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We consider the problem of selecting sequentially a unimodal subsequence from a sequence

of independent identically distributed random variables, and we find that a person doing

optimal sequential selection does so within a factor of the square root of two as well as

a prophet who knows all of the random observations in advance of any selections. Our

analysis applies in fact to selections of subsequences that have d + 1 monotone blocks, and,

by including the case d = 0, our analysis also covers monotone subsequences.

1. Introduction

A classical result of Erdős and Szekeres [9] tells us that, in any sequence x1, x2, . . . , xn
of n real numbers, there is a subsequence of length k = �n1/2� that is either monotone

increasing or monotone decreasing. More precisely, given x1, x2, . . . , xn, one can always

find a subsequence 1 � n1 < n2 < · · · < nk � n for which we either have

xn1
� xn2

� · · · � xnk , or xn1
� xn2

� · · · � xnk .

Many years later, Fan Chung [8] considered the analogous problem for unimodal

sequences. Specifically, she sought to determine the maximum value �n such that, in

any sequence of n real values x1, x2, . . . , xn, one can find a subsequence xi1 , xi2 , . . . , xik of

length k = �n and a ‘turning place’ 1 � t � k for which one either has

xi1 � xi2 � · · · � xit � xit+1
� · · · � xik , or

xi1 � xi2 � · · · � xit � xit+1
� · · · � xik .

Through a sustained and instructive analysis, she surprisingly obtained an exact formula:

�n = �(3n − 3/4)1/2 − 1/2�.
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Shortly afterwards, Steele [14] considered unimodal subsequences of permutations, or

equivalently, unimodal subsequences of a sequence of n independent, uniformly distributed

random variables X1, X2, . . . , Xn. For the random variables

Un = max{k : Xi1 � Xi2 � · · · � Xit � Xit+1
� · · · � Xik , where

1 � i1 < i2 < · · · < ik � n},

and

Dn = max{k : Xi1 � Xi2 � · · · � Xit � Xit+1
� · · · � Xik , where

1 � i1 < i2 < · · · < ik � n},

it was established that

E[max{Un, Dn}] ∼ E[Un] ∼ E[Dn] ∼ 2(2n)1/2 as n → ∞. (1.1)

Here we consider analogues of the random variables Un, Dn and Ln = max{Un,Dn}, but

instead of seeing the whole sequence all at once, one observes the variables sequentially.

Thus, for each 1 � i � n, the chooser must decide at time i, when Xi is first presented,

whether to accept or reject Xi as an element of the unimodal subsequence. The sequential

(or on-line) selection for the much simpler problem of a monotone subsequence – the

analogue of the original Erdős and Szekeres [9] problem – was considered long ago by

Samuels and Steele [13].

1.1. Main results

We denote by Π(n) the set of all feasible policies for the unimodal sequential selection

problem for {X1, X2, . . . , Xn} where these random variables are independent with a

common continuous distribution function F . Given any feasible sequential selection

policy πn ∈ Π(n), if we let τk denote the index of the kth selected element, then for each

k the value τk is a stopping time with respect to the increasing sequence of σ-fields

Fi = σ{X1, X2, . . . , Xi}, 1 � i � n. In terms of these stopping times, the random variable

Uo
n (πn) = max{k : Xτ1

� Xτ2
� · · · � Xτt � Xτt+1

� · · · � Xτk , where

1 � τ1 < τ2 < · · · < τk � n},

is the length of the unimodal subsequence that is selected by the policy πn. For the

moment, we just consider unimodal subsequences that begin with an increasing piece and

end with a decreasing piece; either of these pieces is permitted to have size one.

For each n there is a policy π∗
n ∈ Π(n) that maximizes the expected length of the selected

subsequence, and the main issue is to determine the asymptotic behaviour of this expected

value. The answer turns out to have an informative relationship to the off-line selection

problem. A prophet with knowledge of the whole sequence before making his choices will

do better than an optimal on-line chooser, but he will only do better by a factor of
√

2.

Theorem 1.1 (Expected length of optimal unimodal subsequences). For each n � 1, there

is a π∗
n ∈ Π(n), such that

E[Uo
n (π

∗
n)] = sup

πn∈Π(n)
E[Uo

n (πn)],
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and for such an optimal policy one has the upper bound

E
[
Uo

n

(
π∗
n

)]
< 2n1/2

and the lower bound

2n1/2 − 4(π/6)1/2n1/4 − O(1) < E
[
Uo

n

(
π∗
n

)]
,

which combine to give the asymptotic formula

E
[
Uo

n

(
π∗
n

)]
∼ 2n1/2 as n → ∞.

In a natural sense that we will shortly make precise, the optimal policy π∗
n is unique.

Consequently, one can ask about the distribution of the length Uo
n (π

∗
n) of the subsequence

that is selected by the optimal policy, and there is a pleasingly general argument that

gives an upper bound for the variance. Moreover, that bound is good enough to provide

a weak law for Uo
n (π

∗
n).

