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We show that a set A < {0,1}" with edge-boundary of size at most
|41(logy(2"/14) + €)
can be made into a subcube by at most (2¢/log,(1/€))|4| additions and deletions, provided
€ is less than an absolute constant.
We deduce that if 4 < {0,1}" has size 2’ for some ¢ € N, and cannot be made into a
subcube by fewer than J6|A| additions and deletions, then its edge-boundary has size at least

|4]1ogy(2"/|Al) + 4]0 logy(1/8) = 2'(n — t + & logy(1/9)),

provided J is less than an absolute constant. This is sharp whenever 6 = 1/2/ for some
je{l,2,... t}.

1. Introduction

We work in the n-dimensional discrete cube {0,1}", the set of all 0—1 vectors of length n.
This may be identified with P([n]), the set of all subsets of [n] = {1,2,...,n}, by identifying
a set x < [n] with its characteristic vector y, in the usual way. A d-dimensional subcube of
{0,1}" is a set of the form
{xe{0,1}": x;

151 = alaxiz = a23 e 3xin,d = ai‘l*d}»

where i; < i, < --- <i,_4 are coordinates, and ay,d,,... and a,_,; are fixed elements of
{0,1}. The coordinates iy, i,...,i,—q are called the fixed coordinates; the other coordinates
are called the moving coordinates, and n — d is called the codimension of the subcube.

Consider the graph Q, with vertex-set {0, 1}", where we join two 0-1 vectors if they
differ in exactly one coordinate; this graph is called the n-dimensional hypercube. Given a
set A = {0,1}", the edge-boundary of A is defined to be the set of all edges of Q, joining
a point in 4 to a point not in 4. We write 04 for the edge-boundary of A.
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For 1 <k < 2", let C,x be the first k elements of the binary ordering on P([n]), defined
by
X < y < max(xAy) € y.

The edge-isoperimetric inequality of Harper [6], Lindsey [12], Bernstein [2] and Hart
[7] states that among all subsets of {0,1}" of size k, C,x has the smallest possible
edge-boundary.

A slightly weaker form is as follows:

0A4] > |A[log,(2"/14]) VA = {0,1}"; (L1)

equality holds if and only if 4 is a subcube. We call |0A4|/|A| the average out-degree of A;
(1.1) says that the average out-degree of A is at least log,(2"/|A4|) (which is the average
out-degree of a subcube of size |4|, when |A4| is a power of 2). Writing p = |A]/2" for the
measure of the set 4, we may rewrite (1.1) as

04| > 2"plog,(1/p) VA = {0,1}".

Hence, if |4] =2""1, |04| > 2""!, and equality holds only if 4 is a codimension-1
subcube, in which case the edge-boundary consists of all the edges in one direction.

It is natural to ask whether it is always possible to find a direction in which there are
many boundary edges. For i € [n], we write

Af ={x\{i} :x€ A, iex}=P(n\{i}),
and
A ={x€A:i¢x} =P(n)\{i});
A and A; are called the upper and lower i-sections of A, respectively. We write
0id = |ATAAT|

for the number of edges of the boundary of A4 in direction i. The influence of the coordinate
i on the set A is defined to be

i =14 A47 /2",

i.e., the fraction of direction-i edges of Q, which belong to dA. This is simply the
probability that if S < P([n]) is chosen uniformly at random, A contains exactly one of S
and SA{i}. Clearly,

j04] = 2" fjﬁi.
i=1

Ben-Or and Linial [1] conjectured that for any set 4 = {0,1}" with |4| = 2""!, there
exists a coordinate with influence at least Q(lof—f"). This was proved by Kahn, Kalai and
Linial; it follows from the celebrated KKL theorem.
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Theorem 1.1 (Kahn, Kalai and Linial [9]). If A < {0,1}" with measure p, then
OB > CpA(1 - pPinn)/n
i=1
where C > 0 is an absolute constant.

