
Math. Struct. in Comp. Science (2016), vol. 26, pp. 829–867. c© Cambridge University Press 2014

doi:10.1017/S0960129514000401 First published online 10 November 2014

On the reification of semantic linearity

MARCO GABOARDI†, LUCA PAOLINI‡ and MAURO PICCOLO‡

†School of Computing, University of Dundee, Dundee, DD1 4HN, Scotland, U.K.
‡Dipartimento di Informatica, Università degli Studi di Torino, C.so Svizzera 185, 10149 Torino, Italy

Email: paolini@di.unito.it

Received 21 April 2013; revised 19 November 2013

Linearity is a multi-faceted and ubiquitous notion in the analysis and development of

programming language concepts. We study linearity in a denotational perspective by picking

out programs that correspond to linear functions between domains.

We propose a PCF-like language imposing linear constraints on the use of variable to

program only linear functions. To entail a full abstraction result, we introduce some

higher-order operators related to exception handling and parallel evaluation. We study

several notions of operational equivalence and show them to coincide with our language.

Finally, we present a new operational evaluation of the language that provides the base for a

real implementation. It exploits the denotational linearity to provide an efficient evaluation

semantics SECD-like, that avoids the use of closures.

1. Introduction

Linearity is a key tool to support a conscious use of resources in programming languages.

A non-exhaustive list of its uses includes garbage collection, memory management and

aliasing control, description of digital circuits, process channels and messages management,

languages for quantum computations, etc. A survey of several variants of linear type

systems proposed in the literature is in Walker (2005). This broad spectrum of applications

highlights the fact that linearity is a multi-faceted abstract concept which can be considered

in different perspectives. For instance, notions of syntactical linearity can be considered

when variables are used once (in suitable senses), e.g. Alves et al. (2007) and Hindley

(1989). On the other hand, if redexes cannot be discarded or duplicated during reduction,

like in Hindley (1989), then a kind of operational linearity is achieved. This is related to

the notion of simple term in λ-calculus (Klop 2007), which suggests a kind of linearity on

reductions, unrelated from a specific strategy.

Although ideas that can be tracked to linearity have been implicitly used in pro-

gramming languages for many years, the introduction of linear logic (Girard 1987) is a

redoubtable milestone in this setting. Linear logic arises from a sharp semantic analysis

of stable domains where stable functions have been decomposed into linear functions

and exponential domain constructors. Such a decomposition is patently reflected in the

syntax of linear logic. Moreover, it suggests a new approach to linearity: denotational

linearity. In a programming perspective, denotational linearity says that programs (i.e.

closed terms) should correspond via a suitable interpretation to linear function on some

specific domains, e.g. the linear models introduced in Bucciarelli et al. (2010), Bucciarelli

and Ehrhard (1993), Girard (1987) and Huth (1993). By tackling this correspondence

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 830

minutely, some important contributions to the theory of programming can be obtained.

For instance, if the intended domain includes all the computable functions, this analysis

provides Turing-complete languages with weak syntactic linear constraints on variables,

and new linear operators that, in a higher-type computability perspective (Longley 2000;

Normann 2006), increase the expressivity of linear languages.

Following the denotational linearity approach, we study (recursive) linear functions in

the type theory L of coherence spaces and linear functions introduced by Girard (1987).

An attractive aspect of this type theory is the simplicity of its formulation. We present

a language, named S�PCF� that is fully abstract for this type theory. S�PCF� can be

described as the combination of the following ingredients.

— A core PCF-like language, named core-S�PCF, characterized by a constrained man-

agement of variables and by an operational semantics based on a careful evaluation of

program mixing call-by-name and call-by-value. This core language is Turing complete

and can be soundly interpreted in L.

— A higher-order operator, named which?, that corresponds to a primitive form of

exception handling. which? permits to obtain besides the result of an evaluation also

some information about the way the result is computed.

— A higher-order operator, named �et-�or, that permits to explore in parallel different

program branches. A distinguished feature of �et-�or is that it permits to share some

information between the different branches.

The combination of the core language with the two higher-order linear operators

which? and �et-�or is essential to gain a finite definability result (Curien 2007), i.e. the

definability of all the finite cliques of the considered linear model. The finite definability

result is not only the key ingredient to obtain the full abstraction result, but it is also

important to show the programming patterns that the language offers. The importance of

the full abstraction comes from the fact that it allows us to reason about program in a

compositional way. Moreover, full abstraction allows us also to prove the coincidence of

three different definitions of operational equivalence. These definitions make the reasoning

simpler on the equivalence between programs by permitting to consider restricted families

of contexts.

An interesting remark is that S�PCF� is neither syntactically linear nor operationally

linear in tight sense, albeit its finitary fragment (the set of programs which does not involve

recursion) respects some syntactical and operational forms of linearity (see Remark 1).

We present S�PCF� by means of a self-explanatory operational semantics that, quite

inefficiently, requires for some operators an infinite branching search in the evaluation

tree. Then, we show that S�PCF� programs can be evaluated in an efficient way by

means of another abstract machine that traces out and records linear information to

finitely prune the infinite branching search tree of the evaluation of S�PCF�. The latter

tracing operational machine is a very concrete by-product of our results, since it tailors

on denotationally linear constraints a very efficient evaluation of a Turing-complete

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 831

programming language endowed of parallel features and exception-like mechanism,

namely S�PCF�.

The study of the relations between languages and models is a classic theme in

denotational semantics (Curien 2007; Ong 1995). The full abstraction for PCF has

led to the development of very sophisticated semantics techniques (as Abramsky et al.

(2000) and Hyland and Ong (2000)) and revealed relevant programming principles and

operational constructions. In particular, several works have studied how to extend PCF by

different operators in order to achieve full abstraction compared to some classical models.

For example, this approach has been followed by Plotkin (1977) for the continuous Scott

model, by Berry and Curien (1982) for the sequential algorithms model, by Abramsky and

McCusker, (1996) for a particular game model, by Longley (2002) for the strongly stable

model and by Paolini (2006) for the stable model. Remark that all higher-type operators

introduced in the works above cannot be directly interpreted in the linear model. This is

another motivation for our search for new operators.

Many linear languages with different goals have been proposed so far in the literature.

Recently, in the studies of syntactical linearity, Alves et al., (2006; 2007; 2010) have

proposed several syntactical linear languages in order to characterize different classes

of computable functions. To explore their extension, higher-type semantically-motivated

operators, is another interesting open problem.

Two PCF-like languages embedding linearity notions have been proposed in Bierman

(2000) and Bierman et al. (2000). These languages are not denotationally linear, in the

sense that not all their closed terms are in correspondence with linear functions of a

suitable domain. In particular, they cannot be interpreted in the linear model considered

here. Despite this fact, the authors of Bierman (2000) and Bierman et al. (2000) give some

interesting results on the relations between several forms of operational reasoning, in the

context of the linear decomposition. Our results on the coincidence of three operational

equivalences can be viewed as further contributions in those topics.

The results we present in this paper extend and complete our previous works: Gaboardi

and Paolini (2007), Gaboardi et al. (2011) and Paolini and Piccolo (2008). The core-

S�PCF� language and the which? operator were first introduced by Gaboardi and Paolini

(2007) and Paolini and Piccolo (2008), respectively. Paolini and Piccolo (2008) proved the

language combining these two components, named S�PCF, correct for the type theory

L. Moreover, they showed a full abstraction result for stable closed terms, i.e. terms not

containing free occurrences of a particular kind of variables used for recursion. Gaboardi

et al. (2011) extended S�PCF by means of the �et-�or operator obtaining in this way

the full abstraction for terms that can contain free occurrences of stable variables. The

enhanced tracing operational machine we present in this paper greatly improves the

efficiency of tracing operational machine defined in Gaboardi et al. (2011).

1.1. Synopsis

In Section 2, we introduce the core-S�PCF� language, the linear type theory L and

the interpretation. We show that the interpretation is sound and that a full abstraction

result holds for stable closed terms. In Section 3, we show that for the core language of

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 832

Section 2, a more general full abstraction result does not hold. In Section 4, we introduce

the two operators which? and �et-�or, completing in this way the introduction of

S�PCF�. We provide some programming examples and we prove finite definability and full

abstraction for it. In Section 5, we show the coincidence of three operational equivalences.

In Section 6, we give an abstract machine for S�PCF� that traces the linear use of terms.

This provides the base for an efficient implementation of our language.

2. The core of a linear programming language

As described in the introduction, following the denotational linearity approach, our aim

is to design a programming language corresponding to a particular linear type theory L.

Here we start by presenting a core part of this language, named core-S�PCF, then we

present the type theory L and we show how core-S�PCF can be soundly interpreted in L
and how a limited form of full abstraction can be obtained.

The types of the language are defined as following:

σ, τ ::= ι (natural numbers)

| σ � τ (arrow or function type).

As usual, � associates to the right so σ1 � σ2 � σ3 is read as σ1 � (σ2 � σ3).

Let Varσ be a numerable set of variables of type σ. If σ �= ι then, let SVarσ be

a numerable set of variables disjoint from Varσ . Variables in Varι are named ground

variables. Variables in �Var =
⋃

σ,τ∈T Varσ�τ are named linear variables. Variables in

SVar =
⋃

σ �=ι SVarσ are named stable variables. Latin letters xσ, yσ, fσ, . . . denote variables

in Varσ . Moreover, �σ0 , �
σ
1 , �

σ
2 , . . . denote stable variables. Last, � is a wild-card for all the

variables.

Definitiona 1. Core-S�PCF pre-terms are defined by the following grammar:

M ::= �τ variable

| 0 zero

| s successor

| p predecessor

| �if M M M conditional

| MM application

| λxσ.M λ-abstraction

| μ�σ.M μ-abstraction

We write n for s(· · · (s0) · · · ) where s is applied n-times to 0, and we denote N =

{0, . . . , n, . . .} the set of numerals. When the type information is irrelevant, we will omit

type labels. We partitioned variables in three main categories: Varι, �Var,SVar. Other

choices are possible, but we preferred this one in order to emphasize their differences.

The two kinds of abstraction act as binders in the standard way, λ-abstraction binds

ground and linear variables (however, the first set of variables entails a call-by-value

policy and the latter a call-by-name one), while μ-abstraction binds stable ones. Free

variables of any kind (FV), free linear variables (�FV), free stable variables (SFV), closed

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 833

Table 1. (a) Type system and (b) operational semantics.

� 0 : ι
(z)

� s : ι � ι
(s)

� p : ι � ι
(p)

�σ � � : σ
(v)

Γ � M : τ
Γ, xι � M : τ

(gw)
Γ � M : τ

Γ, �σ � M : τ
(sw)

Γ, x1
ι, x2

ι � M : τ

Γ, xι � M[x/x1, x2] : τ
(gc)

Γ, xσ � M : τ

Γ � λxσ.M : σ � τ
(λ)

Γ � M : ι Δ � L : ι Δ � R : ι
Γ,Δ � �if M L R : ι

(lif)

Γ, �σ1 , �
σ
2 � M : τ

Γ, �σ � M[�/�1, �2] : τ
(sc)

Γ, �σ � M : σ Γ�� = �

Γ � μ�σ.M : σ
(μ)

Γ � M : σ � τ Δ � N : σ
Γ,Δ � MN : τ

(ap)

0 ⇓ 0
(0)

M ⇓ n

s M ⇓ s n
(s)

M ⇓ s n

p M ⇓ n
(p)

M ⇓ 0 L ⇓ m

�if M L R ⇓ m
(ifl)

M ⇓ s(n) R ⇓ m

�if M L R ⇓ m
(ifr)

M[N/f]P1 · · · Pi ⇓ n

(λfσ�τ.M)NP1 · · · Pi ⇓ n
(λ�)

M[μ�.M/�]P1 · · · Pi ⇓ n

(μ�.M)P1 · · · Pi ⇓ n
(μ)

N ⇓ m M[m/x]P1 · · · Pi ⇓ n

(λxι.M)NP1 · · · Pi ⇓ n
(λι)

and open terms are defined as expected. M[N/�] denotes the capture-free substitution of

all free occurrences of � in M by N. As usual application associates to the left, i.e. MN1 . . . Nk
abbreviates (. . . ((MN1)N2) . . . Nk) and we routinely omit parenthesis as we safely can.

Core-S�PCF terms are pre-terms that are well typed. We consider typing judgments of

the shape Γ � M : σ where M is a pre-term, σ is a linear type and Γ is a basis, that is a

finite list of variables in Var ∪ SVar, where each variable appears at most once. We denote

Γ�S (resp Γ� ι, Γ��) the restriction of the basis Γ containing only variables in SVar (resp.

in Varι, �Var). We denote Γ,Δ, Γ ∪ Δ and Γ ∩ Δ the disjoint union, the union and the

intersection of two basis respectively. We write Mσ to signify that there is a basis Γ such

that Γ � M : σ.

Definitiona 2. The pre-terms typable by using the type system in Table 1(a) are the terms

of core-S�PCF.

We remark that the type system contains weakening and contraction rules only for

ground and stable variables (viz. (gw), (sw), (gc) and (sc)), while linear variables are

managed by means of linear-typing rules (the rule �if is additive). Therefore, it is easy to

check that the following rules are derivable rules in our system.

Γ1 � M : σ � τ Γ2 � N : σ Γ1�� ∩ Γ2�� = �.

Γ1 ∪ Γ2 � M N : σ

Γ0 � M : ι Γ1 � P : ι Γ2 � Q : ι Γ1�� = Γ2�� Γ0�� ∩ Γ1�� = �.

Γ0 ∪ Γ1 ∪ Γ2 � �if M P Q : ι

A closed term of ground type is called program and P denotes the set of all programs.

Definitiona 3. The evaluation relation ⇓ between programs of core-S�PCF and numerals

is the smallest relation inductively satisfying the rules of Table 1(b). For any program M,

if there exists a numeral n such that M ⇓ n then we say that M converges and we write M ⇓.

Otherwise, we say that it diverges and we write M ⇑.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 834

We remark that the evaluation is carried out in a call-by-name fashion by the rule

λ�, and in a call-by-value fashion by the rule λι. Patently all terms appearing in the

evaluation rules are well typed. To be more precise, in the rule λ�, we are assuming that

τ = σ1 � . . . � σi � ι where σk is the type of Pk . Moreover, note that the evaluation of

the program p 0 diverges.

Remark 1. Note that the finitary fragment of S�PCF (i.e. the language obtained by

avoiding stable variables and μ-abstractions) contains terms like λfι�ι.�if 5 (f 0) (f 1)

and λfι�ι�ιxι.fxx which are not syntactically linear. Moreover, S�PCF is not operationally

linear because in the following term

(λfι�ι.�if 5 (f 0) (f 1 ))((λxι.λyι.y)5)

the redex (λxι.λyι.y)5 is duplicated during the evaluation.

We name some terms. Let Ωι :::=== p 0 and inductively, if σ0 = μ1 � . . . � μm � ι for

some m ∈ N, then

Ωσ0�...�σn�ι :::=== λxσ00 . . . xσnn .�if(Ωσ1�...�σn�ιxσ11 . . . xσnn )(x0Ω
μ1 . . . Ωμm )(x0Ω

μ1 . . . Ωμm ).

If σ �= ι then it is possible to define Ωσ as μ�σ.� and, still, to satisfy the Lemma 1.

Nevertheless, the crucial use of Ωσ is to define the approximants, i.e. terms approximating

μ-abstraction that avoids the use of (additional) μ-abstractions. In this way, we can prove

the Lemma 5 by adapting the Tait technique used in Plotkin (1977). By using Ωσ , it is

possible to define approximants of a term having shape μ�.Mσ as follows,

μ0�.Mσ :::=== Ωσ, μn+1�.Mσ :::=== M[μn�.M/�].

It is easy to check that the μ-abstractions in μn�.Mσ are strictly less than that in μ�.Mσ .

Lemma 1. Let Mσ00 , . . . , Mσmm be a sequence of closed terms (m � 0).

1. Ωσ0�...�σm�ιM0 . . . Mm is a program and Ωσ0�...�σm�ιM0 . . . Mm ⇑.

