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We show that a set A ⊂ {0, 1}n with edge-boundary of size at most

|A|(log2(2
n/|A|) + ε)

can be made into a subcube by at most (2ε/ log2(1/ε))|A| additions and deletions, provided

ε is less than an absolute constant.

We deduce that if A ⊂ {0, 1}n has size 2t for some t ∈ N, and cannot be made into a

subcube by fewer than δ|A| additions and deletions, then its edge-boundary has size at least

|A| log2(2
n/|A|) + |A|δ log2(1/δ) = 2t(n− t+ δ log2(1/δ)),

provided δ is less than an absolute constant. This is sharp whenever δ = 1/2j for some

j ∈ {1, 2, . . . , t}.

1. Introduction

We work in the n-dimensional discrete cube {0, 1}n, the set of all 0–1 vectors of length n.

This may be identified with P([n]), the set of all subsets of [n] = {1, 2, . . . , n}, by identifying

a set x ⊂ [n] with its characteristic vector χx in the usual way. A d-dimensional subcube of

{0, 1}n is a set of the form

{x ∈ {0, 1}n : xi1 = a1, xi2 = a2, . . . , xin−d = an−d},

where i1 < i2 < · · · < in−d are coordinates, and a1, a2, . . . and an−d are fixed elements of

{0, 1}. The coordinates i1, i2, . . . , in−d are called the fixed coordinates; the other coordinates

are called the moving coordinates, and n− d is called the codimension of the subcube.

Consider the graph Qn with vertex-set {0, 1}n, where we join two 0–1 vectors if they

differ in exactly one coordinate; this graph is called the n-dimensional hypercube. Given a

set A ⊂ {0, 1}n, the edge-boundary of A is defined to be the set of all edges of Qn joining

a point in A to a point not in A. We write ∂A for the edge-boundary of A.
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For 1 � k � 2n, let Cn,k be the first k elements of the binary ordering on P([n]), defined

by

x < y ⇔ max(xΔy) ∈ y.

The edge-isoperimetric inequality of Harper [6], Lindsey [12], Bernstein [2] and Hart

[7] states that among all subsets of {0, 1}n of size k, Cn,k has the smallest possible

edge-boundary.

A slightly weaker form is as follows:

|∂A| � |A| log2(2
n/|A|) ∀A ⊂ {0, 1}n; (1.1)

equality holds if and only if A is a subcube. We call |∂A|/|A| the average out-degree of A;

(1.1) says that the average out-degree of A is at least log2(2
n/|A|) (which is the average

out-degree of a subcube of size |A|, when |A| is a power of 2). Writing p = |A|/2n for the

measure of the set A, we may rewrite (1.1) as

|∂A| � 2np log2(1/p) ∀A ⊂ {0, 1}n.

Hence, if |A| = 2n−1, |∂A| � 2n−1, and equality holds only if A is a codimension-1

subcube, in which case the edge-boundary consists of all the edges in one direction.

It is natural to ask whether it is always possible to find a direction in which there are

many boundary edges. For i ∈ [n], we write

A+
i = {x \ {i} : x ∈ A, i ∈ x} ⊂ P([n] \ {i}),

and

A−
i = {x ∈ A : i /∈ x} ⊂ P([n] \ {i});

A+
i and A−

i are called the upper and lower i-sections of A, respectively. We write

∂iA = |A+
i ΔA−

i |

for the number of edges of the boundary of A in direction i. The influence of the coordinate

i on the set A is defined to be

βi = |A+
i ΔA−

i |/2n−1,

i.e., the fraction of direction-i edges of Qn which belong to ∂A. This is simply the

probability that if S ⊂ P([n]) is chosen uniformly at random, A contains exactly one of S

and SΔ{i}. Clearly,

|∂A| = 2n−1
n∑
i=1

βi.

Ben-Or and Linial [1] conjectured that for any set A ⊂ {0, 1}n with |A| = 2n−1, there

exists a coordinate with influence at least Ω
( log2 n

n

)
. This was proved by Kahn, Kalai and

Linial; it follows from the celebrated KKL theorem.
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Theorem 1.1 (Kahn, Kalai and Linial [9]). If A ⊂ {0, 1}n with measure p, then

n∑
i=1

β2
i � Cp2(1 − p)2(ln n)2/n,

where C > 0 is an absolute constant.

Corollary 1.2. If A ⊂ {0, 1}n with measure p, then there exists a coordinate i ∈ [n] with

βi � C ′p(1 − p)(ln n)/n,

where C ′ > 0 is an absolute constant.

