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We present high-resolution numerical investigations of heat transport by two-
dimensional (2D) turbulent Rayleigh–Bénard (RB) convection over the Rayleigh
number range 108 6 Ra 6 1010 and the Prandtl number range 0.7 6 Pr 6 10. We find
that there exists strong counter-gradient local heat flux with magnitude much larger
than the global Nusselt number Nu of the system. Two mechanisms for generating
counter-gradient heat transport are identified: one is due to the bulk dynamics and the
other is due to the competition between the corner-flow rolls and the large-scale
circulation (LSC). While the magnitude of the former is found to increase with
increasing Prandtl number, that of the latter maximizes at medium Pr. We further
reveal that the corner–LSC competition leads to the anomalous Nu–Pr relation in
2D RB convection, i.e. Nu(Pr) minimizes, rather than maximizes as in the three-
dimensional cylindrical case, at Pr ≈ 2∼ 3 for moderate Ra.

Key words: convection, turbulent convection, turbulent flows

1. Introduction

The convective motion of enclosed fluids is of fundamental interest, as well as
being present in a variety of engineering, geophysical, and astrophysical systems.
A paradigmatic model that has been widely used to study this type of flow is
Rayleigh–Bénard (RB) convection (Ahlers, Grossmann & Lohse 2009; Lohse & Xia
2010), i.e. a fluid layer heated from below and cooled on the top. A central issue
in the study of the RB system is to understand how heat is transported upwards
across the fluid layer by convective flows (Ahlers et al. 2009; Chillà & Schumacher
2012; He et al. 2013; Huang et al. 2013; Lakkaraju et al. 2013; Urban et al. 2013;
Xia 2013). It is usually measured in terms of the Nusselt number Nu (=QH/χ∆),
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which depends on the control parameters of the system, such as the Rayleigh number
Ra (=αgH3∆/νκ) and the Prandtl number Pr (=ν/κ). Here, Q is the heat current
density across the fluid layer of thermal conductivity χ with height H and with
an applied temperature difference ∆, g is the acceleration due to gravity, and α, ν,
and κ are, respectively, the thermal expansion coefficient, kinematic viscosity, and
thermal diffusivity of the working fluid. Specifically, the Pr-dependence of Nu has
long been studied (Kraichnan 1962; Verzicco & Camussi 1999; Kerr & Herring 2000;
Ahlers & Xu 2001; Grossmann & Lohse 2001; Roche et al. 2002; Xia, Lam &
Zhou 2002; Niemela & Sreenivasan 2003; Breuer et al. 2004; Calzavarini et al. 2005;
Silano, Sreenivasan & Verzicco 2010; Stevens, Lohse & Verzicco 2011; Zhou et al.
2012, 2013), especially in three-dimensional (3D) cylindrical samples. It is found
that for moderate Ra, with increasing Prandtl number, Nu first increases, reaches its
maximum value at around Pr ≈ 3 (depending on Ra), and then slightly decreases
(Ahlers & Xu 2001; Grossmann & Lohse 2001; Xia et al. 2002). For higher Ra, Nu
appears to become independent of Pr (Silano et al. 2010; Stevens et al. 2011).

In the field of convection, two-dimensional (2D) RB flow has played an important
role (Zhang & Wu 2005; Zhang, Wu & Xia 2005), partly because of its relevance
to thermal convection occurring in the atmosphere (Seychelles et al. 2008, 2010).
Recently, 2D convection was also utilized as a test-bed to study the physical
and turbulent transport features of 3D convection, e.g. it was adopted to compare
turbulent heat transport between conditions of constant temperature and constant
heat flux (Johnston & Doering 2009), to reveal the non-Boussinesq effects on the
flow organization (Sugiyama et al. 2009), to analyse the reversals of the large-scale
circulation (LSC) (Sugiyama et al. 2010; Chandra & Verma 2011, 2013), to study
the boundary layer (BL) dynamics (Zhou et al. 2010, 2011), and to connect the
flow structures and heat flux (van der Poel, Stevens & Lohse 2011; ver der Poel
et al. 2012). Moreover, many heat-transfer theories for turbulent RB systems are
essentially 2D, e.g. the Grossmann–Lohse theory (Grossmann & Lohse 2000) and the
Whitehead–Doering theory for the ultimate regime (Whitehead & Doering 2011). In
general, 2D geometry offers two advantages: (i) the numerical effort required for 2D
simulations is much smaller so that a full resolution of the BLs at high Rayleigh
numbers can be guaranteed; (ii) the flow visualizations of the full temperature
and velocity fields are much easier so that a direct connection between the flow
organization and the heat-transfer properties is possible.

