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Abstract

Part of the theory of logic programming and nonmonotonic reasoning concerns the study

of fixed-point semantics for these paradigms. Several different semantics have been proposed

during the last two decades, and some have been more successful and acknowledged than

others. The rationales behind those various semantics have been manifold, depending on one’s

point of view, which may be that of a programmer or inspired by commonsense reasoning,

and consequently the constructions which lead to these semantics are technically very diverse,

and the exact relationships between them have not yet been fully understood. In this paper,

we present a conceptually new method, based on level mappings, which allows to provide

uniform characterizations of different semantics for logic programs. We will display our

approach by giving new and uniform characterizations of some of the major semantics, more

particular of the least model semantics for definite programs, of the Fitting semantics, and of

the well-founded semantics. A novel characterization of the weakly perfect model semantics

will also be provided.

KEYWORDS: level mapping, Fitting semantics, well-founded semantics, least model seman

tics, stable semantics, weak stratification

1 Introduction

Negation in logic programming differs from the negation of classical logic. Indeed,

the quest for a satisfactory understanding of negation in logic programming is still

inconclusive – although the issue has cooled down a bit recently – and has proved

to be very stimulating for research activities in computational logic, and in par-

ticular amongst knowledge representation and reasoning researchers concerned

with commonsense and nonmonotonic reasoning. During the last two decades,

different interpretations of negation in logic programming have led to the de-

velopment of a variety of declarative semantics, as they are called. Some early

research efforts for establishing a satisfactory declarative semantics for negation as

failure and its variants, as featured by the resolution-based Prolog family of logic

programming systems, have later on been merged with nonmonotonic frameworks

for commonsense reasoning, culminating recently in the development of so-called
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answer set programming systems, like smodels or dlv (Eiter et al. 1997; Marek and

Truszczyński 1999; Lifschitz 2002; Simons et al. 200x).

Systematically, one can understand Fitting’s (1985) proposal of a Kripke-Kleene

semantics – also known as Fitting semantics – as a cornerstone which plays a

fundamental rôle both for resolution-based and nonmonotonic reasoning inspired

logic programming. Indeed, his proposal, which is based on a monotonic semantic

operator in Kleene’s strong three-valued logic, has been pursued in both communit-

ies, for example by Kunen (1987) for giving a semantics for pure Prolog, and by

Apt and Pedreschi (1993) in their fundamental paper on termination analysis of

negation as failure, leading to the notion of acceptable program. On the other hand,

however, Fitting himself (1991a, 2002), using a bilattice-based approach which was

further developed by Denecker et al. (2000), tied his semantics closely to the major

semantics inspired by nonmonotonic reasoning, namely the stable model semantics

due to Gelfond and Lifschitz (1988), which is based on a nonmonotonic semantic

operator, and the well-founded semantics due to van Gelder et al. (1991), originally

defined using a different monotonic operator in three-valued logic together with a

notion of unfoundedness.

Another fundamental idea which was recognised in both communities was that of

stratification, with the underlying idea of restricting attention to certain kinds of pro-

grams in which recursion through negation is prevented. Apt et al. (1988) proposed

a variant of resolution suitable for these programs, while Przymusinski (1988) and

van Gelder (1988) generalized the notion to local stratification. Przymusinski (1988)

developed the perfect model semantics for locally stratified programs, and together

with Przymusinska (Przymusinska and Przymusinski 1990) generalized it later to a

three-valued setting as the weakly perfect model semantics.

The semantics mentioned so far are defined and characterized using a variety

of different techniques and constructions, including monotonic and nonmonotonic

semantic operators in two- and three-valued logics, program transformations, level

mappings, restrictions to suitable subprograms, detection of cyclic dependencies

etc. Relationships between the semantics have been established, but even a simple

comparison of the respective models in restricted cases could be rather tedious.

So, in this paper, we propose a methodology which allows to obtain uniform

characterizations of all semantics previously mentioned, and we believe that it will

scale up well to most semantics based on monotonic operators, and also to some

nonmonotonic operators, and to extensions of the logic programming paradigm

including disjunctive conclusions and uncertainty. The characterizations will allow

immediate comparison between the semantics, and once obtained we will easily be

able to make some new and interesting observations, including the fact that the well-

founded semantics can formally be understood as a Fitting semantics augmented

with a form of stratification. Indeed we will note that from this novel perspective

the well-founded semantics captures the idea of stratification much better than the

weakly perfect model semantics, thus providing a formal explanation for the historic

fact that the latter has not received as much attention as the former.

The main tool which will be employed for our characterizations is the notion

of level mapping. Level mappings are mappings from Herbrand bases to ordinals,
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i.e. they induce orderings on the set of all ground atoms while disallowing infinite

descending chains. They have been a technical tool in a variety of contexts, including

termination analysis for resolution-based logic programming as studied by Bezem

(1989), Apt and Pedreschi (1993), Marchiori (1996), Pedreschi et al. (1996) and

others, where they appear naturally since ordinals are well-orderings. They have

been used for defining classes of programs with desirable semantic properties, e.g. by

Apt et al. (1988), Przymusinski (1988) and Cavedon (1991), and they are intertwined

with topological investigations of fixed-point semantics in logic programming, as

studied, for example, by Fitting (1994, 2002), and by Hitzler and Seda (Seda 1995;

Seda 1997; Hitzler 2001; Hitzler and Seda 2003b). Level mappings are also relevant

to some aspects of the study of relationships between logic programming and

artificial neural networks, as studied by Hölldobler et al. (1999) and by Hitzler and

Seda (2000, 2003a). In our novel approach to uniform characterizations of different

semantics, we will use them as a technical tool for capturing dependencies between

atoms in a program.

The paper is structured as follows. Section 2 contains preliminaries which are

needed to make the paper relatively self-contained. The subsequent sections contain

the announced uniform characterizations of the least model semantics for definite

programs and the stable model semantics in section 3, of the Fitting semantics in

section 4, of the well-founded semantics in section 5, and of the weakly perfect

model semantics in section 6. Related work will be discussed in section 7, and we

close with conclusions and a discussion of further work in section 8.

Part of this paper was presented at the 25th German Conference on Artificial

Intelligence, KI2002, Aachen, Germany, September 2002 (Hitzler and Wendt 2002).

2 Preliminaries and notation

A (normal) logic program is a finite set of (universally quantified) clauses of

the form ∀(A ← A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm ), commonly written as A ←
A1, . . . ,An ,¬B1, . . . ,¬Bm , where A, Ai , and Bj , for i = 1, . . . , n and j = 1, . . . ,m , are

atoms over some given first order language. A is called the head of the clause, while

the remaining atoms make up the body of the clause, and depending on context,

a body of a clause will be a set of literals (i.e. atoms or negated atoms) or the

conjunction of these literals. Care will be taken that this identification does not

cause confusion. We allow a body, i.e. a conjunction, to be empty, in which case it

always evaluates to true. A clause with empty body is called a unit clause or a fact.

A clause is called definite, if it contains no negation symbol. A program is called

definite if it consists only of definite clauses. We will usually denote atoms with A

or B , and literals, which may be atoms or negated atoms, by L or K .