2. Let (μ�.Pσ)M0 . . . Mm be a program.

(μ�.Pσ)M0 . . . Mm ⇓ n if and only if (μk+1�.Pσ)M0 . . . Mm ⇓ n , for some k ∈ N.

Proof. (1) The proof can be done by induction on m. (2) Both implications can be

proved by induction on derivations proving the hypothesis.

2.1. Pairing

In the following sections, we need pairing and projections operators on natural numbers.

This can be defined as follows. If m, n ∈ N then < m, n >= 2m(2n + 1) − 1 is our pairing

function. Projections from z ∈ N can be defined by functions

pi1(z) = min
x�z

[(∃y)�z(z =< x, y >)] ; pi2(z) = min
y�z

[(∃x)�z(z =< x, y >)] .

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 835

Such functions induce a bijection, details can be found either, in p.41, p.73 of Cutland

(1980) or in p.47 of Davis and Weyuker (1983). The reader can easily verify that

Sum = μ�.λxιyι.�if x y (� (p x) (s y))

Prod ≡ μ�.λxιyι.�if x 0 (Sum y (� (p x) y))

Exp2 ≡ μ�.λxι.�if x 1 (Prod 2 (� (p x)))

respectively define the addition, the multiplication and the exponentiation of base 2.

Hence, the above function < , > is defined by the program

�−,−
 ≡ λxιyι.p
(
Prod (((Exp2 x)))(((s(Prod 2 y))))

)
.

Clearly, our pairing-program is total and correct i.e. �n, m
 ⇓ < n, m > for all numerals n, m.

So, we will write M ⇓ �n, m
, for some M, has a shorthand for ∃k, M ⇓ k and �n, m
 ⇓ k.

The definition of the terms πππ1 and πππ2 corresponding to projection (i.e. which are such

that πππ1 �n, m
 ⇓ n and πππ2 �n, m
 ⇓ m) turns out to be an easy exercise and it is left to the

reader. Again, we write M ⇓ πππi n (i ∈ [1, 2]) to mean ∃k, M ⇓ k and πππi n ⇓ k.

2.2. Operational equivalence

There is a notion of program equivalence which programmers understand well: two

program fragments are equivalent if they can always be interchanged without affecting the

visible or observable outcome of the computation.

The set of σ-context Ctxσ is defined as:

C[σ] ::= [σ] | �τ | 0 | s | p | �if C[σ] C[σ] C[σ] | (C[σ]C[σ]) | (λxσ.C[σ]) | μ�.C[σ].

C[Nσ] denotes the result obtained by replacing all the occurrences of [σ] in the context C[σ]

by the term Nσ and by allowing the capture of its free variables.

Definitiona 4 (standard operational equivalence). Let Mσ, Nσ be terms.

1. M �σ N whenever, for all C[σ] s.t. C[M], C[N] ∈ P, if C[M] ⇓ n then C[N] ⇓ n.

2. M ≈σ N if and only if M �σ N and N �σ M.

The above definition is standard, however, we introduce an alternative equivalence

definition that will allow to study the formal relationship between the two binders we

introduced.

Definitiona 5 (fix-point operational equivalence). Let Mσ, Nσ be such that

SFV(M),SFV(N) ⊆ {�σ1

1 , . . . , �σnn }.
1. M �σ N whenever, for all Pσ11 , . . . Pσnn , for all C[σ] s.t.

C[M[P1/�1, . . . , Pn/�n]], C[N[P1/�1, . . . , Pn/�n]] ∈ P if C[M[P1/�1, . . . , Pn/�n]] ⇓ n then

C[N[P1/�1, . . . , Pn/�n]]⇓ n.

2. M ∼σ N if and only if M �σ N and N �σ M.

It is easy to verify that �σ is a preorder and ∼σ is an equivalence. Note that the

comparison between the fix-point operational equivalence and the standard one is not

immediate, since there is no obvious way to implement substitution of a stable variable

with an arbitrary term. This issue will be discussed in detail in Section 6.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 836

2.3. Coherence spaces

We are interested in the least full subcategory L of coherence spaces, including the

flat domain of natural numbers and the coherence spaces of linear functions between

domains in the category itself. Coherence spaces are a simple framework for Berry’s

stable functions (Berry 1978), developed by Girard (1987). This section does not aim to

provide an exhaustive presentation of these arguments, it just aims to make the paper

self-contained. More details can be found in Girard (1986, 1987) and Girard et al. (1989).

A coherence space X is a pair 〈|X|,	
X〉, where |X| is a set of tokens called the web

of X and 	
X is a reflexive and symmetric relation between tokens of |X| called the

coherence relation on X. The strict incoherence 
X is the complementary relation of 	
X;

the incoherence 
	X is the union of relations 
X and =; the strict coherence 	X is the

complementary relation of 
	X . A clique x of X is a subset of |X| containing pairwise

coherent tokens. The set of cliques of X is denoted Cl(X), while the set of finite cliques is

denoted Clfin(X). Two cliques x, y ∈ Cl(X) are compatible when x ∪ y ∈ Cl(X).

If X is a coherence space then Cl(X) form a cpo (indeed, a Scott-domain) with respect

to the set-theoretical inclusion. In particular,

— � ∈ Cl(X) is the bottom element and {a} ∈ Cl(X), for each a ∈ |X|,
— if y ⊆ x and x ∈ Cl(X) then y ∈ Cl(X),

— if D ⊆ Cl(X) is directed then
⋃
D ∈ Cl(X),

— the set of compact elements is Clfin(X).

Definitiona 6. Let X and Y be coherence spaces.

1. The linear implication X � Y is the coherence space having |X � Y | = |X| × |Y | as

web, while (a, b) ΠX�Y (a′, b′) iff a ΞX a′ implies b ΠY b′.

2. A linear morphism between X and Y is an element of Cl(X � Y ).

3. The tensor product X ⊗ Y is the coherence space having |X ⊗ Y | = |X| × |Y | as web,

while (a, b) ΞX⊗Y (a′, b′) if a ΞX a′ and b ΞY b′.

We denote with LinCoh the category whose objects are coherence spaces and whose

morphisms are linear morphisms between coherence spaces. (LinCoh,⊗, 1,�) is a sym-

metric monoidal closed category, where 1 is the coherence space having a singleton set as

web.

Definitiona 7. Let X,Y be two coherence spaces. A function f : Cl(X) → Cl(Y ) is

continuous whenever, it is monotone and it commutes with the union of directed sets of

cliques. A continuous function f : Cl(X) → Cl(Y ) is stable when ∀x, x′ ∈ Cl(X), x and x′

compatible implies f(x∩x′) = f(x) ∩ f(x′). A function f : Cl(X) → Cl(Y ) is linear when it

is stable (so, continuous), f(�) = � and for all x, x′ ∈ Cl(X), if x and x′ are compatible

then f(x ∪ x′) = f(x) ∪ f(x′).

Linear morphisms are in bijection with linear functions between cliques.

The trace of a linear function f : Cl(X) → Cl(Y ) is Tr(f) = {(a, b) | a ∈ |X|, b ∈ f({a})}.
Given t ∈ Cl(X � Y ) and x ∈ Cl(X), let us define the map F(t) : Cl(X) → Cl(Y ) as

F(t)(x) = {b ∈ |Y | | ∃a ∈ x, (a, b) ∈ t}. (1)

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 837

Proposition 1.

1. If f : Cl(X) → Cl(Y ) is a linear function then Tr(f) ∈ Cl(X � Y ).

2. If t ∈ Cl(X � Y ) then F(t) : Cl(X) → Cl(Y ) is a linear function.

3. Tr(F(t)) = t, for all t : Cl(X � Y ).

4. F(Tr(f)) = f, for all f : Cl(X) → Cl(Y ).

The basis of our model is the countable flat domain. Let N denotes the space of natural

numbers, namely (|N|,	
N) such that |N| :::=== N (the latter is the set of natural numbers)

and m 	
N n if and only if m = n, for all m, n ∈ |N|.

Definitiona 8 (linear model). The linear model L is the type structure generated by the

coherence space N and the arrow �.

To provide the interpretation of the recursion in core-S�PCF, we discuss the fix-point

operator on coherence domain. More precisely, if X is a coherence space then we look for

fixX : (Cl(X) → Cl(X)) → Cl(X) such that fixX(f) = f(fixX(f)) for all stable functions

f : Cl(X) → Cl(X). Given any coherence spaces X,Y , we remind that the set of stable

functions between Cl(X) and Cl(Y ) together with stable ordering† form a Scott domain.

Thus we define a family of maps‡ fixnX : (Cl(X) → Cl(X)) → Cl(X) by induction on

n ∈ N:

fix0
X = –f : Cl(X) → Cl(X).� fixn+1

X = –f : Cl(X) → Cl(X).f(fixnX(f)).

By using Knaster–Tarski fix point theorem, we can define fixX =
∨

n fix
n
X . In the sequel,

we will omit the subscript X on fixX when it is clear from the context or uninteresting.

Proposition 2. Let X be a coherence space and let f : Cl(X) → Cl(X), g : Cl(X) → Cl(N)

be two stable functions and let p ∈ N. If g(fix(f)) = {p}, then there is k ∈ N such that

g(fixk(f)) = {p}.

We stress the fact that fix is a stable function which is not linear. We use fix in a

restricted way, it is applied only to stable endo-functions in L, and it gives back traces of

linear functions. The Kleisli category on the finite-clique comonad LinCoh! is equivalent

to the category of coherence spaces and stable functions. This category is Cartesian closed

and it admits a least fix point operator, which corresponds to the above defined fix.

2.4. Linear interpretation

We define a standard interpretation (Plotkin 1977) such that �ι� = N and �σ � τ� =

�σ� � �τ�. An environment ρ ∈ Env is a total function mapping a variable xσ in a

token a ∈ |�σ�| and a stable variable �σ in a finite clique x ∈ Clfin(�σ�). We remark that

† Let f, g : Cl(X) → Cl(Y ) two stable functions. The stable ordering f � g is defined as ∀x, y ∈ Cl(X), x ⊆ y

implies f(x) = f(y) ∩ g(x).
‡ Let A and B be two sets, let x be an element of A and let E(x) be an expression that may contain x and

corresponding to an element of B. –x : A.E(x) is the function from A to B mapping any element x ∈ A into

the element E(x) ∈ B, that is the function f : A → B such that f(x) = E(x). In p. 49 of Gunter (1992), the

notation x �→ E(x) is used with the same meaning of –x.E(x).

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 838

Table 2. Linear interpretation map.

�0ι�ρ = {0} �sι�ι�ρ = {(n, n + 1) | n ∈ N} �pι�ι�ρ = {(n + 1, n) | n ∈ N}

�xσ�ρ = {ρ(xσ)} ��σ�ρ = ρ(�σ) �Mσ�τNσ�ρ = F (�M�ρ)�N�ρ

�(�if Mι Nι Lι)ι �ρ = {n ∈ N | �Mι�ρ = {0};�Nι�ρ = {n}} ∪
{n ∈ N | �Mι�ρ = {m + 1};�Lι�ρ = {n}, m ∈ N}

�λxσ.Mτ�ρ = {(a0, b) ∈ |�σ � τ�| | b ∈ �M�ρ[xσ := a0]}

�(μ�σ.Mσ)σ�ρ = fix(–x ∈ Cl(�σ�).
⋃

x′⊆finx
�M�ρ[� := x′])

the interpretation of xι cannot be associated to an empty cliques, so it is subjected to

restrictions (see cases 4 and 5 of Lemma 2). The set of environments is denoted by Env.

Let �a be a sequence of tokens of a coherence space, let �x be a sequence of non-stable

variables of the same length of�a; ρ[�x :=�a] is the environment such that ρ[�x :=�a](x′) = ai
in case x′ is the ith element of �x, otherwise ρ[�x := �a](x′) = ρ(x′). If �x is a sequence of

finite cliques and �� is a sequence of stable variables of the same length then ρ[�� := �x] is

defined likewise. We will write x ⊆fin y when x ⊆ y with x finite.

Definitiona 9. Let Mσ, Nσ and ρ ∈ Env. The linear interpretation �Mσ� : Env → Cl(�σ�) is

defined in Table 2 using F as defined in Equation 1 and fix which is the least fix point

operator.

Looking at the interpretation, we justify the introduction of stable variables. Those

variables are used in order to program continuous (w.r.t. stable order) non-strict functions

from a linear coherence space L to itself, so their fix-points will be always an element

of L. Notice that, syntactically, a stable variable will be used without linear constraints.

We do not permit to λ-abstract stable variables, we use them only in order to obtain

fix-points. Permitting the λ-abstraction of stable variable would produce terms defining

non-linear functions, which is against our wishes.

Two terms Mσ and Nσ are denotationally equivalent if and only if �Mσ�ρ = �Nσ�ρ for

every ρ. The interpretation of closed terms is invariant with respect to environments,

thus in such cases the environment can be omitted. Next lemmas are standard. The basic

properties of a λ-model are recalled in Lemma 2.

Lemma 2. Let Mσ, Nτ and ρ, ρ′ ∈ Env.

1. If ρ(�) ⊆ ρ′(�) for each � ∈ SFV(M), then �M�ρ ⊆ �M�ρ′.

2. If Mσ[N/�τ] ∈ S�PCF then �Mσ[N/�τ]�ρ =
⋃

x⊆fin�N�ρ
�M�ρ[�τ := x].

3. If Mσ[N/xτ] ∈ S�PCF with τ �= ι then �Mσ[N/xτ]�ρ =
⋃

a∈�N�ρ �M�ρ[x := a].

4. If Mσ[n/xι] ∈ S�PCF then �Mσ[n/xτ]�ρ = �M�ρ[x := n].

5. �(λxι.M)n� = �M[n/xι]�.

6. �(λfσ.M)N� = �M[N/fσ]�.

7. ��if 0 L R � = �L� and ��if n + 1 L R � = �R�.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 839

8. �μ�σ.M� = �M[μ�σ.M/�σ]�.
9. If σ = τ, C[σ] ∈ Ctxσ , C[M], C[N] ∈ P and �M�ρ = �N�ρ then �C[M]� = �C[N]�.

Proof. (1)–(4) follow by induction on the structure of Mσ . The proofs of (5)–(8) follow

by definition of interpretation and by points (2), (3) and (4). The proof of (9) follows by

induction on the structure of C[σ].

As usual, an approximation theorem for finite fixpoint semantics holds.

Lemma 3.

1. �μk�.M�ρ = fixk(–x ∈ Cl(�σ�).
⋃

x′⊆finx
�M�ρ[� := x′]).

2. �μ�.Mσ�ρ =
⋃

n∈N �μn�.Mσ�ρ, for all σ ∈ T.

Proof. (1) Obvious. (2) Since �μn+1�.Mσ�ρ = �Mσ�ρ[� := �μn�.Mσ�ρ], the proof is easy.

Theorem 1. If M ⇓ n then �M� = �n�.

Proof. By induction on the derivation of M ⇓ n. Lemma 2 is crucial to deal with the

various inductive steps.

2.5. Adequacy and correctness

The denotational semantics is said to be adequate when �M� = �n� and M ⇓ n are logically

equivalent for any program M and numeral n. We straightforward adapt a proof of Plotkin

(1977) for Scott-domains, based on a computability argument in Tait style.

Definitiona 10. The ‘computability predicate’ is defined by the following cases.

— Case FV(Mσ) = �.

– Subcase σ = ι. Comp(Mι) if and only if ∀n, �M� = �n� implies M ⇓ n.

– Subcase σ = μ � τ. Comp(Mμ�τ) if and only if Comp(Mμ�τNμ) for each closed Nμ

such that Comp(Nμ).

— Case FV(Mσ) = {�τ1

1 , . . . , �
τn
n }, for some n � 1.

Comp(Mσ) if and only if Comp(M[N1/�1, . . . , Nn/�n]) for each closed Nτii s.t. Comp(Nτii ).

Lemma 4 states a standard equivalent formulation of computability predicate.

Lemma 4. Let Mτ1�···�τm�ι and FV(M) = {�μ1

1 , . . . , �μn
n } (n, m ∈ N). Comp(M) if and only if

�M[N1/�1, . . . , Nn/�n]P1 . . . Pm� = �n� implies M[N1/�1, . . . , Nn/�n]P1 . . . Pm ⇓ n for each closed

Nμii and P
τj
j such that Comp(Ni) and Comp(Pj) where i � n, j � m.

