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On a measure-theoretic area formula
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We review some classical differentiation theorems for measures, showing how they
can be turned into an integral representation of a Borel measure with respect to a
fixed Carathéodory measure. We focus our attention on the case when this measure is
the spherical Hausdorff measure, giving a metric measure area formula. Our aim is to
use certain covering derivatives as ‘generalized densities’. Some consequences for the
sub-Riemannian Heisenberg group are also pointed out.
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It is well known that computing the Hausdorff measure of a set by an integral
formula is usually related to rectifiability properties; namely, the set must be close
to a linear subspace at any small scale. The classical area formula provides this
relationship by an integral representation of the Hausdorff measure. Whenever a
rectifiable set is thought of as a countable union of Lipschitz images of subsets in a
Euclidean space, the area formula holds in metric spaces [4].

Over the last decade, the development of geometric measure theory in a non-
Euclidean framework has raised new theoretical questions on rectifiability and area-
type formulae. The main problem in this setting stems from the gap between the
Hausdorff dimension of the target and that of the source space of the parametriza-
tion. In fact, in general this dimension might be strictly greater than the topological
dimension of the set. As a result, the parametrization from a subset of the Euclidean
space cannot be Lipschitz continuous with respect to the Euclidean distance of the
source space.

One example of this difficulty is that the above-mentioned area formula does
not work for a large class of Heisenberg group-valued Lipschitz mappings [1]. For
this reason, theorems on differentiation of measures constitute an important tool
to overcome this problem. In this connection, we show how Federer’s theorems
[2, §§ 2.10.17 and 2.10.18] are able to disclose a purely metric area formula. The
surprising aspect of this formula is that an ‘upper covering limit’ actually can be
seen as a generalized density of a fixed Borel measure.

∗Dedicated to the memory of Herbert Federer (1920–2010) with deep admiration.
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To define these densities, we first introduce covering relations: if X is any set,
a covering relation is a subset C of {(x, S) : x ∈ S ∈ P(X)}. In the following, the
set X is always assumed to be equipped with a distance d. Defining for A ⊂ X the
corresponding class C(A) = {S : x ∈ A, (x, S) ∈ C}, we say that C is fine at x if for
every ε > 0 there exists S ∈ C({x}) such that diamS < ε. According to [2, § 2.8.16],
the notion of a covering relation yields the following notion of a ‘covering limit’.

Definition 1 (covering limit). If C is a covering relation that is fine at x ∈ X,
C({x}) ⊂ D ⊂ C(X) and f : D → R̄, then we define the covering limits

(C) lim sup
S→x

f = inf
ε>0

sup{f(S) : S ∈ C({x}), diam S < ε}, (1)

(C) lim inf
S→x

f = sup
ε>0

inf{f(S) : S ∈ C({x}), diam S < ε}. (2)

The covering relations made by closed balls clearly play an important role in the
study of the area formula for the spherical Hausdorff measure.

Definition 2. The closed ball and the open ball of centre x ∈ X and radius r > 0
are denoted by

B(x, r) = {y ∈ X : d(x, y) � r} and B(x, r) = {y ∈ X : d(x, y) < r},

respectively. We denote by Fb the family of all closed balls in X.

The next definition introduces the Carathéodory construction (see [2, § 2.10.1]).

Definition 3. Let S ⊂ P(X) and let ζ : S → [0, +∞] represent the size function.
If δ > 0 and R ⊂ X, then we define

φδ(R) = inf
{ ∞∑

j=0

ζ(Ej) : Ej ∈ F , diam(Ej) � δ for all j ∈ N, R ⊂
⋃
j∈N

Ej

}
.

The ζ-approximating measure denoted by ψζ is defined as ψζ = supδ>0 φδ. Denoting
by F the family of closed sets of X, for α, cα > 0 we define ζα : F → [0, +∞] by

ζα(S) = cα diam(S)α.

