than 3τK correspond
to direct passage from stretching to vortex structure while dives larger than 3τK imply
passage across a quiescent region.

i.e. where no specific local flow geometries exist and all turbulent quantities are small
(figure 8d–f ; insets).

Finally, distributions of bursts and holes of ε in the space (RS, QS) show
a self-similar behaviour (figure 8g–i). For both events, there exists a common
preferential Lagrangian path in structures of turbulence where particles dive toward
regions of 2-D local straining structures 1:0:−1 and fly toward regions of bi-axial
stretching configurations 2:1:−3. Since bursts and holes of acceleration and enstrophy
are globally correlated with those of dissipation, their distributions also present
a self-similar behaviour with the preferential Lagrangian path. The fact that the
configuration 2:1:−3 is also associated with the largest value of dissipation in the
corresponding global (and therefore also Eulerian) distribution (figure 7b) shows that
the detected path is not an artefact emerging from the Lagrangian referential. Although
there exists a common preferential path toward sheet-like expanding structures at large
dissipation, particles can nonetheless cross tube-like contractions during bursts and
holes, specially for acceleration or enstrophy (figure 8h,i).

6. Theoretical predictions
6.1. Model of TF(ϕ) and TD(ϕ) using a stochastic approach

Two models of TD (equations (C 1) and (C 2), see § C.1 for details) have already been
developed and based on the scaling ε̇ ∼ ε/τK(ε) to approximate the Rice theorem
(Babler, Morbidelli & Baldiga 2008; Babler et al. 2012). However, as shown below,
both models cannot capture accurately the mean residence times at low to moderate
thresholds. Besides, these models are not symmetrical and therefore fail for all
thresholds to capture TF. These issues led us to consider another approach.

6.1.1. Derivation of the model
We present here another model of TF and TD, which, rather than considering a

physical scaling of the turbulent dissipation, uses the log-normal characteristic of
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turbulence quantities. Recalling that the flying and diving LPDFs, and therefore
the mean times, are transformation invariant (e.g. TF(ϕt/〈ϕ〉) for ϕ/〈ϕ〉 equals
TD(ln ϕt/〈ϕ〉) for ln ϕ/〈ϕ〉), we assume that for a given turbulence quantity ϕ
the related quantity ln ϕ/〈ϕ〉 can be approximated with a Gaussian distribution,
χ , and can therefore be modelled by an Ornstein–Ulhenbeck stochastic process
and used to compute mean residence times from the Rice theorem. Relying on the
Lagrangian stochastic model of Pope & Chen (1990), originally developed to model
pseudo-dissipation ξ , and the theory on Gaussian distributions, one can then define
the distributions p(χ) and p2(χ, χ̇) needed by the Rice theorem (3.1), and therefore
derive an analytical approximation of TF and TD.

The Lagrangian stochastic model of Pope & Chen (1990) (details in § C.2) generates
a Gaussian stochastic process χ̃ following

dχ̃ =−(χ̃ −µχ̃)
dt
Tχ̃
+

(
2σ 2

χ̃

Tχ̃

)1/2

dW, (6.1)

where Tχ̃ =
∫
〈χ̃ ′(t)χ̃ ′(t + τ)〉/σ 2

χ̃ dτ is the decorrelation time scale of χ̃ , with χ̃ ′ =

χ̃ − 〈χ̃〉, σχ̃ is the variance of χ̃ , µχ̃ is the average of χ̃ and W is a Wiener process.
Since ϕ is log-normal, the corresponding χ̃ is calibrated so that 〈eχ̃ 〉= 1, hence giving
µχ̃ =−σ

2
χ̃/2 (e.g. Pope & Chen 1990). The process dχ̃ , needed for our derivations, is

also a Gaussian process with mean and variance inferred from (6.1) as (considering
that E[(dW)2] = dt)

µdχ̃ = 0, (6.2)

σ 2
dχ̃ = σ

2
χ̃

dt2

T 2
χ

+ 2σ 2
χ̃

dt
Tχ
= σ 2

χ̃

dt2

T 2
χ

(
1+ 2

Tχ
dt

)
. (6.3)

Due to the Wiener process, the model (6.1) introduces unphysical fluctuations which
influence the variance of dχ̃ on the scale of dt (equation (6.3)) instead of dt2 for any
continuous process, therefore making the Lagrangian Taylor time scale of χ̃ , τL,χ̃ =

σχ̃ dt/σdχ̃ , dependent on dt (or numerically on the chosen time step). To remove this
dependency we convolute the stochastic process χ̃ with a weighted average filtering
function A (equation (2.2)), following χ =A ? χ̃ and dχ =A ? dχ̃ , and where the time
scale of the filtering, TA, is defined below in order to remove spurious fluctuations
shorter than τK . Since A is a deterministic and filter function, χ and dχ also have
a Gaussian distribution. Since the filter only acts on very small scales, we consider
Tχ ≈ Tχ̃ and σχ ≈ σχ̃ , giving µχ =−σ

2
χ/2. Finally, as for dχ̃ , the mean of dχ is zero

and its variance is inferred from (6.1) using Itô isometry and considering again that
E[(dW)2] = dt, giving (in its differentiated form since χ is continuous)

µχ̇ = 0, (6.4)

σ 2
χ̇ =

σ 2
χ

T 2
χ

(
1+ 2Tχ

∫
∞

−∞

A2 dt
)
=
σ 2
χ

T 2
χ

(
1+

4
3
Tχ
TA

)
. (6.5)

We choose TA so that the smallest time scale of fluctuations characterising the variance
of dχ is no longer 2dt but instead the Kolmogorov time scale τK . From (6.3) and (6.5),
this implies considering TA = τK/3, therefore leading to

σ 2
χ̇ =

σ 2
χ

T 2
χ

(
1+ 4

Tχ
τK

)
. (6.6)
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Finally, because of the Wiener process in (6.1), the cross-correlation between
χ and χ̇ can be neglected and therefore p2(χ, χ̇) = p(χ)p(χ̇). Thus, using
the Gaussian distributions p(χ) and p2(χ, χ̇) in (3.1) leads to (recalling that
TF|D(ϕt/〈ϕ〉)= TF|D(ln ϕt/〈ϕ〉) and ln ϕ/〈ϕ〉 ≈ χ )