Given a logic program P , we can extract from it the components of a first order

language. The corresponding set of ground atoms, i.e. the Herbrand base of the

program, will be denoted by BP . For a subset I ⊆ BP , we set ¬I = {¬A | A ∈ I }.
The set of all ground instances of P with respect to BP will be denoted by ground(P ).

For I ⊆ BP ∪ ¬BP we say that A is true with respect to (or in) I if A ∈ I , we say

that A is false with respect to (or in) I if ¬A ∈ I , and if neither is the case, we say
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that A is undefined with respect to (or in) I . A (three-valued or partial) interpretation

I for P is a subset of BP ∪¬BP which is consistent, i.e. whenever A ∈ I then ¬A �∈ I .

A body, i.e. a conjunction of literals, is true in an interpretation I if every literal in

the body is true in I , it is false in I if one of its literals is false in I , and otherwise

it is undefined in I . For a negative literal L = ¬A we will find it convenient to write

¬L ∈ I if A ∈ I and say that L is false in I etc. in this case. By IP we denote the

set of all (three-valued) interpretations of P . It is a complete partial order (cpo)

via set-inclusion, i.e. it contains the empty set as least element, and every ascending

chain has a supremum, namely its union. A model of P is an interpretation I ∈ IP

such that for each clause A ← body we have that body true in I implies A true in

I , and body undefined in I implies A true or undefined in I . A total interpretation

is an interpretation I such that no A ∈ BP is undefined in I .

For an interpretation I and a program P , an I -partial level mapping for P is

a partial mapping l : BP → α with domain dom(l ) = {A | A ∈ I or ¬A ∈ I },
where α is some (countable) ordinal. We extend every level mapping to literals by

setting l (¬A) = l (A) for all A ∈ dom(l ). A (total) level mapping is a total mapping

l : BP → α for some (countable) ordinal α.

Given a normal logic program P and some I ⊆ BP ∪¬BP , we say that U ⊆ BP is

an unfounded set (of P ) with respect to I if each atom A ∈ U satisfies the following

condition: For each clause A ← body in ground(P ) (at least) one of the following

holds.

(Ui) Some (positive or negative) literal in body is false in I .

(Uii) Some (non-negated) atom in body occurs in U .

Given a normal logic program P , we define the following operators on BP ∪¬BP .

TP (I ) is the set of all A ∈ BP such that there exists a clause A← body in ground(P )

such that body is true in I . FP (I ) is the set of all A ∈ BP such that for all clauses

A ← body in ground(P ) we have that body is false in I . Both TP and FP map

elements of IP to elements of IP . Now define the operator ΦP : IP → IP by

ΦP (I ) = TP (I ) ∪ ¬FP (I ).

This operator is due to Fitting (1985) and is monotonic on the cpo IP , hence has a

least fixed point by the Tarski fixed-point theorem, and we can obtain this fixed point

by defining, for each monotonic operator F , that F ↑ 0 = ∅, F ↑ (α + 1) = F (F ↑ α)
for any ordinal α, and F ↑β =

⋃
γ<β F ↑γ for any limit ordinal β, and the least fixed

point lfp(F ) of F is obtained as F ↑ α for some ordinal α. The least fixed point of

ΦP is called the Kripke-Kleene model or Fitting model of P , determining the Fitting

semantics of P .

Example 2.1

Let P be the program consisting of the two clauses p ← p and q ← ¬r . Then

ΦP ↑1 = {¬r}, and ΦP ↑2 = {q ,¬r} = ΦP ↑3 is the Fitting model of P .

Now, for I ⊆ BP ∪ ¬BP , let UP (I ) be the greatest unfounded set (of P ) with

respect to I , which always exists due to van Gelder et al. (1991). Finally, define

WP (I ) = TP (I ) ∪ ¬UP (I )
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for all I ⊆ BP ∪ ¬BP . The operator WP , which operates on the cpo BP ∪ ¬BP , is

due to van Gelder et al. (1991) and is monotonic, hence has a least fixed point by

the Tarski fixed-point theorem, as above for ΦP . It turns out that WP ↑ α is in IP

for each ordinal α, and so the least fixed point of WP is also in IP and is called the

well-founded model of P , giving the well-founded semantics of P .

Example 2.2

Let P be the program consisting of the following clauses.

s ← q

q ← ¬p

p ← p

r ← ¬r

Then {p} is the largest unfounded set of P with respect to ∅ and we obtain

WP ↑1 = {¬p},
WP ↑2 = {¬p, q}, and

WP ↑3 = {¬p, q , s}
= WP ↑4.

Given a program P , we define the operator T+
P on subsets of BP by T+

P (I ) =

TP (I ∪ ¬(BP \ I )). It is well-known that for definite programs this operator is

monotonic on the set of all subsets of BP , with respect to subset inclusion. Indeed

it is Scott-continuous (Lloyd 1988; Abramsky and Jung 1994; Stoltenberg-Hansen

et al. 1994) and, via Kleene’s fixed-point theorem, achieves its least fixed point M

as the supremum of the iterates T+
P ↑n for n ∈ �. So M = lfp(T+

P ) = T+
P ↑ω is the

least two-valued model of P . In turn, we can identify M with the total interpretation

M ∪ ¬(BP \M ), which we will call the definite (partial) model of P .

Example 2.3

Let P be the program consisting of the clauses

p(0) ←
p(s(X )) ← p(X ),

where X denotes a variable and 0 a constant symbol. Write sn (0) for the term

s(· · · s(0) · · ·) in which the symbol s appears n times. Then

T+
P ↑n = {p(sk (0)) | k < n}

for all n ∈ � and {p(sn (0)) | n ∈ �} is the least two-valued model of P .

To avoid confusion, we will use the following terminology: the notion of inter-

pretation will by default denote consistent subsets of BP ∪¬BP , i.e. interpretations in

three-valued logic. We will sometimes emphasize this point by using the notion partial

interpretation. By two-valued interpretations we mean subsets of BP . Given a partial

interpretation I , we set I + = I ∩BP and I− = {A ∈ BP | ¬A ∈ I }. Each two-valued

interpretation I can be identified with the partial interpretation I ′ = I ∪ ¬(BP \ I ).

Both, interpretations and two-valued interpretations, are ordered by subset inclusion.

We note however, that these two orderings differ: If I ⊆ BP , for example, then
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I ′ is always a maximal element in the ordering for partial interpretations, while

I is in general not maximal as a two-valued interpretation. The two orderings

correspond to the knowledge- and the truth-ordering due to Fitting (1991a).

There is a semantics using two-valued logic, the stable model semantics due

to Gelfond and Lifschitz (1988), which is intimately related to the well-founded

semantics. Let P be a normal program, and let M ⊆ BP be a set of atoms. Then we

define P/M to be the (ground) program consisting of all clauses A← A1, . . . ,An for

which there is a clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P ) with B1, . . . ,Bm �∈
M . Since P/M does no longer contain negation, it has a least two-valued model

T+
P/M ↑ω. For any two-valued interpretation I we can therefore define the operator

GLP (I ) = T+
P/I ↑ω, and call M a stable model of the normal program P if it is a

fixed point of the operator GLP , i.e. if M = GLP (M ) = T+
P/M ↑ω. As it turns out,

the operator GLP is in general not monotonic for normal programs P . However it

is antitonic, i.e. whenever I ⊆ J ⊆ BP then GLP (J ) ⊆ GLP (I ). As a consequence,

the operator GL2
P , obtained by applying GLP twice, is monotonic and hence has a

least fixed point LP and a greatest fixed point GP . Van Gelder (1989) has shown

that GLP (LP ) = GP , LP = GLP (GP ), and that LP ∪ ¬(BP \ GP ) coincides with the

well-founded model of P . This is called the alternating fixed point characterization

of the well-founded semantics.