Corollary 1.2 is sharp up to the value of the absolute constant C ′, as can be seen from

the ‘tribes’ construction of Ben-Or and Linial [1]. Let n = kl, and split [n] into l ‘tribes’

of size k. Let A be the set of all 0–1 vectors which are identically 0 on at least one tribe.

Observe that

|A| = (1 − (1 − 2−k)l)2n,

|∂A| = n2n−k(1 − 2−k)l−1,

and

βi = 2−(k−1)(1 − 2−k)l−1 ∀i ∈ [n].

Let k = 2j for some j ∈ N, and let l = 2k/k, so that n = 2k = 22j ; then

1 − p = (1 − 2−k)l = (1 − 2−k)2
k/k = 1 − 1/k + O(1/k2),

and

βi =
2(1 − p)

n(1 − 2−k)
=

2(1 − 1/k + O(1/k2))

n
∀i ∈ [n],

so

βi

p(1 − p) ln(n)/n
=

2(1 − 1/k + O(1/k2))

(1/k − O(1/k2)(1 − O(1/k))k ln 2
=

2

ln 2
(1 + O(1/k)).

The best possible values of the constants C and C ′ (in Theorem 1.1 and Corollary 1.2

respectively) remain unknown. Falik and Samorodnitsky [3] have shown that one can

take C = 4, and therefore C ′ = 2.

Kahn, Kalai and Linial’s proof of Theorem 1.1 is one of the first instances of Fourier

analysis on {0, 1}n being used to prove a purely combinatorial result; Fourier analysis

has since become a very important tool in both probabilistic and extremal combinatorics.

More recently, Falik and Samorodnitsky [3] gave an entirely combinatorial proof of

Theorem 1.1; a similar proof was found independently by Rossignol [13]. In [3], Falik

and Samorodnitsky use influence-based methods to obtain several other results on subsets

of {0, 1}n with small edge-boundary.

What happens if the edge-boundary of A has size close to |A| log2(2
n/|A|)? How close

must A be to a subcube? Using the techniques of Fourier analysis, Friedgut, Kalai and
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Naor [5] proved that if A ⊂ {0, 1}n with |A| = 2n−1 and |∂A| � 2n−1(1 + ε), then A can be

made into a codimension-1 subcube by at most Kε2n−1 additions and deletions, where K is

an absolute constant. Bollobás, Leader and Riordan [11] conjectured that for any N ∈ N,

there exists a constant KN depending on N such that any A ⊂ {0, 1}n with |A| = 2n−N and

|∂A| � (1 + ε)|A| log2(2
n/|A|)

can be made into a codimension-N subcube by at most KNε2
n−N additions and deletions.

They proved this for N = 2 and N = 3, also using the techniques of Fourier analysis. We

remark that KN must necessarily depend on N. Indeed, as was observed by Samorodnitsky

[14], a variant of the ‘tribes’ construction of Ben-Or and Linial provides an example of a

(small) set A satisfying

|∂A| � (1 + ε)|A| log2(2
n/|A|),

and yet requiring at least (1 − o(1))|A| additions and deletions to make it into a subcube.

As above, let n = kl, split [n] into l ‘tribes’ of size k, and let A be the set of all 0–1

vectors which are identically 0 on at least one tribe. Fix an integer s. Let k = 2j , and let

l = 2k/2
s

/k = 22j−s−j , so that n = 2k/2
s

= 22j−s . Let j → ∞. Then

1 − p = (1 − 2−k)l = 1 − l2−k + O((l2−k)2) � 1 − l2−k,

so

p � l2−k,

and therefore

log2(1/p) � k − log2 l = (1 − 2−s)k + log2 k.

Note that

|∂A| = n2n−k(1 − 2−k)l−1 =
n2n−k(1 − p)

1 − 2−k = n2n−k(1 + O(l2−k)).

