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In this article we study Markov decision process (MDP) problems with the restric-
tion that at decision epochs, only a finite number of given Markov decision rules
are admissible. For example, the set of admissible Markov decision rules D could
consist of some easy-implementable decision rules. Additionally, many open-loop
control problems can be modeled as an MDP with such a restriction on the admissible
decision rules. Within the class of available policies, optimal policies are generally
nonstationary and it is difficult to prove that some policy is optimal. We give an
example with two admissible decision rules—D = {d1, d2}—for which we conjec-
ture that the nonstationary periodic Markov policy determined by its period cycle
(d1, d1, d2, d1, d2, d1, d2, d1, d2) is optimal. This conjecture is supported by results
that we obtain on the structure of optimal D Markov policies in general. We also
present some numerical results that give additional confirmation for the conjecture
for the particular example we consider.

1. INTRODUCTION

Markov decision processes (MDP) are a well-established tool for optimizing the con-
trol of stochastic systems. A complex system as MDP is applied in, for example,
telecommunication, manufacturing systems, and call centers. Classically solving the
MDP results in an (optimal) policy that for every system state yields a corresponding
(optimal) control action. To implement this policy at any decision event, the current
system state has to be known (or determined) before the corresponding control action
is chosen. In practice, such implementation might not be convenient. Moreover, for
complex systems with a large (multidimensional) state space, it is hard and practically
impossible to find the optimal state-dependent policy.
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In this article we consider MDP for which decisions should be taken at an infinite
discrete set T of consecutive decision epochs. For such MDP, a general (possibly
nonstationary) Markovian policy specifies for each decision epoch t ∈ T a decision
rule to be applied at t where a decision rule can be represented by a mapping from
the state space to a corresponding action space. For purposes in this article all of
these spaces are assumed to be finite. Still, in general, it soon becomes intractable to
determine the optimal policy if the state and/or action space(s) get larger. Moreover,
optimal decision rules might have a complicated structure and be hard to implement
in practice. Therefore, a basic idea in this article is to optimize over a (much) smaller
set of Markov policies by restricting the set of admissible decision rules and, thus, the
corresponding mappings from state space to action space are also restricted and, for
example, have a specific structure.

We will refer to such a problem of MDP optimization over Markov policies with
decision rules restricted to some given finite set D as D restricted MDP. Policies that
are applicable to D restricted MDP will be referred to as D mixing policies. These D
mixing policies correspond to infinite sequences (d1, d2, . . .) of Markov decision rules
restricted by dt ∈ D for t = 1, 2, . . . . We note that optimization for D restricted MDP
investigated in the present article is quite different from classical constrained MDP
as investigated in, for example, [23] and [5]. In these articles on classical constrained
MDP, the existence of particular optimal stationary randomized policies (respectively
optimal state-action frequencies) is shown under some conditions. For the D restricted
MDP investigated in the present article we show that even in the case of simple finite
state and action spaces, there do not exist stationary randomized D mixing policies
that are optimal with respect to maximizing the long-run average reward. In fact, we
obtain nonstationary D mixing policies with better performance than all stationary
randomized D mixing policies and we have results on optimality within a certain class
of such nonstationary D mixing policies.

To clarify the problem and the type of questions we are investigating in this article,
we now give a key example in which the problem of optimization for a particular
D restricted MDP is described. Despite that this particular problem has a simple
description with very small state space and action space, it turns out that the questions
related to optimization over D mixing policies are intriguing and not easy to answer.
Example 1 will be used throughout the article to illustrate the general results we obtain
on optimization for D restricted MDP.

Example 1: A machine is operated that can be in two states, state—space S = {1, 2}—
where state 1 is referred to as the bad state and state 2 as the good state. At every
decision epoch t, t = 1, 2, . . . , the operator has to decide whether the machine goes
in working or repair mode for one time unit until the next decision epoch. Thus, there
is a common action space A = {1, 2} for both states where action 1 refers to working
mode and action 2 refers to repair mode. If action 1 is chosen, then there is a probability
of .2 that the machine will be in a bad state at the next decision epoch if the machine
is currently in a good state. Moreover, for action 1, the machine will certainly be in
a bad state at the next decision epoch if the current state is bad. For action 2, there is
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a probability of .3 that the machine will be in a good state at the next decision epoch
if the machine is currently in a bad state. Moreover, for action 2, the machine will
certainly be in a good state at the next decision epoch if the current state is good. The
only case in which a positive immediate reward of 1 is obtained if action 1 is chosen
and the machine is currently in a good state; in every other case, we assume that the
immediate reward is zero. Without restriction on the decision rules, the optimal policy
is very easily obtained for this MDP with the average reward criterion. Of course,
if the machine is in a good state, then action 1 will be optimal, and if the machine
is in a bad state, then action 2 is optimal. However, in this article we investigate D
restricted MDP where D is a (given) finite set of decision rules. In particular for this
example consider optimization over D = {d1, d2} mixing policies where decision d1

is choosing action 1 (work) for both states and d2 is choosing action 2 (repair) for both
states. Note that d1 and d2 are deterministic open-loop decision rules and restriction to
{d1, d2} mixing policies could be considered, for example, if observing the (current)
state of the machine has some cost.

Now that we have described this particular D restricted MDP in detail, we focus
on the problem of maximizing the long-run average reward over all D mixing policies
and which questions arise. It soon turns out that optimizing over {d1, d2} mixing
policies is far from easy even for this problem with a very small state space and action
space. First, we note that the problem of maximizing the long-run average reward over
all {d1, d2} mixing policies is completely specified by the transition matrix P1 and
expected immediate reward vector r(d1) induced by decision rule d1 (respectively the
transition matrix P2 and expected immediate reward vector r(d2) induced by decision
rule d2). From the model description above, it follows for this example that

P1 =
(

1 0
0.2 0.8

)
, r(d1) =

(
0
1

)
, P2 =

(
0.7 0.3
0 1

)
, r(d2) =

(
0
0

)
.

(1)
It is easily seen that the most straightforward (being both deterministic and stationary)
{d1, d2}-mixing policies (d1, d1, . . .) and (d2, d2, . . .) give a long-run average reward
of zero, which certainly can be improved. To improve this, one could consider policies
that are still stationary but might be randomized. These are the class of so-called
Bernoulli {d1, d2}-mixing policies, which at every decision epoch t apply decision
rule d1 with probability θ ∈ [0, 1] and apply d2 with probability 1 − θ . Applying such
a Bernoulli policy of rate θ ∈ [0, 1] induces a homogeneous Markov chain on state
space S = {1, 2} with transition matrix

Bθ = θP1 + (1 − θ)P2 =
(

0.7 + 0.3θ 0.3 − 0.3θ

0.2θ 1 − 0.2θ

)
. (2)

It is easily obtained that bT
θ = (2θ/(3 − θ), (3 − 3θ)/(3 − θ)) is the row vector

corresponding to the stationary distribution of Bθ for any θ ∈ [0, 1]. Using this, we
can compute the performance function g(θ) of Bernoulli mixing policies as function
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of θ and it follows that

g(θ) = θ

(
2θ

3 − θ
,

3 − 3θ

3 − θ

) (
0
1

)
+ (1 − θ)

(
2θ

3 − θ
,

3 − 3θ

3 − θ

) (
0
0

)
= 3θ − 3θ2

3 − θ
.

Obviously, g(0) = g(1) = 0 and g(θ) > 0 for θ ∈ (0, 1). Moreover, g(θ) is con-
tinuously differentiable for θ ∈ [0, 1] and, thus, it follows that g′(θ∗) = 0 for any
optimal θ∗ ∈ [0, 1]. Since g′(θ) = 3(θ2 − 6θ + 3)/(θ − 3)2, it follows that θ∗ =
3 − √

6 ∼ 0.551 is the unique value for θ ∈ [0, 1] that maximizes the performance
over all Bernoulli mixing policies with varying rate θ . The performance of this optimal
Bernoulli policy equals g(3 − √

6) = 15 − 6
√

6 ∼ 0.303.

Being able to optimize over all Bernoulli mixing policies as in Example 1 is
not the end of story with respect to optimizing the long-run average reward over
all D mixing policies. One should also consider mixing policies that are nonstation-
ary, which complicate matters because such policies induce inhomogeneous Markov
chains. For Example 1, would the simple deterministic but nonstationary, round-robin
policy (d1, d2, d1, d2, . . .) not improve the performance 0.303 of the best Bernoulli
mixing policy? Moreover, could we improve even more maybe by applying decision
rule d1 slightly more often than d2, as is the case for the optimal Bernoulli policy
having rate θ∗ = 3 − √

6 ∼ 0.551. For example, could a periodic policy with period
cycle (d1, d1, d2, d1, d2, d1, d2, d1, d2) using decision rule d1 with a proportion of 5

9
be even better? Indeed, we will show that it gives a better performance and, moreover,
we present strong evidence that this latter periodic policy is the overall optimal mix-
ing policy for the problem described earlier (see Conjecture 34). The conjecture will
be based both on theoretical results we obtain having implications on the structure
of optimal mixing policies and numerical results that indicate that this policy is the
best among all D mixing policies having the appropriate structure. On the other hand,
we give arguments that the problem of optimizing over all D mixing policies is, in
general, not an easy problem. It turns out that even for problems with small state and
action spaces, as in Example 1, it might be hard to prove for some given policy that
it is optimal within the class of D mixing policies.

Keeping Example 1 as key example in mind, we proceed in this article as follows.
Section 2 introduces some basic notation and D restricted MDP concepts. In Section
2.1 the link between these concepts and open-loop control problems is emphasized.
In Section 3.1 some basic properties of Bernoulli policies are given and methods
to optimize within this particular class of D mixing policies are discussed. Subse-
quently, in Section 3.2 deterministic D mixing policies are introduced. Comparing
with Bernoulli policies, the advantages and disadvantages of applying and optimizing
within the class of deterministic D mixing policies are discussed. The problem of
computing the performance of a given deterministic D mixing is considered, and for
so-called periodic policies, a method is given and illustrated with an example.

In Section 4, for any given D restricted MDP, an associated (unrestricted) MDP
is defined such that there is equivalence with the D restricted MDP. This equivalence
gives some useful results on optimal policies and associated sample paths. Then some
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conditions for D restricted MDP are given that are shown to be sufficient for the
existence of optimal stationary deterministic Markovian policies for the associated
full observation MDP. Moreover, it is shown that these conditions are sufficient for
performances of deterministic D mixing policies to be independent of the initial state
distribution from which additional results are deduced. In Section 5 some subclasses
of deterministic D mixing policies are introduced, algorithms are given to optimize the
performance over such a subclass, and the efficiency of this approach is considered.
A subclass of deterministic D mixing policies that is considered in particular are
the so-called policies with regular structure for which the corresponding sequence
of decision rules is a so-called regular sequence. Because this notion of regularity is
often used in this article we now give a formal definition. More details and useful
properties are given in Section 5.

Let U = (u1, u2, . . .) be an infinite sequence of zeros and ones. Denote by
sk(n) := ∑k+n−1

j=k uj the number of ones in the subsequence of length n beginning
at the kth element of U and put s(n) := s1(n). U is said to have a density of θ ∈ [0, 1]
if limn→∞(s(n)/n) = θ . Thus, if an infinite sequence U of zeros and ones has a density
θ , then θ is the asymptotic frequency of the ones in U. In that case, it might intuitively
be clear that the positions of ones in the sequence are more regularly distributed if
for all k, n ∈ N, absolute deviations between sk(n) and nθ are small. The following
fundamental definition is based on this intuition and defines exactly when an infi-
nite sequence of zeros and ones is (most) regular. We also define when a sequence is
so-called eventually regular.

Definition 2: Let U = (u1, u2, . . .) be an infinite sequence of zeros and ones. Then
U is called regular of density θ if for sk(n), the number of ones in the corresponding
subsequence of length n, it holds that

|sk(n) − nθ | < 1 for every k, n ∈ N. (3)

An infinite sequence of zeros and ones is called eventually regular if it has a suffix that
is regular of some density.