We remark that we consider substitution to all kinds of free variables.

Lemma 5. If Mσ is a term of core-S�PCF then Comp(Mσ).

Proof. By induction on the shape of M. We detail the most interesting cases.

— M = �. Let σ = τ1 � · · · � τm � ι, where m ∈ N. Let Pσ and Nτii for 1 � i � m be

closed terms such that Comp(Pσ) and Comp(Nτii ). By definition, Comp(Pσ) implies that,

if �PN1 · · · Nm� = �n� then PN1 · · · Nm ⇓ n, by definition of the computability predicate.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 840

— M = NP. Assume Nτ�σ and Pτ for types σ and τ. By induction hypothesis Comp(Nτ�σ)

and Comp(Pτ) and the proof follows by definition of the computability predicate.

— M = λx.Q. Assume xμ and Qτ for types μ and τ. Let FV(M) = {�μ1

1 , . . . , �μk
k } for k � 0

and τ = τ1 � · · · � τh � ι, where h � 0. Let Nμ1

1 , . . . , Nμkk , Pμ0 , P
τ1

1 , . . . , P
τh
h be closed

terms such that Comp(Ni) and Comp(Pj) for 1 � i � k and 0 � j � h respectively.

Thus Comp(Qτ[P0/x][N1/�1, . . . , Nk/�k]P1 . . . Ph), since Comp(Qτ) holds by induction

hypothesis.

Consider the case μ �= ι and �(λxμ.Qτ)[N1/�1, . . . , Nk/�k]P0 . . . Ph� = �n�.

Clearly, �Qτ[P0/x][N1/�1, . . . , Nk/�k]P1 . . . Ph� = �n� by Lemma 2 point (6). Thus

Qτ[P0/x][N1/�1, . . . , Nk/�k]P1 . . . Ph ⇓ n by induction hypothesis. Therefore,

(λxμ.Qτ)[N1/�1, . . . , Nk/�k]P0 . . . Ph ⇓ n

by the evaluation rule (λ�).

Now, suppose μ = ι and �(λxμ.Qτ)[N1/�1, . . . , Nk/�k]P0 . . . Ph� = �n�. Since linear func-

tions are strict, we must have �P0� = �m� for some m. But Comp(Pμ0) by induction and

�P0� = �m� imply P0 ⇓ m. Hence �Qτ[m/x][N1/�1, . . . , Nk/�k]P1 . . . Ph� = �n� by Lemma

2 point (5). Qτ[m/x][N1/�1, . . . , Nk/�k]P1 . . . Ph ⇓ n by induction hypothesis. The proof

follows by applying the evaluation rule (λι).

— M = �if M1 M2 M3 . Assume FV(M) = {�σ1

1 , . . . , �σn
n } and let Pσ11 , . . . Pσnn be closed terms

such that Comp(Pi) for all i. Suppose that �M[P1/�1, . . . , Pn/�n]� = �m�. Then, by

interpretation, one of the following cases holds:

– �M1[P1/�1, . . . , Pn/�n]� = �0� and �M2[P1/�1, . . . , Pn/�n]� = �m�,

– �M1[P1/�1, . . . , Pn/�n]� = �k + 1� and �M3[P1/�1, . . . , Pn/�n]� = �m�.

In the first case, we have M1[P1/�1, . . . , Pn/�n] ⇓ 0 and M2[P1/�1, . . . , Pn/�n] ⇓ m by

inductive hypothesis; thus we conclude by the evaluation rule (ifl). For the other case,

we conclude again by using inductive hypothesis and the evaluation rule (ifr).

— M = μ�.N, so the typing constraints imply Mσ, Nσ for the same type σ �= ι. Let FV(M) =

{�μ1

1 , . . . , �μk
k } for k � 0 and σ = τ1 � · · · � τh � ι, where h � 0. Assume h � 1

and, Nμ1

1 , . . . , Nμkk , Pτ1

1 , . . . , P
τh
h be closed terms such that Comp(Ni) and Comp(Pj) for

1 � i � k and 1 � j � h respectively. Let �(μ�.Nσ[N1/�1, . . . , Nk/�k])P1 . . . Ph� = �n�. By

Proposition 2, there is k such that

F
(
fixk

(
–x ∈ Cl(�σ�).

⋃
x′⊆finx

�M[�N/��]�ρ[� := x′]
))

(�P1�ρ) . . . (�Ph�ρ) = �n�.

Hence �(μ�.Nσ[N1/�1, . . . , Nk/�k])P1 . . . Ph� = �(μk�.Nσ[N1/�1, . . . , Nk/�k])P1 . . . Ph� for

some k ∈ N, by Lemma 3. Thus, μk�.Nσ[Q′/v1, . . . , Q′/vm]P1 . . . Ph ⇓ n, by the previous

points of this lemma. The proof follows by Lemma 1.

Corollary 1 (adequacy). For all M ∈ P, for all n, �M�ρ = �n�ρ if and only if M ⇓ n.

As usual the adequacy implies the correctness, i.e. the denotational equivalence implies

the operational one. Note that correctness implies that our terms are strict in all arguments,

for all orders.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 841

Theorem 2 (correctness). Let Mσ, Nσ be terms of core-S�PCF. If �M�ρ = �N�ρ, for each

ρ ∈ Env, then M ≈σ N.

Proof. Let C[σ] such that C[M], C[N] ∈ P. If C[M] ⇓ n for some value n, then �C[M]� = �n�

by Theorem 1. Since �C[N]� = �C[M]� = �n� by Lemma 2, C[N] ⇓ n by adequacy. By

definition of standard operational equivalence, the proof is done.

We can reuse the same argument to prove the correctness for the fix-point operational

equivalence (Definition 5).

Proposition 3. Let Mσ, Nσ ∈ core-S�PCF. If �M�ρ = �N�ρ, for each ρ ∈ Env, then M ∼σ N.

Proof. Suppose SFV(M),SFV(N) ⊆ {�τ11 , . . . , �τnn }. Let Pτ11 , . . . , P
τn
n be closed terms and let

C[σ] be a context such that C[M[P1/�1, . . . , Pn/�n]], C[N[P1/�1, . . . , Pn/�n]] ∈ P.

If C[M[P1/�1, . . . , Pn/�n]] ⇓ n then �C[M[P1/�1, . . . , Pn/�n]]� = �n� by Theorem 1; but

�C[N[P1/�1, . . . , Pn/�n]]� = �n� by hypothesis, thus C[N[P1/�1, . . . , Pn/�n]] ⇓ n by adequacy.

By definition of fix-point operational equivalence the proof is done.

2.6. Token definability and stable closed full abstraction

Core-S�PCF is sufficient to define all tokens (belonging to coherence spaces) of L. First,

we introduce some abbreviations that are useful in order to simplify the rest of the paper.

We use (M and N) to abbreviate (�if M (�if N 0 1 ) 1 ). The equivalence among numerals,

denoted
.
= used in infix notation, is encoded as

μ�ι�ι�ι.λxι.λyι.�if x (�if y 0 1)
(
�if y 1 (�(px)(py))

)
.

We can define an encoding � − � : |�σ�| → N from tokens of the coherence space �σ� to

natural numbers as:

— �n� = n if σ = ι;

— �(a1, a2)� =< �a1�, �a2� > if σ = τ1 � τ2.

This encoding provides an enumeration of tokens in L. We define two indexed families

of terms, namely Sglσn : σ and Chk(σ)
n : σ � ι, by mutual induction. The first is a term

of type σ having the nth token (of �σ�) as interpretation. The latter is a term that checks

whether the nth token (of �σ�) is included in the interpretation of its argument.

Definitiona 11. The terms Sglσn : σ and Chk(σ)
n : σ � ι are defined by mutual induction

on σ. If σ = ι, Sglιn = n and Chk(ι)
n = λyι.�if (n

.
= y) 0 Ωι . If σ = σ1 � σ2 where

σ2 = τ1 � · · · � τk � ι for some k � 0, then Sglσn is

λfσ1λgτ1

1 . . . λgτkk .�if (Chk(σ1)
pi1(n)

f)(Sglσ2

pi2(n)
g1 . . . gk)(Ω

σ2g1 . . . gk)

and Chk(σ)
n is λfσ.�if (Chk(σ2)

pi2(n)
(f Sgl(σ1)

pi1(n)
)) 0 Ωι .

In Chk(σ)
n , we use (σ) as a short for σ � ι. For sake of readability, sometimes we will

abuse the notation by writing Sglσn and Chk(σ)
n to meaning, respectively Sglσn and Chk(σ)

n

where n is the number denoted by the numeral n. As an instance, if n = �n1, n2
 then the

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 842

term Sglι�ι
n is operationally equivalent to the term λxι.�if (x

.
= n1) n2 Ωι , while the term

Chk(ι�ι)
n is operationally equivalent to the term λfι�ι.�if (f n1

.
= n2) 0 Ωι .

Lemma 6. Let us fix a type σ. If a ∈ |�σ�| and n = �a� then,

1. �Sgl(σ)
n �ρ = {a};

2. if �Chk(σ)
n N�ρ = �0�ρ then a ∈ �N�ρ.

Proof. The proof is done by mutual induction on σ.

The case σ = ι is immediate. Let us develop the case σ = σ1 � σ2.To prove (1), let

σ2 = τ1 � · · · � τk � ι for some k � 0.

�Sgl(σ)
n �ρ =

⎧⎪⎨
⎪⎩(a1, a2)

∣∣∣∣∣∣∣
�Chk(σ1)

pi1n
f�ρ[f := {a1}] = {0},

a2 = (b1, . . . , bk, m),

m ∈ �Sgl(σ2)
pi2n

g1 . . . gk�ρ[�g :=�b]

⎫⎪⎬
⎪⎭

=

⎧⎨
⎩(a1, a2)

∣∣∣∣∣∣
�a1� = pi1(n),

a2 = (b1, . . . , bk, m),

m ∈ �Sgl(σ2)
pi2x

g1 . . . gk�ρ[�g :=�b]

⎫⎬
⎭

=

{
(a1, a2)

∣∣∣∣ �a1� = pi1n,

�a2� = pi2n

}
= {(a1, a2)|n =<�a1�, �a2�> }

where the first row follows by definition of interpretation, the second row follows by

applying mutual induction on type σ1, the third row follows by applying the inductive

hypothesis on type σ2.

To prove (2) suppose �Chk(σ)
n N�ρ = �0�ρ and let a = (a1, a2), then by definition of

interpretation, �(Chk(σ2)
pi2n

(N(Sgl(σ1)
pi1n

)))�ρ = {0}. By inductive hypothesis, this implies that

a2 ∈ �N(Sgl(σ1)
pi1n

)�ρ. By mutual induction and by definition of interpretation, we have that

a2 ∈ F(�N�ρ)({a1}). This implies (a1, a2) ∈ �M�ρ by definition of F .

Lemma 7.

1. Comp(Sgl(σ)
n ).

2. Let Nσ be a closed term such that Comp(N). If �Chk(σ)
n N� = �0� then Chk(σ)

n N ⇓ 0.

Proof. The proof is immediate by Lemma 5.

It is easy to build a program taking in input the numeral n and giving back Sgl(σ)
n .

Instead, it is not possible to extend Chk(σ)
n to a decision program, i.e. a (total) program

deciding the membership of the token encoded by n to the interpretation of the considered

argument (already a total Chk(ι)
n should imply the definability of the halting program, by

Lemma 7).

Theorem 3 (token definability).

If u ∈ |�σ�| then there exists a closed Mσ ∈ core-S�PCF such that �M� = {u}.

Proof. Let n = �u�, so M = Sglσn is our term, by Lemma 6.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 843

Token definability permits to define the separating terms used in the next lemma. This in

contrast to what happens in Plotkin (1977) and Paolini (2006), where a finite definability

is needed.

Lemma 8 (separability). Let σ ∈ T. For all distinct f, g ∈ Cl(�σ�) there exists a closed

term Pσ�ι such that F(�P�)(f) �= F(�P�)(g).

Proof. Let σ = σ1 � . . . σk � ι. Since f �= g, it must exists a ∈ f such that a �∈ g

(or vice versa). Assume a = (a1, . . . , ak, n) with a1 ∈ |�σ1�|, . . . , ak ∈ |�σk�| and n ∈ N. By

Theorem 3, for each i ∈ {1, . . . , k} there is Nσi ∈ core-S�PCF such that �Nσi� = ai.

By choosing Mσ�ι as λxσ.�if ( ( x Nσ1 . . . Nσk )
.
= n) 0 1, the proof follows.

As a corollary, a limited form of full abstraction holds restricted to terms that do

not contain free stable variables. Erroneously, Paolini and Piccolo (2008) claimed a more

general result.

Theorem 4 (stable closed completeness). Let Mσ, Nσ ∈ core-S�PCF and SFV(Mσ) =

SFV(Nσ) = �. If M ≈σ N then �M� = �N�.

Proof. We prove the contra-positive. Let us assume �M�ρ �= �N�ρ, for ρ ∈ Env. By

Lemma 8, there exists a closed Pσ�ι such that F(�P�ρ)(�M�ρ) = n1 �= F(�P�)(�N�ρ).

Moreover, by Theorem 3 we can build a closing context C[ι] such that �PM�ρ = �C[PM]��
and �PN�ρ = �C[PN]�� where � is the empty environment (notice that terms M and N

may contain free ground or higher-order variables, so token definability is needed to build

C[ι]). By adequacy both C[PM] ⇓ n1 and C[PN] �⇓ n1. Thus, M �≈σ N.

In the above proof, we can build the context C[ι] only because we have assumed that

the two terms have no free stable variables.

Corollary 2. Let Mσ, Nσ ∈ core-S�PCF and SFV(Mσ) = SFV(Nσ) = �. Then, M ≈σ N if and

only if �M� = �N�.

This corollary holds also for fix-point operational equivalence in a trivial way, since the

terms we are considering have no free occurrences of stable variables.

3. Lack of full abstraction

Core-S�PCF does not enjoy the full abstraction extended to all terms. To discuss this

issue, we start by proving that core-S�PCF is not able to define all finite cliques of the

model by presenting a linear function that is not definable in core-S�PCF, since it is not

strongly stable (Bucciarelli and Ehrhard 1991). We use this function to define two terms

having free occurrences of stable variables which are operationally equivalent, albeit they

are interpreted in two different linear functions.

3.1. Hypercoherence spaces

We recall some basic notion on hypercoherence spaces and strongly stable functions,

following Bucciarelli and Ehrhard (1994) and Ehrhard (1995).

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 844

Definitiona 12 (qualitative domain). A qualitative domain (Girard 1986) is a pair 〈|Q|, Q〉
where |Q| is a set (called the web) and Q is a subset of ℘(|Q|) satisfying the following

conditions:

— � ∈ Q and, if a ∈ |Q| then {a} ∈ Q,

— if x ∈ Q and if y ⊆ x then y ∈ Q,

— if D ⊆ Q is directed with respect to inclusion, then
⋃
D ∈ Q.

The elements of Q are called states of the qualitative domain, and the qualitative

domain itself will also be denoted Q.

Property 1. A qualitative domain Q is a coherence space when for all u ⊆ |Q|, if for all

a, b ∈ u, {a, b} ∈ Q then u ∈ Q. In this case, Q is the set of cliques.

Hypercoherence spaces are defined in Ehrhard (1995).

Definitiona 13 (hypercoherence). A hypercoherence is a pair X = (|X|,Γ(X)) where |X|
is an enumerable set and Γ(X) is a subset of ℘fin(|X|) such that � �∈ Γ(X) and for any

a ∈ |X|, {a} ∈ Γ(X).

There is a canonical way to obtain a qualitative domain starting from a hypercoherence.

Given a hypercoherence X, we can define the qualitative domain qD(X) as follows.

qD(X) = {x ⊆ |X| | ∀u ⊆fin |X|, (u �= � ∧ u ⊆ x) ⇒ u ∈ Γ(X)}.