Hence,

|∂A|
|A| log2(2

n/|A|) � n2n−k(1 + O(l2−k))

(l2−k(1 − O(l2−k)))((1 − 2−s)k + log2 k)2
n

=
kl(1 + O(l2−k))

l((1 − 2−s)k + log2 k)

=
1 + O(l2−k)

1 − 2−s + (log2 k)/k

<
1

1 − 2−s ,

provided j is sufficiently large depending on s. For any ε > 0, this can clearly be made

� 1 + ε by choosing s to be sufficiently large depending on ε. However, A is a union of l

codimension-k subcubes with disjoint sets of fixed coordinates, and therefore requires at

least (1 − o(1))|A| additions and deletions to make it into a subcube.
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Samorodnitsky [14] conjectured that given any δ > 0, there exists an a > 0 such that

any A ⊂ {0, 1}n with

|∂A| � (1 + a/n)|A| log2(2
n/|A|)

can be made into a subcube by at most δ|A| additions and deletions. Making use of a

result of Keevash [10] on the structure of r-uniform hypergraphs with small shadows, he

proved that any A ⊂ {0, 1}n with

|∂A| � (1 + n−4)|A| log2(2
n/|A|)

can be made into a subcube by at most o(|A|) additions and deletions.

It turns out that the correct condition to ensure that A is close to a subcube is

that |∂A|/|A|, the average out-degree of A, is close to log2(2
n/|A|). Our first main result

(Theorem 2.4) implies that if A ⊂ {0, 1}n has edge-boundary of size at most

|A|(log2(2
n/|A|) + ε), (1.2)

where ε is less than an absolute constant, then it can be made into a subcube by at most

(1 + O(1/ log2(1/ε)))
ε

log2(1/ε)
|A| � 2ε

log2(1/ε)
|A|

additions and deletions. This proves the above conjecture of Bollobás, Leader and Riordan,

and also that of Samorodnitsky.

We then prove Theorem 2.5, which states that if A ⊂ {0, 1}n has size 2t for some t ∈ N,

and edge-boundary of size at most

|A|(log2(2
n/|A|) + ε) = 2t(n− t+ ε),

where ε is less than an absolute constant, then it can be made into a t-dimensional

subcube by at most δ1(ε)|A| additions and deletions, where δ1(ε) is the unique root of

x log2(1/x) = ε

in (0, 1/e). It follows that if A ⊂ {0, 1}n has size 2t for some t ∈ N, and cannot be made

into a subcube by fewer than δ|A| additions and deletions, then

|∂A| � |A| log2(2
n/|A|) + |A|δ log2(1/δ) = 2t(n− t+ δ log2(1/δ)),

provided δ is less than an absolute constant. This is sharp whenever δ = 1/2j for some

j ∈ {1, 2, . . . , t}.
Our first aim is to prove a ‘rough’ stability result (Theorem 2.3), stating that if A is

‘almost isoperimetric’, in the sense that the average out-degree of ∂A is not too far above

log2(2
n/|A|), then A can be made into a subcube by a small number of additions and

deletions. Influence-based methods play a crucial role in our proof. Indeed, it will turn

out that a set A ⊂ {0, 1}n satisfying (1.2) must have each influence either very small or

very large. We will use the following theorem of Talagrand [16].

Theorem 1.3 (Talagrand). Suppose A ⊂ {0, 1}n with measure

|A|
2n

= p.
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Then its influences satisfy

n∑
i=1

βi/ log2(1/βi) � Kp(1 − p),

where K > 0 is an absolute constant.

This implies that if all the influences are small, the edge-boundary must be very large.

This will help to show that there must be a coordinate, i say, of very large influence. It

will follow that one of the i-sections of A is very small. An inductive argument will enable

us to complete the proof.

2. Main results

We first prove a sequence of results on the rough structure of subsets of {0, 1}n with small

edge-boundary. If A ⊂ {0, 1}n, and i ∈ [n], we define

γi =
min{|A+

i |, |A−
i |}

|A| .

(Observe that we always have γi � 1/2.) We first show that if A ⊂ {0, 1}n has small edge-

boundary, then for each i ∈ [n], either one of the i-sections of A is very small, or else the

upper and lower i-sections of A have very similar sizes.

Lemma 2.1. Let A ⊂ {0, 1}n with

|∂A| = |A|(log2(2
n/|A|) + ε0). (2.1)

Then, for each i ∈ [n], either

(1) γi � ε0/(5(log2 5 − 2)), or

(2) 1/2 − ε0 < γi � 1/2.

Proof. Let A ⊂ {0, 1}n, satisfying the hypothesis of the lemma. Write

p =
|A|
2n

for the measure of A; then

|∂A| = 2np(log2(1/p) + ε0).

Fix i ∈ [n]. Without loss of generality, we may assume that |A+
i | � |A−

i |, so

γi =
|A+

i |
|A| .

Write γ = γi. Let

p+ =
|A+

i |
2n−1

, p− =
|A−

i |
2n−1

.
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Note that

p+ = 2γp, p− = 2(1 − γ)p.