Example 2.4

Consider the program P from Example 2.2. The subprogram Q consisting of the

first three clauses of the program P has stable model M = {s , q}, which can be

verified by noting that Q/M consists of the clauses

s ← q

q ←
p ← p,

and has M as its least two-valued model.

For the program P we obtain

GLP (∅) = {q , s , r},
GLP ({q , s , r}) = {q , s}

= GL2
P ({q , s}), and

GLP (BP ) = ∅.

So LP = {q , s} while GP = {q , s , r}, and LP ∪ ¬(BP \ GP ) = {q , s ,¬p} is the

well-founded model of P .

3 Least and stable model semantics

The most fundamental semantics in logic programming is based on the fact men-

tioned above that the operator T+
P has a least fixed point M = T+

P ↑ω whenever

P is definite. The two-valued interpretation M turns out to be the least two-valued

model of the program, and is therefore canonically the model which should be

considered for definite programs. Our first result characterizes the least model using
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level mappings, and serves to convey the main ideas underlying our method. It is a

straightforward result but has, to the best of our knowledge, not been noted before.

Theorem 3.1

Let P be a definite program. Then there is a unique two-valued model M of P for

which there exists a (total) level mapping l : BP → α such that for each atom A ∈ M

there exists a clause A← A1, . . . ,An in ground(P ) with Ai ∈ M and l (A) > l (Ai ) for

all i = 1, . . . , n . Furthermore, M is the least two-valued model of P .

Proof

Let M be the least two-valued model T+
P ↑ω, choose α = ω, and define l : BP → α

by setting l (A) = min{n | A ∈ T+
P ↑ (n + 1)}, if A ∈ M , and by setting l (A) = 0, if

A �∈ M . From the fact that ∅ ⊆ T+
P ↑1 ⊆ . . . ⊆ T+

P ↑n ⊆ . . . ⊆ T+
P ↑ω =

⋃
m T+

P ↑m ,

for each n , we see that l is well-defined and that the least model T+
P ↑ω for P has

the desired properties.

Conversely, if M is a two-valued model for P which satisfies the given condition

for some mapping l : BP → α, then it is easy to show, by induction on l (A), that

A ∈ M implies A ∈ T+
P ↑ (l (A) + 1). This yields that M ⊆ T+

P ↑ω, and hence that

M = T+
P ↑ω by minimality of the model T+

P ↑ω. �

Example 3.2

For the program P from Example 2.3 we obtain l (p(sn (0))) = n for the level mapping

l defined in the proof of Theorem 3.1.

The proof of Theorem 3.1 can serve as a blueprint for obtaining characterizations

if the semantics under consideration is based on the least fixed point of a monotonic

operator F , and indeed our results for the Fitting semantics and the well-founded

semantics, Theorems 4.2 and 5.2, together with their proofs, follow this scheme.

In one direction, levels are assigned to atoms A according to the least ordinal α

such that A is not undefined in F ↑ (α + 1), and dependencies between atoms of

some level and atoms of lower levels are captured by the nature of the considered

operator, which will certainly vary from case to case. In Theorem 3.1, the condition

thus obtained suffices for uniquely determining the least model, whereas in other

cases which we will study later, so for the Fitting semantics and the well-founded

semantics, the level mapping conditions will not suffice for unique characterization

of the desired model. However, the desired model will in each case turn out to be

the greatest among all models satisfying the given conditions. So in these cases it

will remain to show, by transfinite induction on the level of some given atom A,

that the truth value assigned to A by any model satisfying the given conditions is

also assigned to A by F ↑ (l (A) + 1), which at the same time proves that lfp(F ) is

the greatest model satisfying the given conditions. For the proof of Theorem 3.1,

the proof method just described can be applied straightforwardly, however for more

sophisticated operators may become technically challenging on the detailed level.

We now turn to the stable model semantics, which in the case of programs

with negation has come to be the major semantics based on two-valued logic. The

following characterization is in the spirit of our proposal, and is due to Fages (1994).

It is striking in its similarity to the characterization of the least model for definite

https://doi.org/10.1017/S1471068404002212 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002212


100 P. Hitzler and M. Wendt

programs in Theorem 3.1. For completeness of our exhibition, we include a proof

of the fact.

Theorem 3.3

Let P be normal. Then a two-valued model M ⊆ BP of P is a stable model of P if

and only if there exists a (total) level mapping l : BP → α such that for each A ∈ M

there exists A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P ) with Ai ∈ M , Bj �∈ M , and

l (A) > l (Ai ) for all i = 1, . . . , n and j = 1, . . . ,m .

Proof

Let M be a stable model of P , i.e. GLP (M ) = T+
P/M ↑ω = M . Then M is the least

model for P/M , hence is also a model for P , and, by Theorem 3.1, satisfies the

required condition with respect to any level mapping l with l (A) = min{n | A ∈
TP/M ↑ (n + 1)} for each A ∈ M . Conversely, let M be a model which satisfies the

condition in the statement of the theorem. Then, for every A ∈ M , there is a clause

C in ground(P ) of the form A← A1, . . . ,An ,¬B1, . . . ,¬Bk such that the body of C

is true in M and satisfies l (A) > l (Ai ) for all i = 1, . . . , n . But then, for every A ∈ M ,

there is a clause A ← A1, . . . ,An in P/M whose body is true in M and such that

l (A) > l (Ai ) for all i = 1, . . . , n . By Theorem 3.1, this means that M is the least

model for P/M , that is, M = T+
P/M ↑ω = GLP(M ). �

The proof of Theorem 3.3 just given partly follows the proof scheme discussed

previously, by considering the monotonic operator T+
P/M , which is used for defining

stable models.

Example 3.4

Recall the program P from Example 2.2, and consider the program Q consisting

of the first three clauses of P . We already noted in Example 2.4 that Q has stable

model {s , q}. A corresponding level mapping, as defined in the proof of Theorem 3.3,

satisfies l (q) = 0 and l (s) = 1, while l (p) can be an arbitrary value.

4 Fitting semantics

We next turn to the Fitting semantics. Following the proof scheme which we

described in section 3, we expect levels l (A) to be assigned to atoms A such that

l (A) is the least α such that A is not undefined in ΦP ↑ (α + 1). An analysis of the

operator ΦP eventually yields the following conditions.

Definition 4.1

Let P be a normal logic program, I be a model of P , and l be an I -partial level

mapping for P . We say that P satisfies (F) with respect to I and l , if each A ∈ dom(l )

satisfies one of the following conditions.

(Fi) A ∈ I and there exists a clause A ← L1, . . . ,Ln in ground(P ) with Li ∈ I and

l (A) > l (Li ) for all i .

(Fii) ¬A ∈ I and for each clause A ← L1, . . . ,Ln in ground(P ) there exists i with

¬Li ∈ I and l (A) > l (Li ).
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If A ∈ dom(l ) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and l ,

and similarly if A ∈ dom(l ) satisfies (Fii).