Theorem 1.2 (Variance bound). For the unique optimal policy π∗
n ∈ Π(n), we have the

bounds

Var
[
Uo

n

(
π∗
n

)]
� E

[
Uo

n

(
π∗
n

)]
< 2n1/2. (1.2)

Corollary 1.3 (Weak law for unimodal sequential selections). For the sequence of optimal

policies π∗
n ∈ Π(n), we have the limit

Uo
n (π

∗
n)/

√
n

p
−→ 2 as n → ∞.

Organization of the proofs. The proof of Theorem 1.1 comes in two halves. First, we

show by an elaboration of an argument of Gnedin [10] that there is an a priori upper

bound for E[Uo
n (πn)] for all n and all πn ∈ Π(n). This argument uses almost nothing about

the structure of the selection policy beyond the fact from Section 4 that it suffices to

consider policies that are specified by acceptance intervals. For the lower bound we simply

construct a good (but suboptimal) policy. Here there is an obvious candidate, but the

proof of its efficacy seems to be more delicate than one might have expected.

The proof of Theorem 1.2 in Section 3 exploits a martingale that comes naturally

from the Bellman equation. The summands of the quadratic variation of this martingale

are then found to have a fortunate relationship to the probability that an observation is

selected. It is this ‘self-bounding’ feature that leads one to the bound (1.2) of the variance

by the mean.

In Section 5 we outline analogues of Theorems 1.1 and 1.2 for subsequences that can

be decomposed into d + 1 alternating monotone blocks (rather than just two). If one

takes d = 0, this reduces to the monotone subsequence problem, and in this case only the

variance bound is new. Finally, in Section 6 we comment briefly on two conjectures. These

deal with a more refined understanding of Var[Uo
n (π

∗
n)] and with the naturally associated

central limit theorem.
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2. Mean bounds: Proof of Theorem 1.1

Since the distribution F is assumed to be continuous and since the problem is unchanged

by replacing Xi by its monotone transformation F−1(Xi), we can assume without loss of

generality that the Xi are uniformly distributed on [0, 1]. Next, we introduce two tracking

variables. First, we let Si denote the value of the last element that has been selected

up to and including time i. We then let Ri denote an indicator variable that tracks the

monotonicity of the selected subsequence: specifically, we set Ri = 0 if the selections made

up to and including time i are increasing; otherwise we set Ri = 1.

The sequence of real values {Si : Ri = 0, 1 � i � n} is thus a monotone increasing

sequence, though of course not in the strict sense because there will typically be long

patches where the successive values of Si do not change. Similarly, {Si : Ri = 1, 1 � i � n}
is a monotone decreasing sequence, and the full sequence {Si : 1 � i � n} is a unimodal

sequence – in the non-strict sense that permits ‘flat spots’. As a convenience for later

formulas, we also set S0 = 0 and R0 = 0.

2.1. The class of feasible interval policies

Here we will consider feasible policies that have acceptance sets that are given by

intervals. It is reasonably obvious that any optimal policy must have this structure, but

for completeness we give a formal proof of this fact in Section 4.

Now, if the value Xi is under consideration for selection, two possible scenarios can

occur. If Ri−1 = 0 (so one is in the ‘increasing part’ of the selected subsequence), then a

selectable Xi can be above or below Si−1. On the other hand, if Ri−1 = 1 (and one is in

the ‘decreasing part’ of the selected subsequence), then any selectable Xi has to be smaller

than Si−1. Thus, to specify a feasible interval policy, we just need to specify for each i an

interval [a, b] ⊂ [0, 1] where we accept Xi if Xi ∈ [a, b] and reject it otherwise. Here, the

values of the end-points of the interval are functions of i, Si−1, and Ri−1. In longhand, we

write the acceptance interval as

Δi(Si−1, Ri−1) ≡ [a(i, Si−1, Ri−1), b(i, Si−1, Ri−1)].

There are some restrictions on the functions a(i, Si−1, Ri−1) and b(i, Si−1, Ri−1). To make

these explicit we consider two sets of functions, A and B. We say a ∈ A provided that

a : {1, 2, . . . , n} × [0, 1] × {0, 1} → [0, 1] and

0 � a(i, s, r) � s for all s ∈ [0, 1], r ∈ {0, 1} and 1 � i � n.

Similarly, we say b ∈ B provided that b : {1, 2, . . . , n} × [0, 1] × {0, 1} → [0, 1] and

s � b(i, s, 0) � 1 for all s ∈ [0, 1] and 1 � i � n,

0 � b(i, s, 1) = s for all s ∈ [0, 1] and 1 � i � n.

Together a pair (a, b) ∈ A × B defines an interval policy πn ∈ Π(n), where we accept Xi

at time i if and only if Xi ∈ Δi(Si−1, Ri−1). We let Π′(n) denote the set of feasible interval

policies.
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2.2. Three representations

First we note that for Si we have a simple update rule driven by whether Xi is rejected or

accepted:

Si =

{
Si−1 if Xi /∈ Δi(Si−1, Ri−1),

Xi if Xi ∈ Δi(Si−1, Ri−1).