Define ε+, ε− by

|∂A+
i | = |A+

i |(log2(2
n−1/|A+

i |) + ε+), |∂A−
i | = |A−

i |(log2(2
n−1/|A−

i |) + ε−).

Observe that

|∂A| = |∂A+
i | + |∂A−

i | + |A+
i ΔA−

i |
= |A+

i |(log2(2
n−1/|A+

i |) + ε+) + |A−
i |(log2(2

n−1/|A−|) + ε−) + |A+
i ΔA−

i |
= γ|A| log2(2

n/(2γ|A|)) + (1 − γ)|A|(log2(2
n/(2(1 − γ)|A|) + ε+|A+

i | + ε−|A−
i |

+ |A+
i ΔA−

i |
= |A| log2(2

n/|A|) − (1 −H2(γ))|A| + ε+|A+
i | + ε−|A−

i | + |A+
i ΔA−

i | (2.2)

� |A| log2(2
n/|A|) − (1 −H2(γ))|A| + ε+|A+

i | + ε−|A−
i | + ||A+

i | − |A−
i ||

= |A| log2(2
n/|A|) − (1 −H2(γ))|A| + ε+|A+

i | + ε−|A−
i | + (1 − 2γ)|A|

= |A| log2(2
n/|A|) + (H2(γ) − 2γ)|A| + ε+|A+

i | + ε−|A−
i |

= |A| log2(2
n/|A|) + F(γ)|A| + ε+|A+

i | + ε−|A−
i |,

where H2 : [0, 1] → R denotes the binary entropy function,

H2(γ) := γ log2(1/γ) + (1 − γ) log2(1/(1 − γ)),

and

F(γ) := H2(γ) − 2γ.

Hence, (2.1) implies that

γε+ + (1 − γ)ε− + F(γ) � ε0. (2.3)

Therefore, crudely,

F(γ) � ε0.

The function F is concave on [0, 1/2], and attains its maximum at γ = 1/5, where it takes

the value log2 5 − 2. Hence, for γ � 1/5,

F(γ) � 5(log2 5 − 2)γ,

whereas for 1/5 � γ � 1/2,

F(1/2 − η) � 10
3
(log2 5 − 2)η > η.

Hence, for each i ∈ [n], either

(1) γi � ε0/(5(log2 5 − 2)), or

(2) 1/2 − ε0 < γi � 1/2,

proving the lemma.
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Remark 1. We can of course rephrase the conclusion of Lemma 2.1 in terms of influences.

Let A ⊂ {0, 1}n satisfying (2.5). Observe that if case (1) occurs for i ∈ [n], then

βi � (1 − 2γi)|A|/2n−1 = 2(1 − 2γi)p � 2

(
1 − 2

ε0

5(log2 5 − 2)

)
p, (2.4)

(the ith influence is ‘large’).

If, on the other hand, case (2) occurs, then by (2.2), we have

|A+
i ΔA−

i | � |∂A| − |A| log2(2
n/|A|) + (1 −H2(γi))|A| = (ε0 + 1 −H2(γi))|A|.

Since H2 is concave, with H2(1/2) = 1, we have

1 −H2(1/2 − η) � 2η (0 � η � 1/2),

and therefore

|A+
i ΔA−

i | < 3ε0|A|,

i.e.,

βi < 6ε0p,

(the ith influence is ‘small’).

We now show that if the edge-boundary of A is sufficiently small, then case (1) in

Lemma 2.1 must occur for some i ∈ [n].

Lemma 2.2. There exists an absolute constant c > 0 such that the following holds. If ε � c,

and A ⊂ {0, 1}n with measure

|A|
2n

� 1 − ε,

and

|∂A| � |A|(log2(2
n/|A|) + ε), (2.5)

then case (1) must occur for some i ∈ [n], i.e., γi � ε/(5(log2 5 − 2)) for some i ∈ [n].

Proof. We can easily prove the lemma for sets with measure p ∈ [1/2, 7/8]. Suppose

A ⊂ {0, 1}n has measure p ∈ [1/2, 7/8] and satisfies (2.5). Suppose for a contradiction

that case (2) occurs for every i ∈ [n]. Then, by Remark 1, βi < 6εp for every i ∈ [n], and

therefore, by Theorem 1.3,

n∑
i=1

βi > Kp(1 − p) log2

(
1

6εp

)
.
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The right-hand side is at least

2p(log2(1/p) + ε)

provided

K
8

log2

(
1

6ε

)
� 2(1 + ε),

which holds for all ε � c := 2−32K/6. This contradicts (2.5), proving the lemma for

p ∈ [1/2, 7/8].