Nevertheless, we note that there is still a lack of systematic studies on the heat-
transfer properties in 2D RB convection, such as the Pr-dependence of Nu. In this
paper, we will fill this gap with the help of direct numerical simulations (DNS).
The simulations were made over the ranges 108 6 Ra 6 1010 and 0.7 6 Pr 6 10.
We show that heat transfer of 2D RB flow for not too large Ra exhibits a very
different Pr-dependence from the 3D cylindrical case, i.e. Nu(Pr) minimizes, rather
than maximizes as in 3D case, around Pr ≈ 2 ∼ 3. We further show that such
a behaviour is due to counter-gradient heat transport generated by the competition
between the corner-flow rolls and the LSC. The remainder of this paper is organized
as follows. Section 2 introduces the numerical method adopted. The Pr-dependence
of Nu is discussed in § 3, where we try to establish a direct connection between the
flow structures and the Nu–Pr behaviours. We summarize our findings and conclude
in § 4.
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2. Numerical method

We deal with a wall-bounded 2D domain of height H = 1 and horizontal length
D = 1 with uniform grids. The numerical code is based on a compact fourth-order
finite-difference scheme for the time-dependent incompressible Oberbeck–Boussinesq
equations in vorticity–stream function formulation, i.e.

∂ω

∂t
+ (u ·∇)ω = ν∇2ω + αg

∂θ

∂x
, (2.1)

∇2ψ = ω, (2.2)

u=−∂ψ
∂z
, w= ∂ψ

∂x
. (2.3)

∂θ

∂t
+ (u ·∇)θ = κ∇2θ. (2.4)

Here, u(x, z, t) = ux + wz is the velocity field (x and z are the horizontal and vertical
unit vectors, respectively), ω is the vorticity, ψ is the stream function, and θ is
the temperature. The scheme was proposed by Liu, Wang & Johnston (2003) and
its accuracy, stability, and efficiency have been examined in detail by E & Liu
(1996) and Liu et al. (2003). It has also been shown that the global quantities,
such as Nu, obtained using the compact scheme agree well with those obtained using
other numerical schemes, such as the Fourier–Chebyshev spectral collocation method
(Johnston & Doering 2009). Recently, we have applied the same numerical code to
study small-scale properties in 2D Rayleigh–Taylor turbulence (Zhou 2013). Here we
briefly describe the scheme. For (2.1)–(2.3), an essentially compact fourth-order (EC4)
scheme, first proposed by E & Liu (1996) for the 2D Navier–Stokes equations, is
employed to solve the momentum equations with the gravity term treated explicitly. E
& Liu (1996) have shown that the EC4 scheme has very nice features with regard to
the treatment of boundary conditions. Such a scheme is also very efficient, because at
each Runge–Kutta stage only two Poisson-like equations have to be solved by taking
the standard fast-Fourier-transform-based Poisson solvers. The heat-transfer equation
(2.4) is treated as a standard convection–diffusion equation and is discretized using
fourth-order long-stencil difference operators. A third-order Runge–Kutta method is
employed to integrate the equations in time. The time step is chosen to fulfil the
Courant–Friedrichs–Lewy (CFL) conditions, i.e. the CFL number is 0.2 or less for all
computations presented in this paper.