For the sequence {Ri} the update rule is initialized by setting R0 = 0; one should then

note that only one change takes place in the values of the sequence {Ri}. Specifically, we

change to Ri = 1 at the first i such that Si < Si−1, i.e., the first instance where we have a

decrease in our sequence of selected values. For specificity, we can rewrite this rule as

Ri =

⎧⎪⎪⎨⎪⎪⎩
1 if Xi ∈ Δi(Si−1, Ri−1)

and Si−1 = max{Sk : 1 � k � i},

Ri−1 otherwise.

(2.1)

Finally, using 1(E) to denote the indicator function of the event E, we see by counting the

occurrences of the ‘selection events’ Xi ∈ Δi(Si−1, Ri−1), that for each 1 � k � n the number

of selections made up to and including time k is given by the sum of the indicators

Uo
k (πn) =

k∑
i=1

1(Xi ∈ Δi(Si−1, Ri−1)). (2.2)

2.3. Proof of the upper bound: an a priori prophet inequality

The immediate task is to show that for all n � 1 and all πn ∈ Π′(n), we have the inequality

E
[
Uo

n

(
πn

)]
< 2n1/2. (2.3)

It will then follow from Proposition 4.1 that the bound (2.3) holds for all πn ∈ Π(n). We

start with the representation (2.2), and then after two applications of the Cauchy–Schwarz

inequality we have

E
[
Uo

n

(
πn

)]
=

n∑
i=1

E
[
b(i, Si−1, Ri−1) − a(i, Si−1, Ri−1)

]
� n1/2

{ n∑
i=1

(
E

[
b(i, Si−1, Ri−1) − a(i, Si−1, Ri−1)

])2
}1/2

� n1/2

{ n∑
i=1

E
[(
b(i, Si−1, Ri−1) − a(i, Si−1, Ri−1)

)2]}1/2

.

The target bound (2.3) is therefore an immediate consequence of the following – curiously

general – lemma.
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Lemma 2.1 (Telescoping bound). For each n � 1 and for any strategy πn ∈ Π′(n), we have

the inequality

n∑
i=1

E
[(
b(i, Si−1, Ri−1) − a(i, Si−1, Ri−1)

)2]
< 4. (2.4)

Proof. We first introduce a bookkeeping function g : [0, 1] × {0, 1} → [0, 2] by setting

g(s, r) =

{
s if r = 0,

2 − s if r = 1.

Trivially g is bounded by 2, and we will argue by conditioning and telescoping that the

left-hand side of inequality (2.4) is bounded above by 2 E[g(Sn, Rn)] < 4. Specifically, if we

condition on Fi−1, then the independence and uniform distribution of Xi gives us, after a

few lines of straightforward calculation, that

E[g(Si,Ri) − g(Si−1, 0) | Fi−1]

=

∫ Si−1

a(i,Si−1 ,0)

(g(x, 1) − Si−1) dx +

∫ b(i,Si−1 ,0)

Si−1

(g(x, 0) − Si−1) dx

=
1

2

(
b(i, Si−1, 0) − a(i, Si−1, 0)

)2

+
(
Si−1 − a(i, Si−1, 0)

)(
2 − Si−1 − b(i, Si−1, 0)

)
.

Since the last summand is non-negative we have the tidier bound(
b(i, Si−1, 0) − a(i, Si−1, 0)

)2 � 2 E[g(Si, Ri) − g(Si−1, 0) | Fi−1]. (2.5)

By an analogous direct calculation we also have the identity

E[g(Si, 1) − g(Si−1, 1) | Fi−1] =

∫ Si−1

a(i,Si−1 ,1)

(g(x, 1) − g(Si−1, 1)) dx

=
1

2

(
b(i, Si−1, 1) − a(i, Si−1, 1)

)2
. (2.6)

Since Ri−1 = 1 implies Ri = 1, we can write g(Si, Ri) − g(Si−1, Ri−1) as the sum

{g(Si, Ri) − g(Si−1, 0)}1(Ri−1 = 0) + {g(Si, 1) − g(Si−1, 1)}1(Ri−1 = 1),

so the two bounds (2.5) and (2.6) give us the key estimate(
b(i, Si−1, Ri−1) − a(i, Si−1, Ri−1)

)2 � 2 E[g(Si, Ri) − g(Si−1, Ri−1) | Fi−1].

Finally, when we take the total expectation and sum, we see that telescoping gives

n∑
i=1

E
[(
b(i, Si−1, Ri−1) − a(i, Si−1, Ri−1)

)2] � 2 E[g(Sn, Rn)] < 4,

just as needed.
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2.4. Proof of the lower bound: exploitation of suboptimality

We construct an explicit policy π̃n ∈ Π(n) that is close enough to optimal to give us the

bound

2n1/2 − 4(π/6)1/2n1/4 − O(1) < E
[
Uo

n

(
π∗
n

)]
. (2.7)

The basic idea is to make an approximately optimal choice of an increasing subsequence

from the sample {Xi : 1 � i � n/2} and an approximately optimal choice of a decreasing

subsequence from the sample {Xi : n/2 + 1 � i � n}. The cost of giving up a flexible choice

of the ‘turn-around time’ is substantial, but this class of policies is still close enough to

optimal to give required bound (2.7).

For the moment, we assume that n is even. We then select observations according to

the following process.

