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Our interest here is to find the invader in a two species, diffusive and competitive

Lotka–Volterra system in the particular case of travelling wave solutions. We investigate the

role of diffusion in homogeneous domains. We might expect a priori two different cases:

strong interspecific competition and weak interspecific competition. In this paper, we study

the first one and obtain a clear conclusion: the invading species is, up to a fixed multiplicative

constant, the more diffusive one.
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1 Introduction

Competitive reaction–diffusion systems have been widely studied in the last few years.

These mathematical models are motivated by numerous applications: ecology, chemistry,

genetics, etc. In general, the mathematical formulations of this problem are, for some

spatial domain Ω (not necessarily bounded), some n ∈ � and some positive constants(
di, ri, ai, ki,j

)
i,j∈{1,...,n}

∀i ∈ {1, . . . , n} ∂tui = diΔxui + ui

⎛
⎝ri − aiui −

∑
j�i

ki,juj

⎞
⎠ in Ω × (0,+∞) . (1.1)

One tough question is how their solutions and, when they exist, the long-time steady states,

depend on the diffusion rates (di)i∈{1,...,n}. Asymptotically, how do the species (if we see

these as continuous approximations of some population-dynamics problems) represented

by the densities (ui)i∈{1,...,n} share the domain Ω? Basically, in the neighbourhood of any

spatial point x, two cases may occur: either only one species persists (exclusion case) or

two or more persist (coexistence case). In the exclusion case, the only persistent species

is called invading species. A priori, all the parameters participate in the determination
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of this invader: number of species n, heterogeneity of Ω, boundedness of Ω, boundary

conditions, intrinsic growth rates (ri)i∈{1,...,n}, interspecific competition rates
(
ki,j
)
i,j∈{1,...,n},

intraspecific competition rates (ai)i∈{1,...,n} and of course diffusion rates (di)i∈{1,...,n}.

The dependency on diffusion rates is a very open general problem. Previous works

show clearly that a very general result is for the moment unachievable and that we have

to consider in each study a specific case for the other parameters of the problem. A

key work in this area is the paper by Dockery et al. [6]. They proved that, when Ω is

bounded, heterogeneous, with Neumann boundary conditions and when ki,j = 1 for all

i, j ∈ {1, . . . , n}, the less motile species – that is the one with the lower diffusion rate – is

the invading species. Their result relies fundamentally on the heterogeneity, the basic idea

being that each species loses the individuals trying to invade unfavourable areas while,

in favourable areas, the competition helps the more concentrated one, that is the less

diffusive one.

We leave the extension of Dockery’s result for different
(
ki,j
)
i,j∈{1,...,n} to others and

wonder if a similar result can be obtained in homogeneous domains (bounded or not).

Actually, it is quite tough to guess heuristically what could happen in homogeneous

domains. Indeed, on one hand, the more diffusive species might be able to ignore its

competitors long enough and invade the whole territory while eliminating the competitors

slowly. On the other hand, the more concentrated species – that is the less diffusive

one – might benefit from the maxim “unity is strength” and eliminate slowly the dispersed

competitors and, asymptotically, invade the domain. It is well-known that diffusion tends

to bring unexpected results. In any case, if something can revert the invasion, we expect

it to be the competition. With this in mind, we decide to focus first on the infinite

competition limit which should amplify the effects of competition.

Many papers limit their study to the case n = 2 (and so will we) because then the system

becomes monotonic and is therefore much simpler to study than the general case. We will

not use the monotonicity explicitly but it will be the underlying mechanism behind many

results.

When n = 2, the PDE system can be rewritten as

{
∂tu = d1Δxu + u (r1 − a1u − k1v) in Ω × (0,+∞) ,

∂tv = d2Δxv + v (r2 − a2v − k2u) in Ω × (0,+∞) .

When there is no diffusion at all, this system becomes an ODE system. Then, the steady

state (u, v) = (0, 1) (resp. (u, v) = (1, 0)) is stable when k1r2
r1a2

> 1 (resp. k2r1
r2a1

> 1), unstable

when k1r2
r1a2

< 1 (resp. k2r1
r2a1

> 1). Our interest lies in the bistable case and more precisely in

the so-called “strong competition case” where k1r2
r1a2

and k2r1
r2a1

are much larger than 1. In the

monostable case, only one species is a “strong” competitor.