The grid resolution has been chosen to achieve a full resolution of the BLs
(Shishkina et al. 2010) and to resolve the smallest scales of the problem, i.e. the
Kolmogorov scale ηK and the Batchelor scale ηB. In the present study, the number of
grid points is increased from 1025× 1025 to 4097× 4097 as Ra increases from 108 to
1010. Thus, for all runs the thermal BLs are resolved with at least 18 grid points and
the grid spacings ∆g < 0.3ηK and ∆g < 0.45ηB. No-penetration and no-slip velocity
boundary conditions are applied to all four solid walls, which are recast in terms of
ψ as ψ |x=0,1;z=0,1 = 0, ∂ψ/∂x|x=0,1 = 0, and ∂ψ/∂z|z=0,1 = 0. For temperature the two
vertical sidewalls (x= 0, 1) are chosen to be adiabatic (no flux), while at the colder top
(z = 1) and the warmer bottom (z = 0) plates, the temperature is fixed at θcold = −0.5
and θhot = 0.5, respectively, and thus the temperature difference across the fluid layer is
∆ = θhot − θcold = 1 and the mean bulk temperature, i.e. the arithmetic mean value of
θcold and θhot, is θbulk = 0.
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FIGURE 1. (a) Log–log plot of Nu as a function of Ra for eight values of Pr. For clarity, each
data set has been shifted upwards from its lower neighbour by a factor of 1.3. The solid lines are
the best power-law fits to the corresponding data and the two dashed lines mark the Ra0.3 and
Ra2/7 scalings for reference. (b) The fitted scaling exponent β of Nu(Ra) as a function of Pr. The
dashed line indicates the value of 2/7 for reference. (c) The fitted prefactor C of Nu(Pr) as a
function of Pr.

3. Results and discussion

Figure 1(a) shows a log–log plot of the measured Nu as a function of Ra for eight
values of Pr. For clarity, the data set for each Pr has been shifted upwards from its
lower neighbour by a factor of 1.3. Here, Nu is calculated over the whole volume
and over a very large averaging time, e.g. more than 1000tE (400tE) for Ra = 108

(1010), where tE = 4π/〈|ωc(t)|〉 is the large-eddy turnover time with ωc being the centre
vorticity. The time convergence for the obtained Nu is checked by comparing the
time-averages over the first and the last halves of the simulation and the resulting
convergence is for most cases smaller than 1 %. In the figure, we note that the Nu–Ra
data for each Pr can be well described by the power-law relation, Nu = C(Pr)Raβ(Pr)

(see the solid lines in the figure). The best-fit scaling exponent β and prefactor C
as functions of Pr are plotted in figures 1(b) and 1(c), respectively, and one can see
that both β and C vary slightly with Pr. We further note that the obtained scaling
exponents β are in general agreement with those found in 3D convection cells (Ahlers
et al. 2009; Chillà & Schumacher 2012), while the values of C are smaller than their
3D counterparts.

In figure 2 we show the compensated Nu/Ra1/3 as a function of Pr for five values
of Ra. It is seen that for Ra 6 109, with increasing Pr, Nu first decreases, reaches
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FIGURE 2. Semi-log plot of Nu/Ra1/3 versus Pr for five values of Ra.

its minimum value at Pr ≈ 2 ∼ 3, and then increases. This is dramatically different
from the 3D cylindrical case, where Nu is found to maximize at Pr ≈ 3 for moderate
Ra (Ahlers & Xu 2001; Xia et al. 2002; Stevens et al. 2011). It is further seen that
the effect of Pr on the heat transfer reduces with increasing Ra, i.e. the variations
in Nu(Pr), as defined by the difference between the maximum and minimum in the
Nusselt number series, yield 9.1 %, 7.1 %, and 6.0 % for Ra = 108, 3 × 108 and 109,
respectively. For Ra > 3 × 109 the observed Pr-dependence is qualitatively similar to
that of the 3D cylindrical case.

To understand the anomalous Nu–Pr relation in the 2D case, we next study the
instantaneous flow structures and try to reveal the connection between the heat-
transfer properties and the flow organization. Figure 3(a) shows a typical snapshot
of the temperature and velocity fields. A corresponding video can be viewed as
supplementary material available online at dx.doi.org/10.1017/jfm.2013.585. One can
see clearly that the dominant flow pattern is a counter-clockwise rotating roll
orientated diagonally in the cell. There are still several smaller secondary rolls at
the corners of the cell: two larger clockwise rotating rolls at the lower-left and
upper-right corners. As pointed out by Sugiyama et al. (2010), the corner rolls are
energetically fed by thermal plumes detaching from the BLs. Figure 3(b) shows the
corresponding snapshot of the local heat flux field, NuL = H(wθ/κ − ∂θ/∂z)/∆. It is
surprising that there exist strong negative (i.e. opposite to the temperature gradient of
the system) NuL with magnitude much larger than the global heat transport of the
system (Nu = 35.5 for Ra = 3 × 108 and Pr = 4.38). From the movie corresponding
to figure 3 two mechanisms for generating counter-gradient local heat transport can be
identified. (i) Hot plumes detach from the bottom thermal BL and move upwards with
the LSC. After reaching the other plate, some plumes do not lose their thermal energy
completely, i.e. they are still hotter than the environment. These plumes continue
moving with the LSC, leading to the sinking of the hot fluid and thus generating
negative NuL. The same process can be observed for cold plumes detached from the
top plate. This kind of counter-gradient heat transport is due to the bulk dynamics
and was also observed in previous 3D RB experiments (Shang et al. 2003, 2004;
Ching et al. 2004; Gasteuil et al. 2007). (ii) When hot plumes move upwards with
the lower-left corner rolls, they encounter the LSC. On the one hand, the corner rolls
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FIGURE 3. (a) Typical snapshot of the instantaneous temperature (colour) and velocity (arrows)
fields for Ra= 3×108 and Pr = 4.38. (b) The corresponding snapshot of the local heat flux field
(colour). The black solid lines mark the streamlines of ψ = 0, which can roughly distinguish the
regions of the corner-flow rolls and the LSC.