One of the main results in this article will be the existence of optimal determin-
istic D mixing policies corresponding to a regular sequence if some conditions are
satisfied. For open-loop control problems, the existence of optimal policies with a reg-
ular structure has been investigated previously and [1] gives an overview on this. The
obtained results were for queuing networks assumed to have particular topological
properties. Moreover, in [1] the main condition for this optimality of a regular policy
is multimodularity of the performance function. For many problems, this condition
of multimodularity is hard to check. In the present article the optimality of regularity
is investigated for an MDP setting, which is applicable to many cases that are not
in the framework of [1]. We will obtain sufficient conditions for the existence of a
regular policy that is optimal and are entirely different from [1] in both formulation
and possible applications. Indeed, the conditions obtained in the present article are
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formulated in terms of D restricted MDP and the associated full observation MDP.
This is applicable for other types of problems than open-loop control in the particular
queuing networks considered in [1].

In Section 5.2 we apply regular D mixing policies to the problem described
in Example 1 and compare it with Bernoulli mixing policies. Thereafter, in Section
6 it is proved that for D restricted MDP with D consisting of (only) two different
decision rules, some generally applicable conditions are sufficient for the existence of
an optimal D mixing policies within the subclass of deterministic D mixing policies
with regular structure. The associated full observation MDP is considered to formulate
the main condition for this result. It is shown that for the full observation MDP, the
existence of an optimal stationary deterministic Markovian policy having some type of
threshold structure is, together with some easy checkable minor conditions, sufficient
to obtain the result on optimality within the subclass of policies with regular structure.
The application of this result is illustrated with an example. Some concluding remarks
are made about possible generalizations of the main result and possible connections
with comparable MDP or optimal control problems.

2. MIXING OF MDP DECISION RULES

In this article we consider an infinite-horizon discrete-time (T = {1, 2, . . .} is the set
of decision epochs) MDP with a finite state space S and, for every s ∈ S, a finite action
space As. Then A = ∪s∈SAs is the common finite action space. Most readers will be
familiar with the standard setup for MDP (as explained in textbooks such as [22,24]).
We need only be clear about assumptions and notations. A Markov decision rule d
maps the set of states into the set of probability distributions on the action space; that is,
d : S → P(A). A Markov policy, π is denoted π = (d1, d2, . . .), with the meaning that
if at time t the process is in state s, then the probability of choosing any action a ∈ As

follow from the the action space distribution dt(s). A stationary Markov policy is one
for which π = (d, d, . . .). A Markov deterministic (MD) decision rule is equivalent
to a mapping from the state space to the action space d : S → A and an MD policy
π applies an MD decision rule for all t ∈ T . The expected immediate reward upon
taking action a in state s is denoted by r(s, a). Our objective is to maximize expected
average reward, which we may write as

gπ (x) := lim inf
N→∞

1

N
E

π
x

[
N∑

t=1

r(xt , at)

]
, (4)

where r(xt , at) denotes the reward obtained at time t and E
π
x denotes the expectation

conditional on the initial state distribution being x and policy π being employed.
In general terms, the problem we investigate in this article is optimization over

policies for which all of the decision rules dt , t = 1, 2, . . . , are restricted to be elements
of some finite set of particular Markov decision rules. Thus, we would like to maximize
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for any initial state distribution x, the performance gπ (x) over policies π = (d1, d2, . . .)
restricted to dt ∈ D for every t ∈ T , where D is a given finite set of MD decision rules.

Such policies will be called D mixing policies. In practical applications, the given
set D of admissible decision rules typically consist of easy implementable determin-
istic decision rules determined by some straightforward heuristic. For example, in a
routing problem such heuristic MD decision rules could be d1 “route arriving jobs to
the shortest queue” or d2 “route arriving jobs to the queue being served by the fastest
server.” In general, such heuristic MD decision rules are suboptimal with respect to
performance optimization.

2.1. Open-Loop Control and Corresponding D Mixing Policies

For many applications, performance optimization yields an MDP for which it is desir-
able to use an open-loop control mechanism. In this case, the choice of an action should
not depend on the (current) system state. For example, if, at decision epochs, observ-
ing the current system state is relatively expensive, time-consuming, or not possible at
all, then open-loop (state-independent) control should be considered. We would like
to point out that the restriction dt ∈ D we always have in this article determining the
class of policies within, we seek an optimal policy can be seen as open-loop although
dt in itself is allowed to be closed-loop since the action determined by decision rule dt

may be state dependent. Vice versa, an important class of open-loop problems might
be modeled as D restricted MDP, on which we focus in this article.

Indeed, for an open-loop control problem, assume that there is a common action
space A for all states. The simplest case is A = {a, b}; that is, in every state, the same
two actions a and b are available. For example, in a queueing problem with admission
control with decision epochs corresponding to arrivals of jobs, action a could be to
accept the new arriving job and action b to decline it. If A = {a, b}, then the only two
decision rules that obey the rules of open-loop control are d1 that chooses action a in
every state s ∈ S and d2 that chooses action b in every state s ∈ S. Then d1 induces a
stationary Markov chain with some corresponding transition matrix P1 and d2 induces
a stationary Markov chain with some corresponding transition matrix P2. Moreover,
any Markov open-loop control policy π is of the form π = (d1, d2, . . .) with dt ∈
{d1, d2} for every t ∈ T and it follows that optimizing the performance over all open-
loop control policies with two available actions in every state can be considered as a
special case of optimization over D = {d1, d2} mixing policies. In general, optimizing
open-loop control with any finite common action space A corresponds to optimization
over D mixing policies, where D has the same cardinality as the action space A.

3. PERFORMANCE COMPUTATION AND OPTIMIZATION OF
MIXING POLICIES

In the examples we give in this article, the set of admissible decision rules D consists of
two MD decision rules, say d1 and d2. Then π1 = (d1, d1, . . .) and π2 = (d2, d2, . . .)
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are the only stationary deterministic policies that are feasible for a D = {d1, d2}
restricted MDP. Both π1 and π2 are not optimal if d1 (respectively d2) are subop-
timal decision rules. Then some Markov policies π = (d1, d2, . . .) with dt ∈ {d1, d2}
for all t ∈ T could improve the performance of both π1 and π2 if π is not restricted
to be both stationary and deterministic. In that case, our goal is to maximize the per-
formance gπ over the set of admissible policies for D restricted MDP resulting in a
performance that is strictly larger than max(gπ1 , gπ2). To obtain an admissible policy
π with gπ > max(gπ1 , gπ2), the decision rules d1 and d2 have to be mixed in some way.

Since π1 and π2 are stationary policies, they induce stationary discrete-time
Markov chains on S with corresponding transition matrixes (say, P1 and P2, respec-
tively). We assume that both Markov chains are unichain and aperiodic. In other
words, both Markov chains have exactly one recurrent class that is aperiodic and let
p1 and p2 be the corresponding unique stationary distributions satisfying pT

1 = pT
1 P1,∑

s∈S p1(s) = 1 (respectively pT
2 = pT

2 P2,
∑

s∈S p2(s) = 1), where pT
1 and pT

2 are the
row vectors representing the stationary distributions p1 and p2, respectively. The finite-
ness of S guarantees the existence of p1 and p2 and the performances gπ1 and gπ2 of
both policies might be directly computed from p1 and p2, respectively. From the exis-
tence of such unique stationary distributions p1 and p2, it follows that the performances
gπ1 and gπ2 of the two stationary policies are independent of the initial state distri-
bution. Indeed, for all initial state distributions on S, the performance of policy π1

is given by gπ1 = ∑
s∈S p1(s)r(s, d1(s)). Similarly, gπ2 = ∑

s∈S p2(s)r(s, d2(s)) gives
the performance of policy π2.

We can generalize these formulas to compute the performance of any (random-
ized) stationary policy π = (d, d, . . .) ∈ �MR, where d is some randomized decision
rule inducing a stationary unichain aperiodic Markov chain. Indeed, let p be the
unique stationary distribution on state space S of the induced Markov chain and let
r(d)s := ∑

a∈As
r(s, a)P(a|s, d) be the expected immediate reward in state s ∈ S given

that MR decision rule d is applied. Then r(d) is the vector containing the expected
rewards for all states s ∈ S if decision rule d is applied, and the expected performance
of π is given by

gπ =
∑
s∈S

psr(d)s = p · r(d), the inner product of p and r(d). (5)

3.1. Bernoulli Policies

Recall that in Example 1 we obtained the optimal Bernoulli policy for the D restricted
MDP introduced in that example. In this subsection we introduce Bernoulli policies
for general D restricted MDP and discuss some main properties and methods to opti-
mize over Bernoulli policies.

A Bernoulli policy can be implemented as follows. Given some MDP and D =
{d1, d2}, a set of two admissible MD decision rules for controlling the MDP. Consider
the following randomized algorithm to generate D mixing policies π = (d1, d2, . . .).
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Let θ ∈ [0, 1] be given. For t = 1, 2, . . . , generate independent random numbers ut

uniformly distributed on [0, 1] and put

dt =
{

d1 if ut ∈ [0, θ ]
d2 if ut ∈ (θ , 1].

In other words, for every decision epoch t ∈ T , an independent θ -coin is flipped; its
outcome determines the decision rule that is applied at t. For all t ∈ T with probability
θ , the first decision rule is applied, and with probability 1 − θ , the second decision
rule is applied. Policies generated by this randomized algorithm are called Bernoulli
policies of rate θ . Note that this implementation of a Bernoulli policy can easily be
generalized for the case that D consists of more than two decision rules, but this
generalization is not explored in this article.

The randomization of the policy in the Bernoulli algorithm makes actual imple-
mentation of such policies in practice somewhat awkward, but a nice property is that
the performance of Bernoulli policies is relatively easy to compute or approximate.
This makes it tractable to optimize the performance over all Bernoulli policies and,
in particular, analytic methods are available for optimizing the Bernoulli parameter
θ . The following property of the Bernoulli policy is useful to analyze and compute or
approximate performances.

Lemma 3: Assume an MDP with finite state space S where decisions rules d1 and d2

induce stationary and aperiodic unichain Markov chains with corresponding tran-
sition matrices P1 (respectively P2). Then any Bernoulli policy mixing d1 and d2

with rate θ ∈ [0, 1] induces a stationary aperiodic unichain Markov chain on S with
transition matrix

Bθ = θP1 + (1 − θ)P2, (6)

which has an unique stationary distribution bθ satisfying bT
θ Bθ = bT

θ and∑
s∈S bθ (s) = 1, where bT

θ is the row vector representing bθ .

In other words, the Bernoulli policy mixing two decision rules induces a station-
ary Markov chain with unique stationary distribution bθ depending on the Bernoulli
parameter θ . From this, it follows that given the MDP and decision rules d1 and d2,
the expected performance of the Bernoulli policy does not depend on the initial state
distribution x and is a function g(θ) of the Bernoulli parameter θ . By (5) we have

g(θ) =
∑
s∈S

(bθ )s[θr(s, d1(s)) + (1 − θ)r(s, d2(s))]

= θ(bθ · r(d1)) + (1 − θ)(bθ · r(d2)). (7)

Optimizing the expected performance g(θ) of Bernoulli policies over θ ∈ [0, 1] is
relatively easy if g(θ) is a smooth function of θ ∈ [0, 1]. Indeed (see, e.g., [7] or [12]),
it follows for a family of Bernoulli policies as given by (6) and any θ ∈ [0, 1] that g(θ)
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is n-differentiable at θ for any n ∈ N and, thus, smooth at θ . Combining this with (7)
gives the following result.

Proposition 4: The performance function g(θ) is smooth on the interval [0, 1] and
there exists some θ∗ ∈ [0, 1] maximizing the performance g(θ) of Bernoulli policies.
For any θ∗ maximizing g(θ), it holds that g′(θ∗) = 0 if θ∗ 
∈ {0, 1}.