Now observe that any set A ⊂ {0, 1}n with measure p ∈ [7/8, 1 − ε] has

|∂A| > |A|(log2(2
n/|A|) + ε), (2.6)

To see this, just apply the edge-isoperimetric inequality (1.1) to Ac:

|∂A| = |∂(Ac)| � 2n(1 − p) log2(1/(1 − p)).

It is easily checked that

2n(1 − p) log2(1/(1 − p)) > 2np(log2(1/p) + 1 − p) ∀p � 7/8,

so (2.6) holds for all p ∈ [7/8, 1 − ε]. Hence, any set A ⊂ {0, 1}n satisfying (2.5) must have

measure p � 7/8.

It remains to prove the lemma for all sets of measure p � 1/2. Suppose A has measure

p � 1/2 and satisfies (2.5). Suppose for a contradiction that case (2) occurs for every

i ∈ [n].

Fix any i ∈ [n]. Without loss of generality, we may assume that |A+
i | � |A−

i |, so that

γi =
|A+

i |
|A| .

Write γ = γi. Define ε+ and ε− as in the proof of Lemma 2.1. By (2.3), we have

γε+ + (1 − γ)ε− + F(γ) � ε.

Hence, crudely,

γε+ + (1 − γ)ε− � ε,

so either ε+ � ε or ε− � ε.

If ε+ � ε, then let A′ = A+
i . The set A′ is a subset of P([n] \ {i}) of measure p′ := 2γp ∈

((1 − 2ε)p, p) ⊂ [0, 1/2], satisfying the conditions of the lemma.

If ε− � ε, then let A′ = A−
i . The set A′ is a subset of P([n] \ {i}) of measure p′ :=

2(1 − γ)p < 2(1/2 + ε)p � 1/2 + ε < 7/8, satisfying the conditions of the lemma.

If A′ has case (1) occurring for some j, then by (2.4),

β′
j � 2

(
1 − 2

ε

5(log2 5 − 2)

)
p′

� 2

(
1 − 2

ε

5(log2 5 − 2)

)
(1 − 2ε)p

> 2(1 − 2ε)2p,
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and therefore

βj > (1 − 2ε)2p > 6εp,

contradicting our assumption that A has case (2) occurring for every i ∈ [n]. Therefore, A′

also has case (2) occurring for every coordinate. Hence, it must have measure p′ < 1/2, by

the above argument for sets of measure in [1/2, 7/8]. Repeat the same argument for A′,

and continue; we obtain a sequence of set systems (A(l)) on ground sets of sizes n− l, all

with measure < 1/2, satisfying the conditions of the lemma, and with case (2) occurring

for every coordinate. Stop at the minimum M such that A(M) = ∅; clearly, M � n− 1.

Then A(M−1) has one of its j-sections empty for some j, so case (1) must occur for this j,

a contradiction. This proves the lemma.

We can now prove a rough stability result for subsets of {0, 1}n with small edge-

boundary.

Theorem 2.3. There exists an absolute constant c > 0 such that if A ⊂ {0, 1}n with

|∂A| � |A| log2(2
n/|A|) + ε|A|

for some ε � c, then

|AΔC|/|A| < 3ε

for some subcube C .

Proof. Let c be the constant in Lemma 2.2. Let A ⊂ {0, 1}n be such that

|∂A| � |A| log2(2
n/|A|) + ε|A|,

for some ε � c. Let ε0 � ε be such that

|∂A| = |A|(log2(2
n/|A|) + ε0).

By Lemma 2.2, there exists i ∈ [n] with case (1) occurring, i.e., with

γi � ε/(5(log2 5 − 2)).

Without loss of generality, we may assume that i = n, and that |A+
n | � |A−

n |. In keeping

with our earlier notation, we write γ = γn = |A+
n |/|A|.

To avoid confusion, we now write B(0) = A, p(0) = p, ε(0) = ε0, and γ(0) = γ. Let B(1) =

A−
n ⊂ P([n− 1]), let p(1) = p−

n , and let ε(1) = ε−
n .

By (2.3), we have

(1 − γ(0))ε(1) + F(γ(0)) � ε(0).