We note that condition (Fi) is stronger than the condition used for characterizing

stable models in Theorem 3.3. The proof of the next theorem closely follows our

proof scheme.

Theorem 4.2

Let P be a normal logic program with Fitting model M . Then M is the greatest

model among all models I , for which there exists an I -partial level mapping l for P

such that P satisfies (F) with respect to I and l .

Proof

Let MP be the Fitting model of P and define the MP -partial level mapping lP as

follows: lP (A) = α, where α is the least ordinal such that A is not undefined in

ΦP ↑ (α + 1). The proof will be established by showing the following facts: (1) P

satisfies (F) with respect to MP and lP . (2) If I is a model of P and l an I -partial

level mapping such that P satisfies (F) with respect to I and l , then I ⊆ MP .

(1) Let A ∈ dom(lP ) and lP (A) = α. We consider two cases.

(Case i) If A ∈ MP , then A ∈ TP (ΦP ↑α), hence there exists a clause A← body in

ground(P ) such that body is true in ΦP ↑ α. Thus, for all Li ∈ body we have that

Li ∈ ΦP ↑ α, and hence lP (Li ) < α and Li ∈ MP for all i . Consequently, A satisfies

(Fi) with respect to MP and lP .

(Case ii) If ¬A ∈ MP , then A ∈ FP (ΦP ↑ α), hence for all clauses A ← body in

ground(P ) there exists L ∈ body with ¬L ∈ ΦP ↑α and lP (L) < α, hence ¬L ∈ MP .

Consequently, A satisfies (Fii) with respect to MP and lP , and we have established

that fact (1) holds.

(2) We show via transfinite induction on α = l (A), that whenever A ∈ I

(respectively, ¬A ∈ I ), then A ∈ ΦP ↑ (α + 1) (respectively, ¬A ∈ ΦP ↑ (α + 1)).

For the base case, note that if l (A) = 0, then A ∈ I implies that A occurs as the

head of a fact in ground(P ), hence A ∈ ΦP ↑ 1, and ¬A ∈ I implies that there is

no clause with head A in ground(P ), hence ¬A ∈ ΦP ↑ 1. So assume now that the

induction hypothesis holds for all B ∈ BP with l (B ) < α. We consider two cases.

(Case i) If A ∈ I , then it satisfies (Fi) with respect to I and l . Hence there is a

clause A← body in ground(P ) such that body ⊆ I and l (K ) < α for all K ∈ body.

Hence body ⊆ MP by induction hypothesis, and since MP is a model of P we obtain

A ∈ MP .

(Case ii) If ¬A ∈ I , then A satisfies (Fii) with respect to I and l . Hence for all

clauses A ← body in ground(P ) we have that there is K ∈ body with ¬K ∈ I and

l (K ) < α. Hence for all these K we have ¬K ∈ MP by induction hypothesis, and

consequently for all clauses A← body in ground(P ) we obtain that body is false in

MP . Since MP = ΦP (MP ) is a fixed point of the ΦP -operator, we obtain ¬A ∈ MP .

This establishes fact (2) and concludes the proof. �

Example 4.3

Consider the program P from Example 2.1. Then the level mapping l , as defined in

the proof of Theorem 4.2, satisfies l (r) = 0 and l (q) = 1.
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It is interesting to consider the special case where the Fitting model is total.

Programs with this property are called Φ-accessible (Hitzler and Seda 1999; Hitzler

and Seda 2003b), and include, for instance, the acceptable programs due to Apt and

Pedreschi (1993).

Corollary 4.4

A normal logic program P has a total Fitting model if and only if there is a total

model I of P and a (total) level mapping l for P such that P satisfies (F) with

respect to I and l .

The result follows immediately as a special case of Theorem 4.2, and is closely

related to results reported in (Hitzler and Seda 1999; Hitzler and Seda 2003b).

The reader familiar with acceptable programs will also note the close relationship

between Corollary 4.4 and the defining conditions for acceptable programs. Indeed,

the theorem due to Apt and Pedreschi (1993), which says that every acceptable

program has a total Fitting model, follows without any effort from our result. It

also follows immediately, by comparing Corollary 4.4 and Theorem 3.3, that a total

Fitting model is always stable, which is a well-known fact.

5 Well-founded semantics

The characterization of the well-founded model again closely follows our proof

scheme. Before discussing this, though, we will take a short detour which will

eventually reveal a surprising fact about the well-founded semantics: From our new

perspective the well-founded semantics can be understood as a stratified version of

the Fitting semantics.

Let us first recall the definition of a (locally) stratified program, due to Apt et al.

(1988) and Pryzmusinski (1988): a normal logic program is called locally stratified

if there exists a (total) level mapping l : BP → α, for some ordinal α, such that for

each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P ) we have that l (A) � l (Ai )

and l (A) > l (Bj ) for all i = 1, . . . , n and j = 1, . . . ,m .

The notion of (locally) stratified program, as already mentioned in the introduc-

tion, was developed with the idea of preventing recursion through negation, while

allowing recursion through positive dependencies. There exist locally stratified

programs which do not have a total Fitting model and vice versa. Indeed, the

program consisting of the single clause p ← p is locally stratified but p remains

undefined in the Fitting model. Conversely, the program consisting of the two clauses

q ← and q ← ¬q is not locally stratified but its Fitting model assigns to q the truth

value true.

By comparing Definition 4.1 with the definition of locally stratified programs, we

notice that condition (Fii) requires a strict decrease of level between the head and a

literal in the rule, independent of this literal being positive or negative. But, on the

other hand, condition (Fii) imposes no further restrictions on the remaining body

literals, while the notion of local stratification does. These considerations motivate
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the substitution of condition (Fii) by the condition (WFii), as given in the following

definition.

Definition 5.1

Let P be a normal logic program, I be a model of P , and l be an I -partial

level mapping for P . We say that P satisfies (WF) with respect to I and l , if each

A ∈ dom(l ) satisfies one of the following conditions.

(WFi) A ∈ I and there exists a clause A ← L1, . . . ,Ln in ground(P ) with Li ∈ I

and l (A) > l (Li ) for all i .

(WFii) ¬A ∈ I and for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P ) (at

least) one of the following conditions holds:

(WFiia) There exists i ∈ {1, . . . , n} with ¬Ai ∈ I and l (A) � l (Ai ).

(WFiib) There exists j ∈ {1, . . . ,m} with Bj ∈ I and l (A) > l (Bj ).

If A ∈ dom(l ) satisfies (WFi), then we say that A satisfies (WFi) with respect to I

and l , and similarly if A ∈ dom(l ) satisfies (WFii).

We note that conditions (Fi) and (WFi) are identical. Indeed, replacing (WFi) by

a stratified version such as the following seems not satisfactory.

(SFi) A ∈ I and there exists a clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P )

with Ai ,Bj ∈ I , l (A) � l (Ai ), and l (A) > l (Bj ) for all i and j .

If we replace condition (WFi) by condition (SFi), then it is not guaranteed that

for any given program there is a greatest model satisfying the desired properties:

Consider the program consisting of the two clauses p ← p and q ← ¬p, and the two

(total) models {p,¬q} and {¬p, q}, which are incomparable, and the level mapping

l with l (p) = 0 and l (q) = 1. A detailed analysis of condition (SFi) in the context of

our approach can be found in Hitzler (2003).