TF|D

(
ϕt

〈ϕ〉

)
≈CTϕπ

σχ

σχ̇

1∓ erf

χt + σ
2
χ/2√

2σ 2
χ


e−(χt+σ 2

χ /2)2/2σ 2
χ

(6.7)

with, from (1.1) and (6.6),

σχ

σχ̇
= τL,χ = Tχ

(
1+ 4

Tχ
τK

)−1/2

. (6.8)

Interestingly, since χ and χ̇ are uncorrelated, one has p2(χ, χ̇) = p(χ)p(χ̇), hence
giving that the integration of p(χ̇) in (3.1) becomes a constant independent of χt.
This entails that the accuracy of the function TF|D/πτL,χ in predicting variations
of TF|D(ϕt) mainly depends on the degree of Gaussianity of ln ε. On the contrary,
the ratio τL,ln ϕ/τL,χ is dependent on the degree of Gaussianity of both ln ε and its
variation rate, hence making (6.8) an interesting equation for testing the Gaussianity
of a quantity and its first-order derivative. Departure from Gaussianity of lnϕ and ˙ln ϕ
can be partially compensated by an adjustment coefficient CTϕ (which is equal to 1
for purely Gaussian distributions). Values of CTϕ are obtained using the DNS dataset
and discussed below. Equation (6.7) shows that CTϕπτL,χ is the mean flying and
diving time at χ s

t =−σ
2
χ/2= 〈χ〉. This result is consistent both with (3.2) and (3.3).

In the case of dissipation, both σln ε and Tln ε have been approximated empirically as
a function of Reλ in HIT (Yeung et al. 2006a; Lamorgese et al. 2007 see (C 4) and
(C 5) in § C.2), hence making (6.7) entirely analytical. Last, note that this model also
works for Eulerian flying and diving time scales by using τE,χ instead of τL,χ .

6.1.2. Results for ϕ = ε and ξ
We first compare in the case of dissipation the mean times inferred from our DNS

with those derived from the models of Babler et al. (2008, 2012). Both previous
models consider for their scaling (C 1) and (C 2) a coefficient of proportionality
Cε equal to 1, however, as previously mentioned in § 2, the unity approximation
for the scaling ε/τK(ε) is somewhat accurate only when considering unfiltered
Lagrangian data, and Cε≈ 3.6 is found to be more accurate when removing numerical
discrepancies (figure 2). Figure 11(a) shows the mean flying and diving times obtained
from the DNS using the Rice theorem, and using the corrected models. Results from
DNS are only recovered accurately for TD at large thresholds, hence missing the
small-scale characteristics of dissipation and the existing approximate global symmetry
between TF and TD. This can be explained by the fact that the scaling ε̇ ∼ ε/τK(ε)

does not capture the multi-scale properties of the fluctuations of dissipation where
a single value of dissipation can correspond to various values of time variation and
vice versa.

The mean flying and diving times obtained using our model (6.7) more accurately
match those obtained from DNS (figure 11a). Note however that our model logically
does not capture the existing asymmetry between TF and TD since it uses a
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FIGURE 11. (Colour online) (a,b) Normalised mean flying and diving residence times,
TF/τK (pure colours) and TD/τK (lighter colours), with respect to (a) εt/〈ε〉 and (b)
ξt/〈ξ〉 derived from the Rice theorem with DNS data and from two previous models
(Babler et al. 2008, 2012) and our model (6.7) (see inset legends). The previous models
only capture accurately the mean diving times for large thresholds of dissipation. The
new model derived from Gaussian theory here globally captures both mean flying and
diving statistics with discrepancies at extreme thresholds where Lagrangian statistics are
known to depart from Gaussianity. This departure from Gaussianity can be removed
(completely for diving statistics during holes and partially for flying statistics during
bursts) when not considering the correlation between dissipation and its time derivative.
Although pseudo-dissipation is usually considered more suitable for Gaussian models, our
model also cannot capture Lagrangian statistics of ξ for extreme thresholds. However,
departure from Gaussianity is completely removed for both flying and diving times when
not considering the correlation between ξ and ξ̇ .

symmetrical stochastic model, and results at extreme thresholds are impacted by
the fact that bursts and holes cannot be accurately modelled by log-normal statistics
(figures 1 and 14). Interestingly, results of the DNS when considering uncorrelated ϕ
and ϕ̇ in the Rice theorem were well recovered by our theoretical results of mean
diving times during holes and partially captured for flying times during bursts. Hence,
a better characterisation of the link between ε and its temporal variation during bursts
and holes would lead to better predictions.

Results of mean residence times from the DNS were recovered by our model with
a non-unity coefficient CTε of 1.3, and ratios TF|D/π(σln ε/σ ˙ln ε) and τL,χ/τL,ln ε of 1.1
and 1.2, respectively, hence highlighting the known departure from Gaussianity of ln ε
(figure 14a) and its time derivative (figure 14b). Results of mean times obtained from
the control simulation at Reλ=90 were also recovered with our model, using CTε=1.4
with TF|D/π(σln ε/σ ˙ln ε)≈ 1.1 and τL,χ/τL,ln ε ≈ 1.3 (see appendix D). The fact of non-
unity and Reynolds number dependency of CTε confirms that a Gaussian-distribution-
based model is not sufficient to capture Lagrangian intermittency (Chevillard et al.
2012).
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Interestingly, although pseudo-dissipation is known to have better Gaussianity than
dissipation (Yeung & Pope 1989; Yeung et al. 2006a), results of our model fitted the
Lagrangian statistics from DNS using CTξ = 1.7, hence highlighting the impact of
the non-Gaussianity of ξ . Ratios TF|D/π(σln ξ/σ ˙ln ξ ) ≈ 1.1 and τL,χ/τL,ln ξ ≈ 1.5 show
that the discrepancy of our model essentially comes from the non-Gaussianity of
˙ln ξ . Moreover, our model does not capture accurately the flying and diving temporal

statistics at extreme thresholds of ξ . Considering uncorrelated ξ and ξ̇ in the Rice
theorem entirely removes this departure of the DNS results from our model. Thus, the
Lagrangian intermittency of ξ can be described by the link between pseudo-dissipation
and its temporal variation during bursts and holes. Since ε and ξ only differ by the
Reynolds stress tensor, one can conclude that the Lagrangian intermittency of ε
during bursts and holes is characterised both by the correlation between ε and ε̇ and
the Reynolds stress, the latter being negligible during holes.