Remark 5: In the case of complex systems for which the MDP has a very large state
space, it may not be tractable to obtain exact expressions for the stationary distribution
bθ and performance function g(θ). However, then an approximation of the stationary
distribution bθ can be obtained by methods like Markov chain Monte Carlo and then
the expected performance g(θ) of the Bernoulli policy could also be approximated by
plugging in the approximation of bθ in (7). In this way, the optimal θ∗ maximizing g(θ)

can be approximated in such cases. Alternatively, gradient estimation by measure-
valued differentiation could be applied to approximate some (optimal) value θ∗ ∈
[0, 1] for which g′(θ∗) = 0. In [6] this simulation technique is applied to a call center
operation problem with two types of jobs having different service requirements for
which in various ways, two reasonable applicable decision rules are obtained that
are mixed to improve the system performance. The technique is relatively fast to
approximate an optimal value for θ . For more theoretical results and background on
this, see, for example, [12–14].

3.2. Deterministic Nonstationary Policies

To maximize the performance of some D mixing policy π , it is desirable that gπ (x)
as defined by (4) does not depend on the initial state distribution x. However, for
nonstationary D mixing policies π = (d1, d2, . . .) with dt ∈ D for t = 1, 2, . . . , the
performance might depend on the initial state distribution even if all transition matrixes
corresponding to decision rules in D are unichain and aperiodic. Example 7 will
illustrate this. Therefore, in Section 4 we will provide some additional (in addition to
being unichain and aperiodic) sufficient condition on the transition matrixes associated
with D such that also for nonstationary D mixing policies π , the performance will
not depend on the initial state distribution. Under this assumption, the performance of
some D mixing policy π might simply be denoted by gπ as in (5) or (7) for stationary
(randomized) D mixing policies.

In this subsection we consider deterministicD mixing policies that are represented
as an infinite deterministic sequence describing for every decision epoch for which
the MD decision rule in D is applied. For D = {d1, d2}, if we let symbol 1 correspond
to decision rule d1 and symbol 0 correspond to decision rule d2, then we have a
one-to-one correspondence between deterministic D mixing policies and one-sided
infinite sequences U = (u1, u2, . . .) of zeros and ones. Therefore, an infinite sequence
(u1, u2, . . .) is identified with a deterministic D mixing policy where ut determines the
decision rule that is applied at decision epoch t for t = 1, 2, . . . . Thus, if D = {d1, d2},
then optimizing the performance over all deterministic D mixing policies corresponds
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to optimization over the set {0, 1}N of all one-sided infinite sequences of zeros and ones.
More generally, if D = {d1, d2, . . . , dn}, then it follows analogously that optimizing
the performance over all deterministic D mixing policies corresponds to optimization
over a corresponding set W , where W = {A}N are all one-sided infinite words over
some finite alphabet A. A word is, by definition, a sequence of symbols from a finite
alphabet, and for D = {d1, d2, . . . , dn}, the corresponding alphabet A consists of n
(different) symbols.

One of the positive aspects of applying a deterministic D mixing policy such as
represented above as infinite decision sequence U = (u1, u2, . . .) is that the imple-
mentation is more straightforward than for randomized policies like the Bernoulli
policies. Indeed, at decision epoch t, only the (easy implementable) MD decision rule
determined by ut has to be implemented and it is not necessary to “flip a coin” (random-
ization) at every decision epoch. Moreover, arguably the most important advantage of
deterministic mixing policies over Bernoulli policies is that, in general, good (not nec-
essarily optimal) deterministic mixing policies easily outperform the best (optimized)
Bernoulli policies.

We have seen (Lemma 3) that an advantage of applying a stationary (Bernoulli)
mixing policy is that it induces a stationary Markov chain on the state space S.
However, deterministic mixing policies given by some infinite decision sequence
U = (u1, u2, . . .) as described earlier do not induce a stationary Markov chain except
for degenerate policies for which ut = u1 for every decision epoch t. Therefore,
it is also not possible to obtain the performance of deterministic mixing policies
by computing a unique stationary distribution. The fact that computing the perfor-
mance is harder than for Bernoulli policies is one of the reasons that optimizing over
deterministic mixing policies is much harder than for Bernoulli policies.

For periodic deterministic mixing policies, there exists an algorithm to compute
the performance, but computation times will increase with the period. A deterministic
mixing policy is periodic with period k if for the corresponding decision sequence
U = (u1, u2, . . .), it holds that ut = ut+k for t = 1, 2, . . . . Theorem 6 yields a formula
for computing the performance of periodic deterministic mixing policies under some
assumptions.

Theorem 6: Let π be a deterministic D mixing policy with corresponding decision
sequence U = (u1, u2, . . .) that is periodic with period k. Let Xt be the state at decision
epoch t when policy π is applied and let dt ∈ D be the decision rule corresponding to
ut to be applied at decision epoch t. For m = 1, 2, . . . , k, assume that the stationary
Markov chain {Xt , t = m, m + k, m + 2k, . . .} has unique stationary distribution bm.
Then for the long-run average reward gπ , we have that

gπ = 1

k

k∑
m=1

bm · r(dm). (8)

In Theorem 6 the assumption is made that for all m, the stationary Markov
chain {Xt , t = m, m + k, m + 2k, . . .} has an unique stationary distribution. Note that,
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according to (8), this implies that the performance gπ of a such a periodic policy π

does not depend on the initial state distribution. This is a necessary condition and
it should be realized that for this condition to hold, it is not sufficient that all the
transition matrixes associated to the decision rules in D are unichain and aperiodic.
Recall that unichain and aperiodic is sufficient (Lemma 3) for Bernoulli policies, but
for periodic deterministic mixing policies, we have the following counterexample.

Example 7: Let D = {d1, d2}, and the periodic deterministic D mixing policy π

corresponding to decision sequence U = (1, 0, 1, 0, . . .) = (1, 0)∞ is applied. Let

P1 =
⎛⎝0 0.5 0.5

0 0 1
1 0 0

⎞⎠ and P2 =
⎛⎝ 0 0 1

0.5 0 0.5
0 1 0

⎞⎠
be the transition matrixes corresponding to decision rules d1 (respectively d2). It is
easily seen that P1 and P2 are unichain and aperiodic. However,

A1 := P1P2 =
⎛⎝0.25 0.5 0.25

0 1 0
0 0 1

⎞⎠
is obviously not unichain and, thus, the Markov chain {X1, X3, X5, . . .} does not have
an unique stationary distribution. Similarly,

A2 := P2P1 =
⎛⎝ 1 0 0

0.5 0.25 0.25
0 0 1

⎞⎠
is not unichain and, thus, also the Markov chain {X2, X4, X6, . . .} does not have an
unique stationary distribution. In fact, in this example the performance of policy π in
general depends on the initial state distribution and cannot be computed by (8).

In Section 4 we will give some conditions on the transition matrixes correspond-
ing to the decision sequences in D that are sufficient for the independence of the
performance of D mixing policies on the initial state distribution and that under such
conditions, (8) is certainly valid.

We also note that (8) could be seen as a generalization of (5). Indeed, the latter
formula is then for the special case k = 1. Additionally, it follows that if (8) is applied
to compute the performance, the computational effort increases with the period k of
the decision sequence U. In fact, it is easily seen that for a fixed set D of admissible
decision rules, the computation time of computing the performance of a periodic
deterministic D mixing policy by applying (8) increases linearly with the period k of
the decision sequence.

In contrast, in the case of stationary (Bernoulli) policies, often a closed formula for
the performance g(θ) can be given. In fact, for Bernoulli policies, the computational
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effort to obtain the performance hardly depends on which Bernoulli policy is applied,
as all Bernoulli policies induce stationary Markov chains. Thus, in comparison with
Bernoulli policies, computing the performance is harder for deterministic mixing
policies because, in general, such policies do not induce stationary Markov chains.
Moreover, for periodic policies, the computational effort increases with the period.
In addition, for deterministic mixing policies that are not periodic, we do not have an
algorithm (even if the assumptions are satisfied that the performance is independent
of the initial state distribution) to compute the exact performance in finite time and
we think it is, in general, only possible to approximate the performance of such a
policy. Therefore, the optimization over deterministic mixing policies is harder than
optimization over all Bernoulli policies. Another issue is that deterministic D mixing
policies should be optimized over the infinite discrete set W of all possible decision
sequences U = (u1, u2, . . .) with un ∈ D for n = 1, 2, . . . , the structure of which is
more complicated than for Bernoulli policies for which the optimization can be done
over a bounded convex set, as we have seen in Example 1.

4. THE ASSOCIATE MDP

In this section we define an associated MDP that is equivalent to optimizing over D
mixing policies for D = {d1, d2}. The advantage of considering the associated MDP
is that decision rules are no longer restricted to D. Therefore, in contrast to the class of
D mixing policies, the existence of optimal Markov policies that are both stationary
and deterministic holds if certain conditions are satisfied. Then the existence of an
optimal stationary deterministic Markov policy for the associated MDP can be used
to obtain structural properties of some optimal policy within the class of D mixing
policies. In this way, we will obtain results about optimality within certain subclasses
of D mixing policies if some conditions are satisfied. In addition to such benefits,
the associated MDP formulation also gives new issues to consider. For example, in
the associated MDP, the state space is not finite anymore, but continuous. Therefore
despite the equivalence of the associated MDP formulation, obtaining an optimal D
mixing policy remains, in general, a difficult problem. However, from the equivalence,
we will obtain some structural results.

Before we give the associated continuous state space MDP that is equivalent to
optimizing within the class of D = {d1, d2} mixing policies, we recall some definitions
and notations. Let S be the finite state space and r(d1) (r(d2)) be the immediate reward
vector for decision rule d1 (respectively d2). Moreover, let P1 be the transition matrix
associated to d1 and P2 be the transition matrix associated to d2. Then the associated
MDP with continuous state space is defined as follows:

• The state space X is the set of all probability distributions on S.

• The action space Ã := {d1, d2} for all x ∈ X .

• For all x ∈ X, the immediate rewards r(x, d1) and r(x, d2) are given by the
inner products r(x, d1) := x · r(d1) (respectively r(x, d2) := x · r(d2)).
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• For action d1, state transitions are given by the state space mapping x →
xP1 for all x ∈ X , where x is represented as an |S|-dimensional row vector.
Analogously, for d2, state transitions are given by the state space mapping
x → xP2 for all x ∈ X being represented by a row vector.

• Let �̃ = {X × Ã}∞ be the sample space for the stochastic process generated
by the MDP when some admissible policy π̃ is applied. A sample path ω̃ ∈ �̃

is an alternating sequence ω̃ = (x1, a1, x2, a2, . . .) of states and actions. For
t = 1, 2, . . . , let variables X̃t and Ỹt be defined by X̃t(ω) = xt and Ỹt(ω) = at ,
respectively. The optimality criterion is again the lim inf average reward crite-
rion. In other words, for initial state distribution X̃1 = x ∈ X, the performance
of policy π̃ is given by

gπ̃ (x) := lim inf
N→∞

1

N
E

π̃
x

{
N∑

t=1

r(X̃t , Ỹt)

}
. (9)

The equivalence betweenD restricted MDP with finite state space S and the above-
defined MDP with a state space X of all probability distributions on S follows from
the well-known equivalence between a partial observation MDP and an associated full
observation MDP because we also have equivalence between D restricted MDP and a
partial observation MDP, as explained at the end of Section 2. Equivalence between a
partial observation MDP and a corresponding full observation MDP is applied in [17]
for a particular problem, whereas in [8] the equivalence is described and explored in
a more general setup. Here, we do not go in details about the equivalence between
both models, but for this article the following properties are most important.

Let π̃ be a Markov policy to be applied for the full observation MDP and
ω̃ = (x1, a1, x2, a2, . . .) ∈ �̃ be an associated sample path. Define π as the D mixing
policy defined by the infinite sequence of decision rules (a1, a2, . . .) corresponding to
sample path ω̃. Then for the performances gπ̃ (x1) and gπ (x1) as defined by (9) and
(4), respectively, it almost surely holds that gπ̃ (x1) = gπ (x1). Similarly, it follows that
if there exists an optimal stationary deterministic Markov policy π̃ for the full obser-
vation MDP, then the deterministic D mixing policy π obtained from the sample path
ω̃associated to π̃ is an optimal D mixing policy for the initial state distribution x1.