• For 1 � i � n/2 we select the observation Xi if and only if Xi falls in the interval

between Si−1 and min{1, Si−1 + 2n−1/2}.
• We set Sn/2 = 1, and for n/2 + 1 � i � n we select the observation Xi if and only if Xi

falls in the interval between max{0, Si−1 − 2n−1/2} and Si−1.

Here, of course, the selections for 1 � i � n/2 are increasing and the selections for

n/2 + 1 � i � n are decreasing, so the selected subsequence is indeed unimodal.

We then consider the stopping time

ν = min{i : Si > 1 − 2n−1/2 or i � n/2},

and we note that the representation (2.2), the suboptimality of the policy π̃n, and the

symmetry between our policy on 1 � i � n/2 and on n/2 + 1 � i � n will give us the

lower bound

2 E

[ ν∑
i=1

1
(
Xi ∈ [Si−1, Si−1 + 2n−1/2]

)]
� E

[
Uo

n

(
π̃n

)]
� E

[
Uo

n

(
π∗
n

)]
. (2.8)

Wald’s lemma now tells us that

E

[ ν∑
i=1

1
(
Xi ∈ [Si−1, Si−1 + 2n−1/2]

)]
= 2 n−1/2

E[ν],

so we have

4 n−1/2
E[ν] � E

[
Uo

n

(
π∗
n

)]
.

The main task is to estimate E[ν]. It is a small but bothersome point that the summands

1
(
Xi ∈ [Si−1, Si−1 + 2n−1/2]

)
are not i.i.d. over the entirety of the range i ∈ [1, n/2]; the

distribution of the last terms differs from that of the predecessors. To deal with this

nuisance, we take Zj , 1 � j < ∞, to be a sequence of random variables defined by setting

Zj =

{
0 with probability 1 − 2n−1/2,

Uj with probability 2n−1/2,
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where the Uj are independent and uniformly distributed on [0, 2n−1/2]. Easy calculations

now give us for all 1 � j < ∞ that

EZj =
2

n
, Var[Zj] =

8n1/2 − 12

3n2
<

8

3n3/2
, and |Zj − EZj | <

2

n1/2
. (2.9)

Next, if we set S̃0 ≡ 0 and put

S̃i =

i∑
j=1

Zj, for 1 � i � n,

for 1 � i � ν, we have Si
d
= S̃i. Setting ν̃ = min{i : S̃i > 1 − 2n−1/2 or i � n/2} we also have

ν
d
= ν̃, so to estimate E[ν] it then suffices to estimate

E[ν̃] =

n/2−1∑
i=0

P
(
ν̃ > i

)
=

n/2−1∑
i=0

P
(
S̃i � 1 − 2n−1/2

)
=

n

2
−

n/2−1∑
i=0

P
(
S̃i > 1 − 2n−1/2

)
.

The proof of the lower bound (2.7) will then be complete once we check that

n/2−1∑
i=0

P
(
S̃i > 1 − 2n−1/2

)
< (π/6)1/2n3/4 + �n1/2�. (2.10)

This bound turns out to be a reasonably easy consequence of Bernstein’s inequality (see

Lugosi [11, Theorem 6]), which asserts that for any i.i.d. sequence {Zj} with the almost

sure bound |Zj − EZj | � M, we have for all t > 0 that

P

( i∑
j=1

{Zj − EZj} > t

)
� exp

{
− t2

2iVar[Z1] + 2Mt/3

}
.

If we set n∗ = �n/2 − n1/2 − 1�, then Bernstein’s inequality together with the bounds (2.9)

and some simplification will give us

n/2−1∑
i=0

P
(
S̃i > 1 − 2n−1/2

)
� �n1/2� +

n∗∑
i=0

P
(
S̃i > 1 − 2n−1/2

)
� �n1/2� +

n∗∑
i=0

exp

{
−3(−2i − 2n1/2 + n)2

8n(n1/2 − 1)

}
.

The summands are increasing, so the sum is bounded by

∫ n/2−n1/2

0

exp

{
−3(−2u − 2n1/2 + n)2

8n(n1/2 − 1)

}
du = (2/3)1/2(n3/2 − n)1/2

∫ α(n)

0

e−u2

du,

where α(n) = (3/8)1/2(n1/2 − 2)(n1/2 − 1)−1/2. Upon bounding the last integral by π1/2/2,

we then complete the proof of the target bound (2.10). Finally, we note that if n is odd,

we can simply ignore the last observation at the cost of decreasing our lower bound by

at most one.
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Remark. A benefit of Bernstein’s inequality (and the slightly sharper Bennett inequality)

is that one gets to take advantage of the good bound on Var[Zj]. The workhorse Hoeffding

inequality would be blind to this useful information.

3. Variance bound: Proof of Theorem 1.2

To prove the variance bound in Theorem 1.2 we need some of the machinery of the Bellman

equation and dynamic programming. To introduce the classical backward induction, we

first set vi(s, r) equal to the expected length of the longest unimodal subsequence of

{Xi,Xi+1, . . . , Xn} that is obtained by sequential selection when Si−1 = s and Ri−1 = r. We

then have the ‘terminal conditions’

vn(s, 0) = 1, vn(s, 1) = s, for all s ∈ [0, 1],

and we set

vn+1(s, r) ≡ 0 for all s ∈ [0, 1] and r ∈ {0, 1}.