6.1.3. Results for ϕ = a, ω and u
Results of our model (6.7) for acceleration are less accurate with substantial

discrepancies in the temporal statistics during holes and also deviation at very large
thresholds during bursts (figure 12a). This was expected as acceleration is normally
modelled by a more complex stochastic process (Lamorgese et al. 2007). Note
that the deviation during bursts might again be simply due to numerical discrepancies
(van Hinsberg et al. 2013). Here too, a main portion of the deviation can be explained
by the correlation between the magnitude of the acceleration and its variation rate,
however, contrarily to dissipation, it is the events of holes which cannot be explained
only by such correlation and during which other underlying physics appear to
control the Lagrangian intermittency of acceleration. Results from DNS were fitted
using CTa = 0.9, a value close to unity, however, ratios TF|D/π(σln ε/σ ˙ln ε) ≈ 1.4 and
τL,χ/τL,ln ε ≈ 0.7 show large deviations from Gaussianity of both ln a and ˙ln a but that
compensate each other.

Instead, results on mean statistics of enstrophy are similar to those of dissipation
with deviation of our model from our numerical results being explained by the
correlation between ω and ω̇ entirely during holes and partially during bursts,
highlighting here too the effects of other driving forces on enstrophy. Theoretical
results were fitted using CTω=1.8 with ratios TF|D/πσln ε/σ ˙ln ε≈1.2 and τL,χ/τL,ln ε≈1.5,
therefore showing a large deviation from Gaussianity of ˙lnω.

Finally, it is noteworthy that, when applied to the Lagrangian velocity, our
model fits numerical results using CTu = 2.5 with ratios TF|D/π(σln ε/σ ˙ln ε) ≈ 1.3
and τL,χ/τL,ln ε ≈ 1.9. Thus, even though the Lagrangian velocity is known to be
almost Gaussian, such large values of CTu and corresponding ratios highlight the
strong impact of the known deviation from Gaussianity of the Lagrangian variation
rate of velocity (Chevillard et al. 2012). Surprisingly, even though our results are
inferred from HIT, previous results of CTu obtained for the Eulerian velocity in
turbulent boundary layers were closer to unity (1.1 ± 10 %, see Sreenivasan et al.
1983). Further study will be necessary to compare the Lagrangian and Eulerian
statistics as well as assess the effect of the anisotropy introduced by the boundary.
Our model could entirely recover the mean time statistics of the Lagrangian velocity
during holes and bursts when considering uncorrelated u and u̇, showing that the
Lagrangian intermittency of velocity could be recovered with a theoretical modelling
of the correlation between the velocity and its variation rate.

Thus, our model represents an overall accurate first approximation of the Lagrangian
time scales of turbulence quantities in HIT. Interestingly, equations (6.7) and (6.8)
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FIGURE 12. (Colour online) Normalised mean flying and diving residence times, TF/τK
and TD/τK , with respect to (a) at/〈a〉, (b) ωt/〈ω〉 and (c) ut/〈u〉 derived from the Rice
theorem with DNS data and from our model (6.7) (see inset legends). While the mean
time statistics of enstrophy is well recovered by (6.7), especially when not considering
the correlation between ω and ω̇ in the Rice theorem, it is less accurate in the case of
acceleration. Finally, results of our model show that Lagrangian intermittency of velocity
i.e. the mean time statistics during bursts and holes could be theoretically recovered should
one model the correlation between u and u̇.

state that the mean temporal statistics of turbulence quantities can be approximated
knowing only their variance and those of their variation rates. In terms of time
scales, this means that the mean temporal statistics of turbulent quantities can be
approximated from their decorrelation time scales along with the Kolmogorov time
scale. This defines [τK − Tln χ ] (with Tln χ ≈ 12τK at Reλ = 240) as the core range of
time scales in turbulence.

6.2. Flying and diving time statistics from current Lagrangian stochastic models
Here, we assess the accuracy of current Lagrangian stochastic models in predicting
the mean residence flying and diving times as well as the corresponding LPDFs
in HIT. Lagrangian stochastic models have received particular interest these past
decades as they represent an efficient way to compute the temporal variation of
turbulence quantities. Models either focus on a specific turbulence quantity, whether
velocity (Sawford 1991), dissipation (Pope & Chen 1990; Lamorgese et al. 2007)
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FIGURE 13. (Colour online) (a,b) Profiles of mean flying (pure colours) and diving
(lighter colours) times and LPDFs at εs

t derived from our DNS at Reλ = 240 and
Lagrangian stochastic models of Pope & Chen (1990), Chevillard & Meneveau (2006)
and Lamorgese et al. (2007) presented in appendix C. (b,c) Same as in (a,b) but for
acceleration using data from our DNS and from the model of Lamorgese et al. (2007).

or acceleration (Sawford 1991; Lamorgese et al. 2007), or on velocity gradients
(Girimaji & Pope 1990; Chevillard & Meneveau 2006; Meneveau 2011) from which
can be inferred various quantities. We consider two Lagrangian stochastic models for
dissipation (the models of Pope & Chen (1990), Chevillard & Meneveau (2006) and
Lamorgese et al. (2007)) and one for acceleration (the model of Lamorgese et al.
(2007)). Details on the models as well as the values of the various parameters taken
for comparison with results of our DNS are given in appendix C.

Figure 13(a) shows the profiles of mean flying and diving times obtained from time
series of dissipation computed with the model of Pope & Chen (1990), Lamorgese
et al. (2007), (C 3), and of Chevillard & Meneveau (2006), (C 6). Since all models
are based on a stochastic process (i.e. the Wiener process) which, as previously
explained, introduces unphysical fluctuations on scales smaller than τK , the same
filtering function (2.2) with TA = τK/3 was applied to all computed time series. The
model of Pope & Chen (1990), Lamorgese et al. (2007) globally reproduces profiles
of mean flying and diving times found using our DNS and captures the correct εs

t ,
although the corresponding mean time TF|D is slightly slower by a factor 1.5 which
can be explained both by the Gaussian approximation (as in our theoretical derivation)
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and the empirical approximations of σln ε and Tln ε (C 4) and (C 5). On the contrary,
results from the model of Chevillard & Meneveau (2006) are not as accurate. While
the statistics of mean flying times are recovered, although the model does not reach
the large values obtained with DNS, with a maximum of 10〈ε〉, mean flying times are
critically different than those obtained from DNS. The existing asymmetry between
mean flying and diving statistics is much more accentuated than for DNS. Finally, ϕs

t
is not recovered, however, the corresponding mean time TF|D is about the same value
as that obtained with the model of Pope & Chen (1990), Lamorgese et al. (2007).