The infinite competition limit (k1 → +∞ and k1

k2
constant) has been studied by Dancer

et al. in 1999 in the case of bounded domains with Neumann boundary conditions [5]

(they also investigated Dirichlet conditions five years later [4]). They obtained a free

boundary Stefan problem and, under regularity assumptions, a spatial segregation with

an explicit condition on the interface. In 2007, Nakashima and Wakasa [13] studied the

generation of interfaces for such systems and obtained a similar free boundary condition.

It is worth mentioning that the spatial segregation in multi-dimensional domains for
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elliptic PDE yields highly non-trivial issues. It can be either approached as a free boundary

problem (Dancer [5], Quitalo [14]) or as an optimal partition problem (Conti [2, 3]), but

in both cases it is really a problem in itself, which requires additional assumptions on the

initial conditions and a lot of work.

Therefore, our interest goes to unbounded homogeneous domains. Reaction–diffusion

studies in such domains usually conjecture the existence of propagation fronts and, when

their existence can be rigorously proved, derive from them some information on the

dynamics of the system and the long-time steady state. Here, it is important to recall

that the main underlying assumption with propagation fronts is that, when the initial

conditions are well-chosen, the solutions of the PDE asymptotically “behave like” the

travelling wave solution. We refer to Gardner [8] for such results for finite k. We will not

treat this aspect of the problem in this paper but will indeed investigate travelling wave

solutions.

A straightforward consequence of the travelling wave approach is that it reduces the

multi-dimensional Ω × ��
+ to �. The problem becomes one-dimensional, that is an ODE

problem, and thus all the free boundary issues vanish. Our hope is to find a similar spatial

segregation limit, with an explicit condition on the interface connecting the invasion speed

of the travelling wave to the diffusion rates. We know from Gardner [8] and Kan-On [10]

that the invasion speed is constant and bounded by the Fisher–KPP’s speeds [11] of the

species. Can we use the infinite competition limit to derive its sign and therefore know

which species invades the other? Will unity be strength?

It is important to remark that the invasion speed is not linearly determined here.

Actually, a linearization near (0, 1) or (1, 0) yields no condition on the invasion speed

and the linearized speed cannot be defined as usual. As far as we know, the linear

determinacy for competition–diffusion systems is useful only with a specific class of

monostable problems (Huang [9], Lewis [12]).

In the next section, we fully pose the problem, enunciate our final result and recall

that the problem is well-posed. The third and main section is dedicated to a compactness

result and the convergence to a limit problem which is similar in many ways to the one

Dancer et al. obtained. Eventually, the last section explicits the relation between the speed

and the diffusion rates.

2 Formulation of the problem and main theorem

In this first section, we present the PDE problem studied in this article, give its ecological

interpretation and enunciate our main result. We also check quickly that the problem is

well-posed.

2.1 Model

2.1.1 Reaction–diffusion system

We first consider the following one-dimensional Lotka–Volterra competition–diffusion

problem: {
∂tμ = d1∂xxμ + μ (r1 − a1μ − k1ρ) in � × (0,+∞) ,

∂tρ = d2∂xxρ + ρ (r2 − a2ρ − k2μ) in � × (0,+∞) ,
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where d1, d2, r1, r2, a1, a2, k1, k2 are positive constants with ecological meaning (diffusion

rates, intrinsic growth rates, intraspecific competition rates, interspecific competition rates).

We assume, without loss of generality, that k2a2

r22
� k1a1

r21
.

Let k = k1r2
a2r1

> 0, α = k2a2r1
k1a1r2

> 0, d = d2

d1
> 0, r = r2

r1
> 0 and

(uk, vk) : (x, t) �→
(
a1

r1
μ

(√
d1

r1
x,

1

r1
t

)
,
a2

r2
ρ

(√
d1

r1
x,

1

r1
t

))
.

We get {
∂tuk = ∂xxuk + uk (1 − uk) − kukvk in � × (0,+∞) ,

∂tvk = d∂xxvk + rvk (1 − vk) − αkukvk in � × (0,+∞) .