Corollary 1.2. If A = {0,1}" with measure p, then there exists a coordinate i € [n] with

i = C'p(1 — p)(Inn)/n,
where C' > 0 is an absolute constant.
Corollary 1.2 is sharp up to the value of the absolute constant C’, as can be seen from
the ‘tribes’ construction of Ben-Or and Linial [1]. Let n = kI, and split [n] into [ ‘tribes’

of size k. Let A be the set of all 0—1 vectors which are identically 0 on at least one tribe.
Observe that

Al = (1—(1—=279)2",
|6A| — nznfk(l _ 271{)[71,

and
pi =2~k — 27/ vie [n].
Let k = 2/ for some j € N, and let [ = 25 /k, so that n = 2F = 2?; then

l—p=1-28 =1 -2""%=1—1/k +0(1/k?),

and
_2Al—p) 21— 1/k+0(1/K) .
Bi - }’l(l _27/() - n Vie [n])
SO
Bi 21 —1/k + 0(1/k?)) 2

p(1 —p)In(n)/n ~ (1/k —O(1/k2)(1 —O(1/k))kIn2 H(l +00/k)).

The best possible values of the constants C and C’ (in Theorem 1.1 and Corollary 1.2
respectively) remain unknown. Falik and Samorodnitsky [3] have shown that one can
take C = 4, and therefore C' = 2.

Kahn, Kalai and Linial’s proof of Theorem 1.1 is one of the first instances of Fourier
analysis on {0,1}" being used to prove a purely combinatorial result; Fourier analysis
has since become a very important tool in both probabilistic and extremal combinatorics.
More recently, Falik and Samorodnitsky [3] gave an entirely combinatorial proof of
Theorem 1.1; a similar proof was found independently by Rossignol [13]. In [3], Falik
and Samorodnitsky use influence-based methods to obtain several other results on subsets
of {0,1}" with small edge-boundary.

What happens if the edge-boundary of A has size close to |A]|log,(2"/|A|)? How close
must A be to a subcube? Using the techniques of Fourier analysis, Friedgut, Kalai and

https://doi.org/10.1017/50963548311000083 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548311000083

366 D. Ellis

Naor [5] proved that if 4 = {0,1}" with |A] = 2""! and |0A4| < 2"7!(1 + ¢), then A can be
made into a codimension-1 subcube by at most Ke2"~! additions and deletions, where K is
an absolute constant. Bollobas, Leader and Riordan [11] conjectured that for any N € N,
there exists a constant Ky depending on N such that any 4 = {0, 1}" with |4] = 2""" and

04] < (1 + €)|4]log,(2"/]4])

can be made into a codimension-N subcube by at most K ye2"~V additions and deletions.
They proved this for N =2 and N = 3, also using the techniques of Fourier analysis. We
remark that Ky must necessarily depend on N. Indeed, as was observed by Samorodnitsky
[14], a variant of the ‘tribes’ construction of Ben-Or and Linial provides an example of a
(small) set A satisfying

|0A] < (1 + €)|4]log,(2"/]A]),

and yet requiring at least (1 — o(1))|A4| additions and deletions to make it into a subcube.
As above, let n = kl, split [n] into [ ‘tribes’ of size k, and let 4 be the set of all 0-1
vectors which are identically 0 on at least one tribe. Fix an integer s. Let k = 2/, and let
| =2K2 Jk = 2¥7=J so that n = 25/2 =22, Let j — co. Then

l—p=(—-2% =1-12F+o(2*) > 1-127"
SO
p<I27h,
and therefore

log,(1/p) = k —logy I = (1 —27)k + log, k.

Note that
on—k(1 —
o4 = n2 k(1 -2y = = P _(2_k D) _ k(1 + 0127)),
Hence,
104 n2"t(1+0(127%)

4| log,(2"/]4]) S (1271 = O(127F))((1 — 279)k + log, k)2"
k(14 0(127%)
(1 —2-%)k + log, k)

B 1+ 0(27%)
~1—2-5+(logy k)/k
R

1—2-

provided j is sufficiently large depending on s. For any ¢ > 0, this can clearly be made
< 1 4+ € by choosing s to be sufficiently large depending on e. However, A is a union of [
codimension-k subcubes with disjoint sets of fixed coordinates, and therefore requires at
least (1 — o(1))|A| additions and deletions to make it into a subcube.
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Samorodnitsky [14] conjectured that given any J > 0, there exists an a > 0 such that
any A < {0,1}" with

|0A] < (1 +a/n)|A[logy(2"/|A])

can be made into a subcube by at most 6|A4| additions and deletions. Making use of a
result of Keevash [10] on the structure of r-uniform hypergraphs with small shadows, he
proved that any 4 = {0,1}" with

[04] < (1+n7%)|A[logy(2"/|Al)

can be made into a subcube by at most o(|4|) additions and deletions.