grow in kinetic energy and thus also in size due to the energy gained from detaching
plumes from thermal BLs. On the other hand, the growth in size of the corner rolls
is suppressed by the LSC. Therefore, the corner-flow rolls and the LSC compete with
each other. Because the strength of the corner rolls is smaller than that of the LSC,
these hot plumes are forced to fall back, thus leading to the negative NuL. The same
process can also be observed for cold plumes in the upper-right corner rolls. This kind
of counter-gradient heat transport is due to the competition between the corner rolls
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FIGURE 4. Pr-dependence of (a) Nu, (b) Nu−cr, and (c) Nu−LSC for Ra= 3× 108 in semilog plots.

and the LSC. Taken together, therefore, both the LSC and the corner flows sometimes
contribute to heat transport in the ‘wrong direction’: cold fluids can be brought back to
the cold plate and hot fluids can be brought back to the hot plate by either the corner
flows or the LSC.

To quantify these two kinds of negative NuL, we note that the streamlines of the
stream function ψ = 0 can roughly distinguish the regions of the corner rolls and the
LSC (see the black solid lines in figure 3b). Then the counter-gradient heat flux due
to the bulk dynamics, Nu−LSC, and that due to the corner–LSC competition, Nu−cr, are
calculated via conditional average as

Nu−LSC = 〈NuL|NuL < 0, ψ < 0〉 (3.1)

and

Nu−cr = 〈NuL|NuL < 0, ψ > 0〉. (3.2)

Figure 4 shows the Pr-dependence of Nu, Nu−cr, and Nu−LSC for Ra = 3 × 108. While
the magnitude of Nu−LSC increases with increasing Pr, Nu−cr is seen to share a Pr-
dependence similar to the global Nu, suggesting, from our point of view, that
the observed anomalous 2D Nu–Pr relation could be attributed to the corner–LSC
competition. Note that while there is strong negative NuL with magnitude much larger

737 R3-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.585


Y.-X. Huang and Q. Zhou

0.7 1 2 3 6 10 0.7 1 2 3 6 10

0.7 1 2 3 6 10

Pr

0.7 1 2 3 6 10

0.7 1.0 2.0 3.0 6.0 10.0 0.7 1.0 2.0 3.0 6.0 10.0

0.7 1.0 2.0 3.0 6.0 10.0

Pr
0.7 1.0 2.0 3.0 6.0 10.0

0.055

0.060

0.200

0.300

0.400

0.050

0.055

0.300

0.400

0.050

0.055

0.200

0.300

0.400

0.042

0.046

0.050

0.400

0.450

(a)

(c)

(b)

(d)

FIGURE 5. Pr-dependence of the compensated Nu/Ra1/3 and the time-averaged heights 〈h(t)〉
of the lower corner flows for (a) Ra = 1 × 108, (b) 3 × 108, (c) 1 × 109 and (d) 1 × 1010

in semi-log plots. The error bars in the plots of 〈h(t)〉 indicate the standard deviations of h(t).
Because of the flow reversals (Sugiyama et al. 2010; Chandra & Verma 2011, 2013), the error
bars are much more pronounced for medium Pr at Ra = 108 in (a) and at Ra = 3 × 108 in (b).
For Ra = 1 × 1010 it is hard to identify the corner-flow rolls when Pr 6 2, see the text for the
details.

than the global Nu, the averaged Nu−LSC and Nu−cr are smaller in magnitude than the
global Nu, suggesting that this average could be controlled by a few strong events.