As soon as k > 1 (which will always be assumed thereafter), αk
r
> 1, that is the system

is bistable. Indeed, the free assumption k2a2

r22
� k1a1

r21
we made earlier ensures that α

r
� 1.

A priori, the parameters k, α, d and r can take any positive value. Let P (k, α, d, r) denote

this generic PDE problem. Our interest lies in the limit, as k → +∞, of the set of problems

{P (k, α, d, r)}k>1 (associated with a given (α, d, r)) (hence the notation uk and vk).

Moreover, going back to the initial parameters, this means that we actually consider a

larger class of ecological problems than just k1 → +∞ and k1

k2
constant. Indeed, the only

restrictions are that d2

d1
, r2
r1

and k2a2

k1a1
are fixed along the whole class. For example, the limit

k → +∞ may correspond to the following:

• k2 proportional (with a fixed constant along the whole class) to k1 and k1 → +∞ with

a1 and a2 fixed (along the whole class);

• k1 → +∞ and a1 proportional to 1
k1

with a2 and k2 fixed;

• a2 proportional to a1 and a1 → 0 with k1 and k2 fixed.

2.1.2 Travelling wave system

Searching for a travelling wave of the variable ξ = x − ckt, where ck ∈ � is the unknown

invasion speed, the problem is eventually rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−u′′
k − cku

′
k = uk (1 − uk) − kukvk in �

−dv′′
k − ckv

′
k = rvk (1 − vk) − αkukvk in �

uk (−∞) = 1, uk (+∞) = 0

vk (−∞) = 0, vk (+∞) = 1

u′
k < 0 in �
v′
k > 0 in �.

(2.1)

It is well-known that natural selection tends to differentiate the niches of competing

species. The travelling wave solution corresponds to the case where uk lives essentially in

the left half-space while vk lives essentially in the right half-space. In such a situation, it

seems obvious that one species might chase the other and invade the abandoned territory.

The whole point of this article is to determine this species, or equivalently, the sign of the

invasion speed. Indeed
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(1) ck > 0 iff uk chases vk;

(2) ck < 0 iff vk chases uk .

Of course, we aim to find a result depending on the value of d. Thus in the following

pages, when we focus on the dependency of ck on d, we write ck,d; otherwise, when d is

fixed, we simply write ck .

2.2 “Unity is not strength” theorem

Our main result follows.

Theorem 2.1
(
d �→ ck,d

)
k>1

converges locally uniformly in (0,+∞) to a continuous function

d �→ c∞,d which satisfies the following:

(1) c∞,d = 0 if d = α2

r
;

(2) c∞,d ∈ (0, 2) if d ∈
(
0, α

2

r

)
;

(3) c∞,d ∈
(

−2
√
rd, 0
)

if d > α2

r
.

Remark 2.2 This result is profoundly unexpected! It does not suffice to compare d to 1 or

α to 1. v can lose even if r is large and u can lose even if α is large, for example. This should

yield interesting insight into ecological applications.

2.3 Well-posedness and regularity of the problem

Theorem 2.3 For any k > 1, there exists a unique ck such that there exist solutions

uk and vk of the problem (2.1). It is needed that ck ∈
(

−2
√
rd, 2
)
, uk ∈ C∞ (�)

and vk ∈ C∞ (�). We can moreover assume exactly one of the following normalization

hypotheses:

• uk (0) = vk (0),

• uk (0) = 1
2
,

• vk (0) = 1
2
,

and if we do so, uk and vk are unique.

Proof The well-posedness and the bounds for ck are proven by Gardner in [8] and also

by Kan-On in [10] (actually, Gardner only showed ck ∈
[
−2

√
rd, 2
]

but Kan-On showed

indeed ck ∈
(

−2
√
rd, 2
)

which will be important in the end). It is worth mentioning that

their papers actually proved that the problem is well-posed without any monotonicity

condition and that the monotonicity is indeed needed.

Since uk, vk ∈ L∞ (�) and u′
k, v

′
k ∈ L1 (�), the regularity just follows from Wk,p-estimates

and Sobolev’s injections. �
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Remark 2.4 The extremal speeds −2
√
rd and 2 are the invasion speeds of respectively vk

when uk = 0 and uk when vk = 0. This is a well-known result from Fisher, Kolmogorov,

Petrovsky and Piscounov [11].