Next, two conditions for D restricted MDP are given. If they are satisfied, then
some useful results (Theorem 10 and Corollary 11) follow immediately from the above
explained equivalence between D restricted MDP and the associated full observation
MDP.

Condition 8: For all deterministic D mixing policies π and initial state distributions
x, y ∈ X, it holds that gπ (x) = gπ (y). In other words, performances of deterministic
D mixing policies do not depend on the initial state distribution and the performance
of such a policy π can be denoted by gπ .

Condition 9: There exists some optimal stationary deterministic Markov policy for
the full observation MDP associated to the D restricted MDP.
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Theorem 10: Suppose Condition 8 is satisfied for a D restricted MDP. Let π̃ be
a stationary deterministic Markov policy for the associated full observation MDP
and ω̃ = (x1, a1, x2, a2, . . .) ∈ �̃ be an associated sample path. For t = 1, 2, . . . , let
πt be the deterministic D mixing policy given by the infinite sequence of decision
rules (at , at+1, . . .). Then the performances gπ̃ (x1) and gπt (x1) for t = 1, 2, . . . are
independent of the initial state distribution x1 and, moreover, we have that

gπ̃ = gπt for t = 1, 2, . . . . (10)

Corollary 11: Suppose Conditions 8 and 9 are satisfied for some D restricted MDP.
Let π̃ be an optimal stationary deterministic Markov policy for the associated full
observation MDP, and for t = 1, 2, . . . , let πt be the deterministic D mixing policy
defined as in Theorem 10. Then for all t = 1, 2, . . . , policy πt is an optimal D mixing
policy.

Note that Corollary 11 implies that for D restricted MDP, there exists an optimal
policy that is not randomized if Conditions 8 and 9 are satisfied. In Section 6 we
obtain under some additional conditions, the existence of an optimal D mixing policy
within the class of deterministic D mixing policies corresponding to so-called regular
sequences.

4.1. Stationary Optimal Policies for the Associated MDP

Next, we wish to apply Corollary 11 to obtain structural results on optimal D mixing
policies. To apply Corollary 11, it is sufficient that Conditions 8 and 9 are satisfied.
In Example 7 we have seen that for Condition 8 to be satisfied it is not sufficient for
the relevant transition matrixes to be unichain and aperiodic. Moreover, because an
associated full observation MDP has an uncountable state space X, it is, in general,
a priori not clear whether Condition 9 is satisfied. Therefore, we wish to apply a
sufficient condition according to Corollary 4.1 in [9] for Condition 9 to be satisfied.
This result basically states that for an MDP with finite action set equivalent with a
partially observable MDP with finite state space, a uniformly boundedness condition
is sufficient for the existence of an appropriate solution of the corresponding average
cost optimality equation (ACOE) implying the existence of optimal stationary deter-
ministic Markov policies. Then Condition 9 is satisfied. Moreover, in the case that
the uniformly boundedness condition is applicable, which implies that Condition 9
is satisfied, it will follow that Condition 8 is satisfied as well. The uniformly bound-
edness condition as given in [9] is that the difference in optimal discounted costs is
uniformly bounded over the state space X . First, we reformulate the condition given
in [9] for rewards instead of costs.

Let x ∈ X be an initial state, and for t = 1, 2, . . . , let variables X̃t and Ỹt be defined
as in (9) for policy π̃ . Since the number of components |S| of both reward vectors
r(d1) and r(d2) is finite with no loss of generality, we assume for the obtained rewards
r(X̃t , Ỹt) of the reward process that 0 ≤ r(X̃t , Ỹt) ≤ B for t = 1, 2, . . . . For discount
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factor 0 < β < 1, initial state x ∈ X , and policy π̃ , the discounted reward Rβ(x, π̃)

(DR) is defined by

Rβ(x, π̃) := lim
N→∞ E

π̃
x

{
N∑

t=1

β t−1r(X̃t , Ỹt)

}
. (11)

By the assumption on the rewards, the limit in (11) exists and is nonnegative. The opti-
mal β-discounted reward for initial state x ∈ X is given by R∗

β(x) := supπ̃ Rβ(x, π̃),
the supremum being taken over all admissible policies. With these definitions, the
uniformly boundedness condition for optimal discounted rewards is the following.

Condition 12: There exists some M ∈ R such that for all x, y ∈ X and 0 < β < 1, it
holds that

|R∗
β(x) − R∗

β(y)| ≤ M. (12)

After some additional notation and definitions, we are able to present conditions
on the existence of stationary optimal policies for full observation MDP associated
with some D restricted MDP. These conditions are easy to check for the problems
considered in this article. It follows that if these conditions are satisfied, then Condition
12 is satisfied and, therefore, Conditions 8 and 9 as well. It turns out for Condition
12 to be satisfied that some sufficient conditions on transition matrixes induced by
decision rules in D can be formulated in terms of Dobrushin’s coefficient of ergodicity
of a transition matrix.

Definition 13: Let P = (pij) be a transition matrix on some finite state space S.
Dobrushin’s coefficient of ergodicity of P is defined as

ρ0(P) = 1

2
max

i,j

|S|∑
k=1

|pik − pjk|. (13)

Lemma 14 states some well-known (see, e.g., [21]) useful properties of
Dobrushin’s coefficient.

Lemma 14:

1. 0 ≤ ρ0(P) ≤ 1.

2. ρ0(P) = 0 if and only if P has identical rows.

3. ρ0(P1 · P2) ≤ ρ0(P1) · ρ0(P2).

4. There exists some positive integer N with ρ0(PN ) < 1 if and only if P is
unichain and aperiodic.

A useful property of Dobrushin’s coefficient has to do with the l1-distance between
probability distributions on the finite state space S. For x, y ∈ X, denote by

||x − y||1 :=
|S|∑
i=1

|xi − yi|
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the l1-distance between probability distributions x and y on S. Then the following
lemma (see [21]) holds.

Lemma 15: ||x − y||1 is a metric on the set of state space probability distributions X
with the property that ||x − y||1 ≤ 2 for all x, y ∈ X. Moreover, for any x, y ∈ X and
transition matrix P on S, we have that

||xP − yP||1 ≤ ρ0(P)||x − y||1. (14)

In other words, if ρ0(P) < 1, then P induces a contraction mapping on X. In the
following results, Lemmas 14 and 15 will be applied to show that Condition 12 is
satisfied under several specific assumptions on the transition matrices.

Theorem 16: Let D = {d1, d2} and let P1 and P2 be the transition matrixes induced
by decision rule d1 (respectively d2). Assume that (at least) one of the two transition
matrixes has Dobrushin’s coefficient smaller than 1 and both transition matrices are
unichain and aperiodic. Then Condition 12 is satisfied.

Proof: Let x, y ∈ X be arbitrarily chosen probability distributions. We should show
that for all discount factors 0 < β < 1, it holds that |R∗

β(x) − R∗
β(y)| ≤ M for some

M ∈ R. Let 0 < β < 1 be any given discount factor. Without loss of generality, we
assume that R∗

β(x) ≥ R∗
β(y). Moreover, according to Theorem 4.2.3 in [15], there

exists some optimal stationary deterministic Markov policy π̃ for the given β. Let
ω̃ = (x1, a1, x2, a2, . . .) be the sample path with initial state x1 = x for this optimal
policy π̃ . Tracking sample path ω̃ for t = 1, 2, . . . , let r(at) be the reward vector for
decision rule at ∈ D , At ∈ {P1, P2} be the transition matrix corresponding to at , and
Bt be the matrix product given by Bt := ∏t−1

k=1 At with the convention that B1 is the
identity matrix. Then xt = x1Bt for t = 1, 2, . . . , and by (11), we have that

R∗
β(x) = Rβ(x, π̃) = lim

k→∞

k∑
t=1

β t−1r(xt , at) = lim
k→∞

k∑
t=1

β t−1(xBt) · r(at). (15)

The infinite sequence of decision rules (a1, a2, . . .) defines a policy π̃ ′ for which the
sample path ω̃′ for initial state y1 = y is given by ω̃′ = (y1, a1, y2, a2, . . .) with yt = yBt

for t = 1, 2, . . . . Hence,

R∗
β(y) ≥ Rβ(y, π̃ ′) = lim

k→∞

k∑
t=1

β t−1r(yt , at) = lim
k→∞

k∑
t=1

β t−1(yBt) · r(at). (16)

Recall that we could assume that all components of the reward vectors r(at)

are nonnegative and bounded from above by some B > 0. Thus, by (15), (16), and
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Lemma 15, we have

R∗
β(x) − R∗

β(y) ≤ lim
k→∞

k∑
t=1

β t−1((xBt) · r(at) − (yBt) · r(at))

= lim
k→∞

k∑
t=1

β t−1(xBt − yBt) · r(at) ≤ lim
k→∞

k∑
t=1

||xBt − yBt||1B

≤ B lim
k→∞

k∑
t=1

ρ0(Bt)||x − y||1 ≤ 2B lim
k→∞

k∑
t=1

ρ0(Bt). (17)

Without loss of generality, we may assume that ρ0(P1) = γ1 < 1. Moreover, since
P2 is unichain and aperiodic, there exists by property 4 of Lemma 14, some N ∈ N

such that ρ0(PN
2 ) = γ2 < 1. Put γ = max(γ1, γ2). Then it follows by properties 1 and

3 of Lemma 14 that ρ0(BN+1) ≤ γ < 1, as the matrix product BN+1 contains at least
one P1 or BN+1 = PN

2 . Similarly, it follows that ρ0(Bt+N ) ≤ γρ0(Bt) for t = 1, 2, . . . .
Combining this with 0 ≤ ρ0(Bt) ≤ 1 for t = 1, 2, . . . , it follows that

lim
k→∞

k∑
t=1

ρ0(Bt) ≤ N + lim
k→∞

k∑
t=N+1

ρ0(Bt)

= N + lim
k→∞

k∑
t=1

ρ0(Bt+N ) ≤ N + γ lim
k→∞

k∑
t=1

ρ0(Bt).

Hence, (1 − γ ) limk→∞
∑k

t=1 ρ0(Bt) ≤ N and, thus, limk→∞
∑k

t=1 ρ0(Bt) ≤ N/

(1 − γ ). Combining this with (17), we obtain R∗
β(x) − R∗

β(y) ≤ 2BN/(1 − γ ). Thus,
we have shown that for all x, y ∈ X and 0 < β < 1, it holds that

|R∗
β(x) − R∗

β(y)| ≤ 2BN

1 − γ
(18)

and, thus, Condition 12 is satisfied with M = 2BN/(1 − γ ). �

We have just shown that Condition 12 is satisfied if both transition matrixes P1

and P2 are unichain and aperiodic and at least one of them has Dobrushin’s coefficient
smaller than 1. Because Condition 12 is satisfied, it also follows that Condition 9
is satisfied. Moreover, in the proof of Theorem 16, we have shown something addi-
tional that is also useful—namely it also follows that for any deterministic D mixing
policy π = (a1, a2, . . .) and any time t, the difference in expected accumulated total
(undiscounted) rewards up to time t for any two initial state distributions x, y ∈ X
is uniformly bounded by M = 2BN/(1 − γ ). From this, it immediately follows that
the expected long-run average reward gπ of such a policy π does not depend on the
initial state distribution. Thus, Condition 8 is also satisfied for a D restricted MDP
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as in Theorem 16. Thus, Theorem 10 and Corollary 11 are applicable for such a D
restricted MDP.

Example 17: Consider the D = {d1, d2} restricted MDP considered in Example 1.
Recall (1) describing P1, P2, r(d1), and r(d2). It follows that ρ0(P1) = 0.8 and
ρ0(P2) = 0.7. Hence, (18) holds for B = 1, N = 1, and γ = 0.8 and, thus, Condition
12 is satisfied for M = 10. Then, as explained, also Conditions 9 and 8 are satisfied.
Hence, Theorem 10 and Corollary 11 are applicable to obtain structural results on
optimal D mixing policies. Later we consider this example again to optimize over D
mixing policies.