It turns out that the correct condition to ensure that 4 is close to a subcube is
that |0A|/|A|, the average out-degree of A, is close to log,(2"/]|A4|). Our first main result
(Theorem 2.4) implies that if 4 = {0,1}" has edge-boundary of size at most

|4](log,(2"/1A]) + e), (1.2)

where € is less than an absolute constant, then it can be made into a subcube by at most
€ <2
logy(1/€) logy(1/€)
additions and deletions. This proves the above conjecture of Bollobas, Leader and Riordan,
and also that of Samorodnitsky.

We then prove Theorem 2.5, which states that if 4 = {0,1}" has size 2 for some t € N,
and edge-boundary of size at most

|A](log,(2"/|A]) + €) = 2'(n—t +e),

where e is less than an absolute constant, then it can be made into a t-dimensional
subcube by at most J;(¢)|A4| additions and deletions, where J;(¢) is the unique root of

(1+0(1/logy(1/€))) |A]

xlog,(1/x) =€

in (0,1/e). It follows that if A = {0,1}" has size 2' for some ¢ € N, and cannot be made
into a subcube by fewer than 6|4| additions and deletions, then

|0A] > |A[log,y(2"/|A4]) + |A]0 log,(1/8) = 2'(n — t + 0 log,(1/0)),

provided 6 is less than an absolute constant. This is sharp whenever 6 = 1/2/ for some
je{1,2,...,t}.

Our first aim is to prove a ‘rough’ stability result (Theorem 2.3), stating that if A4 is
‘almost isoperimetric’, in the sense that the average out-degree of 04 is not too far above
log,(2"/|A]), then A can be made into a subcube by a small number of additions and
deletions. Influence-based methods play a crucial role in our proof. Indeed, it will turn
out that a set A = {0,1}" satisfying (1.2) must have each influence either very small or
very large. We will use the following theorem of Talagrand [16].

Theorem 1.3 (Talagrand). Suppose A = {0,1}" with measure
4] _

2)1
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Then its influences satisfy
> Bi/ logy(1/B) = Kp(1 —p),
i=1

where K > 0 is an absolute constant.

This implies that if all the influences are small, the edge-boundary must be very large.
This will help to show that there must be a coordinate, i say, of very large influence. It
will follow that one of the i-sections of A4 is very small. An inductive argument will enable
us to complete the proof.

2. Main results

We first prove a sequence of results on the rough structure of subsets of {0, 1}" with small
edge-boundary. If 4 = {0,1}", and i € [n], we define

_ min{|47). |47}
’ 4]

(Observe that we always have y; < 1/2.) We first show that if 4 = {0,1}" has small edge-
boundary, then for each i € [n], either one of the i-sections of A4 is very small, or else the
upper and lower i-sections of 4 have very similar sizes.

Lemma 2.1. Let A = {0,1}" with
|0A| = |A](logy(2"/14]) + €0)- 2.1

Then, for each i € [n], either
(1) yi < eo/(5(logy 5 —2)), or
(2)1/2—eo <y < 1/2.
Proof. Let A = {0,1}", satisfying the hypothesis of the lemma. Write
p= ﬂ
2n
for the measure of 4; then

04| = 2"p(log,(1/p) + €0)-

Fix i € [n]. Without loss of generality, we may assume that |4;| < |4;], so

4]
LAl
Write y = y;. Let
L AT A7
p = on—1’ P = on—1
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Note that
pt=2yp, p~ =2(1—y)p.
Define €*,e~ by
0A]| = |4 |(log, "1 /147 ) + €%), 047 | = |47 [(logx (2" /147 ) 4+ €7).
Observe that
0A4] = [0A]| + (047 | + | A AAT
= 4] 1(logy (2" /IAS 1) + €%) + 147 [(logy (2" /A7) + €7) + |4 A4] |
= 7]4l1ogy(2"/(2y]A]) + (1 — )| Al(logy(2"/(2(1 — p)IA]) + €74 + €™ |47 |
+ |4 AA;|
= |A|log,(2"/|Al) — (1 — Ha(n)IA| + A | + €747 | + |47 AAT| (22)
> [Allogy(2"/|A]) — (1 — Ha()|A| + €F|Af | + e | A7 [ + 1|4 | — A7 ||
= |A|log,(2"/|A]) — (1 — Ha(n)IA| + AT |+ e7|A7 | + (1 = 27) 4]
= |A|log,(2"/|Al) + (Ha(y) — 27)IA| + €74 + €7 |47 |
= |A|log,y(2"/|A]) + F(2)IAl + €714 + €147,

where H, : [0,1] — R denotes the binary entropy function,
Hy(y) = 7logy(1/7) + (1 —y)logy(1/(1 = 7)),
and
F(y) = Hy(y) — 2.
Hence, (2.1) implies that
et + (1 —9)e” + F(y) < eo. (2.3)
Therefore, crudely,
F(y) < eo.