So, in the light of Theorem 4.2, Definition 5.1 should provide a natural “stratified

version” of the Fitting semantics. And indeed it does, and furthermore, the resulting

semantics coincides with the well-founded semantics, which is a very satisfactory

result. The proof of the fact again follows our proof scheme, but is slightly more

involved due to the necessary treatment of unfounded sets.

Theorem 5.2

Let P be a normal logic program with well-founded model M . Then M is the

greatest model among all models I , for which there exists an I -partial level mapping

l for P such that P satisfies (WF) with respect to I and l .

Proof

Let MP be the well-founded model of P and define the MP -partial level mapping

lP as follows: lP (A) = α, where α is the least ordinal such that A is not undefined

in WP ↑ (α + 1). The proof will be established by showing the following facts: (1) P

satisfies (WF) with respect to MP and lP . (2) If I is a model of P and l an I -partial

level mapping such that P satisfies (WF) with respect to I and l , then I ⊆ MP .
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(1) Let A ∈ dom(lP ) and lP (A) = α. We consider two cases.

(Case i) If A ∈ MP , then A ∈ TP (WP ↑ α), hence there exists a clause A ← body

in ground(P ) such that body is true in WP ↑ α. Thus, for all Li ∈ body we have

that Li ∈WP ↑α. Hence, lP (Li ) < α and Li ∈ MP for all i . Consequently, A satisfies

(WFi) with respect to MP and lP .

(Case ii) If ¬A ∈ MP , then A ∈ UP (WP ↑ α), i.e. A is contained in the greatest

unfounded set of P with respect to WP ↑ α. Hence for each clause A ← body in

ground(P ), at least one of (Ui) or (Uii) holds for this clause with respect to WP ↑α
and the unfounded set UP (WP ↑ α). If (Ui) holds, then there exists some literal

L ∈ body with ¬L ∈ WP ↑α. Hence lP (L) < α and condition (WFiib) holds relative

to MP and lP if L is an atom, or condition (WFiia) holds relative to MP and lP if L

is a negated atom. On the other hand, if (Uii) holds, then some (non-negated) atom

B in body occurs in UP (WP ↑α). Hence lP (B ) � lP (A) and A satisfies (WFiia) with

respect to MP and lP . Thus we have established that fact (1) holds.

(2) We show via transfinite induction on α= l (A), that whenever A∈ I (re-

spectively, ¬A∈ I ), then A∈WP ↑ (α + 1) (respectively, ¬A∈WP ↑ (α + 1)). For

the base case, note that if l (A) = 0, then A∈ I implies that A occurs as the head

of a fact in ground(P ). Hence, A∈WP ↑ 1. If ¬A∈ I , then consider the set U of

all atoms B with l (B ) = 0 and ¬B ∈ I . We show that U is an unfounded set of P

with respect to WP ↑0, and this suffices since it implies ¬A∈WP ↑1 by the fact that

A∈U . So let C ∈U and let C ← body be a clause in ground(P ). Since ¬C ∈ I , and

l (C ) = 0, we have that C satisfies (WFiia) with respect to I and l , and so condition

(Uii) is satisfied showing that U is an unfounded set of P with respect to I . Assume

now that the induction hypothesis holds for all B ∈BP with l (B ) < α. We consider

two cases.

(Case i) If A ∈ I , then it satisfies (WFi) with respect to I and l . Hence there is a

clause A← body in ground(P ) such that body ⊆ I and l (K ) < α for all K ∈ body.

Hence body ⊆WP ↑α, and we obtain A ∈ TP (WP ↑α) as required.

(Case ii) If ¬A ∈ I , consider the set U of all atoms B with l (B ) = α and ¬B ∈ I .

We show that U is an unfounded set of P with respect to WP ↑α, and this suffices

since it implies ¬A ∈ WP ↑ (α + 1) by the fact that A ∈ U . So let C ∈ U and

let C ← body be a clause in ground(P ). Since ¬C ∈ I , we have that C satisfies

(WFii) with respect to I and l . If there is a literal L ∈ body with ¬L ∈ I and

l (L) < l (C ), then by the induction hypothesis we obtain ¬L ∈WP ↑α, so condition

(Ui) is satisfied for the clause C ← body with respect to WP ↑ α and U . In the

remaining case we have that C satisfies condition (WFiia), and there exists an atom

B ∈ body with ¬B ∈ I and l (B ) = l (C ). Hence, B ∈ U showing that condition

(Uii) is satisfied for the clause C ← body with respect to WP ↑ α and U . Hence U

is an unfounded set of P with respect to WP ↑α. �

Example 5.3

Consider the program P from Example 2.2. With notation from the proof of

Theorem 5.2, we obtain l (p) = 0, l (q) = 1, and l (s) = 2.

As a special case, we consider programs with total well-founded model. The

following corollary follows without effort from Theorem 5.2.
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Corollary 5.4

A normal logic program P has a total well-founded model if and only if there is a

total model I of P and a (total) level mapping l such that P satisfies (WF) with

respect to I and l .

As a further example for the application of our proof scheme, we use Theorem 5.2

in order to prove a result by van Gelder (1989) which we mentioned in the

introduction, concerning the alternating fixed-point characterization of the well-

founded semantics. Let us first introduce some temporary notation, where P is an

arbitrary program.

L0 = ∅
G0 = BP

Lα+1 = GLP (Gα) for any ordinal α

Gα+1 = GLP (Lα) for any ordinal α

Lα =
⋃

β<α Lβ for limit ordinal α

Gα =
⋂

β<α Gβ for limit ordinal α

Since ∅ ⊆ BP , we obtain L0 ⊆ L1 ⊆ G1 ⊆ G0 and, by transfinite induction, it

can easily be shown that Lα ⊆ Lβ ⊆ Gβ ⊆ Gα whenever α � β. In order to apply

our proof scheme, we need to detect a monotonic operator, or at least some kind

of monotonic construction, underlying the alternating fixed-point characterization.

The assignment (Lα,Gα) �→ (Lα+1,Gα+1), using the temporary notation introduced

above, will serve for this purpose. The proof of the following theorem is based on it

and our general proof scheme, with modifications where necessary, for example for

accomodating the fact that Gα+1 is not defined using Gα, but rather Lα, and that we

work with the complements BP \ Gα instead of the sets Gα.

Theorem 5.5

Let P be a normal program. Then M = LP ∪¬(BP \GP ) is the well-founded model

of P .

Proof

First, we define an M -partial level mapping l . For convenience, we will take as

image set of l , pairs (α, n) of ordinals, where n � ω, with the lexicographic ordering.

This can be done without loss of generality because any set of pairs of ordinals,

lexicographically ordered, is certainly well-ordered and therefore order-isomorphic

to an ordinal. For A ∈ LP , let l (A) be the pair (α, n), where α is the least ordinal such

that A ∈ Lα+1, and n is the least ordinal such that A ∈ TP/Gα
↑ (n + 1). For B �∈ GP ,

let l (B ) be the pair (β, ω), where β is the least ordinal such that B �∈ Gβ+1. We show

next by transfinite induction that P satisfies (WF) with respect to M and l .