Then the α-dimensional Hausdorff measure is Hα = ψζα . If ζb,α is the restriction
of ζα to Fb, then Sα = ψζb,α is the α-dimensional spherical Hausdorff measure.

These special limits of definition 1 naturally arise in the differentiation theorems
for measures and allow us to introduce a special ‘density’ associated with a measure.

Definition 4 (Federer density). Following the terminology of [2, § 2.1.2], we fix a
measure µ over X. Let S ⊂ P(X) and let ζ : S → [0, +∞]. Then we set

Sµ,ζ = S \ {S ∈ S : ζ(S) = µ(S) = 0 or µ(S) = ζ(S) = +∞},

along with the covering relation Cµ,ζ = {(x, S) : x ∈ S ∈ Sµ,ζ}. We choose x ∈ X
and assume that Cµ,ζ is fine at x. We define the quotient function as follows

Qµ,ζ : Sµ,ζ → [0, +∞], Qµ,ζ(S) =

⎧⎪⎨
⎪⎩

+∞ if ζ(S) = 0,

µ(S)/ζ(S) if 0 < ζ(S) < +∞,

0 if ζ(S) = +∞.
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We are now in the position to define the Federer density, or upper ζ-density of µ at
x ∈ X, as follows:

F ζ(µ, x) = (Cµ,ζ) lim sup
S→x

Qµ,ζ(S). (3)

According to the following definition, we will use special notation when we con-
sider Federer densities with respect to ζα and ζb,α, respectively.

Definition 5. If µ is a measure over X, and Cµ,ζb,α
is fine at x ∈ X, then we set

θα(µ, x) = F ζb,α(µ, x). If Cµ,ζα is fine at x, then we set dα(µ, x) = F ζα(µ, x).

Remark 6. If x ∈ X and there exists an infinitesimal sequence (ri) of positive
radii such that all B(x, ri) have positive diameter, then both Cµ,ζb,α

and Cµ,ζα are
fine at x. The same conclusion also holds if we assume that for each B(x, rj) with
vanishing diameter it holds that µ(B(x, rj)) > 0.

We say that a family F ⊂ P(X) covers A ⊂ X finely if for each a ∈ A and ε > 0
there exists S ∈ F with a ∈ S ∈ F with diam(S) < ε (see [2, § 2.8.1]). From the
previous definitions, we can now state a revised version of 2.10.17(2) of [2].

Theorem 7. Let S ⊂ P(X), and let ζ : S → [0, +∞] be a size function. If µ is a
regular measure over X, A ⊂ X, t > 0, Sµ,ζ covers A finely and for all x ∈ A we
have F ζ(µ, x) < t, then µ(E) � tψζ(E) for every E ⊂ A.

Analogously, the next theorem is a revised version of 2.10.18(1) in [2].

Theorem 8. Let µ be a measure over X, let S be a family of closed and µ-
measurable sets, let ζ : S → [0, +∞), let B ⊂ X and assume that Sµ,ζ covers
B finely. If there exist c, η > 0 such that for each S ∈ S there exists S̃ ∈ S with the
properties

Ŝ ⊂ S̃, diam S̃ � c diam S and ζ(S̃) � ηζ(S), (4)

where Ŝ =
⋃

{T ∈ S : T ∩ S �= ∅, diam T � 2 diam S}, V ⊂ X is an open set
containing B and for every x ∈ B we have F ζ(µ, x) > t, then µ(V ) � tψζ(B).

These theorems provide both upper and lower estimates for a large class of mea-
sures, starting from upper and lower estimates of the Federer density. A slight
restriction of the assumptions in the previous theorems together with some stan-
dard arguments leads us to a new metric area-type formula, where the integration
of F ζ(µ, ·) recovers the original measure. This is precisely our first result.