The function F is concave on [0,1/2], and attains its maximum at y = 1/5, where it takes
the value log, 5 — 2. Hence, for y < 1/5,

F(y) = 5(logy 5 = 2)y,
whereas for 1/5 <y < 1/2,
F(1/2=n) = B (log, 5—2)n > 1.

Hence, for each i € [n], either

(1) y; < eo/(5(log, 5 —2)), or
(2)1/2—eo <y <1/2,

proving the lemma. U]
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Remark 1. We can of course rephrase the conclusion of Lemma 2.1 in terms of influences.
Let A = {0,1}" satisfying (2.5). Observe that if case (1) occurs for i € [n], then

B> (1= 23)|Al/2"" = 21— 2p)p > 2(1 0 )p, (24)

€|
B, N
5(log, 5 —2)

(the ith influence is ‘large’).
If, on the other hand, case (2) occurs, then by (2.2), we have

A AAT| < |0A4] — [A]1ogy(2"/|A]) + (1 — Ha(3i))| Al = (€0 + 1 — Ha(:)|Al.
Since H, is concave, with H»(1/2) = 1, we have
1—Hy(1/2—n) <2n (0<n < 1/2),
and therefore
AT AAT| < 3eoldl,
ie.,
Bi < 6eop,
(the ith influence is ‘small’).

We now show that if the edge-boundary of A4 is sufficiently small, then case (1) in
Lemma 2.1 must occur for some i € [n].

Lemma 2.2. There exists an absolute constant ¢ > 0 such that the following holds. If € < c,
and A = {0,1}" with measure

|4l
? g 1_67

and

|0A] < |Al(logy(2"/14]) + €), (2.5)
then case (1) must occur for some i € [n], i.e., ; < €/(5(logy 5 — 2)) for some i € [n].
Proof. We can easily prove the lemma for sets with measure p € [1/2,7/8]. Suppose
A = {0,1}" has measure p € [1/2,7/8] and satisfies (2.5). Suppose for a contradiction

that case (2) occurs for every i € [n]. Then, by Remark 1, ff; < 6ep for every i € [n], and
therefore, by Theorem 1.3,

- 1
izzlﬂi > Kp(1 —P)10g2<66p>-
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The right-hand side is at least

2p(logy(1/p) + €)
provided

1
& log (66) = 2(1+e),

which holds for all e < ¢ :=27%K/6. This contradicts (2.5), proving the lemma for
p € [1/2,7/8].
Now observe that any set A < {0,1}" with measure p € [7/8,1 — €] has

|0A] > |A|(logy(2"/14]) + €), (2.6)
To see this, just apply the edge-isoperimetric inequality (1.1) to A¢:
|0A] = 10(A%)] = 2"(1 — p)log,(1/(1 — p)).
It is easily checked that
2"'(1 — p)logy(1/(1 — p)) > 2"p(logy(1/p) + 1 —p) Vp =>7/8,

s0 (2.6) holds for all p € [7/8,1 — €]. Hence, any set A < {0, 1}" satisfying (2.5) must have
measure p < 7/8.

It remains to prove the lemma for all sets of measure p < 1/2. Suppose A has measure
p < 1/2 and satisfies (2.5). Suppose for a contradiction that case (2) occurs for every

i€ [n].
Fix any i € [n]. Without loss of generality, we may assume that [4;| < |4;], so that
_ 147
Yi= Al

Write y = y;. Define €™ and €~ as in the proof of Lemma 2.1. By (2.3), we have
yem +(1—y)e +F(y) <e
Hence, crudely,
pet +(1—y)e” <e,

so either et < eore <e.

If €™ < ¢, then let A’ = A7 The set A’ is a subset of P([n] \ {i}) of measure p' :=2yp €
((1 —2¢e)p, p) < [0,1/2], satisfying the conditions of the lemma.