Theorem 16 can its consequences can easily be generalized to be applicable for
more D restricted MDP problems. Indeed, from the proof, it is easily seen that the
conditions on the transition matrixes given in Theorem 16 are a special case of the
following more general result.

Theorem 18: Consider a D restricted MDP with D = {d1, d2, . . . , dn} and let A =
{P1, P2, . . . , Pn} be the set of n corresponding transition matrixes. Suppose there exists
some γ < 1 and positive integer N such that for all nN matrix products A of the form
A = ∏N

k=1 Ak with Ak ∈ A for k = 1, 2, . . . , N, it holds that ρ0(A) ≤ γ , then for the
associated (full observation) MDP, Condition 12 is satisfied for M = 2BN/(1 − γ ).
Moreover, Conditions 9 and 8 are also satisfied.

Proof: Similar to the proof of Theorem 16, it follows that (18) holds and, thus,
Condition 12 is satisfied. Then, as explained earlier, it also follows that Conditions 9
and 8 are satisfied. �

To conclude this section, the following example provides for D = {d1, d2}, a
case where Theorem 18 is applicable and Theorem 16 is not. Thus, also in the case
of D = {d1, d2}, Theorem 18 is a useful extension on Theorem 16.

Example 19: Consider a D = {d1, d2} restricted MDP with state space S = {1, 2, 3}.
For decision rule d1, the transition matrix P and reward vector r(d1) are as follows:

P =
⎛⎝ 0 0.5 0.5

1 0 0
0.5 0.5 0

⎞⎠ , r(d1) =
⎛⎝2

0
3

⎞⎠ .

For the other decision rule d2, the transition matrix P2 and reward vector r(d2) are as
follows:

Q =
⎛⎝ 1 0 0

0.5 0.5 0
0 0.5 0.5

⎞⎠ , r(d2) =
⎛⎝0

2
0

⎞⎠ .

Then ρ0(P1) = ρ0(P2) = 1 and, thus, Theorem 16 is not applicable in this case. How-
ever, it is easy to check that ρ0(P2

1) = 0.75, ρ0(P2
2) = 0.75, ρ0(P1P2) = 0.75, and
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ρ0(P2P1) = 0.75. Thus, Theorem 18 is applicable with N = 2, γ = 0.75, and B = 3.
Hence, Condition 12 is satisfied for M = 48 and Conditions 9 and 8 are satisfied.
Thus, Theorem 10 and Corollary 11 are applicable in this case.

5. OPTIMIZING DETERMINISTIC MIXING POLICIES

To simplify notation and definitions, we continue to investigate the case that D =
{d1, d2}, which implies that deterministic mixing policies correspond to infinite
sequences U = (u1, u2, . . .) of zeros and ones as explained earlier. However, for many
aspects, a straightforward generalization to the case D = {d1, d2, . . . , dn} is possible.
The main issue for deterministic mixing policies is that optimization of the perfor-
mance seems very hard, because the set W of all infinite sequences of zeros and
ones is infinite and discrete. Let Wp ⊆ W be the subset of all periodic sequences of
zeros and ones. If Condition 8 is satisfied for some deterministic mixing policy π

corresponding to U ∈ Wp, then, as in the following example, the performance gπ is
computable by (8).

Example 20: Consider again Example 1, whose characteristics were summarized by
(1). Instead of the performance of Bernoulli policies, we now compute the performance
of the deterministic mixing policy π with corresponding decision sequence U =
(1, 0, 1, 0, . . .) = (1, 0)∞, which obviously is periodic with period 2. For t = 1, 2, . . . ,
let Xt ∈ {1, 2} be the state at decision epoch t when policy π is applied. Then {Xt , t =
1, 2, . . .} is a Markov chain that is not stationary. However, {Xt , t = 1, 3, 5, . . .} is a
stationary Markov chain with transition matrix

A1 = P1P2 =
(

0.7 0.3
0.14 0.86

)
.

It is easily verified that this Markov chain has unique stationary distribution bT
1 =(

7
22 , 15

22

)
.Analogously, {Xt , t = 2, 4, 6, . . .} is a stationary Markov chain with transition

matrix

A2 = P2P1 =
(

0.76 0.24
0.20 0.80

)
and unique stationary distribution bT

2 = (
5

11 , 6
11

)
. It follows that for t = 1, 3, . . . , the

long-run average reward is given by the inner product b1 · r(d1) = 15
22 , and for t =

2, 4, . . . , the long-run average reward is given by the inner product b2 · r(d2) = 0. This
implies that for the performance gπ , we have that gπ = 1

2

(
15
22 + 0

) = 15
44 ∼ 0.341.

Thus, for periodic policies we may compute the performance, but a problem
is that the set Wp of all periodic sequences of zeros and ones remains infinite and
discrete. However, optimizing over specific relatively small subsets of Wp is tractable
by enumeration of all performances. If the optimal performance within such a subset
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is close (or even better equal) to the optimal performance within Wp (and possibly
also W ), then we may obtain (almost) optimal mixing policies in such a way.

One might choose a positive integer n and optimize over the finite subset of
periodic sequences with period smaller or equal than n. We denote such subset by
Wp(n) ⊆ Wp. Optimization over such a subset could in practice give good results.
For example, consider the problem investigated in Examples 1 and 20. Optimization
over the small set Wp(2) results in the deterministic mixing policy corresponding to
the periodic sequence with period cycle (1, 0), which, according to Example 20, yields
a performance of 0.341, which improves the performance of the optimal stationary
Bernoulli mixing policy, which equals 0.303, as was shown in Example 1.

However, optimization over sets Wp(n) has some disadvantages. First, the car-
dinality of Wp(n) increases exponentially in n and, therefore, it is only tractable for
rather small n. Additionally, if n gets smaller, then the optimal performance within
the subset is likely to decrease. Thus, there is a trade-off between computation time
and performance and a priori it is unknown what would be a good choice for the
maximal period n. For the problem of Example 1, we have seen that, for period n = 2,
already a policy exists that improves on the optimal Bernoulli policy, but for a larger
state space, it is likely that a larger period n is necessary to improve on the optimal
Bernoulli policy. In general, for fixed period n, we cannot say a priori whether the opti-
mal performance over Wp(n) is better than for the optimal Bernoulli mixing policy.
Of course, the optimal performance over Wp(n) is not better than the optimal perfor-
mance over W , but nothing is known about the difference. This lack of guarantees for
the optimal performance over Wp(n) motivates one to investigate optimization over
other subsets of W . In this article we consider, in particular, the subset of so-called
regular sequences, which are introduced in the next subsection.

5.1. Regular Sequences and Corresponding Policies

Consider again the D = {d1, d2} restricted MDP from Example 1 characterized by (1).
The best performance of a D mixing policy we have obtained so far for this example
is 0.341, which is obtained by the deterministic mixing policy that corresponds to
the periodic decision sequence with period cycle (1, 0) ∈ Wp(2). This performance
of 0.341 might be improved by optimizing over Wp(n) for some larger value of n.
Indeed, optimizing over Wp(10) by applying (8) numerous times, it follows that the
periodic decision sequence with period cycle (1, 1, 0, 1, 0, 1, 0, 1, 0) yields an expected
long-run average reward of 0.3435 > 0.341 and that this performance is optimal over
Wp(10). The question is whether such improving sequences can only be found by
such an exhaustive search over the set Wp or if it is possible to characterize some
subset of W that certainly contain improving decision sequences, provided they exist.
Such characterization is useful if searching over the subset is considerably faster
than searching over W (Wp) and then it would be especially nice if the considered
subset contains a decision sequence corresponding to a policy that is optimal over
all D mixing policies. Indeed, we can characterize some subset of W having all of
these desired properties if some conditions are satisfied. This is the subset R ⊆ W
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of so-called regular sequences of zeros and ones. In the sequel, we define this subset
and give some of the most useful properties and characterizations. We show how an
effective optimization over this subset R can be performed and we will apply this to the
D = {d1, d2} restricted MDP from Example 1. In Section 6 we give some conditions
that are shown to be sufficient to that some optimal D mixing policy corresponds
to a decision sequence that is a regular sequence. Thus, in that case, the optimal
performance can indeed be found within this set of regular sequences.

Definition 21: Let U = (u1, u2, . . .) be an infinite sequence of certain symbols. A
suffix of U is an infinite sequence of the form (un, un+1, . . .) for some n ∈ N. A finite
subsequence of U is a finite sequence of the form (uk , uk+1, . . . , ul) for some k, l ∈ N

with k ≤ l.

In the sequel, U = (u1, u2, . . .) is assumed to be an infinite sequence of zeros and
ones and recall Definition 2 defining when such a sequence is (eventually) regular.
The subset R ⊆ W of regular sequences is defined as the set of infinite sequences
of zeros and ones that are regular for some density θ ∈ [0, 1]. It is obvious that if
some sequence U is regular and thus element of R that (3) holds for some unique
θ ∈ [0, 1]. For infinite sequences of zeros and ones, very closely related to this notion
of being (eventually) regular but possibly more convenient to apply is the notion of
being (eventually) balanced. This notion is defined as follows.

Definition 22: Let U = (u1, u2, . . .) be an infinite sequence of zeros and ones. Then
U is called balanced if

|sk(n) − sl(n)| ≤ 1 for every k, l, n ∈ N. (19)

In other words, U is balanced if for any two finite subsequences of the same length,
the number of ones contained in these subsequences differs by at most 1.

An infinite sequence of zeros and ones is called eventually balanced if it has a
suffix that is balanced.

A complete classification of balanced sequences was given in [20]. Next we enu-
merate in Propositions 23 and 24 for regular (balanced) sequences the most important
properties and connections that are useful for the present article. These results are
obvious or might be retrieved from results in [20], [25], or [18]. The terminology in
these references somewhat differs from each other and the present article, but Propo-
sitions 23 and 24 summarize the results on regular sequences, which will be applied
in the remaining of this article.

Proposition 23: For infinite sequences of zeros and ones, the following properties
hold.

1. All regular sequences are balanced.

2. All balanced sequences are eventually regular.
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3. A sequence is eventually regular if and only if it is eventually balanced.

4. Let U = (u1, u2, . . .) be an infinite sequence of zeros and ones and V =
(v1, v2, . . .) be defined by vn = 1 − un for all n ∈ N. Then U is balanced if
and only if V is balanced. Moreover, U is regular of density θ if and only if V
is regular of density 1 − θ .

5. For every θ ∈ [0, 1], there exist some regular sequence(s) of density θ . Indeed,
for given θ ∈ [0, 1], a regular sequence U = (u1, u2, . . .) of density θ can be
obtained as follows. Choose some arbitrary φ ∈ R and let U be determined
either by

un = �nθ + φ� − �(n − 1)θ + φ� for all n ∈ N (20)

or by

un = �nθ + φ� − �(n − 1)θ + φ� for all n ∈ N. (21)

Then U is regular of density θ . Moreover, an infinite sequence of zeros and
ones (u1, u2, . . .) can be determined for some φ ∈ R by either (20) or (21) if
and only if the sequence is regular of density θ .

6. A regular sequence of density θ is periodic if and only if θ is rational. If θ = p/q
with p, q ∈ N, p and q coprime, then the regular sequence has a period cycle
of length q containing exactly p ones and q − p zeros.

The following result will be useful for an efficient maximization of the perfor-
mance over the set R of regular sequences, as it implies that for regular sequences the
performance is uniquely determined by the density θ of the sequence.

Proposition 24: Let U and V be regular sequences and suppose they both have
density θ . Then the set of all finite subsequences of U equals the set of all finite
subsequences of V. Moreover, either V is a suffix of U or U is a suffix of V. If θ is
rational, then the period cycles of U and V are cyclic shifts of each other.