Let X,Y be two sets and A as a subset of pairs having the first component in X and

the second in Y (i.e. a Cartesian product). We denote πH
1 (A) = {x ∈ X | (x, y) ∈ A} and

πH
2 (A) = {y ∈ Y | (x, y) ∈ A}. Moreover, if X is a set then |X| denote the number of its

elements.

Definitiona 14. Let X and Y be hypercoherences.

— The tensor product X ⊗ Y is the hypercoherence whose web is |X ⊗ Y | = |X| × |Y |
and whose atomic coherence is defined by w ∈ Γ(X ⊗ Y ) iff πH

1 (w) ∈ Γ(X) and

πH
2 (w) ∈ Γ(Y ).

— We call linear implication of X and Y and we note X � Y the hypercoherence defined

by |X � Y | = |X| × |Y | and w ∈ Γ(X � Y ) if and only if w is a non-empty and

finite subset of X � Y such that

πH
1 (w) ∈ Γ(X) ⇒ (πH

2 (w) ∈ Γ(Y ) ∧ |πH
2 (w)| = 1 ⇒ |πH

1 (w)| = 1).

— A linear morphism between X and Y is an element of qD(X � Y ).

We denote with HLinCoh the category whose objects are hypercoherences and whose

morphisms are linear morphisms between hypercoherences. It is a routine (Bucciarelli

and Ehrhard 1994; Ehrhard 1995) to check that the tensor product is commutative, and

associative and that the hypercoherence 1 = ({�}, {{�}}) is its neutral element. It is also

routine to check that there is a natural isomorphism between HLinCoh(X ⊗ Y ,Z) ∼=
HLinCoh(X,Y � Z), which makes HLinCoh a symmetric monoidal closed category.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 845

3.2. Non-definible finite cliques

It is important to remark that HLinCoh provides a correct model of core-S�PCF under

a standard interpretation. A proof can be easily obtained mutatis mutandis the proof

of correctness for coherence spaces given in previous section. We show that there are

linear functions of the model L that cannot be defined in core-S�PCF by proving that

these functions are not linear morphisms in HLinCoh. So, they cannot be defined in

core-S�PCF.

Let k1, k2, k3, k4 ∈ N; we define G2or
k1 ,k2 ,k3 ,k4 : (ι � ι) � (ι � ι) � (ι � ι) � ι to be the

following trace ⎧⎪⎪⎨
⎪⎪⎩

((((0, 0) , (1, 0) , (0, 1) , k1))),

((((0, 1) , (0, 0) , (1, 0) , k2))),

((((1, 0) , (0, 1) , (0, 0) , k3))),

((((1, 1) , (1, 1) , (1, 1) , k4)))

⎫⎪⎪⎬
⎪⎪⎭

where for sake of simplicity we omitted a full parenthesizing. It is immediate to check that

G2or
k1 ,k2 ,k3 ,k4 is a coherent trace (i.e. a clique) in �(ι � ι) � (ι � ι) � (ι � ι) � ι�. As

instance, we note that G2or
1,2,3,4

is exactly the operator G2or defined in Paolini and Piccolo

(2008)†.

We prove that, for each k1, k2, k3, k4 ∈ N, G2or
k1 ,k2 ,k3 ,k4 does not correspond to a

linear morphism in the category of hypercoherences. Let w = {(0, 0), (0, 1), (1, 0), (1, 1)},
we first observe that trivially w ∈ Γ(N � N) since πH

1 (w) = {0, 1} �∈ Γ(N). Thus,

πH
1 (G2or

k1 ,k2 ,k3 ,k4 ) ∈ Γ((N � N) ⊗ (N � N) ⊗ (N � N)) because πH
1 (πH

1 (G2or
k1 ,k2 ,k3 ,k4 ))

= πH
2 (πH

1 (G2or
k1 ,k2 ,k3 ,k4 )) = πH

3 (πH
1 (G2or

k1 ,k2 ,k3 ,k4 )) = w which is in Γ(N � N).

We consider two cases:

— suppose k1 = k2 = k3 = k4: we have that πH
2 (G2or

k1 ,k2 ,k3 ,k4 ) = {k1} is in Γ(N) but

|πH
2 (G2or

k1 ,k2 ,k3 ,k4 )| = 1 while |πH
1 (G2or

k1 ,k2 ,k3 ,k4 )| �= 1.

— suppose there are i, j such that ki �= kj: in this case we have that {ki, kj} ⊆
πH

2 (G2or
k1 ,k2 ,k3 ,k4 ) which is not in Γ(N) because {ki, kj} �∈ Γ(N).

Thus, G2or
k1 ,k2 ,k3 ,k4 is not a linear morphism in HLinCoh. So it is not definable in core-

S�PCF.

Corollary 3. For all k1, k2, k3, k4 ∈ N, G2or
k1 ,k2 ,k3 ,k4 is not definable in core-S�PCF.

Let M = �Ωι�ιΩι�ιΩι�ι and

N = �if

⎛
⎜⎜⎜⎝

�(Sglι�ι
<0,0>)(Sglι�ι

<1,0>)(Sglι�ι
<0,1>) and

�(Sglι�ι
<0,1>)(Sglι�ι

<0,0>)(Sglι�ι
<1,0>) and

�(Sglι�ι
<1,0>)(Sglι�ι

<0,1>)(Sglι�ι
<0,0>) and

�(Sglι�ι
<1,1>)(Sglι�ι

<1,1>)(Sglι�ι
<1,1>)

⎞
⎟⎟⎟⎠ 7 Ωι

be core-S�PCF terms such that �(ι�ι)�(ι�ι)�(ι�ι)�ι � M, N : ι. It is easy to see that

�M�ρ �= �N�ρ, by taking ρ(�) be the trace of G2or
1,2,3,4

. While M, N are operationally

† The index 2 in the G2or notation is put to emphasize that it is a second-order operator. It is different from

the gor operator defined in Paolini (2006), which is a first-order operator.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 846

Table 3. (a) Type system, (b) operational semantics and (c) linear interpretation for the

which? and �et-�or operators.

� which? : ((ι � ι) � ι) � ι
(w)

Γ ∩ Δ = � Δ�� = fσ11 , . . . , fσkk Γ1 � N1 : σ1 . . . Γk � Nk : σk Δ � Mi : ι (1�i�3)

Δ�S,Δ� ι,Γ1, . . . ,Γk � �et f1 = N1, . . . , fk = Nk in�or M1 M2 M3 : ι
(�et-�or)

M(λxι.�if(

k︷ ︸︸ ︷
p . . . p x) k (p0)) ⇓ n

which? M(ι�ι)�ι ⇓ �n, k

(w)

M1[Sgl
σ1
n1
/f1, . . . , Sgl

σk
nk
/fk] ⇓ 0 M2[Sgl

σ1
n1
/f1, . . . , Sgl

σk
nk
/fk] ⇓ sm Chk(σk)

nj
Nj ⇓ 0 (j∈{1,...,k})

�et fσ11 = N1, . . . , f
σk
k = Nk in�or M1 M2 M3 ⇓ m

(1lgor)

M2[Sgl
σ1
n1
/f1, . . . , Sgl

σk
nk
/fk] ⇓ 0 M3[Sgl

σ1
n1
/f1, . . . , Sgl

σk
nk
/fk] ⇓ sm Chk(σk)

nj
Nj ⇓ 0 (j∈{1,...,k})

�et fσ11 = N1, . . . , f
σk
k = Nk in�or M1 M2 M3 ⇓ m

(2lgor)

M3[Sgl
σ1
n1
/f1, . . . , Sgl

σk
nk
/fk] ⇓ 0 M1[Sgl

σ1
n1
/f1, . . . , Sgl

σk
nk
/fk] ⇓ sm Chk(σk)

nj
Nj ⇓ 0 (j∈{1,...,k})

�et fσ11 = N1, . . . , f
σk
k = Nk in�or M1 M2 M3 ⇓ m

(3lgor)

� which? �ρ = {(((k, k), n), �n, k
) | k, n ∈ N}

��et�f =�N in�or M1 M2 M3�ρ =

{
n ∈ N

∣∣∣∣∣∃�a ∈
−−→
�N�ρ

�M3�ρ[�f :=�a] = {0}∧
�M1�ρ[�f :=�a] = {n + 1}

}

∪
{
n ∈ N

∣∣∣∣∣∃�a ∈
−−→
�N�ρ

�M1�ρ[�f :=�a] = {0}∧
�M2�ρ[�f :=�a] = {n + 1}

}

∪
{
n ∈ N

∣∣∣∣∣∃�a ∈
−−→
�N�ρ

�M2�ρ[�f :=�a] = {0}∧
�M3�ρ[�f :=�a] = {n + 1}

}

equivalent, since to separate the two terms, a term behaving like G2or
1,2,3,4

is necessary.

But G2or
1,2,3,4

is not definable in core-S�PCF as shown by Corollary 3.

4. The language S�PCF�

We extend the core-S�PCF language by means of two new operators: which? and �et-�or.

The resulting language S�PCF� is simply that presented in Gaboardi et al. (2011).

Definitiona 15. The S�PCF� pre-terms are defined by extending the grammar of Core-

S�PCF� pre-terms as follows:

M ::= · · · | which? | �et fσ1�τ1
1 = M, . . . , fσk�τk

k = M in�or M M M

The terms of S�PCF� are the pre-terms typable by using the type system in Table 1(a)

extended by the rules in Table 3(a).

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 847

The which? operator corresponds to a primitive control operator that permits to obtain

besides the result of an evaluation also the information on which part of the input has

been used during the evaluation.

The �et-�or generalizes the behaviour of the G2or operator presented in the previous

section by forcing a linear evaluation. It is worth noting that the contexts of the terms Mi
in the (�et-�or) rule are managed in an additive way, contracting common (ground, linear

and stable) variables. However, note that a �et-�or binds all the linear variables in its

three branches. So, a form of syntactic linearity by slice for linear variables is preserved,

see Gaboardi et al. (2011) for more details.

In order to deal with the which? and the �et-�or operators, we need a careful evaluation

of terms. In particular, the challenge is to evaluate the �et-�or operator without violating

the denotational linearity. To obtain this, we present specific evaluation rules that are

described using the terms Sglσn and Chk(σ)
n introduced in the previous section.

Definitiona 16. The evaluation relation ⇓⊆ P × N for S�PCF� programs is the smallest

relation satisfying the rules in Table 1(b) extended by the rules in Table 3(b).

The evaluation rules for which? and �et-�or are patterns for infinite rules, likewise to

that of the existential operator of Plotkin (1977).

The result of the evaluation of which? applied to a term M consists of a pair �n, k

where n is the result of the evaluation of the term M(λxι.x) while k is the unique numeral

that M gives as argument to λxι.x. The fact that there exists a unique such k follows from

the fact that M represents a linear function. In this sense, which? can be seen as a primitive

control operator.

The evaluation of the �et-�or operator is obtained by three distinct rules that explore

pair-wisely the �et-�or branches. The evaluation of a �et-�or can be performed only

in the case two between M1, M2 and M3 evaluate to the values 0 and m + 1 respectively

by replacing to f1, . . . , fk a (same) single-traced terms denotationally included in the

trace of N1, . . . , Nk respectively. For instance, the (1lgor) can be applied in the case

M1[N1/f1, . . . , Nk/fk] ⇓ 0 and M2[N1/f1, . . . , Nk/fk] ⇓ sm and the same single information of

each Nj coded by numerals nj is used in both evaluations. Albeit ex-ante we do not know

what is the right pair of �et-�or branches to evaluate, they are established during the

course of the evaluation, so ex-post only one of the three rules can converge.

The interpretation of which? and �et-�or reflects such ideas.

Definitiona 17. Let Mσ be a term of S�PCF� and ρ ∈ Env. The linear interpretation

�Mσ�ρ ∈ Cl(�σ�) is defined by the equations in Table 1(c) extended by the ones for the

which? and the �et-�or operators in Table 3(c).

We can now extend the adequacy and correctness results of Section 2.4 to the whole

S�PCF� language. The first step is to extend Lemma 5.

Lemma 9. Let Mσ be a term of S�PCF�. Then Comp(Mσ).

Proof. By induction on the shape of M, similarly to the proof of Lemma 5. We detail

only the two new cases.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 848

— M = which?. Let N(ι�ι)�ι be a term such that Comp(N) and suppose �which? N� =

��n, k
�. This means that F(�N�ρ)({(k, k)}) = F(�N�ρ)(�λxι.�if(

k︷ ︸︸ ︷
p . . . p x) k Ωι�ρ) = {n} =

�n�ρ, by definition of interpretation. Then M(λxι.�if(

k︷ ︸︸ ︷
p . . . p x) k Ωι) ⇓ n by definition of

Comp. Then we conclude by applying the evaluation rule (w).

— M = �et fσ11 = N1, . . . , f
σk
k = Nk in�or M1 M2 M3. Let FV(M) = {�μ1

1 , . . . , �μh
h } for h �

0. Assume Pμ1

1 , . . . , Pμhh to be closed terms such that Comp(Pi) for 1 � i � h. Let

�(�et fσ11 = N1, . . . , f
σk
k = Nk in�or M1 M2 M3)[P1/�1, . . . , Ph/�h]�ρ = �n�ρ. There are

three cases.

1. There exist �a ∈
−−−−−−−−−−−−−−−→
�N[P1/�1, . . . , Ph/�h]�ρ such that �M3[P1/�1, . . . , Ph/�h]�ρ[�f :=�a] =

{0} and �M1[P1/�1, . . . , Ph/�h]�ρ[�f :=�a] = {n + 1}.

2. There exist �a ∈
−−−−−−−−−−−−−−−→
�N[P1/�1, . . . , Ph/�h]�ρ such that �M1[P1/�1, . . . , Ph/�h]�ρ[�f :=�a] =

{0} and �M2[P1/�1, . . . , Ph/�h]�ρ[�f :=�a] = {n + 1}.

3. There exist �a ∈
−−−−−−−−−−−−−−−→
�N[P1/�1, . . . , Ph/�h]�ρ such that �M2[P1/�1, . . . , Ph/�h]�ρ[�f :=�a] =

{0} and �M3[P1/�1, . . . , Ph/�h]�ρ[�f :=�a] = {n + 1}.
We shorten the list f1, . . . , fk by�f. We develop only the first case: the others are similar.

Suppose that �m is a sequence of natural number of the same length of �a such that

each mi is the encoding of the token ai (for 1 � i � k). By Lemma 6.1 ai = �Sgl(σi)
mi

�ρ

and, moreover, by applying Lemma 2.3, it follows

�M3[P1/�1, . . . , Ph/�h, Sgl(σ1)
m1

/f1, . . . , Sgl(σk)
mk

/fk]�ρ = �0�ρ and,

�M1[P1/�1, . . . , Ph/�h, Sgl(σ1)
m1

/f1, . . . , Sgl(σk)
mk

/fk]�ρ = �n + 1�ρ.

By Lemma 7.2 and by induction, we obtain

M3[P1/�1, . . . , Ph/�h, Sgl(σ1)
m1

/f1, . . . , Sgl(σk)
mk

/fk] ⇓ 0 and,

M1[P1/�1, . . . , Ph/�h, Sgl(σ1)
m1

/f1, . . . , Sgl(σk)
mk

/fk] ⇓ n + 1.

Furthermore, �Chk(σi)
mi

(Ni[P1/�1, . . . , Ph/�h])�ρ = �0�ρ by Lemma 6.2 and by definition

of interpretation. Then, by Lemma 7.2, we have that Chk(σi)
mi

Ni[P1/�1, . . . , Ph/�h] ⇓ 0.

So, we can conclude by induction and by applying the evaluation rule (l1gor).

Corollary 4 (adequacy). For all M ∈ P, for all n, �M�ρ = �n�ρ if and only if M ⇓ n.

Theorem 5 (correctness). Let Mσ, Nσ be terms of S�PCF�.

If �M�ρ = �N�ρ, for each ρ ∈ Env, then M ≈σ N.

4.1. S�PCF� program examples

We discuss some examples of the use of the which? and of the �et-�or operators. Let

us start with two examples for which?. The first example show how to use it in order to

define a kind of linear exception. Consider the term

Tryn = λf(ι�ι)�ιgι�ι.
(
λxι.�if ((πππ2 x)

.
= n) 0 s(πππ1 x)

)(
which? λh.f(λxι.g(hx))

)

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 849

Tryn takes in input a functional f(ι�ι)�ι and a function gι�ι. It tries to evaluate the

term f g and it raises an exception (returning 0) if during the evaluation, f observes g on

the particular value n. Otherwise, it returns the successor of the result of the evaluation.