If €= <e, then let A" = A;7. The set A’ is a subset of P([n] \ {i}) of measure p’ :=
201 —y)p <2(1/2+€)p < 1/2 4 € < 7/8, satisfying the conditions of the lemma.

If A" has case (1) occurring for some j, then by (2.4),

€
221 —-2——-——|p
bi ( 5(log, 5 —2))”

€
> 2(1 - 275(10g2 5 _2))(1 —2e)p

> 2(1 —2¢)?p,
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and therefore
B; > (1 —2¢)*p > 6ep,

contradicting our assumption that 4 has case (2) occurring for every i € [n]. Therefore, A’
also has case (2) occurring for every coordinate. Hence, it must have measure p’ < 1/2, by
the above argument for sets of measure in [1/2,7/8]. Repeat the same argument for A4’,
and continue; we obtain a sequence of set systems (4")) on ground sets of sizes n — [, all
with measure < 1/2, satisfying the conditions of the lemma, and with case (2) occurring
for every coordinate. Stop at the minimum M such that AM = 0; clearly, M < n — 1.
Then A™~1 has one of its j-sections empty for some j, so case (1) must occur for this j,
a contradiction. This proves the lemma. ]

We can now prove a rough stability result for subsets of {0,1}" with small edge-
boundary.
Theorem 2.3. There exists an absolute constant ¢ > 0 such that if A < {0,1}" with
04] < |A]log,y(2"/]Al) + €| A|
for some € < ¢, then
|[AAC|/|A| < 3e

for some subcube C.

Proof. Let ¢ be the constant in Lemma 2.2. Let A < {0,1}" be such that
|0A] < |A]log,y(2"/|A) + €| Al,
for some € < c¢. Let €9 < € be such that
|0A] = |4|(logy(2"/|A]) + €o).
By Lemma 2.2, there exists i € [n] with case (1) occurring, i.e., with
7i < €/(5(logy 5 —2)).

Without loss of generality, we may assume that i = n, and that |4]| < |4;,|. In keeping
with our earlier notation, we write y =y, = |4;|/|A|.

To avoid confusion, we now write B® = 4, p© = p, €9 = ¢y, and y©@ = y. Let B =
A, = P([n—1]), let pV = p;, and let eV = ¢,

By (2.3), we have

(1 _V(O))G(l) +F(’}7(0)) < 0
Since F(y?) > 5(log, 5 — 2)y?, we have

(1 =7V + 5(logy 5 — 2)y” < ¥
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it follows that e < e <c. Hence, BY < P([n—1]) also satisfies the hypothesis of
Theorem 2.3 (with n replaced by n — 1). Its measure p'!) satisfies

P = 2(1 — 50

©)
>o(1——5 )0
5(log, 5 —2)

> 2(1—€”)p?
>2(1— c)p 0,
Repeat the same argument for B(Y). We obtain a sequence of set systems (B*)) on

ground sets of sizes n — k, satisfying the hypotheses of Theorem 2.3 with € replaced by
el < ey < ¢, with measures p*) satisfying

p(k+1) >2(1 — e(k))p(ld Yk >0,
and with
(1— y(k))E(k+1) + F('))(k)) < R vk > 0. 2.7)

Without loss of generality, we may assume that B% < P([n — k]).

We may continue this process until we produce a set system B™N) at stage N, for which
p™) > 1 — e, at which point we can no longer apply Lemma 2.2. We must now show that
A is close to P([n — N]). Observe that

=z

14\ B(N)| — y(k)p(k)znfk

z =
._.o

I
M

(H(l )V 'po2"*

Jj<k

<H(1 - V(j))> y®po2"

Jj<k

(H(l - y“’))v(M.

Jj<k

>~
(=}

=

Il
O

2»

k=0

By repeatedly applying the inequality (2.7), we obtain

N—1 N—1
Z(H (1—yY) ) F(;W) + (H(l —v(ﬁ))eN < eo,
=0 “j<k j=0
so, certainly,
N—1
(H (1= ) F(o®) < eo.
k=0 “j<
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Since F(y®)) > 5(log, 5 —2)y® (0 < k < N — 1), it follows that

N—1
0y )0 €0
E:GFI ”OV S Slom5—2)

k=0 \j<k

Hence,

A\BM < —— 0 14 < elAl
A\ BY) < g S A1 < ol

Let C = P([n — N]), a codimension-N subcube. Then

|A\ C| =14\ B™Y)| < eo|A]. (2.8)
Since p™™) > 1 — ¢, we have
|C\ 4] < eo|Cl. (2.9)
Hence,
€< =14l

and therefore

IC\ A| <

0 14| < 2¢lA|.
1 — €

Combining this with (2.8) yields
|AAC| < 3el|A], (2.10)

proving Theorem 2.3. L]
We may use this rough stability result to obtain a more precise one.