3 Limit problem

Here we show that (uk), (vk) and (ck) converge when k → +∞ and formulate the limit

problem.

3.1 Existence of limit points

First, (ck) is relatively compact and therefore, by the Bolzano–Weierstrass theorem, has a

limit point c ∈
[
−2

√
rd, 2
]
.

If c � 0, we fix for any k > 1 the normalization uk (0) = 1
2
. On the contrary, if c > 0,

we fix for any k > 1 vk (0) = 1
2
. This choice will be explained later on. In either case, this

implies that the functions k �→ uk and k �→ vk are well-defined.

Proposition 3.1 For any i � 1, let Ki = [−i, i]. (uk) and (vk) are relatively compact in C (Ki).

Proof Our aim here is to use Ascoli’s theorem. To that end, let us show that each uk is

Hölder-continuous with a constant independent of k.

There exists a positive function χ ∈ D (�) such that χ (x) = 0 if x � [−i − 1, i + 1] and

χ (x) = 1 if x ∈ [−i, i].

For any k > 1, if we multiply the equation defining uk by ukχ and then integrate, we get

∫ (
−u′′

kukχ − cku
′
kukχ
)

=

∫
u2
kχ −
∫

u2
k (uk + kvk) χ.

The third term is obviously negative. An integration by parts yields

∫
u′2
k χ −

∫
u2
k

2
χ′′ + ck

∫
u2
k

2
χ′ �

∫
u2
kχ.

Finally, since
∫
u′2
k χ �

∫ i
−i
u′2
k and ‖uk‖L∞ � 1, we have

‖u′
k‖2

L2(Ki)
�

∫ (
χ +

|ck|
2

|χ′| +
1

2
|χ′′|
)
.

Then we use Ascoli’s theorem: the family (uk) is bounded in L∞ (Ki) and uniformly

equicontinuous in Ki therefore it is relatively compact in C (Ki). The exact same proof

works for (vk). �

It is now clear, by a standard diagonal extraction argument, that there exists a subsequence

of (uk) (resp. (vk)) which converges locally uniformly to a limit point u (resp. v).
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3.2 Properties of the limit points

c, u and v are actually unique and true limits as will be proven later on. For the moment,

let us just consider extracted convergent subsequences, still denoted by (ck), (uk) and (vk).

Lemma 3.2 uv = 0.

Proof Multiplying by a test function ϕ ∈ D (�) and integrating the equation for uk yields

k

∣∣∣∣
∫

ukvkϕ

∣∣∣∣ �

∫
uk (1 − uk) |ϕ| + |ck|

∫
uk |ϕ′| +

∫
uk |ϕ′′|

� C‖ϕ‖W 2,1(�).

Hence ukvk → 0 in D′ (�).

Since ukvk → uv locally uniformly, we get indeed uv = 0. �

Remark 3.3 This kind of result is usually referred to as a segregation property. There is a

lot of similar results in the literature.

Lemma 3.4 We have

−αu′′ + dv′′ − αcu′ + cv′ = αu (1 − u) − rv (1 − v)

in D′ (�).

Proof Multiply the equation for uk by α and subtract from it the one for vk . The

left-hand side converges trivially in D′ (�). The right-hand side converges by dominated

convergence. �

Lemma 3.5 u, v ∈ C (�) and αu − dv ∈ C1 (�).

Proof The continuity of u and v is immediate thanks to the continuity of each uk and vk
and the locally uniform convergence.

Let a, b ∈ � such that a < b and Ia : C ([a, b]) → C ([a, b]) defined by Ia (f) : x �→
∫ x
a
f.

By continuity of u and v, it is quite obvious that the function

αcu − cv + Ia (αu (1 − u) − rv (1 − v)) − (αcu (a) − cv (a)) ,

is continuous. But, thanks to the previous lemma, it is also equal in D′ ((a, b)) to −αu′ +dv′

up to an additive constant. Therefore −αu′ +dv′ is a well-defined function of C ([a, b]). �

Lemma 3.6 u and v have finite limits at ±∞. Also

0 � lim
+∞

u � lim
−∞

u � 1,

and

0 � lim
−∞

v � lim
+∞

v � 1.
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Proof By locally uniform convergence, u and v are monotone, respectively non-increasing

and non-decreasing, and satisfy 0 � u, v � 1. �

Lemma 3.7 u and v cannot vanish simultaneously on a compact set with non-empty interior.