The second example is more involved, and it shows how to use the which? operator

to define a family of programming constructs (@wh? σ
τ ) useful to collect precise run-time

information. Let us introduce the operators @wh? σ
τ : (σ � τ) � σ � τ, with the

following operational semantics:

Mσ�τSgl(σ)
m P1 . . . Pk ⇓ n Chk(σ)

m N ⇓ 0.

@wh? σ
τ M

σ�τ NσP1 . . . Pk ⇓ �n, m


Observe that (@wh? σ
τ M N)P1 . . . Pk ⇓ if and only if M N P1 . . . Pk ⇓. This control operator gives

back the result n of the evaluation of M N P1 . . . Pk together with the numeral m encoding

the part of the trace of N used for the evaluation. This information will be essential in the

proof of the finite definability Theorem 7.

The definition of @wh? σ
τ in S�PCF� is slightly involved, so we give first some examples

to understand how this can be done.

First, observe that the term λfι�ι.λxι. which?(λhι�ι.f (h x)) implements @wh? ι
ι. In-

formally, the idea of this program is that which? can use the variable hι�ι as an observer,

to retrieve the value associated to x during a specific evaluation. Suppose now that we

want to build a term behaving as @wh? ι�ι
ι . Assume M(ι�ι)�ι and Nι�ι to be two terms

such that M N ⇓ n. This evaluation is driven by M: it inputs N, it applies N to a (unique)

suitable ground argument (we name this argument iN and we name oN the output of the

evaluation of N iN ⇓) and, last, it computes the result n (possibly, by using oN). To reach

our purpose, we need to find a way to bring in the output information about iN and oN.

Assume I to denote λyι.y, it is easy to understand that M(λxι.(I(N(Ix)))) ⇓ n by harmless

eta-expansions and two additional copies of the identity. Patently, the rightmost identity

forwards iN and the leftmost identity forwards oN. By a sharp use of which?, we replace

the rightmost identity, so that which?(λh1.M(λxι.(I(N(h1x))))) ⇓ �n, iN
. Re-applying this

trick which?(λh0. which?(λh1.M(λxι.(h0(N(h1x))))) ⇓ ��n, iN
, oN
 which is almost what we

are looking for. In order to conclude, it is sufficient to project the three numerals and

suitably re-compose them.

The proof of the following theorem generalizes the above technique.

Theorem 6. @wh? σ
τ is definable in S�PCF�.

Proof. In the following, we show that, for each σ there is a term in S�PCF behaving as

@wh? σ
τ : (σ � τ) � σ � τ, i.e. respecting its operational rule: @wh? σ

τ M
σ�τ NσP1 . . . Pk ⇓

�n, m
 whenever Mσ�τSgl(σ)
m P1 . . . Pk ⇓ n and Chk(σ)

m N ⇓ 0.

Let τ = τ1 � . . . � τk � ι, the proof is by induction on σ.

Case σ = ι. Let L be the following term:

λfι�τ.λxι.λgτ11 . . . gτkk . which?(λh
ι�ι.f (h x) g1 . . . gk).

Clearly, L M N P1 . . . Pk ⇓ �n, m
 if and only if N ⇓ m and M m P1 . . . Pk ⇓ n iff and only if

Mσ�τSgl(σ)
m P1 . . . Pk and Chk(σ)

m N ⇓ 0. Therefore, @wh? ι
τ is implemented by L.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 850

Case σ = σ1 � σ2. Suppose σ2 = μ1 � · · · � μp � ι and, without loss of generality,

assume M N P1 . . . Pk ⇓ n. Clearly M (λz1 . . . zp.I(N(Iz1) . . . (Izp))) P1 . . . Pk ⇓ n, where the

leftmost identity (typed ι � ι) forwards the result produced by the use of N and the

remaining copies of identities (typed μj � μj) forward its j-th argument (1 � j � p). Let

L be (λz1 . . . zp.x0(N(x1z1) . . . (xpzp))) i.e. the above term where we replaced identities by

variables xj , for 0 � j � p.

We build a sequence of terms L0, Lp, . . . , L1 by abstracting one more free variable in

each of them. Let L0 be @wh? ι
ι (λx

ι�ι
0 .M L P1 . . . Pk) Iι�ι, thus the evaluation of L0 after

substituting its free variables with (conveniently typed) identities gives back a pair

�n, m0
.Let Lp be @wh?
μp
μp (λx

μp�μp
p .L0)Iμp�μp , let Lp−1 be @wh?

μp−1
μp−1 (λx

μp−1�μp−1

p−1 .Lp)Iμp−1�μp−1

and so on, until L1 is the closed term @wh? μ1
μ1

(λxμ1�μ1

1 .L2)Iμ1�μ1 . It is easy to check

that L1 ⇓ ����n, m0
, mp
 . . . , m2
, m1
 such that N Sgl(μ1)
m1

. . . Sgl
(μp)
mp ⇓ m0 and, moreover,

M Sgl(σ2)
r P1 . . . Pk ⇓ n where r = �m1, �m2, . . . �mp, m0


. It is boring, but easy, to find a

term R : ι � ι such that R����n, m0
, mp
 . . . , m2
, m1
 ⇓ �n, �m1, �m2, . . . �mp, m0



.
Explicitly rewriting L1 = @wh? μ1

μ1
(λxμ1�μ1

1 . . . .@wh? ι
ι (λx

ι�ι
0 .M L P1 . . . Pk) Iι�ι . . .)Iμ1�μ1

where L is (λz1 . . . zp.x0(N(x1z1) . . . (xpzp))). We replace M, N, P1, . . . , Pk by using some fresh

variables, let W be the term

@wh? μ1
μ1

(λxμ1�μ1

1 . . . .@wh? ι
ι (λx

ι�ι
0 .fσ�τ L′ yτ1

1 . . . yτkk ) Iι�ι . . .)Iμ1�μ1

where L′ is (λz1 . . . zp.x0(gσ(x1z1) . . . (xpzp))). The term behaving as @wh? ι
τ is defined as

λfσ�τgσyτ1

1 . . . yτkk .RW.

As an example of the use of the �et-�or operator, we show how to use it in order to

program in S�PCF� the operator G2or defined in Paolini and Piccolo (2008). Indeed, we

show how to define G2or
k1 ,k2 ,k3 ,k4 for all k1, k2, k3, k4 ∈ N. In order to proceed in a modular

way, we introduce a notation useful to consider the restrictions of G2or
L

that use only a

subset of the four rules. Precisely, a • in the list L is used to denote the operator obtained

omitting the corresponding rules. For instance, G2or
L0 where L0 = 0, 2, •, • is defined as

λfι�ι
1 fι�ι

2 fι�ι
3 .(

λw.�if w
.
= 0

(
�if (f21

.
= 0 and f30

.
= 1) 0 Ωι

)(
�if w

.
= 1(�if (f20

.
= 0 and f31

.
= 0) 2 Ωι ) Ωι

)) (f10)

All the G2or
L

defined by just two rules, i.e. the ones with L containing two occurrences of

•, can be defined likewise. Thus, G2or
L1 with parameter L1 = 1, •, 0, 0 can be defined using

the �et-�or operator as

λf1f2f3. �et g1 = f1, g2 = f2, g3 = f3 in�or

(G2or
0,•,1,•

g1g2g3)(G2or
2,•,•,0

g1g2g3)(G2or
•,•,0,1

g1g2g3)

and G2or
L2 with parameter L2 = •, 0, 3, 4 can be defined as

λf1f2f3. �et g1 = f1, g2 = f2, g3 = f3 in�or

(G2or
•,0,4,•

g1g2g3)(G2or
•,1,•,0

g1g2g3)(G2or
•,•,0,5

g1g2g3).

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 851

Finally, G2or
L3 with parameter L3 = 0, 1, 2, 3 can be defined as

λfι�ι
1 fι�ι

2 fι�ι
3 . �et g1 = f1, g2 = f2, g3 = f3

in�or(G2or
L0 g1g2g3)(G2or

L1 g1g2g3)(G2or
L2 g1g2g3).

For every parameter L, all the G2or
L

can be built analogously. As expected, the �et-�or

operator is fundamental for the above construction.

5. Finite definability and full abstraction

In this section, we prove that the linear model L is fully abstract with respect to S�PCF�.

This result relies on the completeness of the linear interpretation with respect to the

operational semantics and on the definability of all the finite cliques by means of S�PCF�

terms. In particular, we start by proving the completeness with respect to the fix-point

equivalence then, in next section (Proposition 4 and Theorem 9), we then prove that the

fix-point and the standard operational equivalences coincide. From this, full abstraction

holds also with respect to the latter.

Finite definability asserts that all finite cliques can be defined by means of S�PCF�

terms. We follow a standard scheme for proofs of this kind, e.g. Plotkin (1977) and Paolini

(2006). Non-trivial uses of @wh? and �et-�or constructors are needed in inductive steps.

Definitiona 18. Let u be a finite clique of a coherence space in L. A term M defines u if

and only if �M� = u. The class of closed terms having u as interpretation is denoted by

�u�, i.e. �u� = {M | �M� = u}. Moreover, �a1, . . . , ak� is used to abbreviate �{a1, . . . , ak}� and,

�u� = M is used to abbreviate M ∈ �u�.

By abuse of notation, in the following we denote �u� a term M such that M = �u�. In

the following, if i ∈ {1, 2} and k � 0 we denote πk
i (n) to be πi applied k times to n. To

prove definability, we use the following auxiliary lemma.

Lemma 10. Let (a0, . . . , an, a), (b0, . . . , bn, b) ∈ |�τ0 � · · · � τn � ι�|. Then:

1. (a0, . . . , an, a) Π (b0, . . . , bn, b) if and only if ∃k � n: ak Υ bk;

2. (a0, . . . , an, a) Σ (b0, . . . , bn, b) if and only if ∀k � n: ak Ξ bk .

Some measures are needed in the next theorem: the cardinality of a clique u is denoted

‖u‖; the rk of a type is inductively defined as: rk(ι) = 1; rk(σ � τ) = rk(σ) + rk(τ).

Theorem 7 (finite definability). If u ∈ Clfin(�σ�) then there exists a closed M ∈ S�PCF� such

that M = �u�.

Proof. Let σ = τ1 � · · · � τk � ι for some k � 0. The proof is by induction on the

triple 〈rk(σ), k, ‖u‖〉 ordered in a lexicographic way. The cases rk(σ) = 1 and rk(σ) = 2

are easy.

• Consider rk(σ) = 1, then σ = ι and �σ� = N. Thus, Ωι and numerals define all possible

finite cliques, since Clfin(N) = {�} ∪ {{n} / n ∈ |N|}.

• Consider rk(σ) = 2, then σ = ι � ι.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 852

— If ‖u‖ = 0 then u = � is defined by Ωι�ι.

— If ‖u‖ � 1, then u = u′ ∪ {(a, b)} for a, b ∈ N. By induction hypothesis we have �u′�,
hence �u� = λz.�if (z

·
= �a�) �b� (�u′�z) .

• Consider rk(σ) � 3 and k = 1, then σ = τ � ι with τ = σ1 � · · · σr � ι.

— If ‖u‖ = 0 then u = � is defined by Ωτ�ι.

— If ‖u‖ = 1, then u = {(a, b)} for a ∈ �τ� and b ∈ N. Suppose a = (a1, . . . , ar, c) where

ai ∈ �σi� and c ∈ N (1 � i � r). By induction hypothesis, we have �a1�, . . . , �ar�, �c�
and �b�, hence: �u� = λf.�if (f�a1� · · · �ar�

·
= �c�) �b� Ωι .

— If ‖u‖ > 1, then u = {(a0, b0), . . . , (am, bm)} for ai ∈ �τ� and bi ∈ N (0 � i � m). Suppose

ai = (ai1, . . . , a
i
r, c

i) where aij ∈ �σj� and ci ∈ N (1 � j � r). By Lemma 10.1, we have

ah 
 ak (0 � h �= k � m), so by Lemma 10.2 ahj
	
 akj (1 � j � r). Hence, take

vj = {aij | 1 � i � m}. Moreover, for sake of simplicity, we write just aij in place of

�aij�, i.e. the natural number encoding aij .

By induction hypothesis, we have �vj�, �ci� for every 0 � i � m, 1 � j � r and

1 � k � s. So, we can define:

�u� = λFτ.
(
λzi.

�if (πππr
1(z)

·
= c0 and πππr−1

1 (πππ2(z))
·
= a01 . . . πππ2(z)

·
= a0r) b

0

�if (πππr
1(z)

·
= c1 and πππr−1

1 (πππ2(z))
·
= a11 . . . πππ2(z)

·
= a1r) b

1

...

�if (πππr
1(z)

·
= cm and πππr−1

1 (πππ2(z))
·
= am1 . . . πππ2(z)

·
= amr) b

m
)

(
@wh? σr

ι (. . . (@wh? σ1
σ2�···σr�ιF�v1�) . . .)�vr�

)
• Consider rk(σ) � 3 and k > 1.

— If ‖u‖ = 0, then u = � is defined by Ωτ1�···�τk�ι.

— If ‖u‖ = 1, then u = {(a1, . . . ak, b)} where ai ∈ �τi� (1 � i � k) and b ∈ N. Thus,

�u� = λf1 . . . fk.�if ((Chk(σ1)
a1

f1) and · · · and (Chk(σk)
ak

fk)) �b� Ωι.

— If ‖u‖ = 2 then u = {(a1
1, . . . , a

1
k, b

1), (a2
1, . . . , a

2
k, b

2)}. We know that there is i ∈ [1, k]

such that a1
i Υ a2

i . If τi = ι then a1
i and a2

i are two different numbers: thus the term

defining u is the following

�u� = λf1. . . . fk.�if (fi
.
= �a1

i �)
(
�if (Chk(σ1)

a11
f1) and · · ·

and (Chk(σk)
a1k

fk) �b1� Ω
)(

�if
(
(fi

.
= �a2

i �) and

(Chk(σ1)
a21

f1) and · · · and ((Chk(σ1)
a2k

fk)
)

�b2� Ω
)
.

—If τ = ν1 � · · · νl � ι then we have that a1
i = (e1

1, . . . , e
1
l , c

1) and a2
i = (e2

1, . . . , e
2
l , c

2).

Since a1
i Υ a2

i , we have that for all j ∈ [1, l] the sets {e1
j , e

2
j } are cliques of lower rank.

Thus, by inductive hypothesis we have terms Nj defining them. Thus, the term defining

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 853

u is the following

�u� = λf1. . . . fk.
(
λxι.�if

(
πππl1x

.
= c1 and πππl−1

1 (πππ2x)
.
= e11

and . . . πππ2x
.
= e1

l

)(
�if

(
Chk(τ1)

a11
f1 and . . .

Chk(τi−1)
a1i−1

fi−1 and Chk(τi+1)

a1i+1
fi+1 and . . . Chk(τk)

a1k
fk
)

�b1� Ω
)

(
�if

(
πππl

1x
.
= c2 and πππl−1

1 (πππ2x)
.
= e2

1 and . . . πππ2x
.
= e2

l and

Chk(τ1)
a21

f1 and . . . Chk(τi−1)
a2i−1

fi−1 and

Chk(τi+1)

a2i+1
fi+1 and . . . Chk(τk)

a2k
fk
)

�b2� Ω
)

)(
@wh? νl

ι (. . . (@wh? ν1
ν2�...νl�ι(fi)(N1)) . . .)Nl

)
.

— If ‖u‖ > 2, then u = {d1, . . . , dm} where dj = (aj1, . . . , a
j
k, b

j), aji ∈ �τi� and bj ∈ N
(1 � j � m, 1 � i � k). We denote by dj[b] the token (aj1, . . . , a

j
k, b). By Lemma 10.1

there exists 1 � h � k such that a1
h 	 a2

h, so we can build the following finite cliques:

w1 = {d1[0], d2[b2 + 1] }

w2 = {d1[b1 + 1]} ∪ {dr[0] | 2 < r � m }

w3 = {d2[0]} ∪ {dr[br + 1] | 2 < r � m }.