Since F(γ(0)) � 5(log2 5 − 2)γ(0), we have

(1 − γ(0))ε(1) + 5(log2 5 − 2)γ(0) � ε(0);
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it follows that ε(1) � ε � c. Hence, B(1) ⊂ P([n− 1]) also satisfies the hypothesis of

Theorem 2.3 (with n replaced by n− 1). Its measure p(1) satisfies

p(1) = 2(1 − γ(0))p(0)

� 2

(
1 − ε(0)

5(log2 5 − 2)

)
p(0)

> 2(1 − ε(0))p(0)

� 2(1 − c)p(0).

Repeat the same argument for B(1). We obtain a sequence of set systems (B(k)) on

ground sets of sizes n− k, satisfying the hypotheses of Theorem 2.3 with ε replaced by

ε(k) � ε0 � c, with measures p(k) satisfying

p(k+1) > 2(1 − ε(k))p(k) ∀k � 0,

and with

(1 − γ(k))ε(k+1) + F(γ(k)) � ε(k) ∀k � 0. (2.7)

Without loss of generality, we may assume that B(k) ⊂ P([n− k]).

We may continue this process until we produce a set system B(N) at stage N, for which

p(N) > 1 − ε0, at which point we can no longer apply Lemma 2.2. We must now show that

A is close to P([n−N]). Observe that

|A \ B(N)| =

N−1∑
k=0

γ(k)p(k)2n−k

=

N−1∑
k=0

2k
(∏
j<k

(1 − γ(j))

)
γ(k)p02

n−k

=

N−1∑
k=0

(∏
j<k

(1 − γ(j))

)
γ(k)p02

n

=

N−1∑
k=0

(∏
j<k

(1 − γ(j))

)
γ(k)|A|.

By repeatedly applying the inequality (2.7), we obtain

N−1∑
k=0

(∏
j<k

(1 − γ(j))

)
F(γ(k)) +

(N−1∏
j=0

(1 − γ(j))

)
εN � ε0,

so, certainly,

N−1∑
k=0

(∏
j<k

(1 − γ(j))

)
F(γ(k)) � ε0.
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Since F(γ(k)) � 5(log2 5 − 2)γ(k) (0 � k � N − 1), it follows that

N−1∑
k=0

(∏
j<k

(1 − γ(j))

)
γ(k) � ε0

5(log2 5 − 2)
.

Hence,

|A \ B(N)| � ε0

5(log2 5 − 2)
|A| < ε0|A|.

Let C = P([n−N]), a codimension-N subcube. Then

|A \ C| = |A \ B(N)| < ε0|A|. (2.8)

Since p(N) > 1 − ε0, we have

|C \ A| < ε0|C|. (2.9)

Hence,

|C| < 1

1 − ε0
|A|,

and therefore

|C \ A| < ε0

1 − ε0
|A| < 2ε0|A|.

Combining this with (2.8) yields

|AΔC| < 3ε0|A|, (2.10)

proving Theorem 2.3.

We may use this rough stability result to obtain a more precise one.

Theorem 2.4. There exists an absolute constant c > 0 such that if A ⊂ {0, 1}n with

|∂A| � |A| log2(2
n/|A|) + ε|A|,

for some ε � c, then

|AΔC| < δ0(ε)|A|

for some subcube C , where δ0(ε) is the smallest positive solution of

x log2(1/x) − 3x = ε.

Proof. Write

|∂A| = |A|(log2(2
n/|A|) + ε0), (2.11)

where 0 � ε0 � ε. Choose a subcube C such that |AΔC| is minimal, and let δ = |AΔC|/|A|.
By Theorem 2.3, δ < 3ε0 � 3c < 1/2.
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Without loss of generality, we may assume that C = P([n−N]). Let B = C \ A and let

D = A \ C; then

|B| + |D| < 3ε0|A|.

Since every point of D is adjacent to at most one point of C , the number of edges in ∂A

between points of A ∩ C and points of {0, 1}n \ C is at least

N(2n−N − |B|) − |D|.

The number of edges in ∂A between points of C is at least

|B| log2(2
n−N/|B|).

Finally, the number of edges of the cube in ∂D is at least

|D| log2(2
n/|D|),

and the number of edges of the cube between points in D and points in C is at most |D|,
so the number of edges of the cube between points of D and points of ({0, 1}n \ C) \ A is

at least

|D|(log2(2
n/|D|) − 1).