Proof Once again, we consider a compact set with non-empty interior [a, b]. By mono-

tonicity, if u|[a,b] = 0, then u|[a,+∞) = 0. Similarly, v|(−∞,b] = 0. Thus, in D′ ((−∞, a)),

−u′′ − cu′ = u (1 − u) and αu′ − dv′ = αu′. Therefore u′ is continuous and, using

−u′′ − cu′ = u (1 − u), u′′ is also continuous and the previous differential equation is

satisfied pointwise.

Now, we get by induction that u is C∞ in (−∞, a). Since it does not explode on the

left of a, it is the restriction of a solution on a strictly larger interval. Since u is regular,

u′ (a) = 0 and by Cauchy–Lipschitz’s theorem, u is identically null. By the same reasoning,

v is also identically null.

To prevent u and v from being both null on the whole real line, either one of the

two normalization sequences (uk (0))k>1 =
(

1
2

)
and (vk (0)) =

(
1
2

)
combined with locally

uniform convergence suffices. �

Remark 3.8 We already knew that uv = 0 everywhere. Thus the previous lemma ensures

that, for any a < b, u|[a,b] = v|[a,b] = 0 is not possible; one of the two densities has to be

positive whereas the other has to be null.

Lemma 3.9 Neither u nor v can be positive everywhere.

Proof If c � 0, the normalization sequence is (uk (0)) =
(

1
2

)
. It ensures that u is not null.

We define ξu = sup {ξ ∈ � | u (ξ) > 0} ∈ (−∞,+∞].

If ξu = +∞ (that is, u positive everywhere), v is null.

In such a case, we have u decreasing, bounded between 0 and 1, with limits at infinity,

non-constant by normalization, and −u′′ − cu′ = u (1 − u) everywhere with u ∈ C∞ (�).

This yields that lim−∞ u = 1 and lim+∞ u = 0. To that end, we use L’Hospital’s rule.

Let l = u (−∞), G : ξ �→ exp (cξ) and F = Gu′ so that F ′ = G
(
u′′ + cu′) = −Gu (1 − u).

F and G are differentiable in �, G′ � 0 and G → +∞ as ξ → −∞; moreover, F ′

G′ → − l(1−l)
c

.

By L’Hospital’s rule, F
G

→ − l(1−l)
c

, that is u′ (−∞) = − l(1−l)
c

. In the end, necessarily,

l ∈ {0, 1}.
At +∞, we use the other version of L’Hospital’s rule, noticing that u′ is bounded in

�+ (easy to prove) and checking that F and G go to 0. Eventually, by monotonicity, the

limits are 1 at −∞ and 0 at +∞.

Thus u is a travelling wave for the Fisher–KPP equation with speed c � 0 <
√

2, hence

the contradiction [11].

If c > 0, we just apply this reasoning to v with normalization (vk (0)) =
(

1
2

)
. �

Corollary 3.10 The two quantities sup {ξ ∈ � | u (ξ) > 0} and inf {ξ ∈ � | v (ξ) > 0} are

real and equal. Up to translation, we can assume it to be 0. By continuity of u and v,

u (0) = v (0) = 0.
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Lemma 3.11 We have

• u ∈ C∞ ((−∞, 0) ∪ (0,+∞)),

• v ∈ C∞ ((−∞, 0) ∪ (0,+∞)).

Moreover, we can extend u′ and v′ by continuity on the left and on the right respectively

and obtain u′ (0) = limξ→0,ξ<0 u
′ (ξ) and v′ (ξv) = limξ→0,ξ>0 v

′ (ξ) which are finite and satisfy

−αu′ (0) = dv′ (0) > 0.

Proof u is identically zero on (0,∞) so u|(0,+∞) is trivially C∞. In (−∞, 0), it is a weak,

and then regular (same routine), solution of u′′ + cu′ + u (1 − u) = 0.