For example, U = (1, 0, 1, 0, 0)∞ and V = (0, 1, 0, 1, 0)∞ are regular sequences
of the same density 2

5 and indeed the period cycles (1, 0, 1, 0, 0) and (0, 1, 0, 1, 0) are
cyclic shifts of each other.

5.2. Optimization over Regular Sequences

We have defined the subset R of regular sequences and described some important
properties of regular (balanced) sequences. In this subsection our objective is to apply
this and optimize the performance over R in an efficient manner. Regular and/or bal-
anced sequences have been applied in open-loop control of particular queuing systems.
In [11] it was proved for some specific admission control problem that the optimal
control sequence is a regular sequence. Subsequently, regular sequences have been
applied (see, e.g., [2–4,10,16]) to several admission, routing, and polling problems.
In such applications to queuing and discrete-event systems, the optimality of regular
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sequences for open-loop control follows from multimodularity of an appropriate per-
formance criterion such as expected workload in a queue or expected waiting times.
Multimodularity is a property of functions defined on a discrete set that is comparable
to convexity for functions defined on a continuous set. The concept of multimodu-
larity and its applications are discussed in detail in [1] and an overview of control
problems is given for which optimality of regular sequences can be established by
multimodularity. In [1] several assumptions such as specifications on the topology of
the queuing system are used to obtain multimodularity.

In the present article the objective is to apply regular sequences for general D
restricted MDP optimizing the long-run average reward instead of some specific open-
loop queuing control problem with a specific performance criterion, as in the above-
mentioned references. A consequence of this generality is that specific properties
of performance functions yielding, for example, multimodularity cannot be used.
Therefore, any results on the optimality of some policy corresponding to a regular
decision sequence have to be obtained in another way. We are able to do this since
in Section 6, where we show that if for the associated full observation MDP, an
optimal stationary and deterministic policy exists satisfying some specific properties,
the existence of an optimal D mixing policy corresponding to some regular sequence
follows. Thus, this is a new approach to establish the optimality of regular sequences
for some (restricted) MDP problems without being dependent on multimodularity of
the performance function. Next, we discuss and illustrate with an example the issue
of optimizing the performance over R—the set of all regular sequences of zeros and
ones.

To optimize over R for some D = {d1, d2} restricted MDP problem, we assume
that Conditions 8 and 9 are satisfied such that Theorem 10 and Corollary 11 are
applicable. In Section 4 we have given some sufficient conditions for this that are easy
to check. Then, by Theorem 10 and Proposition 24, it follows that all deterministic
D mixing policies corresponding to regular sequences of the same density θ ∈ [0, 1]
have the same performance. Thus, we may denote by h(θ) the long-run average reward
of a deterministic D mixing policy corresponding to a regular decision sequence of
density θ . Then we have that maximizing the performance over R is nothing more than
maximizing the function h(θ) over θ ∈ [0, 1]. Recall from Section 3.1 that this problem
is rather similar to finding the optimal Bernoulli policy for which a performance
function g(θ) should be maximized over θ ∈ [0, 1]. We also note that, previously, in
the admission, routing, and polling problems in which regular sequences have been
applied, the optimization in most cases was reduced to a maximization or minimization
over the density θ of the regular sequence. In these cases, h(θ) ≥ g(θ) for all θ in case
of maximization or h(θ) ≤ g(θ) in case of minimization. Hence, the optimal value
of h(θ) improves the optimal performance over all Bernoulli policies. We expect and
would like to show that this property also holds for D restricted MDP problems such
as the one we consider in the present article.

Recall that, for Bernoulli policies, it is not difficult to maximize g(θ) because
for any θ ∈ [0, 1], the value g(θ) can be computed quickly and possibly a closed
formula for g(θ) can be obtained as in Example 1. However, maximizing h(θ) is more
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difficult. First, it seems, in general, impossible to obtain a closed formula for h(θ),
and for irrational θ , we do not even have a finite algorithm to compute h(θ). On the
positive side, if θ is rational, the value h(θ) is computable by the following finite
algorithm.

Algorithm 25: If Condition 8 is satisfied, this algorithm computes the performance
h(θ) of any D = {d1, d2} mixing policy corresponding to a regular decision sequence
of rational density θ ∈ [0, 1].

1. Determine coprime integers p and q with p ≥ 0 and q > 0 such that θ = p/q.

2. Choose some default value for φ, say φ = 0, and then for n = 1, 2, . . . , q,
compute un by (20). The obtained sequence (u1, u2, . . . , uq) is a period cycle
of a regular sequence of density θ = p/q.

3. Apply (8) to compute the long-run average reward gπ of the periodic policy
π with period cycle (u1, u2, . . . , uq). The value h(θ) is obtained by putting
h(θ) = gπ .

The running time of Algorithm 25 increases in the denominator q of θ because
the period cycle of the regular sequence of density θ is of length q. Thus, for given
θ = p/q, the computation time is of order �(q), and to obtain or approximate the
maximal value of h(θ), it seems most efficient to apply Algorithm 25 to a set of
densities θ with bounded denominator q. For example, Algorithm 25 can be applied
to obtain a maximum of h(θ) over the set R ∩ Wp(n) for some n ∈ N. For such
maximization, the algorithm has to be applied only O(n2) times, and for each run, the
period cycle of the decision sequence is at most n. Therefore, the total computation
time is polynomial in n and the algorithm terminates relatively quickly if neither n
nor the state space is very large.

For the D restricted MDP from Example 1, the algorithm quickly maximizes
the performance over R ∩ Wp(n) for a maximal period of, for example, n = 200.
Applying the algorithm, it follows that the regular sequence with period cycle
(1, 1, 0, 1, 0, 1, 0, 1, 0) and density θ = 5

9 maximizes the performance over this set.
Recall from the previous subsection that this particular decision sequence yields an
expected long-run average reward of 0.3435. Applying Algorithm 25 for larger values
of n does not give another improvement. Results in the sequel of this article support
the optimality of this regular sequence of density 5

9 over all feasible D mixing policies
for the D restricted MDP from Example 1.

We note that 5
9 is close but not equal to θ∗ = 3 − √

6 ∼ 0.551, which maximizes
(recall Example 1) the performance over Bernoulli policies over rate θ . Figure 1,
in which, for θ ∈ [0, 1], the performance of Bernoulli policies and deterministic D
mixing policies given by a regular sequence of density θ are plotted, illustrates this.
Recall from Example 1 that for Bernoulli policies of rate θ , the performance g(θ)

is according to the function g(θ) = (3θ − 3θ2)/(3 − θ). For regular sequences of
density θ , we do not have a closed formula, but the performance h(θ) (computed by
Algorithm 25) is plotted for all θ = k/100 for k = 0, 1, . . . , 100. Thus, g(θ) is the
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FIGURE 1. The performance of regular sequences versus Bernoulli policies.

solid smooth curve in Figure 1, and the isolated points (θ , h(θ)) for θ = k/100 also
seem to be situated on some smooth curve. This suggests that the performance h(θ)

for regular sequences is continuous for θ ∈ [0, 1] just as g(θ), which is known to be
continuous. It is also interesting to note that Figure 1 visually confirms that h(θ) is
never smaller than g(θ) and that the difference in performance h(θ) − g(θ) appears

0.34341

0.34342

0.34343

0.34344

0.34345

0.34346

0.34347

0.55 0.552 0.554 0.556 0.558 0.56
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Rewards regular theta from 0.55 to 0.56

FIGURE 2. The performance of regular sequences for rational densities in the interval
[0.55, 0.56] and denominator at most 200.
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to be maximal around the value where h(θ) is maximal. Moreover, Figure 1 confirms
that the value of θ that maximizes h(θ) could well be θ = 5

9 and that the maximizing
value for h(θ) is close to the value that maximizes g(θ). Figure 2 visually confirms
that for θ = 5

9 , the value of h(θ) is maximal. In Figure 2, the value of θ is varying
over the small interval [0.55, 0.56], and in this interval, all points (θ , h(θ)) are plotted
for all rational θ = m/n with denominator n ≤ 200. In Figure 2, the point ( 5

9 , h( 5
9 ))

is obviously the top one. Moreover, from the triangular shape that is recognizable in
Figure 2, it may be concluded that for θ in this small interval around 5

9 , the value of
h(θ) increases approximately linearly if θ approximates 5

9 .

6. SUFFICIENT CONDITIONS FOR OPTIMALITY OF A REGULAR
SEQUENCE

In this section we show that certain conditions for D = {d1, d2} restricted MDP are
sufficient for the existence of an optimal D mixing policy that is deterministic corre-
sponding to a regular zero–one decision sequence. This is a main result. After that,
we also discuss the applicability of the results to D restricted MDP problems and, in
particular, the problem introduced in Example 1.

First, we formulate and prove a key result that states that some infinite sequence of
zeros and ones generated by iterating some function on the interval [0, 1] is eventually
regular if the functions satisfies certain conditions. In the sequel, we denote by I the
interval [0, 1].
Iteration 26: Let x1, x∗ ∈ I be given. Let f1, f2 : I → I be given functions and
f : I → I be defined by

f (x) =
{

f1(x) if x ≤ x∗

f2(x) if x > x∗.
(22)

Consecutively, for n = 1, 2, . . . , determine un and xn+1 iteratively by

un :=
{

0 if xn ≤ x∗

1 if xn > x∗ and xn+1 := f (xn). (23)

Theorem 27: Let U = (u1, u2, . . .) be an infinite sequence of zeros and ones generated
by Iteration 26 with f1, f2 : I → I both monotonically increasing and, moreover,

f1(f2(x)) ≥ f2(f1(x)) for all x ∈ I . (24)

Then U is an eventually regular sequence.

To prove Theorem 27, we apply Lemma 28, which follows immedi-
ately from Proposition 2.1.3 in [18]. As in [18], for sequences (or so-
called words) a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bm) the concatenation
(a1, a2, . . . , an, b1, b2, . . . , bm) is denoted by ab.
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Lemma 28: Let U = (u1, u2, . . .) be an infinite sequence of zeros and ones. Then U
is balanced if and only if there does not exist some (possibly empty) finite sequence w
of zeros and ones such that both 0w0 and 1w1 are subsequences of U.

Proof of Theorem 27: We distinguish a few cases. In the first case, suppose f1(x∗) ≤
x∗. Then f1(x) ≤ x∗ for all 0 ≤ x ≤ x∗ because f1 is monotonically increasing.
Thus, if xn ≤ x∗ for some N ∈ N, then xn ≤ x∗ for n = N , N + 1, . . . and, thus,
(uN , uN+1, . . .) = (0, 0, . . .) is regular of density 0. Hence, U is an eventually reg-
ular sequence. If, on the other hand, xn > x∗ for n = 1, 2, . . . , then U = (1, 1, . . .) is
regular of density 1.

In the second case, suppose f2(x∗) > x∗. Then it follows analogously to the first
case that there exists some N ∈ N such that xn > x∗ for all n ≥ N or xn ≤ x∗ for
n = 0, 1, . . . . Hence, either U is eventually regular of density 1 or U is regular of
density 0.

In the third and most important case, we suppose that f2(x∗) ≤ x∗ < f1(x∗) and
let J denote the interval [f2(x∗), f1(x∗)]. Note that if xn < f2(x∗), then xn+1 = f1(xn) ≤
f1(x∗), and if xn > f1(x∗), then xn+1 = f2(xn) ≥ f2(x∗). Thus, either xn < f2(x∗) ≤ x∗
for n = 1, 2, . . . , or xn > f1(x∗) > x∗ for n = 1, 2, . . . , or xN ∈ J for some N ∈ N.
Thus, either U is regular of density 0 or U is regular of density 1 or xN ∈ J for some
N ∈ N. Suppose xN ∈ J for some N ∈ N. If f2(x∗) ≤ xN ≤ x∗, then xN+1 = f1(xN ) ≤
f1(x∗), and by (24) we also have that

xN+1 = f1(xN ) ≥ f1(f2(x
∗)) ≥ f2(f1(x

∗)) ≥ f2(x
∗)

and, thus, xN+1 ∈ J . Similarly, if x∗ < xN ≤ f1(x∗), then xN+1 = f2(xN ) ≥ f2(x∗), and
by (24) we also have that

xN+1 = f2(xN ) ≤ f2(f1(x
∗)) ≤ f1(f2(x

∗)) ≤ f1(x
∗)

and, thus, xN+1 ∈ J . Hence, if xN ∈ J , then it follows by induction that xn ∈ J for
n = N , N + 1, . . . . Thus, in this third case we may assume that there exists some
N ∈ N such that xn ∈ J for all n ≥ N .