Theorem 2.4. There exists an absolute constant ¢ > 0 such that if A < {0,1}" with
|0A] < |A]log,y(2"/]A) + €| Al
for some € < ¢, then
|[AAC]| < do(e)|A]
for some subcube C, where dy(€) is the smallest positive solution of

xlog,(1/x) —3x =e.

Proof. Write
|0A] = |A|(log,(2"/]Al) + €o), (211)

where 0 < €y < e. Choose a subcube C such that |[4AAC| is minimal, and let 6 = |AAC|/|A].
By Theorem 2.3, 6 < 3ep < 3¢ < 1/2.
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Without loss of generality, we may assume that C = P([n — N]). Let B= C \ 4 and let
D = A\ C; then

|B| 4 |D| < 3eg|A|.

Since every point of D is adjacent to at most one point of C, the number of edges in 04
between points of 4 N C and points of {0,1}"\ C is at least

N(@2"N —|B|)—|DI.
The number of edges in 04 between points of C is at least
|Bllog,(2"/|BI).
Finally, the number of edges of the cube in 0D is at least
[D[log,(2"/|D]),

and the number of edges of the cube between points in D and points in C is at most |D]|,
so the number of edges of the cube between points of D and points of ({0,1}"\ C)\ 4 is
at least

[D[(log,(2"/|D]) — 1).
It follows that
04| = N2"™N —|B|) — |D| + |B|log,(2"~"/|B|) + |D|(log,(2"/|D|) — 1)
= N2""V 4 (logy(2"™V/|B|) — N)|B| + (log,(2"/|D|) — 2)|D|
= N(|4| — [D| + |B|) + (logy(2""/|B|) — N)|B|
+ (logy(2"/|D|) — 2)|D|

= N|A| + [B|(log,y(2"/|B|) — N) + |D|(log,(2"/|D]) = N — 2). (212)

Write |B| = ¢|A| and |D| = y|A|. Then 6 = yp + ¢. Note that

2n 2)1
=1 = ) =] =) —log,(1 — .
N °g2(|A|—|D +|B|> °g2(|A|) el mv )

Hence, we obtain
|0A4] > |A]log,(2"/]A]) — |A]logy(1 —y + ¢)
+ ¢lA|(logy(1/) + logy(1 —p + ¢))

+ ylA[(logy(1/y) — 2 +logy(1 — v + )
= |4|log,(2"/|4])

+ |4l(¢ logy(1/¢) + ylogy(1/w) = 2y + (y + ¢ — 1) logy(1 —yp + ¢))
> |A]logy(2"/IA]) + |Al(p loga(1/w) + ¢ loga(1/) — 3 — 3¢),
where the last inequality follows from the fact that y, ¢ < 1/2. Observe that the function
h:(0,1] - R,

x — xlog,(1/x)
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is concave, and therefore

wlogy(1/v) + ¢ logy(1/9) = (v + d)logy(1/(w + ¢)).
We obtain
|0A] > |A|1og,(2"/]A]) + [Al((p + ¢) logy(1/(y + ¢)) — (v + ¢)).
Hence, by (2.11),
(v + @) logy(1/(y + ¢)) = 3(y + ¢) < o,
ie.,
0(log,(1/9) — 3) < eo.
It is easy to check that the function
g:(0,1] - R,
x+— xlog,(1/x) — 3x

is strictly increasing between 0 and 2-G+1/In2): provided 3¢ < 27G+1/1n2) it follows that
0 < dp(€), where dp(e) is the smallest positive solution of

xlogy(1/x) —3x =,
proving Theorem 2.4. ]

Remark 2. Observe that

5ole) = (1+ 0(1/ logs(1/))) 2

€ < .
log,(1/€) = log,(1/€)

Similarly, we may obtain an exact stability result for set systems whose size is a power
of 2.