Eventually, just recall that αu − dv ∈ C1 (�). If its derivative at 0 is zero, by the same

kind of Cauchy–Lipschitz reasoning, u = v = 0 everywhere. �

Remark 3.12 The relation αu′ (0) + dv′ (0) = 0 is essentially the free boundary condition

obtained by Nakashima and Wakasa in [13].

Lemma 3.13 lim−∞ u = 1 and lim+∞ v = 1.

Proof Same as before. �

Lemma 3.14 c ∈
(

−2
√
rd, 2
)
, that is c �

{
−2

√
rd, 2
}

.

Proof Let us assume, for example, c = −2
√
rd. Let ξ� > 0 such that v

(
ξ�
)

= 1
2
.

We know from Fisher and KPP [11] that c = −2
√
rd is the maximal speed for which

there exists a travelling wave vKPP positive, going from 0 at −∞ to 1 at +∞, which satisfies

−dv′′
KPP − cv′

KPP = rvKPP (1 − vKPP) .

We normalize by fixing vKPP

(
ξ�
)

= 1
2
. Let f = vKPP − v.

First, we can easily check that f is in C (�) ∩ C∞ ((−∞, 0) ∪ (0,+∞)) and satisfies

−df′′ − cf′ = rf (1 − f) − 2rvf,

in (0,+∞).

For any ξ > ξ�, 1 − f (ξ) − 2v (ξ) = 1 − vKPP (ξ) − v (ξ) < 0, with f
(
ξ�
)

= 0. We can

therefore apply the maximum principle to the operator

d •′′ +c •′ +r (1 − f − 2v) •,

in any interval
(
ξ�, b
)
, b > ξ�. Since lim+∞ f = 0, it gives us that f (ξ) � 0 for any

ξ ∈
(
ξ�,+∞

)
. But we can also apply the minimum principle to the same operator, and

we eventually get that f is identically zero in
(
ξ�,+∞

)
. This way, f′ (ξ�) = 0, hence f

is identically zero in (0,+∞), which is impossible since f (0) > 0 and f is continuous

in �. �
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3.3 Limit problem

Let us sum up all these results in the following theorem.

Theorem 3.15 There exist locally uniform limits u and v of (uk) and (vk) respectively. They

satisfy

(1) u, v ∈ C (�) ∩ C∞ ((−∞, 0) ∪ (0,+∞));

(2) limξ→−∞ u (ξ) = 1;

(3) limξ→+∞ v (ξ) = 1;

(4) u|�+
= 0;

(5) v|�− = 0;

(6) u′ � 0 in �−with u′ (0) defined by left-continuity;

(7) v′ � 0 in �+ with v′ (0) defined by right-continuity;

(8) −u′′ − cu′ = u (1 − u) in (−∞, 0);

(9) −dv′′ − cv′ = rv (1 − v) in (0,+∞);

(10) αu′ (0) = −dv′ (0).

The behaviour of these limits is illustrated with the following figure.

v′(0)
u′(0) = − d

α
v′(0)

0

1

0

u v

3.4 Uniqueness of the limit points

Theorem 3.16 For any c > −2, the problem

{
−y′′

c − cy′
c = yc (1 − yc) in (0,+∞)

yc (0) = 0,

admits a unique positive solution.

It satisfies y′
c > 0 in �+ and limξ→+∞ y (ξ) = 1. Besides, γ : c �→ y′

c (0) is increasing and

continuous.

Proof This result was proved by Du and Lin in [7] (Proposition 4.1) but wrongly stated.

Indeed, the requirement in their theorem should be c < 2, not c � 0 as stated in [7].

(Moreover, be aware that our statement is written with −cy′
c whereas their statement is
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written with +cy′
c; so the requirement c < 2 becomes here c > −2; this also changes the

monotonicity of γ.)

Let us remove all doubts by filling the gap in their proof, that is at the beginning where

they construct their subsolution.

• Case |c| < 2: For all � > 0, let y� the positive solution of{
−y′′ − cy′ = y(1 − y) in (0, �),

y(0) = y(�) = 0.

According to Berestycki [1] (Theorem 4), such a solution exists if and only if the Dirichlet

principal eigenvalue of the operator −L on (0, �) is negative: λ1

(
− L, (0, �)

)
< 0, where

L is the operator associated with the linearized equation near y = 0: Lφ := φ′′ +cφ′ +φ.