Theorem 9 (measure-theoretic area formula). Let µ be a Borel regular measure
over X such that there exists a countable open covering of X whose elements have
µ finite measure. Let S be a family of closed sets, let ζ : S → [0, +∞) and assume
that for some constants c, η > 0 and for every S ∈ S there exists S̃ ∈ S such that

Ŝ ⊂ S̃, diam S̃ � c diam S and ζ(S̃) � ηζ(S), (5)

where Ŝ =
⋃

{T ∈ S : T ∩ S �= ∅, diam T � 2 diam S}. If A ⊂ X is Borel, Sµ,ζ

covers A finely and F ζ(µ, ·) is a Borel function on A with

ψζ({x ∈ A : F ζ(µ, x) = 0}) < +∞ and µ({x ∈ A : F ζ(µ, x) = +∞}) = 0, (6)
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then for every Borel set B ⊂ A we have

µ(B) =
∫

B

F ζ(µ, x) dψζ(x). (7)

The second condition of (6) corresponds precisely to the absolute continuity of
µ�A with respect to ψζ �A. This measure-theoretic area formula may recall a
precise differentiation theorem, where the third condition of (5) indeed represents a
kind of ‘doubling condition’ for the size function ζ. In fact, the doubling condition
for a measure allows us to obtain a similar formula, where the density is computed
by taking the limit of the ratio between the measures of closed balls with the same
centre and radius (see, for example, [2, §§ 2.9.8 and 2.8.17]).

On the one hand, the Federer density F ζ(µ, x) may be hard to compute, depend-
ing on the space X. On the other, (7) requires neither special geometric properties
for X, such as those of the Besicovitch covering theorem (see the general condition
2.8.9 of [2]), nor an ‘infinitesimal’ doubling condition for ψζ �A, as in [2, theo-
rem 2.8.17]. Moreover, there are no constraints that prevent X from being infinite
dimensional.

The absence of specific geometric conditions on X is important, especially in
relation to applications of theorem 9 to sub-Riemannian geometry, in particular for
the class of the so-called Carnot groups, where the classical Besicovitch covering
theorem may not hold. In these groups we have no general theorem to ‘differentiate’
an arbitrary Radon measure. Therefore, new differentiation theorems are important.

We provide two direct consequences of theorem 9, which correspond to the cases
where ψζ is the Hausdorff measure and the spherical Hausdorff measure, respec-
tively.

Theorem 10 (differentiation with respect to the Hausdorff measure). Let µ be a
Borel regular measure over X such that there exists a countable open covering of X
whose elements have µ finite measure. If A ⊂ X is Borel, α > 0 and Sµ,ζα covers
A finely, then dα(µ, ·) is Borel. Moreover, if Hα(A) < +∞ and µ�A is absolutely
continuous with respect to Hα �A, then for every Borel set B ⊂ A, we have

µ(B) =
∫

B

d
α(µ, x) dHα(x).

This theorem essentially assigns a formula to the density of µ with respect to
Hα. Let us recall the formula for this density:

d
α(µ, x) = inf

ε>0
{sup{Qµ,ζα(S) : x ∈ S ∈ Sµ,ζα , diam S < ε}}.

Working under the general assumption that all open balls have positive diame-
ter, we have Qµ,ζα(S) = µ(S)/ζα(S). More manageable formulae for dα(µ, ·) turn
out to be very hard to find and this difficulty is related to the geometric proper-
ties of the single metric space. On the other hand, if we restrict our attention to
the spherical Hausdorff measure, then the corresponding density θα(µ, ·) can be
computed explicitly in several contexts, where it can also be precisely interpreted
geometrically.

In this case, we assume that X is diametrically regular ; namely, for all x ∈ X and
R > 0 there exists δx,R > 0 such that (0, δx,R) � t → diam(B(y, t)) is continuous for
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every y ∈ B(x, R). This ensures that θα(µ, ·) in the next theorem is Borel. We are
now in a position to state the measure-theoretic area-type formula for the spherical
Hausdorff measure.