Figure 13(b) shows the flying and diving LPDFs obtained from both models at
εs

t . Both models fail to capture the distributions obtained from DNS, especially the
peak at τλ. Interestingly, both models produce the same diving LPDFs. The flying
LPDFs produced by the symmetrical model of Pope & Chen (1990), Lamorgese et al.
(2007) are by definition equal to the diving LPDFs. Instead, the model of Chevillard &
Meneveau (2006) creates a slight asymmetry between flying and diving statistics but
it is not consistent with that of DNS. Finally, the predominance of short flights and
dives shows that the LPDFs are mainly governed by the Wiener process at numerical
time step 1t which has been filtered at τK . This explains why the mean residence
time TF|D at ϕs

t could not be recovered and is equivalent for both models since the
same 1t and filtering were used.

Figure 13(a) shows the profiles of mean flying and diving times obtained from
time series of acceleration computed with the model of Lamorgese et al. (2007),
equation (C 9). Results are not conclusive. While flying times somewhat follow the
same trend as that from DNS, mean diving times are not accurate. The magnitude as

t
is captured but not its corresponding residence time. This is explained here too by
the predominance of small-scale fluctuations in the signals which induce peaks of the
LPDFs at as

t corresponding to the filtering time scale instead of that obtained from
DNS (figure 13b).

7. Discussion

We have investigated the time scales of fluctuations of three turbulence quantities,
namely, the dissipation ε, acceleration a and enstrophy ω, and their links to the flow
characteristics in homogeneous isotropic turbulence by means of flying and diving
Lagrangian probability density functions and flying and diving joint distributions of
velocity invariants. Results are summarised and discussed below.

7.1. Statistics of bursts and holes and associated flow characteristics
We have found that for all quantities ϕ= ε, a or ω, profiles of mean flying and diving
times, TF and TD, with respect to a threshold ϕt are globally symmetric about the
axis ϕs

t = 〈ϕ〉e
−σ 2

ln ϕ/2 (figure 4). This symmetry is witness to the presence of holes,
in contrast to bursts, during which the values of turbulence quantities can fall by
several orders of magnitudes (figure 1). On the contrary, the existing slight asymmetry
between the mean statistics of holes and bursts highlights the influence of Lagrangian
intermittency.

We show that Lagrangian holes are relatively smooth and short events correlated
only over a few τK (figures 1, 5 and 6) and mostly correspond to periods of travel
in regions in a quiescent state between turbulent flow structures (figure 8). Similar
results have been found using the Eulerian dataset of our control simulation at Reλ=
90, hence suggesting a contradiction with previous studies which suggested that holes
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were linked to highly enstrophic filamentary vortex-like structures (She & Leveque
1994; Gledzer et al. 1996).

On the contrary, bursts occur over periods of time scaling with the global
decorrelation time scale Tln ϕ (figures 5 and 6) and correspond to travel inside
turbulent flow structures (figures 7 and 8). Thus, Tln ε does not emerge from a
continuous loss of information of the flow history but, rather, from the specific
correlated events of bursts. In passing, we add that, as mentioned in the introduction,
previous studies have shown the existence of an anomalous Lagrangian statistics at
dissipative scales which emerges from local fluctuations of the viscous scale along
Lagrangian trajectories (Arneodo et al. 2008; Benzi et al. 2010; Yu & Meneveau
2010), and speculate that this anomalous statistics is one of the greatest obstacles to
overcome for the understanding of Lagrangian intermittency (Sawford 2001; Yakhot
& Sreenivasan 2005; Zybin et al. 2008; Benzi et al. 2010). This anomalous statistics
has been found to occur for times up to approximately 10–20τK (Arneodo et al. 2008)
which is consistent with Tln ϕ (here approximately 11.5τK for Reλ = 240). Hence, the
statistics obtained for larger time scales would then be the result of considering several
periods of bursts and inter-bursts (included holes). Rather than being anomalous, the
detected range of statistics in previous studies therefore represents the core range of
Lagrangian intermittency.

Finally, for all three turbulent quantities, the flying and diving joint distributions of
the invariants QS and RS, describing the local Eulerian flow shear configuration, are
self-similar. During travel, regardless of whether they are in a burst or hole, particles
mostly undergo (in a statistical sense) continuous fluctuations in the level of strain
which mainly characterise the passage from 2-D flow features to bi-axial stretching
configurations (figure 8). It is of note that we could detect the same self-similar
path using Eulerian statistics (Reλ= 90), hence showing that this existing path during
holes and bursts does not depend on the referential. Such self-similar behaviour
raises the question as to what property of turbulence sets the level of shear that
will reach the fluid particle when leaving the 2-D configuration. It was suggested
that Lagrangian intermittency of velocity, although not self-similar, emerged from a
self-similar mechanism controlled by acceleration and not dissipation (Wilczek et al.
2013). Besides, it was also previously suggested that local acceleration and dissipation
were statistically dependent (Lamorgese et al. 2007; Liberzon et al. 2012). The fact
that the self-similar path always goes across a 2-D configuration at small dissipation
tends to suggest that dissipation may not be the controlling mechanism. Thus, we
speculate that bi-axial configurations represent the straining structures that maximise
dissipation of the available local energy and that this local level of dissipation depends
on the magnitude of the acceleration. Further investigation on how these turbulent
quantities evolve in 2-D configurations could bring more elements of an answer.