Let A ∈ L1 = TP/BP
↑ω. Since P/BP consists of exactly all clauses from ground(P )

which contain no negation, we have that A is contained in the least two-valued model

for a definite subprogram of P , namely P/BP , and (WFi) is satisfied by Theorem 3.1.

Now let ¬B ∈ ¬(BP \ GP ) be such that B ∈ (BP \ G1) = BP \ TP/∅ ↑ω. Since P/∅
contains all clauses from ground(P ) with all negative literals removed, we obtain

that each clause in ground(P ) with head B must contain a positive body literal
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C �∈ G1, which, by definition of l , must have the same level as B , hence (WFiia) is

satisfied.

Assume now that, for some ordinal α, we have shown that A satisfies (WF) with

respect to M and l for all n � ω and all A ∈ BP with l (A) � (α, n).

Let A ∈ Lα+1 \ Lα = TP/Gα
↑ ω \ Lα. Then A ∈ TP/Gα

↑ n \ Lα for some n ∈�;

note that all (negative) literals which were removed by the Gelfond-Lifschitz

transformation from clauses with head A have level less than (α, 0). Then the assertion

that A satisfies (WF) with respect to M and l follows again by Theorem 3.1.

Let A∈ (BP \Gα+1) ∩ Gα. Then A �∈ TP/Lα
↑ ω. Now for any clause A ←

A1, . . . ,Ak ,¬B1, . . . ,¬Bm in ground(P ), if Bj ∈Lα for some j , then l (A)> l (Bj ).

Otherwise, since A �∈ TP/Lα
↑ω, we have that there exists Ai with Ai �∈ TP/Lα

↑ω, and

hence l (A) � l (Ai ), and this suffices.

This finishes the proof that P satisfies (WF) with respect to M and l . It therefore

only remains to show that M is greatest with this property.

So assume that M1 �= M is the greatest model such that P satisfies (WF) with

respect to M1 and some M1-partial level mapping l1.

Assume L ∈ M1 \M and, without loss of generality, let the literal L be chosen

such that l1(L) is minimal. We consider the following two cases.

(Case i) If L = A is an atom, then there exists a clause A ← body in ground(P )

such that l1(L) < l1(A) for all literals L in body, and such that body is true in M1.

Hence, body is true in M and A ← body transforms to a clause A ← A1, . . . ,An

in P/GP with A1, . . . ,An ∈ LP = TP/GP
↑ω. But this implies A ∈ M , contradicting

A ∈ M1 \M .

(Case ii) If L = ¬A ∈ M1 \M is a negated atom, then ¬A ∈ M1 and A ∈ GP =

TP/LP
↑ω, so A ∈ TP/LP

↑ n for some n ∈ �. We show by induction on n that this

leads to a contradiction, to finish the proof.

If A ∈ TP/LP
↑1, then there is a unit clause A← in P/LP , and any corresponding

clause A ← ¬B1, . . . ,¬Bk in ground(P ) satisfies B1, . . . ,Bk �∈ LP . Since ¬A ∈ M1,

we also obtain by Theorem 5.2 that there is i ∈ {1, . . . , k} such that Bi ∈ M1 and

l1(Bi ) < l1(A). By minimality of l1(A), we obtain Bi ∈ M , and hence Bi ∈ LP , which

contradicts Bi �∈ LP .

Now assume that there is no ¬B ∈ M1 \M with B ∈ TP/LP
↑k for any k < n + 1,

and let ¬A ∈ M1 \M with A ∈ TP/LP
↑ (n +1). Then there is a clause A← A1, . . . ,Am

in P/LP with A1, . . . ,Am ∈ TP/LP
↑n ⊆ GP , and we note that we cannot have ¬Ai ∈

M1 \M for any i ∈ {1, . . . ,m}, by our current induction hypothesis. Furthermore,

it is also impossible for ¬Ai to belong to M for any i , otherwise we would have

Ai ∈ BP \GP . Thus, we conclude that we cannot have ¬Ai ∈ M1 for any i . Moreover,

there is a corresponding clause A ← A1, . . . ,Am ,¬B1, . . . ,¬Bm1
in ground(P ) with

B1, . . . ,Bm1
�∈ LP . Hence, by Theorem 5.2, we know that there is i ∈ {1, . . . ,m1} such

that Bi ∈ M1 and l1(Bi ) < l1(A). By minimality of l1(A), we conclude that Bi ∈ M ,

so that Bi ∈ LP , and this contradicts Bi �∈ LP . �

Example 5.6

Consider again the program P from Examples 2.2, 2.4, and 5.3. With notation from

the proof of Theorem 5.5 we get l (q) = (1, 0), l (s) = (1, 1), and l (p) = (0, ω).
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6 Weakly perfect model semantics

By applying our proof scheme, we have obtained new and uniform characterizations

of the Fitting semantics and the well-founded semantics, and argued that the well-

founded semantics is a stratified version of the Fitting semantics. Our argumentation

is based on the key intuition underlying the notion of stratification, that recursion

should be allowed through positive dependencies, but be forbidden through negative

dependencies. As we have seen in Theorem 5.2, the well-founded semantics provides

this for a setting in three-valued logic. Historically, a different semantics, given by

the so-called weakly perfect model associated with each program, was proposed

by Przymusinska and Przymusinski (1990) in order to carry over the intuition

underlying the notion of stratification to a three-valued setting. In the following,

we will characterize weakly perfect models via level mappings, in the spirit of

our approach. We will thus have obtained uniform characterizations of the Fitting

semantics, the well-founded semantics, and the weakly perfect model semantics,

which makes it possible to easily compare them.

Definition 6.1

Let P be a normal logic program, I be a model of P and l be an I -partial

level mapping for P . We say that P satisfies (WS) with respect to I and l , if each

A ∈ dom(l ) satisfies one of the following conditions.

(WSi) A ∈ I and there exists a clause A← L1, . . . ,Ln ∈ ground(P ) such that Li ∈ I

and l (A) > l (Li ) for all i = 1, . . . , n .

(WSii) ¬A ∈ I and for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm ∈ ground(P ) (at

least) one of the following three conditions holds.

(WSiia) There exists i such that ¬Ai ∈ I and l (A) > l (Ai ).

(WSiib) For all k we have l (A) � l (Ak ), for all j we have l (A) > l (Bj ), and

there exists i with ¬Ai ∈ I .

(WSiic) There exists j such that Bj ∈ I and l (A) > l (Bj ).

We observe that the condition (WSii) in the above theorem is more general than

(Fii), and more restrictive than (WFii).

We will see below in Theorem 6.4, that Definition 6.1 captures the weakly perfect

model, in the same way in which Definitions 4.1 and 5.1 capture the Fitting model,

respectively the well-founded model.

To proceed with this, we first need to recall the definition of weakly perfect

models due to Przymusinska and Przymusinski (1990), and we will do this next. For

ease of notation, it will be convenient to consider (countably infinite) propositional

programs instead of programs over a first-order language. This is both common

practice and no restriction, because the ground instantiation ground(P ) of a given

program P can be understood as a propositional program which may consist of a

countably infinite number of clauses. Let us remark that our definition below differs

slightly from the original one, and we will return to this point later. It nevertheless

leads to exactly the same notion of weakly stratified program.