Theorem 2.5. There exists an absolute constant ¢ > 0 such that if A < {0,1}" with size
|A| = 2N for some N € N, and with edge-boundary
|0A] < |A]log,(2"/|A) + €l Al,

where € < ¢, then there exists a codimension-N subcube C such that

|AAC| < 61(e)|A],
where 91(€) is the unique root of the equation

xlog,(1/x) =€
in (0,1/e).

Proof. Write
|0A] = |A|(log,(2"/]Al) + €o), (2.13)
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where 0 < €y < e. Choose a subcube C such that |[AAC| is minimal, and let 6 = |[AAC|/|A].
By Theorem 2.3, 6 < 3¢ < 3¢ < 1/2.

Suppose C has codimension N'. Note that if N = N’, then |4| and |C| would differ by
a factor of at least 2, so

[AAC|/|A] = ||A] — IC|I/14] = 1/2,

a contradiction. Hence, N' = N, i.e., |C| = |A|.
Let B=C\ 4; then |[A\ C|=|C \ A| = |B|. From (2.12), we have

04| > |A|log,(2"/]4]) + |B|(log,y(2"/|B|) — N) + |B|(log,y(2"/|B[) = N — 2)
= |4l1og,(2"/|4]) + 2|B|log,(2"/|B|) — 2|B|log,(2"/|A]) — 2| B|
= |4]log,(2"/14]) + |46 log,(1/0).

It follows that
dlog,(1/0) < e.
Observe that the function

h:(0,1] > R,

x — xlog,(1/x)

has
H( )——L(l—I—ln )
YT T2 e

and is therefore strictly increasing between 0 and 1/e, where it attains its maximum of
1/(eln2), and strictly decreasing between 1/e and 1. Since 6 < 3e < 3¢ < 1/e, it follows
that 0 < 01(¢), where d;(¢) is the unique root of the equation

xlogy(1/x) =€

in (0, 1/e), proving the theorem. UJ
The following is an immediate consequence of Theorem 2.5.

Corollary 2.6. If A = {0,1}" has size 2' for some t € N, and cannot be made into a subcube
by fewer than §|A| additions and deletions, then its edge-boundary satisfies
|0A| = |A]1log,(2"/|A]) + |A| max{d log,(1/d),c} = 2'(n — t + max{d log,(1/),c}),

where ¢ > 0 is an absolute constant. There exists an absolute constant ¢’ > 0 such that if
0 < [, then

|0A] > |A|log,(2"/1A4]) + | 4]0 logy(1/0) = 2'(n — t + 6 logy(1/9)).

Remark 3. Observe that all we need from Theorem 2.3 to prove Theorem 2.5 is that

5 = |AAC|/|A| < 1/e.
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If we just knew that 6 < 1/2, we could still deduce from the above argument that
ology(1/9) < e

Remark 4. Observe that Theorem 2.5 is best possible, apart from the restriction € < c.
To see this, let C = P([n — N]), a codimension-N-subcube, where 1 < N <n—1. Let
2 < M < n— N, and delete from C the codimension-(N + M) subcube

B={xU{n—N}: xeP(ln—N — M])}.

Now add on the codimension-(N 4+ M) subcube

={xU{n}: xeP(ln—N—M])}.
The resulting family 4 = (C \ B)U D has

[AAC|/|Al = 277D < 1/2;
it is easy to check that all other subcubes C' # C have

|AAC'| > |AAC|.
Hence,
d :=min{|[AAC'| : C’is a subcube}/|4| = |[AAC|/|A| = 2~ M=,
Observe that we have equality in (2.12) for A, and therefore
104] = |A]logy(2"/|A]) + | 418 logy(1/5).

3. Conclusion and open problems

Consider the function

_ |0A| — |A|logy(2"/|A])
1(5) = nf{ i n

|A| is a power of 2, |[AAC| > d]A| for all subcubes C}

eN, 4c{0,1}",

We have shown that f(5) = max(dlog,(1/5),c) when 6 = 1/2/ for some j € N, where
¢ > 0 is an absolute constant, implying that f(27/) = j27/ for j € N sufficiently large. We
conjecture that the restriction on j could be removed.

Conjecture 3.1. For any j € N,

fey=j27

As observed above, the function

h:(0,1] - R,

x— xlog,y(1/x)
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is strictly decreasing between 1/e and 1, whereas f is clearly a non-decreasing function of
0. It would be interesting to determine the behaviour of f(J) for 1/2 <o < 1.