Theorem 11 (differentiation with respect to the spherical Hausdorff measure).
Let X be a diametrically regular metric space, let α > 0 and let µ be a Borel
regular measure over X such that there exists a countable open covering of X whose
elements have µ finite measure. If B ⊂ A ⊂ X are Borel sets and Sµ,ζb,α

covers
A finely, then θα(µ, ·) is Borel on A. In addition, if Sα(A) < +∞ and µ�A is
absolutely continuous with respect to Sα �A, then we have

µ(B) =
∫

B

θα(µ, x) dSα(x). (8)

In the sub-Riemannian framework, for distances with special symmetries and
the proper choice of the Riemannian surface measure µ, the density θα(µ, ·) is a
function that can be computed with a precise geometric interpretation. These ideas
are detailed for intrinsic surface measures in [5]. However, we expect (8) to have
further applications to computing the spherical Hausdorff measure of sets. This is
the motivation for the present work.

Here we are mainly concerned with the purely metric area formula; hence, we
provide only a glimpse of applications to the Heisenberg group, leaving details and
further developments for subsequent work.

Let Σ be a C1 smooth curve in H equipped with the sub-Riemannian distance
ρ. This distance is also called the Carnot–Carathéodory distance (see [3] for the
relevant definitions). Whenever a left-invariant Riemannian metric g is fixed on H,
we can associate Σ with its intrinsic measure µSR (see [6] for more details). We will
assume that Σ has at least one non-horizontal point x ∈ Σ; namely, TxΣ is not
contained in the horizontal subspace HxH that is spanned by the horizontal vector
fields evaluated at x [3]. Since Σ is smooth, this implies that all of these points
constitute an open subset of Σ.

If we fix the size function ζb,2(S) = diam(S)2/4 on closed balls and x is non-
horizontal, then it is possible to compute θ2(µSR, x) explicitly, to obtain

θ2(µSR, x) = α(ρ, g), (9)

where α(ρ, g) is precisely the maximum of the lengths of all intersections of vertical
lines passing through the sub-Riemannian unit ball, centred at the origin. The
length of intersections is computed with respect to the scalar product given by the
fixed Riemannian metric g at the origin. We observe that (9) does not depend on
the transversality of TxΣ with respect to HxH, since this factor is included in the
definition of µSR [6]. As an application of theorem 11, we obtain

µSR = α(ρ, g)S2 �Σ,

where S2 is the spherical Hausdorff measure induced by ζb,2. The appearance of the
geometric constant α(ρ, g) is a new phenomenon, due to the use of Federer’s density.
The non-convex shape of the sub-Riemannian unit ball centred at the origin allows
α(ρ, g) to be strictly larger than the length β(ρ, g) of the intersection of the same
ball with the vertical line passing through the origin. The special non-convex shape
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of the sub-Riemannian unit ball shows that θ2(µSR, x) and the upper spherical
density

Θ∗2(µSR, x) = lim sup
r→0+

µSR(B(x, r))
r2

are not equal. In fact, setting t ∈ (α(ρ, g), β(ρ, g)), we get

Θ∗2(µSR, x) = β(ρ, g) < t < α(ρ, g) = θ2(µSR, x) for all x ∈ N ,

where N = {x ∈ Σ : TxΣ is not horizontal} and we also have

µSR(N ) = α(ρ, g)S2(N ) > tS2(N ). (10)

As a consequence of (10), in the inequality (1) of [2, § 2.10.19], with µ = µSR and
A = N , the constant 2m with m = 2 cannot be replaced by 1. Moreover, even
if we weaken this inequality, replacing the Hausdorff measure with the spherical
Hausdorff measure, (10) still shows that 2m with m = 2 cannot be replaced by 1.
In the case when m = 1, it is possible to show, by an involved construction of a
purely (H1, 1) unrectifiable set of the Euclidean plane, that 2m is even sharp (see
the example in [2, § 3.3.19]). Somehow, our curve with non-horizontal points has
played the role of a more manageable unrectifiable set. Incidentally, the set N is
purely (H2, 2) unrectifiable with respect to ρ (see [1]).