It follows that

|∂A| � N(2n−N − |B|) − |D| + |B| log2(2
n−N/|B|) + |D|(log2(2

n/|D|) − 1)

= N2n−N + (log2(2
n−N/|B|) −N)|B| + (log2(2

n/|D|) − 2)|D|
= N(|A| − |D| + |B|) + (log2(2

n−N/|B|) −N)|B|
+ (log2(2

n/|D|) − 2)|D|
= N|A| + |B|(log2(2

n/|B|) −N) + |D|(log2(2
n/|D|) −N − 2). (2.12)

Write |B| = φ|A| and |D| = ψ|A|. Then δ = ψ + φ. Note that

N = log2

(
2n

|A| − |D| + |B|

)
= log2

(
2n

|A|

)
− log2(1 − ψ + φ).

Hence, we obtain

|∂A| � |A| log2(2
n/|A|) − |A| log2(1 − ψ + φ)

+ φ|A|(log2(1/φ) + log2(1 − ψ + φ))

+ ψ|A|(log2(1/ψ) − 2 + log2(1 − ψ + φ))

= |A| log2(2
n/|A|)

+ |A|(φ log2(1/φ) + ψ log2(1/ψ) − 2ψ + (ψ + φ− 1) log2(1 − ψ + φ))

> |A| log2(2
n/|A|) + |A|(ψ log2(1/ψ) + φ log2(1/φ) − 3ψ − 3φ),

where the last inequality follows from the fact that ψ,φ < 1/2. Observe that the function

h : (0, 1] → R,

x �→ x log2(1/x)
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is concave, and therefore

ψ log2(1/ψ) + φ log2(1/φ) � (ψ + φ) log2(1/(ψ + φ)).

We obtain

|∂A| > |A| log2(2
n/|A|) + |A|((ψ + φ) log2(1/(ψ + φ)) − 3(ψ + φ)).

Hence, by (2.11),

(ψ + φ) log2(1/(ψ + φ)) − 3(ψ + φ) < ε0,

i.e.,

δ(log2(1/δ) − 3) < ε0.

It is easy to check that the function

g : (0, 1] → R,

x �→ x log2(1/x) − 3x

is strictly increasing between 0 and 2−(3+1/ ln(2)); provided 3c � 2−(3+1/ ln(2)), it follows that

δ < δ0(ε), where δ0(ε) is the smallest positive solution of

x log2(1/x) − 3x = ε,

proving Theorem 2.4.

Remark 2. Observe that

δ0(ε) = (1 + O(1/ log2(1/ε)))
ε

log2(1/ε)
� 2ε

log2(1/ε)
.

Similarly, we may obtain an exact stability result for set systems whose size is a power

of 2.

Theorem 2.5. There exists an absolute constant c > 0 such that if A ⊂ {0, 1}n with size

|A| = 2n−N for some N ∈ N, and with edge-boundary

|∂A| � |A| log2(2
n/|A|) + ε|A|,

where ε � c, then there exists a codimension-N subcube C such that

|AΔC| � δ1(ε)|A|,

where δ1(ε) is the unique root of the equation

x log2(1/x) = ε

in (0, 1/e).

Proof. Write

|∂A| = |A|(log2(2
n/|A|) + ε0), (2.13)
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where 0 � ε0 � ε. Choose a subcube C such that |AΔC| is minimal, and let δ = |AΔC|/|A|.
By Theorem 2.3, δ < 3ε0 � 3c < 1/2.

Suppose C has codimension N ′. Note that if N 
= N ′, then |A| and |C| would differ by

a factor of at least 2, so

|AΔC|/|A| � ||A| − |C||/|A| � 1/2,

a contradiction. Hence, N ′ = N, i.e., |C| = |A|.
Let B = C \ A; then |A \ C| = |C \ A| = |B|. From (2.12), we have

|∂A| � |A| log2(2
n/|A|) + |B|(log2(2

n/|B|) −N) + |B|(log2(2
n/|B|) −N − 2)

= |A| log2(2
n/|A|) + 2|B| log2(2

n/|B|) − 2|B| log2(2
n/|A|) − 2|B|

= |A| log2(2
n/|A|) + |A|δ log2(1/δ).

It follows that

δ log2(1/δ) � ε.

Observe that the function

h : (0, 1] → R,

x �→ x log2(1/x)

has

h′(x) = − 1

ln 2
(1 + ln x),

and is therefore strictly increasing between 0 and 1/e, where it attains its maximum of

1/(e ln 2), and strictly decreasing between 1/e and 1. Since δ < 3ε � 3c < 1/e, it follows

that δ � δ1(ε), where δ1(ε) is the unique root of the equation

x log2(1/x) = ε

in (0, 1/e), proving the theorem.

The following is an immediate consequence of Theorem 2.5.