It is easy to compute

λ1

(
− L, (0, �)

)
= −1 +

c2

4
+

π2

�2
.

Hence, when |c| < 2, one has λ1

(
− L, (0, �)

)
< 0 when � is large enough and thus we

can construct y�. Vice-versa, if |c| � 2, λ1

(
− L, (0, �)

)
> 0 and the solution does not

exist (whereas Du and Lin claim it does for all c � 0).

• Case c � 2: It suffices to remark that, for example, if y1 is a solution of the previous

Dirichlet problem for some c1 ∈ (−2, 2), then y1 is a subsolution for the Dirichlet

problem with any speed c > c1.

In either case, the subsolution is now properly constructed and we can continue the

proof as in [7] and conclude the proof.

�

Remark 3.17 We need to change u and v before pursuing this direction. Let us consider

ũ : ξ �→ u (−ξ) and ṽ : ξ �→ v

(√
d
r
ξ

)
. ũ is a solution of the problem

{
−ũ′′ + cũ′ = ũ (1 − ũ) in (0,+∞)

ũ (0) = 0.

ṽ is a solution of the problem{
−ṽ′′ − c√

rd
ṽ′ = ṽ (1 − ṽ) in (0,+∞)

ṽ (0) = 0.

Also, c ∈
(

−2
√
rd, 2
)

so −c > −2 and c√
rd

> −2, therefore we can apply the theorem.

Corollary 3.18 For any d > 0, there exists a unique (u, v, c) satisfying the limit problem

(and may thereafter be called
(
u∞,d, v∞,d, c∞,d

)
).

Proof The equality −αu′ (0) = dv′ (0) can be written as αγ (−c) =
√
rdγ
(

c√
rd

)
. Now we

consider the two functions x �→ αγ (−x) and x �→
√
rdγ
(

x√
rd

)
. They necessarily have an

https://doi.org/10.1017/S0956792515000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000170


532 L. Girardin and G. Nadin

intersection point since c exists. But as they are respectively decreasing and increasing,

this intersection point is unique.

The uniqueness of c implies by the previous theorem the uniqueness of u and v. �

Corollary 3.19 The sequences (ck), (uk) and (vk) each have a unique limit point. Hence the

pointwise convergence of (ck) and locally uniform convergence of (uk) and (vk) are fully

proved and there is no need to consider extracted subsequences anymore.

Proof Recall that, in any metric space, a sequence whose image is relatively compact

and which has a unique limit point converges to this limit point. �

Remark 3.20 It is now clear that the sum up theorem of the previous section gives sufficient

but far from necessary conditions for uniqueness. For any c, u and v are unique iff they are

positive and satisfy points 4, 5, 8 and 9 and then the uniqueness of c is just a consequence

of point 10.

Proposition 3.21 The convergence of
(
d �→ ck,d

)
k>1

to d �→ c∞,d is locally uniform.

Proof Actually, one can see easily that the whole proof of pointwise convergence of(
d �→ ck,d

)
k>1

holds if we do not fix a priori d. It suffices to have d ∈ [D1, D2], with

D2 > D1 > 0 fixed, so that we can replace bounds like −2
√
rd by −2

√
rD2. �

4 Dependency of the invasion speed on the diffusion rates

This last section is where we derive from the limit problem the result: how does the

invasion speed c depend on the diffusion rate d? Thanks to the convergence of (ck) to c,

we will then be able to extend it to ck (for k large enough).

Theorem 4.1 We have

• if d = α2

r
, c∞,d = 0;

• if d > α2

r
, c∞,d ∈

(
−2

√
rd, 0
)
;

• if d < α2

r
, c∞,d ∈ (0, 2).

Proof The sign of c∞,d is actually a simple consequence of the relation αγ (−c) =√
rdγ
(

c√
rd

)
. Indeed, let us prove that rd < α2 implies c∞,d > 0. Indeed, if rd < α2, then

√
rd
α

< 1 and as γ
(

c√
rd

)
> 0, we get

√
rd
α
γ
(

c√
rd

)
< γ
(

c√
rd

)
. Since γ is increasing, c√

rd
> −c,

which clearly implies that c > 0. The case rd > α2 is similar.