7.2. Characteristic time scales of turbulent fluctuations
Although mean flying and diving times are equal at ϕs

t , the corresponding flying
and diving LPDFs are not similar, showing that the dynamics ruling flights differs
from that ruling dives (figures 5 and 6). For dissipation, this asymmetry is induced
by Lagrangian fluctuations of the Reynolds stress which are greater during flights
(figure 5). For ε and a, our results show that their most probable time of flight above
ϕs

t is approximately the Eulerian Taylor time scale τλ = 〈(∂u/∂x)2〉−1/2 while it is
twice larger for ω. The time scale associated with the peak of the flying LPDF for a
and ω is however slightly Reynolds number dependent (figures 6 and 16).
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Since the LPDFs are not scale specific, a physical interpretation of the dependency
between τλ and flying times at εs

t is difficult. Namely, at a given threshold ϕt and
residence time τ , the density of the flying or diving LPDFs can represent either one
specific phenomenon whose characteristic time scale is τ or another phenomenon of
larger characteristic time scale which mainly occurs with a smaller or larger magnitude
(i.e. εt captures the bottom or top of the fluctuations), hence mixing different scales of
the inertial cascade. Hence, our results show too that τλ is not a physical time scale
per se, but, instead, a time scale characterising the entire inertial cascade rather than
just the smallest eddies present in the flow (Tennekes & Lumley 1972; Pope 2000).

Thus, when considering shear or acceleration, τλ (or 2τλ for enstrophy) represents a
more accurate characteristic time scale of interaction between particles and turbulence
than the Kolmogorov time scale. While theoretically convenient, the Kolmogorov
scale is just a mean approximation of the smallest scale in turbulence, and therefore
does not hold any information on the local ongoing physics that particles undergo in
turbulence. In the context of HIT, there exists a clear theoretical relationship between
τK and τλ =

√
15τK , however, this is not as straightforward for anisotropic flows, and

differences between τλ and τK can be larger (Arad et al. 1998). Further studies could
be conducted to assess whether τλ remains a characteristic time scale for anisotropic
flows.

Although our results suggests that τλ is indeed not physical, questions still remain.
Why does the Eulerian Taylor time scale emerge as a characteristic time scale for
Lagrangian statistics? Even if not attached to a specific physical scale, does it reflect
a specific relationship between the Lagrangian and Eulerian frameworks other than the
δτv∼ δxu hypothesis commonly considered in models of Lagrangian statistics (Biferale
et al. 2004)? Looking at flying and diving Eulerian PDFs of dissipation computed
from the small Reynolds number DNS, one could see that the EPDFs had the same
peak as the diving LPDFs at approximately 2τK instead of τλ for the flying LPDFs
(figure 16d), hence raising the interesting point that Lagrangian intermittency tends to
be slower than Eulerian intermittency with a stronger asymmetry between flights and
dives. However, such a result needs to be confirmed at a higher level of turbulence.
Understanding why such a difference exists could bring more information about τλ.

7.3. Interpretation of the theoretical predictions
We derived an analytical approximation of TF and TD (equation (6.7)) which accurately
captures variations of the mean times (figure 4) and significantly improves previous
predictions (Babler et al. 2008, 2012) (figure 11). Our derivation recovers (3.3) (Rice
1945; Liepmann 1949; Ylvisaker 1965) linking the mean residence time at ϕs

t and the
Taylor time scale for a Gaussian process and shows that the mean times of turbulent
fluctuations can be predicted from the Kolmogorov mean viscous time scale τK and
the decorrelation time scale of the quantities’ orders of magnitude Tln ϕ (equations (6.7)
and (6.8)).

Although our predictions globally capture the trends of flying and diving mean
times, discrepancies appear at extreme thresholds. The departure of the model
from DNS is witness to Lagrangian intermittency during bursts and holes. For
pseudo-dissipation and enstrophy, this departure could be entirely explained by the
non-zero correlation between these quantities’ magnitudes and variation rates. Instead,
departure of mean times of dissipation at extreme thresholds was explained both by
the correlation between ε and ε̇ and the Reynolds stress. The correlation between
a and ȧ could not either entirely explain Lagrangian intermittency of acceleration,
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showing the existence of another control mechanism on acceleration, which could be,
as previously suggested, dissipation (Lamorgese et al. 2007; Liberzon et al. 2012).

Finally, results of flying and diving LPDFs obtained from our DNS dataset
were compared to datasets of time series computed using two different Lagrangian
stochastic models of dissipation (Pope & Chen 1990; Chevillard & Meneveau 2006)
and one model for acceleration (Lamorgese et al. 2007). The models could not
reproduce accurately the flying and diving LPDFs obtained by DNS (figure 6).
We show that these discrepancies can be partially explained by the modelling of
small-scale turbulence as a random Wiener process with no specific physical scale.
Using a Wiener process was supported by the fact that the viscous scale tends to 0 at
infinite Reynolds number (Sawford 1991), however, such a hypothesis consequently
removed all self-similar properties of Lagrangian statistics such as the peak of the
flying LPDFs of dissipation at εs

t . Another discrepancy is that considering only one
decorrelation time scale neglects the existing detected asymmetry in Lagrangian
intermittency during bursts and holes which generates holes longer that in DNS by
almost an order of magnitude. In the context of turbulent mixing and dispersal, where
numerical predictions still need improvement (Sawford 2001; Toschi & Bodenschatz
2009), the temporal statistics we deliver in this study along with the enunciated
properties of Lagrangian intermittency could help in improving Lagrangian models,
although non-tested more recent existing models (Johnson & Meneveau 2017, 2018;
Pereira, Moriconi & Chevillard 2018) may already be more accurate.

Acknowledgements
R.W. warmly thanks R. Caballero and M. Bourgoin for insightful discussions and as

well as M. Babler for his help on his models. R.W. also warmly thanks an anonymous
referee for pointing out to us the studies on zero-crossing theory and, more generally,
the anonymous referees for their very insightful comments.

Appendix A. Statistics of ε, ω and a

Figure 14 shows the statistics of dissipation, enstrophy and acceleration and their
variations rates.

Appendix B. Flow geometries: theoretical background
In fluid flows, a fluid parcel, located at an arbitrary point x0, and moving at a

velocity u(x, t), follows the first-order relation

u(x, t)= u(x0, t)+ A(x0, t)(x− x0), (B 1)

where Aij= ∂ui/∂xj is the velocity gradient tensor and describes the local velocity field
surrounding the parcel; A contains the information about the first-order near-future
directions and curvatures taken by the particle. Hence, the velocity gradient tensor
allows us to describe the flow structures surrounding the particle on a small time scale.
In turbulence, the linear expansion holds for a time of the order of the local viscous
scale τK(ε)= (ν/ε

3)1/4 (Meneveau 2011).