The connection between rectifiability and densities was pointed out by Preiss and
Tǐser [7], who improve in a general metric space X the upper estimate for σ1(X),
related to the so-called Besicovitch 1

2 -problem. According to [7], σk(X) for some
positive integer k is the infimum of all positive numbers t having the property that,
for each E ⊂ X with Hk(E) < +∞ and such that

lim inf
r→0+

Hk(E ∩ B(x, r))
ck2krk

> t

for Hk-almost every x ∈ E, implies that E is countably k-rectifiable, where Hk

arises from the Carathéodory construction of size function ζ(S) = ck diam(S)k.
If we equip H with the so-called Korányi distance d, then a different application

of theorem 11 gives a lower estimate for σ2(H, d). In fact, we can choose Σ0 to be
a bounded open interval of the vertical line of H passing through the origin. This
set is purely (H2, 2) unrectifiable. We define ζd

b,2(S) = diamd(S)2/4 on closed balls,
where the diameter diamd(S) refers to the distance d, and consider the intrinsic
measure µSR of Σ0. By the convexity of the d-unit ball centred at the origin, the
corresponding Federer density θ2

d(µSR, x) at a non-horizontal point x satisfies

θ2
d(µSR, x) = α(d, g),

where α(d, g) is the length of the intersection of the Korányi unit ball centred at the
origin with the vertical line passing through the origin. Using the previous notation,
by theorem 11 we get

µSR = α(d, g)S2
d �Σ0,

where S2
d is the spherical Hausdorff measure induced by ζd

b,2. Since we have

lim
r→0+

S2
d �Σ0(B(x, r))

r2 = lim
r→0+

µSR(B(x, r))
α(d, g)r2 = lim

r→0+

µSR(B(x, r))
α(d, g)r2 = 1,
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and an easy observation shows that S2
d �Σ0 � 2H2

2 �Σ0, it follows that

1
2

= lim
r→0

S2
d �Σ0(B(x, r))

2r2 � lim inf
r→0+

H2
d(Σ0 ∩ B(x, r))

r2

� lim
r→0+

S2
d �Σ0(B(x, r))

r2

= 1.

This implies that σ2(H, d) � 1
2 . Up to this point, we have seen how the geometry of

the sub-Riemannian unit ball affects the geometric constants in estimates between
measures. However, the opposite direction is also possible. In fact, considering the
previous subset N and taking into account (1) of [2, theorem 2.10.19] with m = 2,
we get

µSR(N ) � 4β(ρ, g)S2(N );

hence, the equality in (10) leads us to the estimate

1 <
α(ρ, g)
β(ρ, g)

� 4.

It turns out to be rather striking that abstract differentiation theorems for measures
can provide information on the geometric structure of the sub-Riemannian unit
ball. Precisely, we cannot find any left-invariant sub-Riemannian distance ρ̃ in the
Heisenberg group such that the geometric ratio α(ρ̃, g)/β(ρ̃, g) is greater than 4.
There is still a number of related questions, so this paper may be seen as a starting
point for establishing deeper relationships between the results of sub-Riemannian
geometry and measure-theoretic results.

In particular, further motivation to study sub-Riemannian metric spaces may also
arise from abstract questions of geometric measure theory. Clearly, more investiga-
tions are needed in order to understand and carry out this demanding programme.
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4 B. Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff

measure. Proc. Am. Math. Soc. 121 (1994), 113–123.
5 V. Magnani. A new differentiation, shape of the unit ball and perimeter measure. Preprint,

2014. (Available at http://arxiv.org/abs/1408.4726.)
6 V. Magnani and D. Vittone. An intrinsic measure for submanifolds in stratified groups. J.

Reine Angew. Math. 619 (2008), 203–232.
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