For 1 � i � n − 1 we have the Bellman equation:

vi(s, r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ s

0 max{vi+1(s, 0), 1 + vi+1(x, 1)} dx
+

∫ 1

s
max{vi+1(s, 0), 1 + vi+1(x, 0)} dx if r = 0,

(1 − s)vi+1(s, 1)

+
∫ s

0
max{vi+1(s, 1), 1 + vi+1(x, 1)} dx if r = 1.

(3.1)

One should note that the map s �→ vi(s, 0) is continuous and strictly decreasing on [0, 1]

for 1 � i � n − 1 with vn(s, 0) = 1 for all s ∈ [0, 1]. In addition, the map s �→ vi(s, 1) is

continuous and strictly increasing on [0, 1] for all 1 � i � n.

If we now define a∗ : {1, 2, . . . , n} × [0, 1] × {0, 1} → [0, 1] by setting

a∗(i, s, r) = inf{x ∈ [0, s] : vi+1(s, r) � 1 + vi+1(x, 1)}, (3.2)

then we have a∗ ∈ A. Similarly, if we define b∗ : {1, 2, . . . , n} × [0, 1] × {0, 1} → [0, 1] by

setting

b∗(i, s, r) =

{
sup{x ∈ [s, 1] : vi+1(s, 0) � 1 + vi+1(x, 0)} if r = 0,

s if r = 1.
(3.3)

then we have b∗ ∈ B. Here, a∗(i, s, r) and b∗(i, s, r) are state-dependent thresholds for which

one is indifferent between (i) selecting the current observation x, adjusting r to r′ as in

(2.1), and continuing to act optimally with new state pair (x, r′), or (ii) rejecting the current

observation, x, and continuing to act optimally with unchanged state pair, (s, r).

By the Bellman equation (3.1) and the continuity and monotonicity properties of the

value function, the values a∗ and b∗ provide us with a unique acceptance interval for all

1 � i � n and all pairs (s, r). The policy π∗
n associated with a∗ and b∗ then accepts Xi at

time 1 � i � n if and only if

Xi ∈ Δ∗
i (Si−1, Ri−1) ≡ [a∗(i, Si−1, Ri−1), b

∗(i, Si−1, Ri−1)],
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where, as in Section 2, Si−1 is the value of the last observation selected up to and including

time i − 1, and Ri−1 tracks the direction of the monotonicity of the subsequence selected

up to and including time i − 1. In Section 4 we will prove that this policy is indeed the

unique optimal policy for the sequential selection of a unimodal subsequence.

We do not need a detailed analysis of a∗ and b∗, but it is useful to collect some facts.

In particular, one should note that a∗(i, s, r) = 0 whenever vi+1(s, r) � 1 and b∗(i, s, 0) = 1

whenever vi+1(s, 0) � 1. In addition, the difference b∗(i, s, r) − a∗(i, s, r) provides us with an

explicit bound on the increments of the value function vi(s, r), as the following lemma

suggests.

Lemma 3.1. For all s ∈ [0, 1], r ∈ {0, 1} and 1 � i � n, we have

0 � vi(s, r) − vi+1(s, r) � b∗(i, s, r) − a∗(i, s, r) � 1. (3.4)

Proof. The lower bound is trivial and it follows by the fact that vi(s, r) is strictly

decreasing in i for each (s, r) ∈ [0, 1] × {0, 1}.
For the upper bound, we first assume that r = 0. Then, subtracting vi+1(s, 0) on both

sides of equation (3.1) when r = 0 and using the definition of a∗ and b∗, we obtain

vi(s, 0) − vi+1(s, 0) = −(b∗(i, s, r) − a∗(i, s, r))vi+1(s, 0)

+

∫ s

a∗(i,s,r)
(1 + vi+1(x, 1)) dx +

∫ b∗(i,s,r)

s

(1 + vi+1(x, 0)) dx.

Recalling the monotonicity property of s �→ vi+1(s, r), we then have

vi(s, 0) − vi+1(s, 0) � −(b∗(i, s, r) − a∗(i, s, r))vi+1(s, 0)

+ (s − a∗(i, s, r))(1 + vi+1(s, 1)) + (b∗(i, s, r) − s)(1 + vi+1(s, 0)),

and since vi+1(s, 1) � vi+1(s, 0), we finally obtain

vi(s, 0) − vi+1(s, 0) � b∗(i, s, r) − a∗(i, s, r) � 1,

as (3.4) requires. The proof for r = 1 is very similar and it is therefore omitted.

We now come to the main lemma of this section.

Lemma 3.2. The process defined by

Yi = Uo
i (π

∗
n) + vi+1(Si, Ri), for all 0 � i � n,

is a martingale with respect to the natural filtration {Fi}0�i�n. Moreover, for the martingale

difference sequence di = Yi − Yi−1, we have that

|di| = | Yi − Yi−1 | � 1 for all 1 � i � n.