Consider the suffix U ′ := (uN , uN+1, . . .) of U. Suppose um = 0, un = 1 for some
m, n ∈ N . Assume there exists some k ∈ N for which um+k 
= un+k and let k0 be the
minimal positive integer satisfying um+k0 
= un+k0 . We claim that it then follows that

um+k0 = 1 and un+k0 = 0.

To verify this claim, note that by (24) and xn, xm ∈ J , we have that

xm+1 = f1(xm) ≥ f1(f2(x
∗)) ≥ f2(f1(x

∗)) ≥ f2(xn) = xn+1.

Thus, if k0 = 1, then xm+k0 ≥ xn+k0 , implying 1 ≥ um+k0 ≥ un+k0 ≥ 0. Hence, um+k0 =
1 and un+k0 = 0 follows from the fact that um+k0 
= un+k0 . If k0 ≥ 2, then we have
that um+1 = un+1. Because both f1, f2 are monotonically increasing and thus order-
preserving, it follows that xm+2 ≥ xn+2 by either xm+2 = f1(xm+1) ≥ f1(xn+1) = xn+2
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or xm+2 = f2(xm+1) ≥ f2(xn+1) = xn+2. By applying this order-preserving property of
both f1 and f2 repetitively, it follows again that xm+k0 ≥ xn+k0 and, thus, um+k0 = 1 and
un+k0 = 0, as above. Thus, the claim holds, but then it follows that there does not exist
some (possibly empty) finite sequence w of zeros and ones such that both 0w0 and
1w1 are subsequences of U ′. Thus, by Lemma 28, it follows that U ′ is balanced. Thus,
by definition, U is eventually balanced because U ′ is a suffix of U, and by Proposition
23, it follows that U is an eventually regular sequence. �

Our next aim is to apply Theorem 27 to D = {d1, d2} restricted MDP problems
with finite state space S satisfying some specific properties. For this, we consider again
the associated full observation MDP with continuous state space X of probability
distributions on S as we introduced in Section 4. First, we restrict to problems for
which Conditions 8 and 9 are satisfied. Recall that in Section 4.1, we have investigated
when these two conditions are satisfied and we have seen that they are satisfied for a
considerable class of problems. Now, we define an extra condition that should hold
in particular for the applicability of Theorem 27. In the sequel, this new condition
will be called the threshold condition, as basically it says that for the associated full
observation MDP, some optimal stationary deterministic Markov policy (which exists
according to Condition 9) has some “threshold structure.” In Definition 29 we define
this notion of “threshold structure” for such policies, which is followed by Condition
30 stating our threshold condition for D = {d1, d2} restricted MDP.

Definition 29: Let h : X → A = {d1, d2} be the mapping corresponding to a sta-
tionary deterministic Markov policy π̃ . Then we say that mapping h and policy
π̃ have threshold structure if there exists some i ∈ S and x0 ∈ I such that for all
x = (x1, x2, . . . , x|S|) ∈ X, we either have that h(x) = d1 if and only if xi ≤ x0 (xi < x0)
or h(x) = d2 if and only if xi ≤ x0 (xi < x0).

Condition 30: For the associated full observation MDP that is equivalent to the con-
sidered D = {d1, d2} restricted MDP, there exist some optimal stationary deterministic
Markov policy π̃ having a threshold structure as defined in Definition 29.

Proposition 31 connects Condition 30 with Iteration 26 in the case of a two-state
state space as, for example, in the D = {d1, d2} restricted MDP of Example 1. Then
Theorem 27 will be applicable if the appropriate functions f1 and f2 have the properties
stated in Theorem 27. Additionally, from Proposition 31, it follows for such two-state
cases, the appropriate f1 and f2 are linear, which in the sequel will be useful to check
the properties to apply Theorem 27.

Proposition 31: Consider a D = {d1, d2} restricted MDP with state space S = {1, 2}.
Suppose that Condition 30 is satisfied and let π̃ be a stationary deterministic Markov
policy for the associated full observation MDP having a threshold structure. Let ω̃ =
(y1, a1, y2, a2, . . .) ∈ �̃ be an associated sample path. For n = 1, 2, . . . , let vn, wn ∈ I
satisfying vn + wn = 1 be such that yn = (vn, wn). Then there exist x1, x∗ ∈ I and linear
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functions f1, f2: I → I such that the sequences (u1, u2, . . .) and (x1, x2, . . .) generated
by Iteration 26 satisfy the following properties.

1. Either xn = vn for n = 1, 2, . . . or xn = wn for n = 1, 2, . . . .

2. Either (25) or (26) holds:

un =
{

0 if an = d1

1 if an = d2
for n = 1, 2, . . . , (25)

un =
{

0 if an = d2

1 if an = d1
for n = 1, 2, . . . . (26)

Proof: Let P1 be the transition matrix corresponding to d1 and P2 be the transition
matrix corresponding to d2. Let a, b, c, d ∈ I be such that

P =
(

a 1 − a
1 − b b

)
, P2 =

(
c 1 − c

1 − d d

)
. (27)

Let h: X → {d1, d2} be the mapping corresponding to π̃ . Then h has a threshold
structure (see Definition 29) and assume h has this property for state i = 1. Now, we
distinguish several cases.

In the first case, suppose that there exists some x0 ∈ I such that for any x̂ =
(x̂1, x̂2) ∈ X, it holds that h(x̂) = d1 if and only if x̂1 ≤ x0. Then we claim that by
putting x1 = v1, x∗ = x0, f1(x) = (a + b − 1)x + 1 − b for all x ∈ I , and f2(x) = (c +
d − 1)x + 1 − d for all x ∈ I , the sequences (u1, u2, . . .) and (x1, x2, . . .) generated by
Iteration 26 satisfy xn = vn for n = 1, 2, . . . and, moreover, un = 0 if and only if
an = d1. We prove this claim by induction to n. For n = 1 we already have x1 = v1.
If v1 ≤ x0, then a1 = h(y1) = d1, x1 ≤ x∗ and, thus, u1 = 0. On the other hand, if
v1 > x0, then a1 = h(y1) = d2, x1 > x∗ and, thus, u1 = 1. Thus, the claim holds for
n = 1. Suppose the claim holds for n = k and, thus, xk = vk . Distinguish the cases
vk ≤ x0 and vk > x0. Suppose vk ≤ x0. Then ak = h(yk) = d1 and, thus, uk = 0 by
the induction claim. Then by Iteration 26, it follows that xk+1 = f1(xk) = f1(vk) =
(a + b − 1)vk + 1 − b. Additionally we have

yk+1 = (vk , wk)P1 = (vk , wk)

(
a 1 − a

1 − b b

)
= (avk + (1 − b)wk , (1 − a)vk + bwk).

Hence, vk+1 = avk + (1 − b)wk = avk + (1 − b)(1 − vk) = (a + b − 1)vk + 1 − b
and, thus, xk+1 = vk+1 if vk ≤ x0. Suppose vk > x0. Then ak = h(yk) = d2 and, thus,
uk = 1 by the induction claim. Then, by Iteration 26, it follows that xk+1 = f2(xk) =
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f2(vk) = (c + d − 1)vk + 1 − d. Additionally, we have

yk+1 = (vk , wk)P2 = (vk , wk)

(
c 1 − c

1 − d d

)
= (cvk + (1 − d)wk , (1 − c)vk + dwk).

Hence, vk+1 = cvk + (1 − d)wk = cvk + (1 − d)(1 − vk) = (c + d − 1)vk + 1 − d
and, thus, xk+1 = vk+1 if vk > x0. Thus, we have proved that xk+1 = vk+1. Then, for
n = k + 1, it follows that un = 0 if and only if an = d1 similarly as for n = 1 and the
induction proof is finished.

In the second case, suppose that there exists some x0 ∈ I such that for any
x̂ = (x̂1, x̂2) ∈ X, it holds that h(x̂) = d1 if and only if x̂1 < x0. Then we claim
that by putting x1 = w1, x∗ = 1 − x0, f1(x) = (c + d − 1)x + 1 − c for all x ∈ I , and
f2(x) = (a + b − 1)x + 1 − a for all x ∈ I , the sequences (u1, u2, . . .) and (x1, x2, . . .)
generated by Iteration 26 satisfy xn = wn for n = 1, 2, . . . and, moreover, un = 0 if
and only if an = d2. This claim follows also by induction analogously to the above
first case.

In the third case, suppose that there exists some x0 ∈ I such that for any x̂ =
(x̂1, x̂2) ∈ X, it holds that h(x̂) = d2 if and only if x̂1 ≤ x0. Then we claim that by
putting x1 = v1, x∗ = x0, f1(x) = (c + d − 1)x + 1 − d for all x ∈ I , and f2(x) = (a +
b − 1)x + 1 − b for all x ∈ I , the sequences (u1, u2, . . .) and (x1, x2, . . .) generated by
Iteration 26 satisfy xn = vn for n = 1, 2, . . . and, moreover, un = 0 if and only if
an = d2. This claim follows also by induction analogously to the above first case.

In the fourth and last case, suppose that there exists some x0 ∈ I such that for
any x̂ = (x̂1, x̂2) ∈ X, it holds that h(x̂) = d2 if and only if x̂1 < x0. Then we claim
that by putting x1 = w1, x∗ = 1 − x0, f1(x) = (a + b − 1)x + 1 − a for all x ∈ I , and
f2(x) = (c + d − 1)x + 1 − c for all x ∈ I , the sequences (u1, u2, . . .) and (x1, x2, . . .)
generated by Iteration 26 satisfy xn = wn for n = 1, 2, . . . and, moreover, un = 0 if
and only if an = d1. This claim follows also by induction analogously to the above
first case.

This finishes the proof for the case that h has a threshold structure for state
i = 1. For the case that h has a threshold structure for state i = 2, it could be proved
similar as for i = 1 by distinguishing four different cases and obtaining the appropriate
x1, x∗, f1, and f2 for all of these cases. However, it follows more elegantly by noting
that if S = {1, 2}, any threshold structure for state i = 2 is equivalent to a threshold
structure for state i = 1 and vice versa. For example, suppose there exists some x0 ∈ I
such that for any x̂ = (x̂1, x̂2) ∈ X , it holds that h(x̂) = d1 if and only if x̂2 ≤ x0. This
is a threshold structure according to Definition 29 for state i = 2. Obviously, it is
equivalent to h(x̂) = d2 if and only if x̂1 < 1 − x0, which gives a threshold structure
according to Definition 29 for state i = 1. �

Theorem 32 is a main result in this article that is based on combining Theorem
18, Theorem 10, Corollary 11, Proposition 23, Proposition 31, and Theorem 27.
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Theorem 32: Consider a D = {d1, d2} restricted MDP with state space S = {1, 2}.
Let a, b, c, d ∈ I be such that (27) holds, where P1 is the transition matrix corre-
sponding to d1 and P2 is the transition matrix corresponding to d2. Suppose that
1 ≤ a + b < 2, 1 ≤ c + d < 2, and Condition 30 is satisfied. Then for the asoci-
ated full observation MDP, there exists some optimal stationary deterministic Markov
policy π̃ having a threshold structure as in Definition 29.