Note that ‖ws‖ < ‖u‖ for s = 1, 2, 3. So, by induction hypothesis we have �w1�, �w2�
and �w3�. Hence, we conclude the proof by letting �u� be

λf1 . . . fk. �et g1 = f1, . . . , gk = fk in�or
(
�w1�g1 · · · gk

)(
�w2�g1 · · · gk

)(
�w3�g1 · · · gk

)
.

The definability of finite cliques is the key ingredient to extend the stable closed

completeness (i.e. Theorem 4) to all the terms of S�PCF� as follows.

Theorem 8 (completeness). If M ∼σ N then �M�ρ = �N�ρ, for all ρ ∈ Env.

Proof. Let Γ � M, N : σ with Γ�S = {�τ1

1 , . . . , �
τn
n } and Γ��,Γ� ι = {x1σ1 , . . . , xmσm}.

Assume that there exists ρ such that �M�ρ �= �N�ρ. By the Lemma 8, there exists a

closed term Pσ�ι such that F(�P�)(�M�ρ) �= F(�P�)(�N�ρ). By the Theorem 7, for all

�i in Γ�S there is a term Pi = �ρ(�i)� and for all xi in Γ��,Γ� ι there is a term

Ni = �ρ(xi)�. So, we can build C = P(λxσ1

1 . . . xσmm .[·σ]N1 · · · Nm). Without loss of generality,

let us assume F(�P�)(�M�ρ) = {k}. By adequacy we have C[M[P1/�1, . . . , Pn/�n]] ⇓ k but

C[N[P1/�1, . . . , Pn/�n]] �⇓ k. This concludes the proof.

By soundness and completeness the full abstraction follows.

Corollary 5 (full abstraction). M ∼σ N if and only if �M�ρ = �N�ρ, for all ρ ∈ Env.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 854

6. Coincidence of operational equivalences

In this section, we prove the coincidence of the standard operational equivalence (i.e.

≈σ , see Definition 4) and the fix-point operational equivalence (i.e. ∼σ , see Definition

5). Therefore, the full abstraction (Corollary 5) holds also for the standard operational

equivalence and a compositional theory of program equivalence can be effectively defined.

One direction follows easily by the fact that the fix-point equivalence coincides with

the denotational equivalence by Corollary 5 and by the correctness of the denotational

semantics w.r.t the standard operational equivalence.

Proposition 4. Let Mσ, Nσ ∈ S�PCF�. If M ∼σ N then M ≈σ N.

Proof. �M� = �N�, by Theorem 8. Thus we conclude, by Theorem 5.

The opposite direction is more difficult and it requires semantic reasoning. First, we

prove an auxiliary result (Corollary 6) that claims that in a coherence space X ∈ L
(i.e. in our type structure) different from N, finite cliques are never maximal w.r.t. set-

theoretical inclusion†. Then, we use this fact, together with adequacy (Theorem 4) and

finite definability (Theorem 7) to prove the coincidence-result in the ground case (Lemma

14), which implies the general result (Theorem 9).

In the next lemmas we show that, if X ∈ L is coherence space different from N then, a

finite clique of X is never maximal w.r.t. set-theoretical inclusion.

Lemma 11. Let x be a non-empty finite set of tokens in |�σ�| satisfying

∃a ∈ x, ∀b ∈ x, a Σ b. (2)

Then ∃a′ �∈ x, ∀b ∈ x, a′ Υ b.

Proof. Remark that x is not required to be a clique. The proof is by induction on the

structure of σ. The case σ = ι is immediate: since x is finite, it suffices to choose a number

in the set N\x to obtain the result. For the inductive case σ = σ1 � σ2, let a = (a1, a2) ∈ x

be an element satisfying (2), viz. ∀(b1, b2) ∈ x, a1 Ξ b1 ∧ a2 Σ b2. So it is possible to build

the set x2 = {b2 | (b1, b2) ∈ x and b2 Σ a2} = {b2 | (b1, b2) ∈ x}. By inductive hypothesis

there is a′
2 �∈ x2 such that for all b2 ∈ x2 we have that a′

2 
 b2. Let a′ = (a1, a
′
2); it is not

difficult to check that for all b ∈ x we have that a′ Υ b.

Lemma 12. Let x be a non-empty finite set of tokens in |�σ�| (σ �= ι) satisfying

∃a ∈ x, ∀b ∈ x, a Ξ b. (3)

Then ∃a′ �∈ x, ∀b ∈ x, a′ Π b.

Proof. Remark that x is not required to be a clique, albeit all finite cliques satisfy (3).

The proof is by induction on the structure of σ. The base case σ = ι is vacuously true.

For the inductive case σ = σ1 � σ2, let a = (a1, a2) ∈ x be an element satisfying (3). Let

x1 = {b1 | (b1, b2) ∈ x and b1 Σ a1} and x2 = {b2 | (b1, b2) ∈ x and b2 Ξ a2}. It is easy to

† Observe that this fact is not true in the general case of stable functions: for example in the coherence space

!N � N, the finite clique {(�, 0)} is maximal.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 855

see that {b2|(b1, b2) ∈ x and b1 Ξ a1} ⊆ x2, because (3). By Lemma 11, there is a′
1 �∈ x1

such that for all c1 ∈ x1 we have a′
1 
 c1. There are two cases.

1. If σ2 = ι then x1 = {b1 | (b1, b2) ∈ x} and we can set a′ = (a′
1, k) where k is a randomly

chosen natural number.

2. If σ2 �= ι then we apply the inductive hypothesis: there is a′
2 �∈ x2 such that for all

c2 ∈ x2 we have a′
2 Π c2. We set a′ = (a′

1, a
′
2).

In both cases it is not difficult to check that for all b ∈ x we have that a′ Π b.

Corollary 6. Let x ∈ Clfin(�σ�) with σ �= ι. Then, there is a ∈ |�σ�| such that a �∈ x and

x ∪ {a} ∈ Cl(�σ�).

Given an environment ρ, a term M, a stable variable �σ and an infinite clique x ∈
Cl(�σ�), with a slight abuse of notation in the sequel we write �M�ρ[� := x] to denote⋃

y⊆finx
�M�ρ[� := y].

Lemma 13. If Mσ[N/�τ] ∈ S�PCF� then �Mσ[N/�τ]�ρ =
⋃

x⊆fin[[N]]ρ
�M�ρ[�τ := x].

Proof. The proof is straightforward by induction on Mσ .

Now, we show that by using fixpoints, it is possible to build contexts that allow us to

discriminate as much as we can do by using substitutions.

Lemma 14. Let Γ � M, N : ι with Γ�� = �. If M ≈ι N then M ∼ι N.

Proof. We prove the contrapositive. Let SFV(M),SFV(N) ⊆ {��} and let C[ι] be a context

and �P be closed terms such that C[M[�P/��]], C[N[�P/��]] ∈ P C[M[�P/��]] ⇓ n and C[N[�P/��]] �⇓ n.

By induction on |��| that there is a C′[ι] such that C′[M] ⇓ n′ and C′[M] �⇓ n′.

Base case. Namely the two terms have no free occurrence of stable variables, thus we can

take C′[ι] = C[ι].

Inductive case. The fix-point (in)equivalence implies that there is a context C[ι] and there are

closed terms P1, . . . , Pm+1, such that C[[[M[P1/�
σ1

1 , . . . , Pm+1/�
σm+1

m+1]]]] ⇓ n but

C[[[N[P1/�
σ1

1 , . . . , Pm+1/�
σm+1

m+1]]]] �⇓ n. Thus, by correctness, there exists a ρ such that

�M�ρ[[[�σ1

1 := �P1�ρ, . . . , �
σm+1

m+1 := �Pm+1�ρ]]] �= �N�ρ[[[�σ1

1 := �P1�ρ, . . . , �
σm+1

m+1 := �Pm+1�ρ]]].

In the following, we define ρ1 = ρ[[[�σ1

1 := �P1�ρ, . . . , �σmm := �Pm�ρ]]]. Since Γ � M, N : ι, both

�M�ρ1[[[�
σm+1

m+1 := �Pm+1�ρ]]] and �N�ρ1[[[�
σm+1

m+1 := �Pm+1�ρ]]] are finite sets (in particular, they have

at most one element and they cannot be both empty). Thus, without loss of generality,

we assume that �M�ρ1[[[�
σm+1

m+1 := �Pm+1�ρ]]] = {k} with k ∈ N. So by Lemma 13 there exists

x ⊆fin �Pm+1�ρ such that

�M�ρ1[�m+1 := �Pm+1�ρ] = �M�ρ1[�m+1 := x] �=
�N�ρ1[�m+1 := x] ⊆ �N�ρ1[�m+1 := �Pm+1�ρ].

Since stable variables are never of ground type, we can let σm+1 = τ1 � · · · � τl � ι

and l � 1. Let x = {(a1
1, . . . , a

1
l , h

1), . . . , (ap1, . . . , a
p
l , h

p)} with p � 0 and ai1 ∈ |�τ1�|, . . . , ail ∈
|�τl�|, hi ∈ N for all i ∈ [1, p]. Furthermore, by Corollary 6 there is a token (a∗

1, . . . , a
∗
l , h

∗) �∈ x

such that x∗ = x ∪ {(a∗
1, . . . , a

∗
l , h

∗)} is still a clique. Observe that it is not restrictive to

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 856

assume h∗ �∈ {h1, . . . , hp}, since changing of outputs preserves the coherence of tokens. By

finite definability, there is a term P defining the clique x∗. Now, let us consider the context

D[ι] = μ�m+1.λf
τ1

1 . . . fτlm.(
λxι.�if (x

.
= h∗) [ι]

(
�if (x

.
= h1) h1

(
. . . . . . �if (x

.
= hp) hp Ωι . . .

)))
(P f1 . . . fl).

Observe that D[M], D[N] ∈ S�PCF� because we assumed that M, N have no free occurrences

of linear variables. If q1 = �a∗
1�, . . . , qm = �a∗

l �, it is not difficult to see that

�D[M] Sgl(τ1)
q1

. . . Sgl(τl )
ql

�ρ1 = �M�ρ1[�m+1 := �Pm+1�ρ] = {k} and,

�D[N] Sgl(τ1)
q1

. . . Sgl(τl )
ql

�ρ1 ⊆ �N�ρ1[�m+1 := �Pm+1�ρ]

which is either empty or it is a singleton {k′} different from k. By Lemma 13, ad-

equacy and fix-point equivalence: D[[[M[P1/�
σ1

1 , . . . , Pm/�σmm ]]]] Sgl(τ1)
q1

. . . Sgl(τl )
ql

⇓ k and,

D[[[N[P1/�
σ1

1 , . . . , Pm+1/�σmm ]]]] Sgl(τ1)
q1

. . . Sgl(τl )
ql

diverges or converges to k′. Thus, we can

apply inductive hypothesis (since the number of free stable variables has decreased) to

conclude the proof.

The above lemma can be used to prove the general case.

Theorem 9. Let Mσ, Nσ ∈ S�PCF�. If M ≈σ N then M ∼σ N.

Proof. We prove the contrapositive statement. Let us consider �σ1

1 , . . . , �σnn such that

SFV(M),SFV(N) ⊆ {�1, . . . , �n}. Let C[σ] be a context and �P be closed terms such that

C[M[�P/��]] ⇓ n and C[N[�P/��]] �⇓ n for some numeral n. Namely, C[M[�P/��]], C[N[�P/��]] ∈ P,

C[M] �∼ι C[N] and, both C[M], C[N] have no free occurrence of linear variables. Thus, by

Lemma 14 there is a context D[ι] such that D[C[M]] ⇓ m and D[C[M]] �⇓ m. So, the proof is

done.

Corollary 7. The equivalence ∼σ is a congruence.

6.1. Applicative operational equivalence

We conclude the section by defining an applicative operational equivalence obtained by

considering only special kinds of contexts (applicative contexts) to test the equality of

terms.

Definitiona 19 (applicative operational equivalence). Let Mσ, Nσ ∈ S�PCF� such that

SFV(M),SFV(N) ⊆ {�σ1

1 , . . . , �σnn }.
• M �A

σ N whenever, for all context C of the form (λ�f.[·σ]) P1 . . . Pm and for all closed terms

Lσ1

1 , . . . , Lσ1
n , if C[M[�L/��]] ⇓ n then C[N[�L/��]] ⇓ n.

• M ∼A
σ N iff M �A

σ N and N �A
σ M.

Theorem 10. Let Mσ, Nσ ∈ S�PCF�. If M ∼A
σ N then �M� = �N�.

Proof. Just by observing that the context used in the proof of Theorem 8 is an

applicative context.

The applicative equivalence still coincides with the previous ones, so it provides a

convenient tool for reasoning on programs.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 857

Corollary 8. Let Mσ, Nσ ∈ S�PCF�. Then M ∼σ N, M ≈σ N and M ∼A
σ N coincide.

7. Enhanced tracing reduction machine

The operational semantics of S�PCF� presented in Sections 2 and 4 is effective, but quite

inefficient. The operational rules for which? and �et-�or non-deterministically face a

potentially infinite number of evaluation branches, therefore an exhaustive search of the

right branch among the infinite ones is needed. In this section, we introduce a enhanced

tracing evaluation semantics which is able to drastically prune such infinite-branching

search tree. Roughly speaking, denotational linearity provides the certainty that each

term is applied to a unique sequence of arguments. Consequently, only one token in its

interpretation is used. An efficient evaluation can be obtained by introducing a variable

(a name) for each argument of a function, then the term is stored in correspondence

of such name (in a suitable environment) and finally, during the evaluation the term is

traced and the trace is stored in the environment. Summarizing, the idea is ‘to recursively

trace’ the arguments supplied to functions (by means of an environment) that record

trace-information along the evaluation tree. The enhanced tracing evaluation semantics

improve tracing we presented in Gaboardi et al. (2011) avoiding its main computational

defect (i.e. a free use of substitutions).

7.1. The recursion-free fragment

For sake of simplicity, we start by presenting the tracing evaluation of the recursion-free

fragment of S�PCF�, i.e. terms that does neither contain stable variables nor μ-abstractions.

Following Barendregt, we say that a term respects the hygienic-condition when all

variables have different names. More precisely, any two different bound variables have

different names and, the name of one free variable is different from that of all bound ones.

S�PCF� endowed with the straightforward notion of reduction does not preserve hygienic-

conditions by evaluation because it involves both recursive and additive features. For

instance, (λfι�ι.�if 0 f3 f5 )(λxι.xι) respects the hygienic-conditions, but the evaluations

involves both (λxι.xι)3 and (λxι.xι)5. However, in the recursion-free fragment of S�PCF�,

we can state a remarkable property about the hygienic-compliance of the evaluation tree

(in the case of a converging evaluation).

Property 2. Let M be a program in the recursion-free fragment of S�PCF� and M respecting

the hygienic-condition. Given a converging evaluation derivation D proving M ⇓ m, if D′ is

a sub-derivation of D with conclusion N ⇓ n then,

— N respect the hygienic-condition provided that: in the premise of the operational rule

(w) the (introduced) abstracted variable xι is fresh and, in the premise of rules (1lgor)

(2lgor), (3lgor), we rename variables (by using pairwise different fresh variables) in

the duplicated terms;

— we can define a (finite) function from all the bound variables of N (they have different

names by hygienic-conditions) to terms of the corresponding type as follows: to each

xσ we associate a Sglσn for a suitable n such that Chk(σ)
n (P) = 0 whenever P replaces xσ

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 858

in a sub-derivations D∗ of D; this condition endures that Sglσn can be used in place

of P.

Proof. The proof follows easily by straightforward induction on the evaluation rules.

The above property suggests that the recursion-free fragment of the evaluation semantics

can be rewritten by avoiding immediate substitution, we can use a global environment-list

to record the term supposed to be substituted to a given variable and to use it, when the

variable is encountered. This is essentially the tracing operational semantics we are going

to propose. From now on, for sake of simplicity, we assume that we evaluate only terms

respecting the hygienic-condition.

In order to collect the tracing information in an evaluation tree, we introduce a very

simple notion of environment.