Proof. We first note that Yi is Fi-measurable and bounded. Then, from the definition of

vi(s, r) we have that vi(Si−1, Ri−1) = E[Uo
n (π

∗
n) − Uo

i−1(π
∗
n) | Fi−1]. Thus,

Yi = Uo
i (π

∗
n) + E

[
Uo

n (π
∗
n) − Uo

i (π
∗
n) | Fi

]
= E

[
Uo

n (π
∗
n) | Fi

]
,

which is clearly a martingale.
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To see that the martingale differences are bounded let

Wi = vi+1(Si−1, Ri−1) − vi(Si−1, Ri−1)

represent the change in Yi if we do not select Xi, and let

Zi = (1 + vi+1(Xi,1(Xi < Si−1)) − vi+1(Si−1, Ri−1))1(Xi ∈ Δ∗
i (Si−1, Ri−1))

represent the change when we do select Xi. We then have that

di = Wi + Zi,

and by our Lemma 3.1 we know that −1 � Wi � 0. Moreover, the definition of the

threshold functions a∗ and b∗ and the monotonicity property of s �→ vi+1(s, r) give us that

0 � Zi � 1, so that |di| � 1, as desired.

3.1. Final argument for the variance bound

For the martingale differences di = Yi − Yi−1 we have

Yn − Y0 =

n∑
i=1

di, and Var[Yn] = E

[ n∑
i=1

d2
i

]
,

and we also have the initial representation

Y0 = Uo
0 (π

∗
n) + v1(S0, R0) = v1(0, 0) = E

[
Uo

n

(
π∗
n

)]
and the terminal identity

Yn = Uo
n (π

∗
n) + vn+1(Sn, Rn) = Uo

n (π
∗
n).

We now recall the decomposition di = Wi + Zi introduced in the proof of Lemma 3.2,

where

Wi = vi+1(Si−1, Ri−1) − vi(Si−1, Ri−1)

and

Zi = (1 + vi+1(Xi,1(Xi < Si−1)) − vi+1(Si−1, Ri−1))1(Xi ∈ Δ∗
i (Si−1, Ri−1)).

Since Wi is Fi−1-measurable, we have

E[d2
i | Fi−1] = E[Z2

i | Fi−1] + 2Wi E[Zi | Fi−1] + W 2
i .

We also have 0 = E[di | Fi−1] = Wi + E[Zi | Fi−1] so

E[d2
i | Fi−1] = E[Z2

i | Fi−1] − W 2
i . (3.5)

Finally, from the definition of Zi, a
∗ and b∗ we obtain

E[Z2
i | Fi−1] =

∫ b∗(i,Si−1 ,Ri−1)

a∗(i,Si−1 ,Ri−1)

(1 + vi+1(x,1(x < Si−1)) − vi+1(Si−1, Ri−1))
2 dx

� b∗(i, Si−1, Ri−1) − a∗(i, Si−1, Ri−1),
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since the integrand is bounded by 1. Summing (3.5), applying the last bound, and taking

expectations gives us

Var
[
Uo

n

(
π∗
n

)]
�

n∑
i=1

E[b∗(i, Si−1, Ri−1) − a∗(i, Si−1, Ri−1)] = E
[
Uo

n

(
π∗
n

)]
,

where the last equality follows from our basic representation (2.2).

4. Intermezzo: Optimality and uniqueness of interval policies

The unimodal sequential selection problem is a finite-horizon Markov decision problem

with bounded rewards and finite action space, and for such a problem it is known that

there exists a non-randomized Markov policy π∗
n that is optimal (see Bertsekas and Shreve

[2, Corollary 8.5.1]). This amounts to saying that there exists an optimal strategy π∗
n such

that for each i, Si−1 and Ri−1, there is a Borel set D∗
i (Si−1, Ri−1) ⊆ [0, 1] such that Xi is

accepted if and only if Xi ∈ D∗
i (Si−1, Ri−1). Here we just want to show that the Borel sets

D∗
i (Si−1, Ri−1) are actually intervals (up to null sets).

Given the optimal acceptance sets D∗
i (Si−1, Ri−1), 1 � i � n, we now set

vi(Si−1, Ri−1) = E

[ n∑
k=i

1(Xk ∈ D∗
k(Sk−1, Rk−1)) |Fi−1

]
,

so we have the recursion

vi(Si−1, Ri−1) = E[1(Xi ∈ D∗
i (Si−1, Ri−1)) + vi+1(Si, Ri) |Fi−1], (4.1)

where vi(s, r) is simply the optimal expected number of selections made from the subsample

{Xi,Xi+1, . . . , Xn} given that Si−1 = s and Ri−1 = r. We then note that vn(s, 0) = 1 for all

s ∈ [0, 1], and one can check by induction on i that the map s �→ vi(s, 0) is continuous

and strictly decreasing in s for 1 � i � n − 1. A similar argument also gives that the map

s �→ vi(s, 1) is continuous and strictly increasing in s for all 1 � i � n.