Corollary 2.6. If A ⊂ {0, 1}n has size 2t for some t ∈ N, and cannot be made into a subcube

by fewer than δ|A| additions and deletions, then its edge-boundary satisfies

|∂A| � |A| log2(2
n/|A|) + |A| max{δ log2(1/δ), c} = 2t(n− t+ max{δ log2(1/δ), c}),

where c > 0 is an absolute constant. There exists an absolute constant c′ > 0 such that if

δ � c′, then

|∂A| � |A| log2(2
n/|A|) + |A|δ log2(1/δ) = 2t(n− t+ δ log2(1/δ)).

Remark 3. Observe that all we need from Theorem 2.3 to prove Theorem 2.5 is that

δ = |AΔC|/|A| < 1/e.
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If we just knew that δ < 1/2, we could still deduce from the above argument that

δ log2(1/δ) � ε.

Remark 4. Observe that Theorem 2.5 is best possible, apart from the restriction ε � c.

To see this, let C = P([n−N]), a codimension-N-subcube, where 1 � N � n− 1. Let

2 � M � n−N, and delete from C the codimension-(N +M) subcube

B = {x ∪ {n−N} : x ∈ P([n−N −M])}.

Now add on the codimension-(N +M) subcube

D = {x ∪ {n} : x ∈ P([n−N −M])}.

The resulting family A = (C \ B) ∪ D has

|AΔC|/|A| = 2−(M−1) � 1/2;

it is easy to check that all other subcubes C ′ 
= C have

|AΔC ′| > |AΔC|.

Hence,

δ := min{|AΔC ′| : C ′ is a subcube}/|A| = |AΔC|/|A| = 2−(M−1).

Observe that we have equality in (2.12) for A, and therefore

|∂A| = |A| log2(2
n/|A|) + |A|δ log2(1/δ).

3. Conclusion and open problems

Consider the function

f(δ) = inf

{
|∂A| − |A| log2(2

n/|A|)
|A| : n ∈ N, A ⊂ {0, 1}n,

|A| is a power of 2, |AΔC| � δ|A| for all subcubes C

}
.

We have shown that f(δ) = max(δ log2(1/δ), c) when δ = 1/2j for some j ∈ N, where

c > 0 is an absolute constant, implying that f(2−j) = j2−j for j ∈ N sufficiently large. We

conjecture that the restriction on j could be removed.

Conjecture 3.1. For any j ∈ N,

f(2−j) = j2−j .

As observed above, the function

h : (0, 1] → R,

x �→ x log2(1/x)
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is strictly decreasing between 1/e and 1, whereas f is clearly a non-decreasing function of

δ. It would be interesting to determine the behaviour of f(δ) for 1/2 < δ � 1.

We also conjecture that Talagrand’s theorem (Theorem 1.3) holds with K = 2. This was

independently conjectured by Samorodnitsky [14]. It would be best possible, as can be

seen by taking A to be a t-dimensional subcube; then n− t influences are 2−(n−t−1), and

the rest are zero, so

n∑
i=0

βi/ log2(1/βi) =
(n− t)2−(n−t−1)

n− t− 1
.

Hence,

1

p(1 − p)

n∑
i=0

βi/ log2(1/βi) =
2(n− t)

(n− t− 1)(1 − 2−(n−t))
→ 2 as n → ∞.

Knowing this would obviously weaken the upper bound on ε required to prove

Theorem 2.3, though it would not result in a proof of Conjecture 3.1.

It would be interesting to determine the structure of subsets A ⊂ {0, 1}n satisfying

|∂A| � L log2(2
n/|A|)

for L a fixed positive constant. Kahn and Kalai [8] conjecture the following.

Conjecture 3.2 (Kahn and Kalai). For any L > 0, there exist L′ > 0 and δ > 0 such that,

for any monotone increasing A ⊂ {0, 1}n with measure

p =
|A|
2n

� 1/2,

there exists a subcube C with codimension at most L′ log2(1/p) and all fixed coordinates

equal to 1, such that

|A ∩ C|
|C| � (1 + δ)p. (3.1)

We believe Conjecture 3.2 to be true for non-monotone sets as well, if one allows the

subcube C to have fixed zeros as well as fixed ones.

Conjecture 3.3. For any L > 0, there exist L′ > 0 and δ > 0 such that, for any A ⊂ {0, 1}n
with measure

p =
|A|
2n

� 1/2,

there exists a subcube C with codimension at most L′ log2(1/p), such that

|A ∩ C|
|C| � (1 + δ)p.
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