B.1. The velocity invariants
The eigenvectors and eigenvalues of Aij define the principal directions and magnitudes
of influence of velocity gradients, respectively. Each eigenvalue of Aij, λi, satisfies the
following characteristic equation

λ3
i + PAλ

2
i +QAλi + RA = 0, (B 2)
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FIGURE 14. (Colour online) Distributions (a) in linear scale and (b) in log scale of ε, a
and ω and log-normal approximations (dashed) with µln ε =−0.56 and σln ε = 1.1, µln a =

2.94 and σln a = 0.77 and µlnω = −0.85 and σlnω = 1.41. While the linear scale shows
that turbulence properties can be approximated by a log-normal density profile in order
to compute mean statistics, the log-scale exhibits the clear departure at extreme values
which accounts for a more complex dynamics arising from bursts and holes.

where PA = −Aii, QA = −AijAji and RA = −AijAjkAki are the so-called first, second
and third invariants, respectively, i.e. tensors independent of the orientation of the
coordinate system and that characterise the flow structure. The velocity tensor is
the sum of strain and rotation terms, Aij = Sij + W ij. Similarly to (B 2), Sij and
W ij also have a characteristic equation with their corresponding invariants (PS,
QS = −(1/2)SijSij, RS = −(1/3)SijSjkSki) and (PW = 0, QW = (1/2)W ijW ij, RW = 0),
respectively. For an incompressible flow, one has PA= 0 and PS= 0, and the invariants
of Aij are related as:

QA =QS +QW; (B 3)
RA = RS −

1
4 W ijW jkSki. (B 4)

The set of five invariants (QS, RS, QW , QA and RA) represents a first-order description
of the flow configuration in a region wide of τK . This flow configuration is
characterised by the joint study of the invariants in phase spaces (QS, RS), (−QS,
QW) and (QA, RA) that we now describe.

B.2. Characterisation of the local flow geometry
A brief explanation is given here about velocity invariants and their relations to flow
structures in HIT. More details and analysis on the invariants in such context can also
be found in Chong et al. (1990), Cantwell (1993), Perry & Chong (1994), Soria et al.
(1994), Martin et al. (1998), Ooi et al. (1999), Wang et al. (2006), da Silva & Pereira
(2008), Meneveau (2011).

The joint probability density function (JPDF) (QS, RS) (figure 7a) gives information
on the local structure of the straining component of the flow. The term QS corresponds
to the straining intensity and is therefore directly linked to the dissipation rate
QS = −ε/4ν. The term RS influences the production of strain, where RS < 0 means
a decrease of the production of strain (and RS > 0 is the reverse). It can be shown
that RS = −αSβSγS where αS > βS > γS are the principal strain rates (or eigenvalues)
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of Sij. Given the condition of incompressibility, one has αS + βS + γS = 0, and RS > 0
induces αS, βS > 0 and γS < 0. The corresponding local flow structure has therefore
two directions of strain production i.e. it is a sheet-like expending structure. On the
other hand, when RS < 0, one has αS > 0 and βS, γS < 0, and the flow structure only
has one direction of strain production i.e. it is a tube-like contracting structure. Since
Sij is a symmetric tensor, invariants QS and RS of the flow can only lie below the null
of the corresponding discriminant curve DS =

27
4 R2

S +Q3
S. As RS =−αSβSγS and, with

incompressibility, αS + βS + γS = 0, one can infer that the curve DS = 0 for RS > 0
represents an axisymmetric expansion strain flow with geometry αS : βS : γS = 1:1: − 2
whereas the curve DS = 0 for RS < 0 represents an axisymmetric contraction strain
flow with geometry 2: − 1: − 1. Various other straining structures exist in between
those two former configurations (Ashurst et al. 1987; Soria et al. 1994; Blackburn,
Mansour & Cantwell 1996). It has been shown (Lund & Rogers 1994) that the
measure

s? =
−3
√

6αSβSγS

α2
S + β

2
S + γ

2
S

3/2

(B 5)

accurately describes the local straining configuration. Given that QS=−1/2(α2
s +β

2
S +

γ 2
S ) and RS =−αSβSγS, and defining a= βS/αS, one can derive that lines of constant

s? follow the equation (Lund & Rogers 1994; da Silva & Pereira 2008)

RS = (−QS)
3/2 a(1+ a)
(1+ a+ a2)3/2

. (B 6)

The ratio a defines a given flow geometry (γS is inferred from the condition of
incompressibility). Figure 7(a) shows lines for five different straining configurations
corresponding to αs : βS : γS = 1:1: − 2 (a = 1 and DS = 0) for an axisymmetric
expanding strain, 2:1: − 3 (a= 1/2) and 3:1: − 4 (a= 1/3) for biaxial-like structures,
1:0: − 1 (a= 0) for 2-D flows and 2: − 1: − 1 (a=−1/2 and DS= 0) for axisymmetric
contraction strain node.

The JPDF (−QS, QW) (figure 7c) separates dissipative and enstrophic flow structures.
Large negative values of QS imply a straining structure whereas large values of QW
are a sign of a vortical structure. A large enstrophy with weak dissipation (QW �

−QS) is characteristic of solid body rotations encountered in vortex tubes, while a
large dissipation with weak enstrophy (QW � −QS) is characteristic of irrotational
dissipative regions such as in the surrounding of the vortex tubes. Regions where
enstrophy scales with dissipation (QW ≈−QS) occur in vortex sheet structures.