Definitiona 20. An environment L is a finite list of entries that pairs variables (ground or

linear) to either a term (named argument) or a numeral (named trace).

Let xσ be a variable in the domain of L. If σ = ι then L(x) is always the trace, i.e. a

numeral. If σ is an arrow then either L(x) is a term typed σ (the argument) or it is a trace

typed ι.

We note [.], an empty environment and we use [f1 := N1, . . . , fk := Nk]:: L to represent

the environment list obtained by appending the k pairs in the first list in front of the pairs

of list L.

During the evaluation, we use variable-names as hold-place, recording in the envir-

onment the corresponding term when it is encountered and recording the trace when

it becomes available. Linearity gives us a notable benefit in the Landin-style evaluation

that we are presenting, namely we avoid the use of closures (i.e. recursive data-structures)

and we avoid the duplication of the environments on subterms. We remark that we

need a generator of fresh variables, with two main purposes. First, in order to trace the

evaluation of which? arguments (each which? argument is associated to a fresh variable

to be traced), second in order to trace subterms.

The rule of the enhanced tracing machine will be driven by states (i.e. term in

environment); we denote them by 〈M|L〉, where L involves all free variable of M. When we

evaluate a subterm we do not restrict the environment to its free variables, for sake of

efficiency, thus sometimes L will involve more than the free variables of M. Anyway, for

sake of clarity, we explicitly remove unused variable-names from environments.

If Mι is a closed term then we can obtain its evaluation, by supplying the state 〈M|[.]〉 to

the tracing machine that we are introducing.

Definitiona 21. The enhanced tracing evaluation (for the recursion-free evaluation of

S�PCF�) is the effective relation ⇓E from states (ground terms in environments) to states

(numerals in environments) defined by the rules of Table 4. If 〈M|L0〉 ⇓E 〈n|L1〉 then we

say that M converges, and we write simply 〈M|L0〉 ⇓E, otherwise we say that it diverges, and

we write 〈M|L0〉 ⇑E.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 859

Table 4. Enhanced tracing evaluation for the recursion-free fragment of S�PCF�.

〈0|L〉 ⇓E 〈0|L〉
(0)

〈M|L0〉 ⇓E 〈n|L1〉
〈s M|L0〉 ⇓E 〈s n|L1〉

(s)
〈M|L0〉 ⇓E 〈s n|L1〉
〈p M|L0〉 ⇓E 〈n|L1〉

(p)

〈M|L0〉 ⇓E 〈0|L1〉 〈L|L1〉 ⇓E 〈m|L2〉
〈�if M L R |L0〉 ⇓E 〈m|L2〉

(ifl)
〈M|L0〉 ⇓E 〈sn|L1〉 〈R|L1〉 ⇓E 〈m|L2〉

〈�if M L R |L0〉 ⇓E 〈m|L2〉
(ifr)

〈N|L0〉 ⇓E 〈n′|L1〉 〈MP1 . . . Pk|[x := n′]::L1〉 ⇓E 〈n|[x := n′]::L2〉
〈(λxι.M)NP1 . . . Pk|L0〉 ⇓E 〈n|L2〉

(λι)

〈MP1 . . . Pk|[f := N]::L0〉 ⇓E 〈n|[f := t]::L1〉
〈(λfσ�τ.M)NP1 . . . Pk|L0〉 ⇓E 〈n|L1〉

(λ�)

h(ι�ι)�ι fresh, 〈hI|[h := M]::L0〉 ⇓E 〈n|[h := t]:: L1〉 k = π1π1(t)

〈which? M(ι�ι)�ι|L0〉 ⇓E 〈�n, k
|L1〉
(w)

〈M1|[f1 := N1 , . . . , fk := Nk]:: L0〉 ⇓E 〈0|[f1 := n1 , . . . , fk := nk]::L1〉
〈M2|[f1 := Sgl

σ1
n1
, . . . , fk := Sgl

σk
nk

]::L1〉 ⇓E 〈sm|[f1 := n1 , . . . , fk := nk]:: L2〉

〈�et fσ11 = N1 , . . . , f
σk
k = Nk in�or M1 M2 M3|L0〉 ⇓E 〈m|L2〉

(1lgor)

〈M2|[f1 := N1 , . . . , fk := Nk]:: L0〉 ⇓E 〈0|[f1 := n1 , . . . , fk := nk]::L1〉
〈M3|[f1 := Sgl

σ1
n1
, . . . , fk := Sgl

σk
nk

]::L1〉 ⇓E 〈sm|[f1 := n1 , . . . , fk := nk]:: L2〉

〈�et fσ11 = N1 , . . . , f
σk
k = Nk in�or M1 M2 M3|L0〉 ⇓E 〈m|L2〉

(2lgor)

〈M3|[f1 := N1 , . . . , fk := Nk]:: L0〉 ⇓E 〈0|[f1 := n1 , . . . , fk := nk]::L1〉
〈M0|[f1 := Sgl

σ1
n1
, . . . , fk := Sgl

σk
nk

]::L1〉 ⇓E 〈sm|[f1 := n1 , . . . , fk := nk]:: L2〉

〈�et fσ11 = N1 , . . . , f
σk
k = Nk in�or M1 M2 M3|L0〉 ⇓E 〈m|L2〉

(3lgor)

〈xι|L0::[x := n]::L1〉 ⇓E 〈n|L0::[x := n]:: L1 〉
(Hgvar)

〈hP1 . . . Pk|L0::[f := h]::L1〉 ⇓E 〈n|L′
0::[f := h]::L′

10::[h := t]:: L′
11〉

〈fP1 . . . Pk|L0::[f := h]::L1〉 ⇓E 〈n|L′
0::[f := t]::L′

10::[h := t]:: L′
11〉

(Hvar)

h fresh , 〈hNP1 . . . Pk|[h := M]:: L0::[f := Mσ�τN]:: L1〉 ⇓E 〈n|[h := t]::L0::[f := Mσ�τN]::L1〉
〈fP1 . . . Pk|L0::[f := Mσ�τN]::L1〉 ⇓E 〈n|L0::[f := π2(t)]:: L1〉

(Happ)

〈M|L0〉 ⇓E 〈n|L1〉
〈fι�ιM|[f := s]:: L0〉 ⇓E 〈sn|[f :=�n, sn
]::L1〉

(Hs)
〈M|L0〉 ⇓E 〈s n|L1〉

〈fι�ι M|[f := p]:: L0〉 ⇓E 〈n|[f :=�sn, n
]::L1〉
(Hp)

h fresh , 〈hI|[h := M]::L0::[f := which?]::L1〉 ⇓E 〈n|[h := t]:: L0::[f := which?]::L1〉 k = π1(π1(t))

〈fM|L0::[f := which?]::L1〉 ⇓E 〈�n, k
|L0::[f :=���k, k
, n
, �n, k

]::L1〉
(Hw)

〈P|L0::[f := λxι.Mι]:: L1〉 ⇓E 〈m|L′
0::[f := λxι.Mι]:: L′

1〉
〈M|[xι := m]:: L′

0::[f := λxι.Mι]::L′
1〉 ⇓E 〈n|[xι := m]:: L′′

0::[f := λxι.Mι]::L′′
1〉

〈fP|L0::[f := λxι.Mι]:: L1〉 ⇓E 〈n|L′′
0::[f :=�m, n
]::L′′

1〉
(Hλιι)

h fresh , 〈P1|L0::[f := λxι.Mσ�τ]::L1〉 ⇓E 〈m|L′
0::[f := λxι.Mσ�τ]::L′

1〉
〈hP2 . . . Pk|[x := m, h := M]:: L′

0::[f := λxι.Mσ�τ]::L′
1〉 ⇓E 〈n|[x := m, h := t]::L′′

0::[f := λxι.Mσ�τ]:: L′′
1〉

〈fP1 . . . Pk|L0::[f := λxι.Mσ�τ]:: L1〉 ⇓E 〈n|L′′
0::[f :=�m, t
]::L′′

1〉
(Hλι�)

〈M|[g := P]::L0::[f := λgσ�τ.Mι]:: L1〉 ⇓E 〈n|[g := t]::L′
0::[f := λgσ�τ.Mι]::L′

1〉
〈fP|L0::[f := λgσ�τ.Mι]:: L1〉 ⇓E 〈n|L′

0::[f :=�t, n
]:: L′
1〉

(Hλ�
ι )

h fresh ,

〈hP2 . . . Pk|[g := P1 , h := M]::L0::[f := λgσ�σ′
.Mτ�τ′

]::L1〉 ⇓E 〈n|[g := t1 , h := tM]::L
′
0::[f := λgσ�σ′

.Mτ�τ′
]::L′

1〉

〈fP1 . . . Pk|L0::[f := λgσ�σ′
.Mτ�τ′

]::L1〉 ⇓E 〈n|L′
0::[f :=�t1 , tM
]::L′

1〉
(Hλ�

�)

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 860

To help the reader, we discuss how the rule have been conceived. The left-hand side of

a state is always a term of the shape ξM0 . . . Mm : ι for some m � 0, where ξ (the head)

is either a variable, or a numeral, an abstraction, or a which?, or �if M L R (for some

M, L, R), or �et fσ11 = N1, . . . , f
σk
k = Nk in�or M1 M2 M3. In the latter two cases (�if and

�et-�or) and when ξ is a numeral the typing rules imply that m = 0.

The enhanced tracing evaluation presented in Table 4 is driven by the head ξ of the

term ξM0 . . . Mm : ι in the state 〈ξM0 . . . Mm|L〉, which appears in the left-hand side of the

conclusion. In order to facilitate the comprehension of the tracing semantics, we have

devised its rules in two parts. The rules in the higher part take into account all possible

shapes of the head ξ, but the case of a (head) variable. The latter case is tackled by the

lower part of Table 4, they are driven by the shapes of terms associated to the (variable)

ξ in the environment.

The higher part of Table 4 is quite easy to understand, so we comment only rules

involving non-standard operators. The rule (w) extends the incoming environment L0 by a

fresh variable h associated to the term M that we plan to trace, and evaluates h applied to

the identity I = λx.x (recall that if which?(M) converges, by rules in the Table 1(c) , then MI

also converges). The result of this evaluation gives back a state 〈n|L1〉, where L1 reports

the observed trace of M that allows us to build the expected output information. Likewise,

each of the three �et-�or rules start by evaluating a branch (non-deterministically). If

a branch converges (in a rule) then, the reported trace is used in order to start the

evaluation of the other branch, where we supply as arguments of the involved variables a

term having (exactly) the behaviour of the reported trace (recall the Lemma 6). Therefore,

a rule converges only in case the two (involved) branches do the same observations on

the list of arguments supplied to a linear variable.

The lower part of Table 4 contains rules having in the left-hand side of conclusion, a

state of the shape 〈� M0 . . . Mm|L〉 where � is the head variable. These rules are driven by

the shape of the term associated to � in L. Because (well typed) �et-�or-terms, well-typed

�if-terms and ground variables are typed ι, we remark no L can associates � to one of

them. Indeed, the call-by-value policy for ground sub-terms force their evaluations before

storing them in the environment.

The rule (Hgvar) is easy. (Hvar) considers the case where the argument associated

to the head variable is another variable-name, it forwards the evaluation by using the

argument (this case can happen only with arrow-typed variables). (Happ) is a key rule. It

applies in the case the argument associated to the head variable is an application MN. In

this case, it shifts N in the term of the state driving the rules. Such approach allows us to

collect sufficient information to report the needed traces. The rules (Hs), (Hp) are quite

simple. Likewise to the rule (w) presented above, the rule (Hw) is interesting: it uses the

information gathered by the fresh variable h to produce the right outcome and the trace

of the which? itself. Finally, the rules (Hλιι), (Hλι�), (Hλ�
ι ) and (Hλ�

�) consider the cases

arising from a head variable associated to an abstraction in the environment. There are

four rules depending from two types, i.e. the type of the body of the abstraction and the

type of the abstracted variable: mnemonically, the rule’s names use as superscript the type

of the variable and as subscript the type of the body. The rules (Hλιι) and (Hλι�) need first

to evaluate the ground argument in order to comply the call-by-value policy. All the rules

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 861

use trace-information in the (right-hand side of) premises to obtain the trace-information

that they provide in the (right-hand side of) conclusion.

The tracing evaluation semantics is very concrete and it can be straightforwardly

adapted to use the de Bruijn indexes (de Bruijn 1972) to avoid the needed for variable

names in environments, since our environments are never reordered and grow only on the

left-hand side. Therefore, this evaluation looks as a reasonable base for an implementation.

7.2. Full evaluation

We extend the evaluation provided in the previous sub-section by adding the evaluation

rules for recursion. First of all, we can assume without loss of generality that all names of

stable variables respect hygienic conditions, i.e. we assume that all ‘identifiers’ in programs

are unique. A μ-abstraction μ�.M is morally a ML-like expression letrec � = M in M. A

standard compilation technique to normalize the presence of letrec in programs is the

lambda-lifting (see Johnsson (1985)). Lambda-lifting allows us to transform programs so

that all recursive-definitions are given in one giant letrec at the top-level and the only

free variables of definition-bodies are just stable ones.

We adapt the lifting algorithm to S�PCF�. Let M be a term of S�PCF� and let assume

that in M occur k � 0 (different) μ-abstractions.

We say that a μ-abstraction is liftable whenever it does not contain ground (and

linear) free-variables (albeit, it can contain stable ones). We remind that a well-typed

μ-abstraction cannot contain linear free variables. A not liftable μ-abstraction is said

unliftable.

We describe our lifting-algorithm.

1. Let X be the term we are considering. If X only contains liftable μ-abstraction then we

skip to step 3, otherwise we proceed to step 2.

2. Since X contains (at least) one unliftable μ-abstraction, we can always find a unliftable

μ-abstraction μ�B.B (occurring in X) that does not contain (as subterm) any other

unliftable μ-abstraction. Let us assume that FV(μ�B.B)� ι = {zσ1

1 , . . . , zσhh } for some

h � 1; note that we are just looking to ground free variables. We replace the (unique)

occurrence of μ�σB.B
σ in X by (μ�σ1→...→σh→σ

A .Aσ1→...→σh→σ)zσ1

1 . . . zσhh where

A = λyσ1

1 . . . yσhh .B[yσ1

1 /zσ1

1 . . . yσhh /zσhh , (�σ1→...→σh→σ
A yσ1

1 . . . yσhh )/�σB]

and yσ1

1 , . . . , yσhh are fresh variables. Then, we proceed by re-applying the Step 1, to the

term built in this step. Patently, this iteration ends in finite steps, since there are finite

unliftable μ-abstractions in X and Step 2 decrease it.

3. Let Def be a finite function from stable variables to S�PCF�-terms such that all (possible)

free variables are stable ones. We start by assuming Def be the empty function and that

X is the term obtained by previous steps (containing only liftable μ-abstractions).

4. If X does not contain (liftable) μ-abstraction we concluded the lifting, otherwise we

proceed to step 5.

5. Since X contains (at least) one liftable μ-abstraction, we can always find a liftable

μ-abstraction μ�B.B (occurring in X) that does not contain (as subterm) any other

μ-abstraction (albeit it can contain free stable variables). We extend Def by associating

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 862

Table 5. XP-reduction machinary: recursion!

〈Def(�)�P1 . . . Pk|L0〉 ⇓E 〈n|L1〉
〈�P1 . . . Pk|L0〉 ⇓E 〈n|L1〉

(�)
〈fP1 . . . Pk|L0::[f :=Def(�)�]:: L1]〉 ⇓E 〈n|L2〉

〈fP1 . . . Pk|L0::[f := �]:: L1]〉 ⇓E 〈n|L2〉
(Hμ)

B to �B and we replace in X the (unique) occurrence of μ�B.B by �B .

We proceed by coming back to the step 4, with the term built in this step and the

updated Def. Patently, this iteration ends in finite steps, since there is a finite number

of μ-abstractions in X and we decrease it.

The lifting-algorithm gives back a function Def together with a term X of S�PCF� free

of μ-abstractions. Following the standard literature, the algorithm we considered can be

improved in many ways. As the Johnsson’s algorithm, we first perform parameter lifting

and then perform block floating (Augustsson 1987; Johnsson 1987). The main difference

with respect to standard presentation is that we do not move recursive-definitions at the

top-level of the term itself, but we move them out of the starting program (i.e. in Def).