Moreover, let ω̃ = (y1, a1, y2, a2, . . .) ∈ �̃ be an associated sample path for π̃

and let f1, f2 : I → I be linear functions as obtained in the proof of Proposition 31.
If there exists some x ∈ I for which f1(f2(x)) ≥ f2(f1(x)), then for the D = {d1, d2}
restricted MDP, there exist an optimal D mixing policy that is deterministic and the
corresponding decision sequence of zeros and ones is a regular sequence. In particular,
there exist some n ∈ N such that for all positive integers t ≥ n, the infinite sequence
of decision rules (at , at+1, . . .) determines an optimal D mixing policy for which the
corresponding sequence of zeros and ones is a regular sequence.

Proof: We have P1 =
(

a 1 − a
1 − b b

)
and, thus, by (13) it is easily seen that

ρ0(P1) = |a + b − 1|. Since 1 ≤ a + b < 2, it follows that ρ0(P1) < 1 and, similarly,
we also have that ρ0(P2) < 1. Thus, Theorem 18 is applicable for N = 1 and, thus,
it follows for the associated full observation MDP that Conditions 12, 9, and 8 are
satisfied. Thus, there exist optimal stationary deterministic Markov policies for the
associated MDP, and because Condition 30 is also satisfied, it follows that there exists
some optimal stationary deterministic Markov policy π̃ having a threshold structure
as in Definition 29.

Let ω̃ = (y1, a1, y2, a2, . . .) ∈ �̃ be an associated sample path for π̃ as in Proposi-
tion 31. For the D = {d1, d2} restricted MDP, we have by Theorem 10 and Corollary
11 that all deterministic D mixing policies πt , t = 1, 2, . . . , given by the infinite
sequence of decision rules (at , at+1, . . .) have the same performance. Moreover, this
performance is optimal with respect to maximizing the long-run average reward for
the D restricted MDP, as (y1, a1, y2, a2, . . .) is a sample path of policy π̃ that is opti-
mal for the associated full observation MDP. Thus, for all t = 1, 2, . . . , policy πt is
an optimal D mixing policy.

Let U := (u1, u2, . . .) and (x1, x2, . . .) be the infinite sequences generated by Iter-
ation 26 for linear functions f1 and f2 and appropriate x1, x∗ ∈ I as in Proposition 31.
Then U is an infinite sequence of zeros and ones, and by Proposition 31 we have that
either (25) or (26) holds. Moreover, according to the proof of Proposition 31, we can
assume that either the slope of f1 is a + b − 1 and the slope of f2 is c + d − 1 or the
slope of f1 is c + d − 1 and the slope of f2 is a + b − 1. Either way, it follows that f1 and
f2 are monotonically increasing functions because a + b ≥ 1 and c + d ≥ 1. More-
over, it follows that the composite functions f1 ◦ f2 and f2 ◦ f1 are both linear functions
with slope (a + b − 1)(c + d − 1) mapping I to I . Hence, f1(f2(x)) ≥ f2(f1(x)) for
some x ∈ I implies that f1(f2(x)) ≥ f2(f1(x)) for all x ∈ I . Thus, if f1(f2(x)) ≥ f2(f1(x))
for some x ∈ I , then the properties demanded in Theorem 27 for the functions f1 and f2
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are satisfied and, thus, the sequence U generated by Iteration 26 is an eventually regu-
lar sequence. Thus, there exists some n ∈ N such that for every positive integer t ≥ n,
the infinite sequence Ut := (ut , ut+1, . . .) is a regular sequence of zeros and ones.

Recall from Section 3.2 that, by convention, symbol 1 corresponds to action d1 and
symbol 0 corresponds to action d2. Following this convention, let U ′ := (u′

1, u′
2, . . .)

be the infinite sequence of zeros and ones corresponding to (a1, a2, . . .). Then, for t =
1, 2, . . . , we have that U ′

t = (u′
t , u′

t+1, . . .) is the infinite sequence of zeros and ones cor-
responding to optimal D mixing policy πt = (at , at+1, . . .). In the case that (25) holds,
then it follows that u′

n = 1 − un for n = 1, 2, . . . . Thus, by property 4 of Proposition 23,
it follows for t = 1, 2, . . . that U ′

t is regular of density 1 − θ if and only if Ut is regular
of density θ . Thus, for every positive integer t ≥ n, the sequence U ′

t corresponding to
optimal D mixing policy πt is regular, as Ut is regular for t = n, n + 1, . . . . In the case
that (26) holds, then it follows that u′

n = un for n = 1, 2, . . . . Thus, it follows for t =
1, 2, . . . that sequence U ′

t is exactly the same as sequence Ut . Thus, for every positive
integer t ≥ n, the sequence U ′

t corresponding to optimal D mixing policy πt is regular
of some density θ because Ut is regular of some density θ for t = n, n + 1, . . . . �

In Example 33 we apply Theorem 32 to the D = {d1, d2} restricted MDP of
Example 1.

Example 33: Consider again the D = {d1, d2} restricted MDP of Example 1. Let
a, b, c, d ∈ I be defined as in Theorem 32. For this example, we have that a = 1,
b = 0.8, c = 0.7, and d = 1. Thus, the conditions 1 ≤ a + b < 2 and 1 ≤ c + d < 2
are satisfied. Moreover, recall from Example 17 that Conditions 12, 9, and 8 are satis-
fied. Thus, for the associated MDP, there exist some optimal stationary deterministic
Markov policy π̃ . We will not prove that also Condition 30 is satisfied, but we note that
it seems plausible. Indeed, let p be the probability that the machine is in state 1 (the bad
state) at a decision epoch. Indeed, it seems plausible that there exists some threshold
probability p∗ such that if p is smaller than p∗ then it is optimal to choose action 1
(work), whereas if p is larger than p∗, then it is optimal to choose action 2 (repair). Thus,
assume Condition 30 is satisfied and that policy π̃ has indeed a threshold structure. Let
ω̃ = (y1, a1, y2, a2, . . .) ∈ �̃ be an associated sample path for π̃ , and for n = 1, 2, . . . ,
let vn, wn ∈ I be such that yn = (vn, wn) for n = 1, 2, . . . as in Theorem 32.

Now, we distinguish two cases of plausible threshold structures that optimal pol-
icy π̃ could have in this example. In the first case, suppose there exists some p∗ ∈ I
such that policy π̃ chooses decision rule d1 and, thus, action 1 (work) if and only
if p ≤ p∗ and it chooses decision rule d2 and, thus, action 2 (repair) if and only if
p > p∗. Then following the proof of Proposition 31, we put x1 = v1, x∗ = p∗, f1(x) =
(a + b − 1)x + 1 − b = 0.8x + 0.2, and f2(x) = (c + d − 1)x + 1 − d = 0.7x. Then
f1(f2(x)) = 0.56x + 0.2 and f2(f1(x)) = 0.56x + 0.14.Thus for this threshold structure
(24) is indeed satisfied.

In the second case, suppose there exists some p∗ ∈ I such that policy π̃ chooses,
at a decision epoch, decision rule d1 and, thus, action 1 (work) if and only if p < p∗
and it chooses decision rule d2 and, thus, action 2 (repair) if and only if p ≥ p∗.
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Then following the proof of Proposition 31, we put x1 = w1, x∗ = 1 − p∗, f1(x) =
(c + d − 1)x + 1 − c = 0.7x + 0.3, and f2(x) = (a + b − 1)x + 1 − a = 0.8x. Then
f1(f2(x)) = 0.56x + 0.3, and f2(f1(x)) = 0.56x + 0.24. Thus, also for this threshold
structure, (24) is indeed satisfied.

Thus, we may conclude that if Condition 30 is satisfied for this example, then
(24) holds for all plausible threshold structures. Then it follows by Theorem 32 that
there exists some n ∈ N such that for all positive integers t ≥ n, the infinite sequence
of decision rules (at , at+1, . . .) determines an optimal D mixing policy for which the
corresponding sequence of zeros and ones is a regular sequence. In other words, under
the assumption that Condition 30 holds, it follows for this example that an optimal
D mixing policy is among the deterministic Markov D mixing policies for which the
corresponding decision sequence is in the set R of regular sequences of zeros and
ones and the maximal performance is obtained by maximizing performances over R.

Recall from Section 5.2 that for the D = {d1, d2} restricted MDP of Example 1,
the maximal performance over R ∩ Wp(200) equals 0.3435 (rounded to four decimals)
and is obtained by the regular sequence with period cycle (1, 1, 0, 1, 0, 1, 0, 1, 0) of den-
sity θ = 5

9 . Moreover, Figures 1 and 2 did give additional visual support for density 5
9

maximizing the performance over R. If θ = 5
9 indeed maximizes h(θ) and Condition

30 holds, then it follows from Theorem 32 that for this D = {d1, d2} restricted MDP,
the D = {d1, d2} mixing policy corresponding to period cycle (1, 1, 0, 1, 0, 1, 0, 1, 0)

(with symbol 1 corresponding to choosing d1 and symbol 0 corresponding to choosing
d2) is optimal and the maximal long-run average reward is 0.3435, which is obtained
by this policy.

Vice versa, this would imply that there should exist some p∗ and corresponding
threshold property as described above such that for the associated full observa-
tion MDP and the corresponding policy π̃ induces, for any initial state distribution
x ∈ X, an infinite sequence of decision rules that is eventually periodic according
to the period cycle (1, 1, 0, 1, 0, 1, 0, 1, 0). Indeed, this is the case for p∗ = 0.47 (in
fact for some interval containing 0.47). The reader can check that by putting x∗ =
1 − p∗ = 0.53, f1(x) = 0.7x + 0.3, and f2(x) = 0.8x as in the second distinguished
case above; then, for any x1 ∈ [0, 1], the infinite sequence (u1, u2, . . .) of zeros and
ones obtained according to Iteration 26 eventually becomes periodic with period cycle
(1, 1, 0, 1, 0, 1, 0, 1, 0). Moreover, for initial state distribution y1 = (1 − x1, x1) ∈ X,
the sample path ω̃ = (y1, a1, y2, a2, . . .) ∈ �̃ obtained by applying the threshold prop-
erty an = d1 if and only if yn · (1, 0) < 0.47 satisfies (26). Thus for this D restricted
MDP, we have established some additional confirmation for the optimality of the
D = {d1, d2} mixing policy corresponding to a regular decision sequence with period
cycle of density 5

9 yielding a performance of 0.3435.

Resuming, our results all support, but do not completely prove, the following
conjecture.

Conjecture 34: For the problem introduced in Example 1 the periodic Markov policy
with period cycle (d1, d1, d2, d1, d2, d1, d2, d1, d2) is optimal within the class of D =
{d1, d2} mixing policies.
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7. CONCLUDING REMARKS

We have shown that for a class of D restricted MDP, the optimality of a deterministic
policy corresponding to a regular sequence is assured if some threshold condition is
satisfied for the corresponding full observation MDP. In the present article we have not
investigated whether the threshold condition actually holds for the corresponding full
observation MDP. However, for many comparable MDP, such a threshold structure
of optimal stationary policies has been investigated and established. For example,
in Section 5.3 of [24] for the so-called searching for a moving-target problem, it
was conjectured that the optimal policy has a simple threshold structure—namely
search location 1 if and only if at the decision epoch the probability p that the target
is at location 1 is larger (or equal) than a certain threshold probability p∗. In [19]
the existence of such optimal threshold probability p∗ and corresponding policy is
proved for many cases of such searching for moving-target MDP. Condition 30 for
MDP associated with D = {d1, d2} restricted MDP is similar and possibly for some
problem classes, it can be established by similar methods as in [19].

If Condition 30 indeed holds, then the (desired) optimality within the class of
policies corresponding to regular sequences follows if some additional (and easy
checkable) technical conditions (see Theorem 32) are satisfied for the transition matri-
ces induced by the applicable decision rules in D. Note that we have proved that these
additional conditions stated in Theorem 32 are sufficient, but possibly these techni-
cal conditions can be weakened. Moreover, it is interesting whether Theorem 32 can
be generalized to D = {d1, d2} restricted MDP with S consisting of more than two
states. Another issue is whether the results on optimality of regular sequences can
be extended from the relatively simple threshold structure given by Condition 30 to
more involved cases where, for example, an optimal stationary policy is determined
by multiple thresholds.
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