Finally, the JPDF (QA, RA) (figure 7b) highlights in which of the four non-
degenerate local flow topologies the studied parcel of fluid is, namely, either a
stretching or compressive vortex or a tube-like or sheet-like straining node (Soria
et al. 1994; Ooi et al. 1999). The discrimination between vortical and straining
structures is done by looking how many complex eigenvalues exist in the system.
When the discriminant of Aij, DA=

27
4 R2

A+Q3
A is negative, then only one eigenvalue of

Aij is real, and there is a plane defined by the two complex-conjugate eigenvalues in
which exists a focus point for fluid parcel trajectories. On the contrary, when DA < 0,
all three eigenvalues are real, and there exist three planes with trajectory solutions
without focus, hence a node is present. The invariant RA discriminates between stable
or unstable geometries. When QA > 0, enstrophy dominates, so RA ∼ −

1
4 W ijW jkSki,

and since DA > 0, there is a plane of rotation, hence if RA < 0, the fluid faces a
vortex stretching, while if RA > 0 it is in a vortex compression. On the contrary,
when QA < 0 and DA < 0, dissipation dominates RA ∼ RS, hence, RA < 0 describes a
tube-like structure with large strain rate, and RA > 0 describes a sheet-like structure
with large strain rate.
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FIGURE 15. (Colour online) Joint distributions of (a,d) −QS versus QW , (b,e) QA versus
RA and (c, f ) RS versus QS when (a–c) considering all Lagrangian data and (d–f ) removing
Lagrangian trajectories that violated the theoretical limit DS = 0. The effect of such
removal is only visible in the distributions RS, QS which accurately follow the line DS= 0.

B.3. Computation of the joint distributions of invariants
At the time we ran the simulations of HIT, the utilised numerical code was computing
the Lagrangian using a tri-linear interpolation method. This method generates
discrepancies for high-order terms such as invariants (van Hinsberg et al. 2013),
with the consequence that the theoretical limit DS = 0 was sometimes not fulfilled.
We thus filtered out time series where this limit was violated. The effect of this
filtering was visible only for distributions in the space (QS, RS) (figure 15).

The flying (diving) joint distributions shown in figure 8 correspond to initial
times of flight (dive) and times of maximum (minimum) value during flights (dives).
Considering only these specific later times means that most of the Lagrangian data
are discarded when computed the distributions and that distributions can be scarce.
To ensure robustness, a first round of computation has been conducted on the total
phase space of the invariants in order to infer the range of variations of flights and
dives, then a second round was made using a highly resolved discretisation of the
corresponding phase space of flights and dives. Third, the derived 2-D histograms
were coarse so that continuity of the joint distributions was ensured. And finally, a
2-D Gaussian convolution with half-width the size of the coarse discretisation was
applied to the distributions to filter out grid-scale noise.

Flying and diving joint distributions of dissipation and enstrophy for thresholds C=
1/20 and 40 and of acceleration for thresholds C = 1/10 and 20 could not fulfil
the condition of continuity due to lack of data. The difference between a coefficient
smaller and larger than 1 is due to the difference in physics during holes and bursts.
Since holes are smoother and shorter events than bursts, less data are accessible for
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the flying joint distributions during holes compared to the diving joint distributions
during bursts. Moreover, the lack of data for acceleration at thresholds closer to as

t
than for dissipation and enstrophy is explained by a smaller variance which can be
seen in the mean time profiles (figure 4).

Since time periods between which the joint distributions at different key times
are derived are not large, it is assumed that results give an accurate picture of the
evolution of the flow characteristics along Lagrangian bursts and holes. In the case
of Lagrangian holes, dissipation is found to be systematically small regardless of
which quantity one considers. Hence, the corresponding local viscous time scale
is large. If one considers the threshold 〈ε〉/20 (C = 1/10 with εs

t ≈ 〈ε〉/2), one
has a minimum local viscous time scale during holes of τK(ε) = 10τK , a time
larger than the most probable time delay between joint distributions (similar to the
most probable diving time) of maximum 1 − 2τK (figure 5), hence suggesting a
continuous transition between the distributions and therefore an accurate capture
of the evolution of the characteristics of the Eulerian structures along Lagrangian
holes. In the case of Lagrangian bursts (in the case C=20), the local viscous scale is
approximately τK(ε) = τK/5 while the time delay between the joint distributions are
mostly approximately 0.8− 1τK (figure 5), hence suggesting that potential undetected
variations in the invariants space. We however believe that the difference in time
remains small enough so that the detected large consistent differences or similarities
between the joint distributions can be considered interesting for the study of the
evolution of the characteristics of the flow structures during Lagrangian bursts.

Appendix C. Modelling of Lagrangian temporal statistics
C.1. Models of TD(εt) and TF(εt) from Babler et al. (2008, 2012)

Two models of TF and TD have already been developed in the case of dissipation
(Babler et al. 2008, 2012). The first model considers that p2 is governed by the
variation rate of dissipation at εt which primarily depends on the local Kolmogorov
scale at εt, ε̇ ∼ εt/τK(εt), hence giving that the joint distribution time of dissipation
and its time derivative scale with p(εt, ε̇) ∼ 1/2p(εt)δ(|ε̇| − εt/τK(εt)). Injecting this
scaling into (3.1) for ϕ = ε gives

T I
F ∼

∫
∞

εt

dεp(ε)

1/2εtp(εt)/τK(εt)
, T I

D ∼

∫ εt

0
dεp(ε)

1/2εtp(εt)/τK(εt)
. (C 1a,b)

The second model assumes that the joint distribution of dissipation and its variation
rate are mainly dictated by the local Kolmogorov scale p2(ε, ε̇)∼ p(ε)/τK(ε) and that
the resulting characteristic time spent in regions above (below) εt is given by the
variation rate in regions above (below) εt, hence giving

T II
F ∼

∫
∞

εt

p(ε) dε∫ εt

0
p(ε)/τK(ε) dε

, T II
D ∼

∫ εt

0
p(ε) dε∫

∞

εt

p(ε)/τK(ε) dε
. (C 2a,b)
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C.2. Model of dissipation of Pope & Chen (1990), Lamorgese et al. (2007)

The model considers that the dynamics of the order of magnitude of dissipation χ(t)=
ln(ε/ε) is modelled as an Ornstein–Uhlenbeck process:

dχ =−(χ − χ)
dt
Tχ
+

(
2σ 2

χ

Tχ

)1/2

dW, (C 3)

where Tχ =
∫
〈χ(t)χ(t + τ)〉/〈χ(t)2〉 dτ is the decorrelation time scale of χ , σχ is

the variance of χ and W is a Wiener process whose increments are taken from a
random Gaussian process with zero mean and variance dt. Note that by construction
χ =−1/2σ 2

χ (Pope & Chen 1990).
Both σχ and Tχ have been determined in more recent studies empirically as a

function of the Taylor-scale Reynolds number Reλ (Yeung et al. 2006a; Lamorgese
et al. 2007), following

σχ = A+
3µ

2
ln Reλ (C 4)

Tχ = T∞(0.055+ 3.55/Re0.7
λ ), (C 5)

with µ = 0.25 and A = −0.863 (Yeung et al. 2006a). The integral time scale is
T∞ = 3/2σ 2

U/〈ε〉, and can be approximated in the context of isotropic turbulence
as T∞ = (3/20)1/2ReλτK . Results from our DNS give σχ = 1.09 and Tχ = 11.98τK ,
both values close to those obtained with (C 5) for our Taylor-scale Reynolds number
Reλ = 240. Note that an Ornstein–Uhlenbeck process generates a purely Gaussian
signal. This entails that no asymmetry between the statistics of flights and dives
can be produced. Thus, flying and diving statistics inferred from this model are by
definition symmetric.