The next issue is to physically understand the Pr-behaviours of Nu−cr and Nu−LSC. For
Nu−LSC, with decreasing Pr (i.e. increasing thermal diffusivity), it becomes much easier
for plumes to lose their thermal energy through thermal diffusion, thus resulting in the
decrease of the magnitude of Nu−LSC. For Nu−cr, its magnitude is related to the strength
of the corner flow: stronger corner flows contain more thermal energy, and thus lead
to the increase of the magnitude of Nu−cr after they are forced to move back by the
corner–LSC competition. As argued by Sugiyama et al. (2010), the buildup of the
corner flow is suppressed for too small and too large Pr. This is because, for too small
Pr, as discussed above, the thermal energy carried by plumes is lost through thermal
diffusion and for too large Pr the thermal coupling between the corner flow and the
thermal BL is hindered as the thermal BL is nested in the kinematic BL (Sugiyama
et al. 2010). Therefore, the strength of the corner flow is expected to become strongest
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FIGURE 6. Typical snapshots of the instantaneous temperature (colour) and velocity (arrows)
fields for Ra = 1 × 1010 and for Pr = 0.7 (a) and 4.38 (b). It is seen that for low Pr the
corner-flow rolls cannot be identified, while for large Pr two larger clockwise rotating rolls at
the lower-left and upper-right corners are well established.

and thus the magnitude of Nu−cr is maximal at some moderate Pr, which is consistent
with the results shown in figure 4(b).

To quantify the strength of the corner flow, we follow the idea of Sugiyama et al.
(2010) and adopt the height h(t) of the corner flow, which can be measured by
identifying the position of the steepest gradient of θ(z) at the respective sidewall.
Figure 5(a–c) show the Pr-dependence of the time-averaged heights 〈h(t)〉 of the
lower corner flows for Ra = 1 × 108, 3 × 108 and 1 × 109, respectively. We also
plot the compensated Nu/Ra1/3 for comparison. It is seen that 〈h(t)〉 is highly anti-
correlated with Nu for Ra between 108 and 109, i.e. there is an optimal Pr ≈ 2 ∼ 3
for which 〈h(t)〉 is maximal. This again suggests that for moderate Ra stronger corner
flows restrain the global heat flux of the system via the corner–LSC competition.
Figure 5(d) shows 〈h(t)〉 and Nu/Ra1/3 as functions of Pr for Ra = 1 × 1010. We
find that when Pr 6 2 the corner-flow rolls are not stable and could detach from the
corners (see figure 6) and hence it is hard to identify the corner-flow rolls and quantify
their heights for this flow. For Pr > 3, 〈h(t)〉 and Nu are found to be uncorrelated,
which may be due to the fact that for high Ra thermal mixing is enhanced by the
increased turbulent intensity and hence the negative NuL generated by the corner–LSC
competition is not so pronounced as that in moderate-Ra cases. Taken together, these
results suggest that the corner-flow rolls do not play an important role in the processes
of turbulent heat transport for high Ra.

4. Conclusion

In conclusion, our high-resolution numerical measurements of Nu in 2D RB
convection over the parameter ranges 108 6 Ra 6 1010 and 0.7 6 Pr 6 10 show that
Nu(Pr) minimizes at Pr ≈ 2 ∼ 3 for moderate Ra. This is dramatically different
from the observations in 3D cylindrical cells, where the opposite situation is found,
i.e. Nu(Pr) maximizes near Pr ≈ 3 for not too large Ra. We find that this difference
can be attributed to the counter-gradient local heat flux generated by the competition
between the corner-flow rolls and the LSC, the effects of which are more pronounced
in 2D geometry. We would like to emphasize that although the present analysis is
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performed in 2D geometry, counter-gradient local heat transport is ubiquitous and can
also be found in 3D turbulent RB systems (Shang et al. 2003; Gasteuil et al. 2007).
However, due to the fluid motion in the third dimension, the effects of counter-gradient
transport in 3D cases are not strong enough to reverse the global heat flux and make
it go through a minimum as observed in 2D situations. The effects of counter-gradient
heat transfer on the dynamic and global-heat-transfer processes in 3D geometry will be
the objectives of our future studies.
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