If rd = α2, the relation becomes γ (−c) = γ
(

c√
rd

)
. An obvious zero of x �→ γ (−x) −

γ
(

x√
rd

)
is 0, and by monotonicity it is unique, hence c = 0. �

Proposition 4.2 The function d �→ c∞,d is continuous in (0,+∞).
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Proof This could follow from the continuity of each d �→ ck,d and the locally uniform

convergence, but the continuity of d �→ ck,d is actually a more difficult problem (and is

not solved by Kan-On [10]). Therefore, we prove the continuity of d �→ c∞,d directly. Our

proof being basically a repetition of the whole previous section of this article, we give

only a sketch of it.

First, let 0 < D1 < D2. We have

{c∞,d | d ∈ [D1, D2]} ⊂
{
c∞,d | d ∈ [D1, D2] ∩

(
α2

r
,+∞
)}

∪ {0} ∪
{
c∞,d | d ∈ ∩

(
0,

α2

r

)}

⊂

⎛
⎜⎝ ⋃

d∈[D1 ,D2]∩
(

α2

r
,+∞
)
[
−2

√
rd, 0
]⎞⎟⎠ ∪ [0, 2]

⊂
[
−2
√
rD2, 2

]
.

Thus, {c∞,d | d ∈ [D1, D2]} is a relatively compact subset of �.

Now, let δ ∈ [D1, D2] and (δn)n∈� ∈ [D1, D2]
� a positive sequence which converges to

δ. Up to extraction,
(
c∞,δn

)
converges to a limit point C .

If C � 0, we translate each couple
(
u∞,δn , v∞,δn

)
so that

(
u∞,δn (0)

)
=
(

1
2

)
. If

C > 0, we translate each couple
(
u∞,δn , v∞,δn

)
so that

(
v∞,δn (0)

)
=
(

1
2

)
. In either case,

{u∞,d | d ∈ [D1, D2]} and {v∞,d | d ∈ [D1, D2]} are relatively compact in each C (Ki) by

Ascoli’s theorem, and, up to extraction,
(
u∞,δn

)
and
(
v∞,δn

)
converge locally uniformly.

Let U and V be their limits.

• We have −αU ′′ + δV ′′ − αCU ′ + CV ′ = αU (1 − U) − rV (1 − V ) in D′ (�).

• U and V are continuous, αU − δV is C1.

• U and V are positive and have finite limits at infinity.

• UV = 0.

• If C � 0, U is not identically null by normalization and V cannot be identically null

since if it was, U would be a travelling wave for the Fisher–KPP equation with a speed

smaller than 2. The same reasoning applies for C > 0 and finally, neither U nor V can

be identically null.

• U and V cannot be both null on a compact subset by continuity of (αU − δV )′ and a

Cauchy–Lipschitz’s argument.

Now we translate back so that

sup {ξ ∈ � | U (ξ) > 0} = inf {ξ ∈ � | V (ξ) > 0} = 0.

This yields U|�+
= 0, V|�− = 0, −U ′′ − CU ′ = U (1 − U) in (−∞, 0), −δV ′′ − CV ′ =

rV (1 − V ) in (0,+∞) and αU ′ (0) = −δV ′ (0). Basically, C , U and V satisfy the exact same

problem as c∞,δ , u∞,δ and v∞,δ . By uniqueness, C = c∞,δ , that is c∞,δ is the unique limit

point of
(
c∞,δn

)
and eventually c∞,δn → c∞,δ . Therefore, d �→ c∞,d is indeed continuous.

�
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5 Conclusion

We have proved our “Unity is not strength” theorem. Some remaining questions concern

the shape of the asymptotic speed: What are the limits when d → 0 or d → +∞? Are

there optimal diffusion rates so that the invasion of one species or the other is the fastest?

And eventually, how fast is the convergence to this asymptotic limit and, for example, is

it monotone?

These could be addressed with the knowledge of the derivatives of the speed as a

function of k or d. These might be determined analytically thanks to Kan-On formulas [10].

However, we did not manage to compute the sign of these derivatives, that is, the

monotonicity of the speed with respect to k or d. We leave it as an open problem.
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