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106.30 Threshold functions and the birthday paradox

Our goal is to illustrate the idea of a threshold function in the context of
the birthday paradox. We do this by exploring the asymptotics of binomial
coefficients.

To begin, we consider the limit definition of the exponential function. It
is well known that  for any real constant . But what

happens when  grows with ? For what functions  is it the case
that  behaves asymptotically like ? More generally, given a
function , what adjustment factor  is needed so that ,
where we write  to denote that ?
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f (n) ∼ g (n) lim
n → ∞

f (n) / g (n) = 1

For fixed  and , by taking logs and using the Taylor expansion for
, we have
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where  and Sn (x) = ∑
∞

n = 1
(−1)r tn,r (x) tn,r (x) =

xr + 1

(r + 1) nr
.

Case 1: Suppose first that , where  denotes that
 (that is, ‘  grows more slowly than ’). Then,

x << n f (n) << g (n)
lim

n → ∞
f (n) / g (n) = 0 f g

∑
∞

r = 1

tn,r (x) < ∑
∞

r = 1

xr + 1

nr
=

x2

n − x
,

which tends to zero as  increases since . Thus,

and .

n x << n lim
n → ∞

Sn (x) = 0

(1 + x
n)n ∼ ex

So, if  grows more slowly than  there is no need for an adjustment
factor. For example, , for any constant .

x n
(1 + c ln n

n ) ∼ ec ln n = nc c > 0

Case 2: Now suppose that  for some positive constant . In this
case, we have , but

x ∼ c n c
tn,1 (x) = x2 / 2n ∼ c2 / 2

∑
∞

r = 2
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∞
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,

which tends to zero since . So , yielding an

adjustment factor of :

x << n2/3 lim
n → ∞

Sn (x) = −c2 / 2

e−c2/2

(1 +
x
n)n

= (1 +
c
n)n

∼ e−c2/2ec n.

Case 3: If , then the analysis is as in Case 2, yielding an
adjustment factor of . For example, if , then

n << x << n2/3

An (x) = e−x2/2n x = n ln n

(1 +
x
n)n

= (1 +
ln n
n )n

∼ e− ln nex =
ex

n
.

Case 4: Suppose . Now, , but we need to

include  in the adjustment factor, giving  For
example, if , we have

x << n3/4 lim
n → ∞

∑
∞

r = 3
tn,r (x) = 0

tn,2 (x) An (x) = e−(x2/2n) + (x3/3n2).
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General case: In general, each function of the form  acts as a threshold
beyond which the adjustment factor needs an additional term. Specifically,
if  grows as fast as  but slower than , then  terms are
required:

n1 − 1/p

x n(p − 1)/p np/(p + 1) p − 1

if x << np/(p + 1) then An (x) = exp ( ∑p − 1

r = 1

(−1)r xr + 1

(r + 1) nr ) .

Now let's apply this to the asymptotics of the binomial coefficient

when  grows with . We exploit Stirling's approximation for the factorial,
.
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Let  denote this binomial adjustment factor. To
establish an explicit expression for , note first that

Bn (k) = An − k (k)
Bn (k)
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n)−r
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Given that , the coefficient of  in the

expansion for  is given by
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r = 1
(−1)r tn − k,r (k) kt + 1 / nt

Sn − k (k)

∑
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This identity is equivalent to , which can be

established by differentiating the binomial expansion of  and
setting .

∑
t

s = 1

(−1)s s ( ) = −1t + 1
s + 1

(1 + x)t + 1

x = −1
Thus, the binomial adjustment factor behaves as follows:

if k << nn/(p + 1) then  Bn (k) = exp (− ∑
p − 1

t = 1

kt + 1

t (t + 1) nt ) .
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So if , then . And as another illustration,k << n ( ) ∼
nk

k!
n
k

( ) ∼ e−1/2m2m

m!
∼

emmm

2πem
.m2

m

We have now laid sufficient groundwork to turn to our application.
Suppose we have  boxes and  balls, and we throw the balls into the boxes
at random. What is the probability  that two balls end up in the same
box? When , this is the birthday paradox in another guise: If

, then , so in a random group of 23 or more people, it
is more likely than not that some pair of them will have the same birthday.

n m
p (n, m)

n = 365
m ≥ 23 p (n, m) > 0.5

What we intend to explore here is the manner in which
increases from near zero to near one when  is large. It turns out that we
have already done most of the necessary work. There are a total of  ways

of placing the  balls in the  boxes, and  ways of doing so without

there being two balls in the same box. So, if we let
be the probability that each of the  balls is in a distinct box, then

p (n, m)
n

nm

m n ( ) m!
n
m

q (n, m) = 1 − p (n, m)
m

q (n, m) = ( ) m!
nm

∼ Bn (m) .n
m

Now, we have established that

• if , then ,m << n Bn (m) = 1
• if , then , andm ∼ c n Bn (m) = e−c2/2

• if , then , which tends to zero as  increases.m >> n Bn(m) ≤ e−m2/2n n
Hence,

p (n, m) ∼

⎧

⎩

⎨
⎪

⎪

⎪

⎪

0 if m << n,

1 − e−c2/2 if m ∼ c n,

1 if m >> n.

So we observe that the property of there being a box containing more
than one ball becomes likely rather abruptly when  is of the order of . If

 grows more slowly than  then the property holds asymptotically almost
never, whereas if  grows faster than  then it holds asymptotically almost
surely. We say that  is a threshold function for this property, where

 is a threshold function for a property that holds with
probability  if the following condition is satisfied:

m n
m n

m n
n

m∗ = m∗ (n)
p (n, m)

lim
n → ∞

p (n, m) =
⎧

⎩
⎨
⎪
⎪

0 if m << m∗,
1 if m >> m∗.
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This is a common phenomenon. There is a very general theory that
guarantees the existence of threshold functions (and thus of the associated
abrupt changes in the probability that a property holds) for many properties
in a variety of contexts. In (models of) physical, chemical and biological
systems, threshold functions correspond to the occurrence of phase
transitions, such as those between ice and liquid water, and between liquid
water and steam.

In our balls-in-boxes model, another important property having a
threshold function is that of there being a ball in every box. This is the
coupon collector problem in another form: If there are  distinct coupons,
how many do you need to collect before you have a complete set? The
threshold for this property (which requires rather more sophisticated
techniques to establish) occurs at . Moreover, it is a sharp threshold in
the sense that, for any , the property holds asymptotically almost never
if  and asymptotically almost surely if ,
thus satisfying a stronger condition than that required for a threshold in
general.

n

n ln n
ε > 0

m ≤ (1 − ε)n lnn m ≥ (1 + ε)n lnn

We conclude with some suggested further reading. For a presentation of
threshold functions in the context of random graphs (the arena in which they
have been studied the most), the introductory textbook [1] is recommended.
Another area in which threshold phenomena are observed is in shuffling a
pack of cards. For example, if a pack of  cards is riffle-shuffled
significantly more than  times then the probability of the cards
being in any particular order is close to , whereas shuffling significantly
fewer than  times results in a distribution that is far from uniform. Formal
definitions and an overview of the topic can be found in [2]. More generally,
the short monograph [3] provides a relatively gentle introduction to the kind
of asymptotic analysis undertaken above.

n
sn = 3

2 log2 n
1 / n!

sn
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