If we now set

a(i, Si−1, Ri−1) = ess inf Di(Si−1, Ri−1) and

b(i, Si−1, Ri−1) = ess supDi(Si−1, Ri−1),

then we want to show for all 1 � i � n and all (Si−1, Ri−1) that we have

P({Di(Si−1, Ri−1)
c ∩ [a(i, Si−1, Ri−1), b(i, Si−1, Ri−1)]}) = 0.

To argue by contradiction, we suppose that there is an 1 � i � n and an acceptance set

D∗
i ≡ D∗

i (Si−1, Ri−1) that is not equivalent to an interval; i.e., we suppose

P({D∗c
i ∩ [a∗(i, Si−1, Ri−1), b

∗(i, Si−1, Ri−1)]}) > 0. (4.2)

We then consider the sets

Li = [0, Si−1] ∩ D∗
i and Ui = [Si−1, 1] ∩ D∗

i ,

and we introduce the intervals

L̃i = [Si−1 − |Li|, Si−1] and Ũi = [Si−1, Si−1 + |Ui|],
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where |A| denotes the Lebesgue measure of a set A. The set D̃i = L̃i ∪ Ũi is also an interval

and |D̃i| = |D∗
i |, so, if we can show that

E[1(Xi ∈ D∗
i ) + vi+1(Si, Ri)] < E[1(Xi ∈ D̃i) + vi+1(Si, Ri)], (4.3)

then the representation (4.1) tells us that policy π∗
n is not optimal, a contradiction.

To prove the bound (4.3), we note that

E[1(Xi ∈ D̃i) + vi+1(Si, Ri) |Fi−1] − E[1(Xi ∈ D∗
i ) + vi+1(Si, Ri)|Fi−1]

= E[vi+1(Xi, Ri)1(Xi ∈ D̃i) |Fi−1] − E[vi+1(Xi, Ri)1(Xi ∈ D∗
i )|Fi−1]

since D̃i and D∗
i are Fi−1-measurable and E[1(Xi ∈ D̃i)|Fi−1] = E[1(Xi ∈ D∗

i )|Fi−1]. By our

construction, we also have the identities

E[vi+1(Xi, Ri)1(Xi ∈ D̃i) |Fi−1] =

∫
L̃i

vi+1(x, 1) dx +

∫
Ũi

vi+1(x, 0) dx, (4.4)

and

E[vi+1(Xi, Ri)1(Xi ∈ D∗
i ) |Fi−1] =

∫
Li

vi+1(x, 1) dx +

∫
Ui

vi+1(x, 0) dx. (4.5)

Now, since |Li| = |L̃i| implies that |L̃i ∩ Lc
i | = |Li ∩ L̃c

i |, we can write∫
L̃i

vi+1(x, 1) dx −
∫
Li

vi+1(x, 1) dx =

∫
L̃i∩Lc

i

vi+1(x, 1) dx −
∫
Li∩L̃c

i

vi+1(x, 1) dx

= (βi − αi)|L̃i ∩ Lc
i |, (4.6)

where αi = αi(Si−1, Ri−1), and βi = βi(Si−1, Ri−1) are chosen according to the mean value

theorem for integrals. The sets L̃i ∩ Lc
i and Li ∩ L̃c

i are almost surely disjoint since

L̃i ∩ Lc
i ⊂ [Si−1 − |Li|, Si−1] and Li ∩ L̃c

i ⊂ [0, Si−1 − |Li|]. So, we find that αi < βi since

vi+1(x, 1) is strictly decreasing in x.

A perfectly analogous argument tells us that we can write∫
Ũi

vi+1(x, 1) dx −
∫
Ui

vi+1(x, 1) dx = (δi − γi)|Ũi ∩ Uc
i |, (4.7)

where γi < δi and γi and δi depend on (Si−1, Ri−1). If we now set

ci(Si−1, Ri−1) = min{βi − αi, δi − γi},

then the identities (4.4) and (4.5) and the differences (4.6) and (4.7) give us the bound

ci(Si−1, Ri−1)|D̃i ∩ D∗c
i | � E

[
vi+1(Xi, Ri)1(Xi ∈ D̃i) − vi+1(Xi, Ri)1(Xi ∈ D∗

i )|Fi−1

]
.

Since ci(Si−1, Ri−1) > 0, the assumption (4.2) implies that the left-hand side above is strictly

positive. When we take total expectation we get

0 < E
[
vi+1(Xi, Ri)1(Xi ∈ D̃i) − vi+1(Xi, Ri)1(Xi ∈ D∗

i )
]
.

In view of the recursion (4.1), this contradicts the optimality of π∗. This completes the

proof of (4.3), and, in summary, we have the following proposition.
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Proposition 4.1. If π∗
n is an optimal non-randomized Markov policy for the unimodal se-

quential selection problem, then, up to sets of measure zero, π∗ is an interval policy.

Corollary 4.2. There is a unique policy π∗
n ∈ Π(n) that is optimal.

To prove the corollary one combines the optimality of the interval policy given by

Proposition 4.1 with the monotonicity properties of the Bellman equation (3.1). Specifically,

the map s �→ vi(s, 0) is strictly decreasing in s for all 1 � i � n − 1 and the map s �→ vi(s, 1)

is strictly increasing in s for all 1 � i � n, so the equations (3.2) and (3.3) determine the

values a∗(·) and b∗(·) uniquely.