Soundness proofs are very standard but quite boring, see for instance Augustsson (1987)

and Johnsson (1987), we omit them.

By applying the lifting to S�PCF�, we transform a program in a definition-function Def

together with a body B to be evaluated. Remark that both B and terms in the range of Def

satisfy the proviso that, all its free variables are stable variables. From now on we assume

that the lifting has been executed, so we can focus our attention on the evaluation of terms

that does not contain μ-abstractions but (possibly) contains free stable variables. Such

terms are supplied together a definition function Def associating to each stable variable a

suitable term.

Multiple recursive calls of the same definition can cause clash of variable names, to

avoid them we need a refreshing function: if M contains only free variables and no

μ-abstraction then M� is obtained by replacing all bound variable names by means of

fresh (i.e. never used in the evaluation) names. Clearly, M and M� are α-equivalent in the

standard sense.

Definitiona 22. The full evaluation of S�PCF� is thus obtained by adding to the rules of

Tables 4 those of Table 5.

The only peculiarity in these new rules is the use of the refreshing function on new

definition-instances. This kind of refreshing is sufficient since the linearity assures that no

duplication can occur. The lack of linearity impedes the use of the proposed evaluation

technique to PCF: first, closures must be duplicated on subterms; second, the considered

refreshing is useless in presence of term duplication along the computation.

Note that the refreshing function can be easily implemented avoiding the exploration

of involved terms at each call. To reach this goal, the idea is to collect the position of

the bound variables in definitions and their positions along the compilation phase. Then,

we record such information in the definition function. Because, we always use Def in

conjunction with �, we can transform these two logical operations in a single, more

efficient, operation. The latter, by using the collected information, can smoothly provide a

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 863

refreshed instance of the definition. Standard techniques of nominal binding can be used

to reach this goal.

Summarizing, the proposed enhanced tracing operational evaluation prune the infinite-

branching search tree that affects the evaluation ⇓ presented in previous sections. In

this sense, it is similar to the tracing evaluation presented in Gaboardi et al. (2011).

However, we go definitively further the latter, by avoiding its main defect (i.e. a free use

of substitutions) which is replaced by a very limited and controlled form of refreshing.

Concluding, we feel that the proposed evaluation is very efficient.

7.3. Soundness

In this section, we prove that the two presented operational evaluations (namely, ⇓ and

⇓E) are equivalent. It is useful to remark that the environment-list L can be regarded as a

stack with the top element on its left.

Definitiona 23. Let L = [f1 := N1, . . . , fk := Nk] (k � 0) be an environment such that all

variables are pairwise different†. The set Dom(L) = {f1, . . . , fn} is the domain of L.

If L is an environment, the arrow-typed variables in Dom(L) are partitioned in two

subsets, traced and not-traced. A variable xσ→τ ∈ Dom(L) is traced when L associates it

to a numeral and it is not-traced when L associates it to a terms of type σ → τ.

Definitiona 24. Let L = [f1 := N1, . . . , fk := Nk] (k � 0). Its not-traced domain uDom(L) is

the restriction of Dom(L) to not-traced variable (included ground variables).

L is acyclic whenever, for each i � k, Wi = FV(Ni) − SVar (namely the set of all free

variables in Ni but stable ones) satisfies Wi ⊆ uDom([fi+1 := Ni+1, . . . , fk := Nk]).

We are interested only in acyclic environment. The empty-environment is trivially

acyclic. Acyclicity arises from the fact that the environment works as a stack, where

we push subterms that contains (not stable) free variables bounded in the stack itself.

If L contains traced variables then the evaluation of 〈M|L〉 leaves them untouched and

unused. Recorded traces are just reported-back to the ‘caller’ of the evaluation i.e. if we

are considering a sub-derivation of a derivation then the derivation can use the reported

trace conveniently.

Definitiona 25. Let L be an acyclic environment. If 〈M|L〉 is a state then L induces a

substitution on M defined as follows:

— if L = [ ] then L(M) = M,

— if L = [f := N]:: L′ and f is traced then, L(M) = L′(M),
— if L = [f := N]:: L′ and f is not-traced then, L(M) = L′(M[N/f]).

〈M|L〉 is well formed whenever, L is acyclic and L(M) is a closed term typed ι.

Since the not-traced part of a domain includes all ground variables, they are always

substituted by the operator (.). If 〈M|L〉 is state and L is acyclic and (FV(M) − SVar) ⊆

† The proviso holds, since we consider only evaluations of terms respecting hygienic conditions.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 864

uDom(L) then, it is easy to see that 〈M|L〉 is well formed. Moreover, the evaluation of a

well-formed state just involves well-formed states.

Lemma 15. If 〈M|L0〉 is a well-formed state and 〈M|L0〉 ⇓E 〈n|L1〉 then Dom(L0) =

Dom(L1) and all states involved in the evaluation are well formed. Moreover, if L0 =

[f1 := N1, . . . , fk := Nk] (k � 0) then L1 = [f1 := N′
1, . . . , fk := N′

k] and, for each 1 � i � k,

one of the following is satisfied:

— if fi is ground then Ni = N′
i is also ground;

— if fi is traced in 〈M|L0〉 then Ni = N′
i is a numeral;

— if fi is not-traced in 〈M|L0〉 then, either Ni = N′
i (if the evaluation has not required the

use of fi) or N′
i is a numeral m where Chk(σ)

m (Ni) = 0 (in other words Sgl(σ)
m corresponds

to a trace in Ni).

Proof. A straightforward induction on evaluation rules.

Clearly, if 〈M|L0〉 is a well-formed state and 〈M|L0〉 ⇓E 〈n|L1〉 then uDom(L1) ⊆
uDom(L0).

Definitiona 26. Let 〈M|L0〉 be a well-formed state such that 〈M|L0〉 ⇓E 〈n|L1〉. If L0 =

[f1 := N1, . . . , fk := Nk] and L1 = [f1 := N′
1, . . . , fk := N′

k] (k � 0) then, we define ReifyL0
(L1)

be the environment [f1 := N′′
1 , . . . , fk := N′′

k ] such that, for all 1 � i � k,

— if N′
i = m then N′′

i is defined as Sgl(σ)
m ,

— otherwise, if Ni = N′
i then N′′

i is defined as Ni.

The last definition allows us to express formally, the deep relation between L0 and L1.

Proposition 5. Let 〈M|L0〉 be a well-formed state.

If 〈M|L0〉 ⇓E 〈n|L1〉 and L2 = ReifyL0
(L1) then 〈M|L2〉 ⇓E 〈n|L1〉.

Proof. Easy, by induction on the derivation proving 〈M|L0〉 ⇓E 〈n|L1〉.

Finally, we give the formal correspondence between the two operational evaluation.

Theorem 11. Let 〈M|L0〉 be well formed.

1. If L0(M) ⇓ n then 〈M|L0〉 ⇓E 〈n|L1〉.
2. If 〈M|L0〉 ⇓E 〈n|L1〉 then L0(M) ⇓ n.

Proof. Both directions follow by induction on given derivations.

8. Conclusions and future works

The results presented in this paper are part of a wider project (started with the works

of Gaboardi and Paolini (2007) and Paolini and Piccolo (2008)), aiming to extend the

expressive power of linear programming languages by means of the reification of linear

functions between suitable domains. On the one hand, S�PCF� provides an interesting

programming language, because the efficient evaluation machine presented in this paper.

On the other hand, in the usual reductionist mainstream of science, S�PCF� can be

considered as an over-simplified paradigmatic calculus that can be used to tackle complex

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 865

issues that can (possibly) be extended to non-strictly linear settings. In this line, we leave

as future works to look for a sharp way to compile the whole PCF language in S�PCF�.

An interesting direction is to extend the results obtained in this paper in order to prove

the universality of S�PCF� with respect to the linear model, i.e. to find the language able

to define all the recursive cliques of the model. Another interesting direction is the study

of S�PCF� semantics with respect to other model notions.

Acknowledgements

This work has been supported by the LINTEL project (grant number TO Call1 2012

0085), funded by the Compagnia di San Paolo. Marco Gaboardi has been supported by

the European Community’s Seventh Framework Programme FP7/2007-2013 under grant

agreement no. 272487.

References

Abramsky, S., Malacaria, P. and Jagadeesan, R. (2000) Full abstraction for PCF. Information

and Computation 163 (2) 409–470. (An extended abstract can be found in Theoretical Aspects of

Computer Software (Sendai, 1994), Lecture Notes in Computer Science, 789 1–15, Springer-Verlag,

Berlin, 1994.)

Abramsky, S. and McCusker, G. (1996) Linearity, sharing and state: A fully abstract game semantics

for idealized algol with active expressions. Electronic Notes in Theoretical Computer Science 3

2–14.

Alves, S., Fernández, M., Florido, M. and Mackie, I. (2006) The power of linear functions. In:

Ésik, Z. (ed.) Proceedings of the 20th International Workshop on Computer Science Logic, 15th

Annual Conference of the European Association for Computer Science Logic, Szeged, Hungary,

25–29 September. Springer-Verlag Lecture Notes in Computer Science 4207 119–134.

Alves, S., Fernández, M., Florido, M. and Mackie, I. (2007) Linear recursive functions. In: Comon-

Lundh, H., Kirchner, C. and Kirchner, H. (eds.) Rewriting, Computation and Proof, Essays

Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday. Springer-Verlag

Lecture Notes in Computer Science 4600 182–195.

Alves, S., Fernndez, M., Florido, M. and Mackie, I. (2010) Gödel’s system T revisited. Theoretical

Computer Science 411 (11–13) 1484–1500.

Augustsson, L. (1987) Compiling Lazy Functional Languages, Part II, Ph.D. thesis, Department of

Computer Sciences, Chalmers University of Technology, Goteborg, Sweden.

Berry, G. (1978) Stable models of typed λ-calculi. In: Ausiello, G. and Böhm, C. (eds.) Fifth

International Colloquium on Automata, Languages and Programming. (Udine, Italy, July 17–

21). Springer-Verlag Lecture Notes in Computer Science 62 72–89.

Berry, G. and Curien, P.-L. (1982) Sequential algorithms on concrete data structures. Theoretical

Computer Science 20 265–321.

Bierman, G. M. (2000) Program equivalence in a linear functional language. Journal of Functional

Programming 10 (2) 167–190.

Bierman, G. M., Pitts, A. M. and Russo, C. V. (2000) Operational properties of lily, a polymorphic

linear lambda calculus with recursion. Electronic Notes in Theoretical Computer Science 41 (3)

70–88.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


M. Gaboardi, L. Paolini and M. Piccolo 866

Bucciarelli, A., Carraro, A., Ehrhard, T. and Salibra, A. (2010) On linear information systems. In:

LINEARITY’09, Satellite Workshop of Computer Science Logic 2009 Electronic Proceedings in

Theoretical Computer Science 22 38–48.

Bucciarelli, A. and Ehrhard, T. (1991) Sequentiality and strong stability. In: Proceedings of the

Symposium on Logic in Computer Science 138–145.

Bucciarelli, A. and Ehrhard, T. (1993) A theory of sequentiality. Theoretical Computer Science 113

(2) 273–291.

Bucciarelli, A. and Ehrhard, T. (1994) Sequentiality in an extensional framework. Information and

Computation 110 (2) 265–296.

Curien, P.-L. (2007) Definability and full abstraction. Electronic Notes in Theoretical Computer

Science 172 301–310.

Cutland, N. (1980) Computability: An Introduction to Recursive Function Theory, Cambridge

University Press.

Davis, M. and Weyuker, E. J. (1983) Computability, Complexity and Languages, Computer Science

and Applied Mathematics, Academic Press.

de Bruijn, N. G. (1972) Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church–Rosser theorem. Indagationes

Mathematicae (Proceedings) 75 (5) 381–392.

Ehrhard, T. (1995) Hypercoherence: A strongly stable model of linear logic. In: Girard, J.-Y., Lafont,

Y. and Regnier, L. (eds.) Proceedings of the Workshop on Advances in Linear Logic. London

Mathematical Society Lecture Note Series 222, Cambridge University Press, Ithaca, New York

83–108.

Gaboardi, M. and Paolini, L. (2007) Syntactical, operational and denotational linearity. In: Workshop

on Linear Logic, Ludics, Implicit Complexity and Operator Algebras. Dedicated to Jean-Yves Girard

on his 60th birthday. Certosa di Pontignano, Siena.

Gaboardi, M., Paolini, L. and Piccolo, M. (2011) Linearity and PCF: a semantic insight! In:

Chakravarty, M. M. T., Hu, Z. and Danvy, O. (eds.) Proceeding of the 16th Association for

Computing Machinery’s Special interest Group on Programming Language, International Conference

on Functional Programming Tokyo, Japan 372–384.

Girard, J.-Y. (1986) The system F of variable types, fifteen years later. Theoretical Computer Science

45 (2) 159–192.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1–102.

Girard, J.-Y., Lafont, Y. and Taylor, P. (1989) Proofs and Types, Cambridge Tracts in Theoretical

Computer Science, Cambridge University Press, Cambridge.

Gunter, C. A. (1992) Semantics of Programming Languages: Structures and Techniques, Foundations

of Computing Series, The MIT Press, Cambridge, MA.

Hindley, J. R. (1989) BCK-combinators and linear λ-terms have types. Theoretical Computer Science

64 97–105.

Huth, M. (1993) Linear domains and linear maps. In: Brookes, S. D., Main, M. G., Melton,

A., Mislove, M. W. and Schmidt, D. A. (eds.) Proceedings of Mathematical Foundations of

Programming Semantics, 9th International Conference, (New Orleans, LA, USA, April 7–10).

Springer Lecture Notes in Computer Science 802 438–453.

Hyland, J. M. E. and Ong, L. C.-H. (2000) On full abstraction for PCF: I, II, and III. Information

and Computation 163 (2) 285–408.

Johnsson, T. (1985) Lambda lifting: Transforming programs to recursive equations. In: Jouannaud,

J.-P. (ed), Functional Programming Languages and Computer Architecture. Lecture Notes in

Computer Science 201 190–203.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401


Linearity and PCF 867

Johnsson, T. (1987) Compiling Lazy Functional Languages, Ph.D. thesis, Department of Computer

Sciences, Chalmers University of Technology, Goteborg, Sweden.

Klop, J. W. (2007) New fix point combinators from old. In: Barendsen, E., Capretta, V., Geuvers,

H. and Niqui, M. (eds.) Reflections on Type Theory, Radboud University Nijmegen.

Longley, J. R. (2000) Notions of computability at higher types I. In: Cori, R., Razborov, A.,

Todorcevic, S. and Wood, C. (eds.) Proceedings of the Annual European Summer Meeting of the

Association for Symbolic Logic – Logic Colloquium. Lecture Notes in Logic 19 32–142, Paris,

France. Association for Symbolic Logic.

Longley, J. R. (2002) The sequentially realizable functionals. Annals of Pure and Applied Logic 117

1–93.

Normann, D. (2006) Computing with functionals - computability theory or computer science?

Bulletin of Symbolic Logic 12 (1) 43–59.

Ong, C.-H. L. (1995) Correspondence between operational and denotational semantics: the full

abstraction for PCF. In: Abramsky, S., Gabbay, D. and Maibaum, T. S. E. (eds.) Handbook of

Logic in Computer Science, volume 4, Oxford University Press 269–356.

Paolini, L. (2006) A stable programming language. Information and Computation 204 (3) 339–375.

Paolini, L. and Piccolo, M. (2008) Semantically linear programming languages. In: Antoy, S. and

Albert, E. (eds.) Proceedings of the 10th International Association for Computing Machinery’s

Special interest Group on Programming Languages Conference on Principles and Practice of

Declarative Programming, Valencia, Spain, ACM 97–107.

Plotkin, G. D. (1977) LCF considered as a programming language. Theoretical Computer Science 5

225–255.

Walker, D. (2005) Substructural type systems. In: Advanced Topics in Types and Programming

Languages. The MIT Press.

https://doi.org/10.1017/S0960129514000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000401