C.3. Model of dissipation of Chevillard & Meneveau (2006)

The model of Chevillard & Meneveau (2006) reproduces the Lagrangian time
evolution of the velocity gradient tensor Aij = ∂iuj. Starting from the equation of
Lagrangian evolution of Aij derived from the incompressible Navier–Stokes equation,
the authors make a series of assumptions which eventually lead to the following
one-dimensional equation for the velocity gradient tensor:

dA=

(
−A2
+

Tr(A2)

Tr(C−1
τK
)
C−1
τK
−

1
TAd

Tr(C−1
τK
)

3
A

)
dt+ dW , (C 6)

where CτK = eτK AeτK AT is an approximation of the Cauchy–Green tensor accounting
for the evolution of the deformation gradients of the fluid, and TA is the Lagrangian
decorrelation time scale of Aij, considered here as TAd =

∫
〈ε(t)1/2ε(t+ τ)1/2〉/〈ε(t)〉 dt.

Finally, dW is a tensorial white and Gaussian noise, i.e. dW ij=Dijkl dBkl, where dBij is
a tensorial isotropic Wiener process with zero mean and a variance of 2dt and Dijkl are
the diffusion coefficients such that dW is consistent with an isotropic homogeneous
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and traceless tensorial field. Considering that D is itself isotropic, one gets (Chevillard
et al. 2008)

Dijkl = aδijδkl + bδikδjl + cδilδjk (C 7)

with

a=
1
3

3+
√

15
√

10+
√

6
; b=−

√
10+
√

6
4

; c=
1

√
10+
√

6
. (C 8a−c)

The dissipation is then obtained from results of the velocity gradient invariant
following 2νSijSij with Sij = 1/2(Aij + Aji).

Using our DNS dataset for Reλ = 240, we obtained TAd = 10.5τK .

C.4. Model of acceleration of Lamorgese et al. (2007)
The model of Lamorgese et al. (2007) considers that in an isotropic turbulent flow, the
dynamics of the components of acceleration can be approximated as a second-order
auto-regressive model, giving the stochastic differential equation:

da=−α1χ
′ dt− α2

∫ t

0
χ ′ dt′ dt+ (2α1α2σ

2
U)

1/2 dW . (C 9)

Time scales of the system are the integral time scale τ = 3/2σ 2
U/ε, the velocity

decorrelation time scale TL =
∫
∞

0 〈ui(t)ui(t + τ)〉/〈ui(t)ui(t)〉 dτ and the acceleration
time scale τa= (ε

3/ν)1/4 (Pope 2002), giving α1= TL/(ττa) and α2= 1/(ττa). Various
theoretical relationships linking TL and σU to the Taylor Reynolds number Reλ have
been obtained empirically (Sawford 1991). However, in order not to depend on any
potential discrepancy in these relations at large Reynolds number (these relations have
been derived with data up to Reλ= 90), the various time scales have been determined
using our DNS dataset, giving:

τ ≈ 91.3τK and TL ≈ 18.8τK, (C 10a,b)

and with τa ≈ 12.6τK .

C.5. Set-up of simulations using stochastic models
We used two Lagrangian stochastic models of dissipation (Pope & Chen 1990;
Chevillard & Meneveau 2006; Lamorgese et al. 2007) and one of acceleration
(Lamorgese et al. 2007) to compute 5× 105 time series of time duration equal to that
of our DNS, i.e. T = 245τK . It is important to note that since all models considered in
the study use a Wiener process, we applied the filtering function (2.2) with TA= τK/3
to the computed time series to remove the dependency on time scales below τK . We
then derived for each set of time series the flying and diving LPDFs and compared the
results to those obtained with the DNS. Lagrangian stochastic models are described
and values of the various parameters used in our DNS are given.

Appendix D. Statistics of flying and diving times at intermediate Reynolds
number

To verify that our results hold true at a different level of turbulence, we simulated a
HIT at smaller Taylor Reynolds number Reλ= 90 and computed the flying and diving
LPDFs of dissipation using 105 Lagrangian trajectories.
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FIGURE 16. (Colour online) (a) Mean flying and diving times with respect to threshold
εt and (b) flying and diving LPDFs at corresponding ϕs

t = ε
s
t , ω

s
t and as

t computed using
the Lagrangian dataset of the simulation at Reλ= 90. Results are consistent with those at
Reλ= 245, specifically the Taylor scale τλ is also here the most probable flying time above
εs

t . Our model (6.7) accurately captures the profiles of mean flying and diving times. (d)
Flying and diving LPDFs at εs

t using Lagrangian and Eulerian data of dissipation. Eulerian
temporal fluctuations are faster.

Profiles of mean flying and diving times TF(εt) and TD(εt) logically span a smaller
range of magnitudes (figure 16a) since the level of turbulence is weaker, however
results stay consistent with those derived from the simulation at Reλ = 240 and are
accurately captured by our analytical approximations (6.7). Interestingly, as predicted
by our model, εs

t slightly increases when decreasing Reλ. Figure 16(c) shows the flying
and diving LPDFs at ϕs

t . Results for dissipation are consistent with those at Reλ =
240 with a most probable diving time at 2τK and flying time at the Taylor time
scale τλ. On the contrary, one can observe a slight Reynolds number dependency for
acceleration.

Eulerian flying and diving LPDFs could be computed with this dataset (figure 16c).
Results show that Eulerian intermittency tends to be faster than Lagrangian
intermittency.
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