We also conjecture that Talagrand’s theorem (Theorem 1.3) holds with K = 2. This was
independently conjectured by Samorodnitsky [14]. It would be best possible, as can be
seen by taking A to be a t-dimensional subcube; then n — t influences are 2~"~=1) and
the rest are zero, so

n _ \o—(n—i—1)
S pi/loga(1/py = 2T
n—t—1

i=0
Hence,

L5 B 2n—1)
(1=p) ;ﬁi/logz(l/ﬁi) i) 2 asn— oo.

Knowing this would obviously weaken the upper bound on e required to prove
Theorem 2.3, though it would not result in a proof of Conjecture 3.1.

It would be interesting to determine the structure of subsets 4 = {0, 1}" satisfying
|0A| < Llog,(2"/|Al)

for L a fixed positive constant. Kahn and Kalai [8] conjecture the following.

Conjecture 3.2 (Kahn and Kalai). For any L > 0, there exist L' > 0 and 6 > 0 such that,
for any monotone increasing A < {0, 1}" with measure

4]
= S, < 1 2)
P= /
there exists a subcube C with codimension at most L'logy(1/p) and all fixed coordinates
equal to 1, such that

IANC]|
IC]

> (1+9)p. (3.1)

We believe Conjecture 3.2 to be true for non-monotone sets as well, if one allows the
subcube C to have fixed zeros as well as fixed ones.

Conjecture 3.3. For any L > 0, there exist L' > 0 and 6 > 0 such that, for any A = {0,1}"
with measure
7y

= <

1/2,

there exists a subcube C with codimension at most L' log,(1/p), such that

https://doi.org/10.1017/50963548311000083 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548311000083

380 D. Ellis

Acknowledgements

The author would like to thank Alex Samorodnitsky for much helpful advice, and also
Ehud Friedgut, Imre Leader, and Benny Sudakov for valuable discussions.

References

[1] Ben-Or, M. and Linial, N. (1985) Collective coin flipping, robust voting games, and minima
of Banzhaf value. In Proc. 26th IEEE Symposium on the Foundations of Computer Science,
pp. 408-416.

[2] Bernstein, A. J. (1967) Maximally connected arrays on the n-cube. SIAM J. Appl. Math. 15
1485-1489.

[3] Falik, D. and Samorodnitsky, A. (2007) Edge-isoperimetric inequalities and influences. Combin.
Probab. Comput. 16 693-712.

[4] Friedgut, E. (1998) Boolean functions with low average sensitivity depend on few coordinates.
Combinatorica 18 27-36.

[5] Friedgut, E., Kalai, G. and Naor, A. (2002) Boolean functions whose Fourier transform is
concentrated on the first two levels. Adv. Appl. Math. 29 427-437.

[6] Harper, L. H. (1964) Optimal assignments of numbers to vertices. SIAM J. Appl. Math. 12
131-135.

[7] Hart, S. (1976) A note on the edges of the n-cube. Discrete Math. 14 157-163.

[8] Kahn, J. and Kalai, G. (2007) Thresholds and expectation thresholds. Combin. Probab. Comput.
16 495-502.

[9] Kahn, J., Kalai, G. and Linial, N. (1988) The influence of variables on boolean functions. In
FOCS 1988, pp. 68-80.

[10] Keevash, P. (2008) Shadows and intersections: Stability and new proofs. Adv. Math. 218 1685—
1703.

[11] Leader, I. Personal communication.

[12] Lindsey, J. H., II (1964) Assignment of numbers to vertices. Amer. Math. Monthly 71 508-516.

[13] Rossignol, R. (2005) Threshold for monotone symmetric properties through a logarithmic
Sobolev inequality. Ann. Probab. 34 1707-1725.

[14] Samorodnitsky, A. (2009) Edge isoperimetric inequalities in the Hamming cube. Talk given at
the IPAM Long Program in Combinatorics, Workshop IV: Analytical Methods in Combinatorics,
Additive Number Theory and Computer Science, November 2009.

[15] Samorodnitsky, A. Personal communication.

[16] Talagrand, M. (1994) On Russo’s approximate 0—1 law. Ann. Probab. 22 1576-1587.

https://doi.org/10.1017/50963548311000083 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548311000083