Let P be a (countably infinite propositional) normal logic program. An atom

A ∈ BP refers to an atom B ∈ BP if B or ¬B occurs as a body literal in a clause
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A ← body in P . A refers negatively to B if ¬B occurs as a body literal in such a

clause. We say that A depends on B if the pair (A,B ) is in the transitive closure of

the relation refers to, and we write this as B � A. We say that A depends negatively

on B if there are C ,D ∈ BP such that C refers negatively to D and the following

hold: (1) C � A or C = A (the latter meaning identity). (2) B � D or B = D . We

write B < A in this case. For A,B ∈ BP , we write A ∼ B if either A = B , or A and B

depend negatively on each other, i.e. if A < B and B < A both hold. The relation ∼
is an equivalence relation and its equivalence classes are called components of P . A

component is trivial if it consists of a single element A with A �< A.

Let C1 and C2 be two components of a program P . We write C1 ≺ C2 if and only

if C1 �= C2 and for all A1 ∈ C1 there is A2 ∈ C2 with A1 < A2. A component C1 is

called minimal if there is no component C2 with C2 ≺ C1.

Given a normal logic program P , the bottom stratum S (P ) of P is the union of

all minimal components of P . The bottom layer of P is the subprogram L(P ) of P

which consists of all clauses from P with heads belonging to S (P ).

Given a (partial) interpretation I of P , we define the reduct of P with respect to

I as the program P/I obtained from P by performing the following reductions. (1)

Remove from P all clauses which contain a body literal L such that ¬L ∈ I or

whose head belongs to I . (2) Remove from all remaining clauses all body literals

L with L ∈ I . (3) Remove from the resulting program all non-unit clauses, whose

heads appear also as unit clauses in the program.

Definition 6.2

The weakly perfect model MP of a program P is defined by transfinite induction

as follows. Let P0 = P and M0 = ∅. For each (countable) ordinal α > 0 such that

programs Pδ and partial interpretations Mδ have already been defined for all δ < α,

let

Nα =
⋃

0<δ<α Mδ ,

Pα = P/Nα,

Rα is the set of all atoms which are undefined in Nα

and were eliminated from P by reducing it with respect to Nα,

Sα = S (Pα) , and

Lα = L (Pα) .

The construction then proceeds with one of the following three cases. (1) If Pα is

empty, then the construction stops and MP = Nα ∪ ¬Rα is the (total) weakly perfect

model of P . (2) If the bottom stratum Sα is empty or if the bottom layer Lα contains

a negative literal, then the construction also stops and MP = Nα∪¬Rα is the (partial)

weakly perfect model of P . (3) In the remaining case Lα is a definite program, and

we define Mα = H ∪ ¬Rα, where H is the definite (partial) model of Lα, and the

construction continues.

For every α, the set Sα ∪ Rα is called the α-th stratum of P and the program Lα is

called the α-th layer of P .

A weakly stratified program is a program with a total weakly perfect model. The

set of its strata is then called its weak stratification.
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Example 6.3

Consider the program P which consists of the following six clauses.

a ← ¬b

b ← c,¬a

b ← c,¬d

c ← b,¬e

d ← e

e ← d

Then N1 = M1 = {¬d ,¬e} and P/N1 consists of the clauses

a ← ¬b

b ← c,¬a

b ← c

c ← b.

Its least component is {a , b, c}. The corresponding bottom layer, which is all of

P/N1, contains a negative literal, so the construction stops and M2 = N1 = {¬d ,¬e}
is the (partial) weakly perfect model of P .

Let us return to the remark made earlier that our definition of weakly perfect

model, as given in Definition 6.2, differs slightly from the version introduced by

Przymusinska and Przymusinski (1990). In order to obtain the original definition,

points (2) and (3) of Definition 6.2 have to be replaced as follows: (2) If the bottom

stratum Sα is empty or if the bottom layer Lα has no least two-valued model, then the

construction stops and MP = Nα∪¬Rα is the (partial) weakly perfect model of P . (3)

In the remaining case Lα has a least two-valued model, and we define Mα = H ∪¬Rα,

where H is the partial model of Lα corresponding to its least two-valued model, and

the construction continues.

The original definition is more general due to the fact that every definite program

has a least two-valued model. However, while the least two-valued model of a definite

program can be obtained as the least fixed point of the monotonic (and even Scott-

continuous) operator T+
P , we know of no similar result, or general operator, for

obtaining the least two-valued model, if existent, of progams which are not definite.

The original definition therefore seems to be rather awkward, and indeed, for the

definition of weakly stratified programs (Przymusinska and Przymusinski 1990), the

more general version was dropped in favour of requiring definite layers. So Definition

6.2 is an adaptation taking the original notion of weakly stratified program into

account, and appears to be more natural. In the following, the notion of weakly

perfect model will refer to Definition 6.2.

To be pedantic, there is another difference, namely that we have made explicit the

sets Rα of Definition 6.2, which were only implicitly treated in the original definition.

The result is the same.

We show next that Definition 6.1 indeed captures the weakly perfect model. The

proof basically follows our proof scheme, with some alterations, and the monotonic

construction which defines the weakly perfect model serves in place of a monotonic

operator. The technical details of the proof are very involved.

https://doi.org/10.1017/S1471068404002212 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002212


110 P. Hitzler and M. Wendt

Theorem 6.4

Let P be a normal logic program with weakly perfect model MP . Then MP is the

greatest model among all models I , for which there exists an I -partial level mapping

l for P such that P satisfies (WS) with respect to I and l .

We prepare the proof of Theorem 6.4 by introducing some notation, which will

make the presentation much more transparent. As for the proof of Theorem 5.5, we

will consider level mappings which map into pairs (β, n) of ordinals, where n � ω.

Let P be a normal logic program with (partial) weakly perfect model MP . Then

define the MP -partial level mapping lP as follows: lP (A) = (β, n), where A ∈ Sβ ∪Rβ

and n is least with A ∈ T+
Lβ
↑ (n + 1), if such an n exists, and n = ω otherwise.

We observe that if lP (A) = lP (B ) then there exists α with A,B ∈ Sα ∪ Rα, and if

A ∈ Sα ∪ Rα and B ∈ Sβ ∪ Rβ with α < β, then l (A) < l (B ).

The following definition is again technical and will help to ease notation and

arguments.

Definition 6.5

Let P and Q be two programs and let I be an interpretation.

1. If C1 = (A ← L1, . . . ,Lm ) and C2 = (B ← K1, . . . ,Kn ) are two clauses, then

we say that C1 subsumes C2, written C1 � C2, if A = B and {L1, . . . ,Lm} ⊆
{K1, . . . ,Kn}.

2. We say that P subsumes Q , written P � Q , if for each clause C1 in P there

exists a clause C2 in Q with C1 � C2.

3. We say that P subsumes Q model-consistently (with respect to I ), written P �I

Q , if the following conditions hold. (i) For each clause C1 = (A← L1, . . . ,Lm )

in P there exists a clause C2 = (B ← K1, . . . ,Kn ) in Q with C1 � C2 and

({K1, . . . ,Kn} \ {L1, . . . ,Lm}) ⊆ I . (ii) For each clause C2 = (B ← K1, . . . ,Kn )

in Q with {K1, . . . ,Kn} ∈ I and B �∈ I there exists a clause C1 in P such that

C1 � C2.