5. Generalizations and specializations: d-modal subsequences

There are natural analogues of Theorems 1.1 and 1.2 for ‘d-modal subsequences’, by

which we mean subsequences that are allowed to make ‘d-turns’ rather than just one.

Equivalently these are subsequences that are the concatenation of (at most) d + 1

monotone subsequences. If we let Uo,d
n (π∗

n) denote the analogue of Uo
n (π

∗
n) when the

selected subsequence is d-modal, then the arguments of the preceding sections may be

adapted to provide information on the expected value of Uo,d
n (π∗

n) and its variance. Here

one should keep in mind that the case d = 0 is not excepted; the arguments of the

preceding sections do indeed apply to the selection of monotone subsequences.

Theorem 5.1 (Expected length of optimal d-modal subsequences). If Π(n) denotes the class

of feasible policies for the d-modal subsequence selection problem, then there is a unique

π∗
n ∈ Π(n) such that

E[Uo,d
n (π∗

n)] = sup
πn∈Π(n)

E[Uo,d
n (πn)].

Moreover, for all n � 1 and d � 0 we have

c(d)1/2n1/2 − c(d)3/4(π/3)1/2n1/4 − O(1) < E[Uo,d
n (π∗

n)] < c(d)1/2n1/2, (5.1)

where c(d) = 2(d + 1). In particular, we have

E[Uo,d
n (π∗

n)] ∼ {2(d + 1)}1/2n1/2 as n → ∞.

One should note that the case d = 0 corresponds to the monotone subsequence selection

problem studied by Samuels and Steele [13] and more recently by Gnedin [10]. The

monotone selection problem is also equivalent to certain bin packing problems studied by

Bruss and Robertson [7] and Rhee and Talagrand [12].

In the special case of d = 0, our upper bound (5.1) agrees with that of Bruss and

Robertson [7] as well as with the result of Gnedin [10]. Our lower bound (5.1) on the

mean for d = 0 turns out to be slightly worse than that of Rhee and Talagrand [12], since

our constant for the n1/4 term is 23/4(π/3)1/2 ∼ 1.72, while theirs is 81/4 ∼ 1.68.

For the d-modal problem, one can also prove a variance bound that generalizes

Theorem 1.2 in a natural way.
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Theorem 5.2 (Variance bound for d-modal subsequences). For the unique optimal policy

π∗
n ∈ Π(n) we have the bound

Var
[
Uo,d

n

(
π∗
n

)]
� E

[
Uo,d

n

(
π∗
n

)]
.

Chebyshev’s inequality and Theorem 5.2 now combine as usual to provide a weak law

for Uo,d
n (π∗

n). Even for d = 0 this variance bound is new.

6. Two conjectures

Numerical studies for small d and moderate n support the conjecture that we have the

asymptotic relation

Var[Uo,d
n (π∗

n)] ∼ 1

3
E[Uo,d

n (π∗
n)] as n → ∞. (6.1)

As observed by an anonymous referee, the methods of Section 3 and the concavity of

the value function established in Samuels and Steele [13] are in fact enough to prove an

appropriate lower bound:

1

3
E[Uo,d

n (π∗
n)] − 2 < Var[Uo,d

n (π∗
n)] where d = 0. (6.2)

Here one should now be able to prove an upper bound on Var[Uo,d
n (π∗

n)] that is strong

enough to establish the case d = 0 of the conjecture (6.1), but confirmation of this has

eluded us.

Also, by numerical calculations of the optimal policy π∗
n and by subsequent simulations

of Uo,d
n (π∗

n) for d = 0, d = 1, and modest values of n, it seems likely that the random

variable Uo,d
n (π∗

n) obeys a central limit theorem. Specifically, the natural conjecture is that

for all d � 0 we have
√

3
(
Uo,d

n (π∗
n) −

√
2(d + 1)n

)
(2(d + 1)n)1/4

=⇒ N(0, 1) as n → ∞. (6.3)

Implicit in this conjecture is the belief that the lower bound (5.1) can be improved to

{2(d + 1)n}1/2 − o(n1/4), or better.

So far, the only central limit theorem available for a sequential selection problem is

that obtained by Bruss and Delbaen [5, 6] for a Poissonized version of the monotone

subsequence problem. Given the sequential nature of the problem, it appears to be difficult

to de-Poissonize the results of Bruss and Delbaen [6] to obtain conclusions about the

distribution of Uo,d
n (π∗

n) even for d = 0.

For completeness, we should note that even for the off-line unimodal subsequence

problem, not much more is known about the random variable Un than its asymptotic

expected value (1.1). Here one might hope to gain some information about the distribution

of Un by the methods of Bollobás and Brightwell [3] and Bollobás and Janson [4], and it

is even feasible – but only remotely so – that one could extend the famous distributional

results of Baik, Deift and Johansson [1] to unimodal subsequences. More modestly, one

certainly should be able to prove that the distribution of Un is not asymptotically normal.
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One motivation for going after such a result would be to underline how the restriction to

sequential strategies can bring one back to the domain of the central limit theorem.
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