A clause C1 subsumes a clause C2 if both have the same head and the body of C2

contains at least the body literals of C1, e.g. p ← q subsumes p ← q ,¬r . A program

P subsumes a program Q if every clause in P can be generated this way from a clause

in Q , e.g. the program consisting of the two clauses p ← q and p ← r subsumes

the program consisting of p ← q ,¬s and p ← r , p. This is also an example of a

model-consistent subsumption with respect to the interpretation {¬s , p}. Concerning

Example 6.3, note that P/N1 �N1
P , which is no coincidence. Indeed, Definition 6.5

facilitates the proof of Theorem 6.4 by employing the following lemma.

Lemma 1

With notation from Definiton 6.2, we have P/Nα �Nα
P for all α.

Proof

Condition 3(i) of Definition 6.5 holds because every clause in P/Nα is obtained from

a clause in P by deleting body literals which are contained in Nα. Condition 3(ii)

holds because for each clause in P with head A �∈ Nα whose body is true under Nα,

we have that A← is a fact in P/Nα. �
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The next lemma establishes the induction step in part (2) of the proof of

Theorem 6.4.

Lemma 2

If I is a non-empty model of a (infinite propositional normal) logic program P ′ and

l an I -partial level mapping such that P ′ satisfies (WS) with respect to I and l , then

the following hold for P = P ′/∅.

(a) The bottom stratum S (P ) of P is non-empty and consists of trivial compon-

ents only.

(b) The bottom layer L(P ) of P is definite.

(c) The definite (partial) model N of L(P ) is consistent with I in the following

sense: we have I ′ ⊆ N , where I ′ is the restriction of I to all atoms which are

not undefined in N .

(d) P/N satisfies (WS) with respect to I \N and l/N , where l/N is the restriction

of l to the atoms in I \N .

Proof

(a) Assume there exists some component C ⊆ S (P ) which is not trivial. Then there

must exist atoms A,B ∈ C with A < B , B < A, and A �= B . Without loss of

generality, we can assume that A is chosen such that l (A) is minimal. Now let A′ be

any atom occuring in a clause with head A. Then A > B > A � A′, hence A > A′,

and by minimality of the component we must also have A′ > A, and we obtain that

all atoms occuring in clauses with head A must be contained in C . We consider two

cases.

(Case i) If A ∈ I , then there must be a fact A← in P , since otherwise by (WSi) we

had a clause A ← L1, . . . ,Ln (for some n � 1) with L1, . . . ,Ln ∈ I and l (A) > l (Li )

for all i , contradicting the minimality of l (A). Since P = P ′/∅ we obtain that A← is

the only clause in P with head A, contradicting the existence of B �= A with B < A.

(Case ii) If ¬A ∈ I , and since A was chosen minimal with respect to l , we obtain

that condition (WSiib) must hold for each clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm with

respect to I and l , and that m = 0. Furthermore, all Ai must be contained in C , as

already noted above, and l (A) � l (Ai ) for all i by (WSiib). Also from (Case i) we

obtain that no Ai can be contained in I . We have now established that for all Ai in

the body of any clause with head A, we have l (A) = l (Ai ) and ¬Ai ∈ I . The same

argument holds for all clauses with head Ai , for all i , and the argument repeats.

Now from A > B we obtain that there are D ,E ∈ C with A � E (or A = E ),

D � B (or D = B ), and E refers negatively to D . As we have just seen, we obtain

¬E ∈ I and l (E ) = l (A). Since E refers negatively to D , there is a clause with head

E and ¬D contained in the body of this clause. Since (WSii) holds for this clause,

there must be a literal L in the body with level less than l (E ), hence l (L) < l (A) and

L ∈ C which is a contradiction. We thus have established that all components are

trivial.

We show next that the bottom stratum is non-empty. Indeed, let A be an atom

such that l (A) is minimal. We will show that {A} is a component. So assume it is

not, i.e. that there is B with B < A. Then there exist D1, . . . ,Dk , for some k ∈ �,
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such that D1 = A, Dj refers to Dj+1 for all j = 1, . . . , k − 1, and Dk refers negatively

to some B ′ with B ′ � B (or B ′ = B ).

We show next by induction that for all j = 1, . . . , k the following statements hold:

¬Dj ∈ I , B < Dj , and l (Dj ) = l (A). Indeed note that for j = 1, i.e. Dj = A, we

have that B < Dj = A and l (Dj ) = l (A). Assuming A ∈ I , we obtain by minimality

of l (A) that A ← is the only clause in P = P ′/∅ with head A, contradicting the

existence of B < A. So ¬A ∈ I , and the assertion holds for j = 1. Now assume

the assertion holds for some j < k . Then obviously Dj+1 > B . By ¬Dj ∈ I and

l (Dj ) = l (A), we obtain that (WSii) must hold, and by the minimality of l (A) we infer

that (WSiib) must hold and that no clause with head Dj contains negated atoms.

So l (Dj+1) = l (Dj ) = l (A) holds by (WSiib) and minimality of l (A). Furthermore,

the assumption Dj+1 ∈ I can be rejected by the same argument as for A above,

because then Dj+1 ← would be the only clause with head Dj+1, by minimality of

l (Dj+1) = l (A), contradicting B < Dj+1. This concludes the inductive proof.

Summarizing, we obtain that Dk refers negatively to B ′, and that ¬Dk ∈ I . But

then there is a clause with head Dk and ¬B ′ in its body which satisfies (WSii),

contradicting the minimality of l (Dk ) = l (A). This concludes the proof of state-

ment (a).

(b) According to Przymusinska and Przymusinski (1990), we have that whenever

all components are trivial, then the bottom layer is definite. So the assertion follows

from (a).

(c) Let A ∈ I ′ be an atom with A �∈ N , and assume without loss of generality that

A is chosen such that l (A) is minimal with these properties. Then there must be a

clause A← body in P such that all literals in body are true with respect to I ′, hence

with respect to N by minimality of l (A). Thus body is true in N , and since N is a

model of L(P ) we obtain A ∈ N , which contradicts our assumption.

Now let A ∈ N be an atom with A �∈ I ′, and assume without loss of generality

that A is chosen such that n is minimal with A ∈ T+
L(P ) ↑ (n + 1). But then there is a

definite clause A← body in L(P ) such that all atoms in body are true with respect

to T+
L(P ) ↑n , hence also with respect to I ′, and since I ′ is a model of L(P ) we obtain

A ∈ I ′, which contradicts our assumption.

Finally, let ¬A ∈ I ′. Then we cannot have A ∈ N since this implies A ∈ I ′. So

¬A ∈ N since N is a total model of L(P ).

(d) From Lemma 1, we know that P/N �N P . We distinguish two cases.

(Case i) If A ∈ I \N , then there must exist a clause A← L1, . . . ,Lk in P such that

Li ∈ I and l (A) > l (Li ) for all i . Since it is not possible that A ∈ N , there must also

be a clause in P/N which subsumes A ← L1, . . . ,Lk , and which therefore satisfies

(WSi). So A satisfies (WSi).

(Case ii) If ¬A ∈ I \ N , then for each clause A ← body1 in P/N there must be

a clause A ← body in P which is subsumed by the former, and since ¬A ∈ I , we

obtain that condition (WSii) must be satisfied by A, and by the clause A ← body.

Since reduction with respect to N removes only body literals which are true in N ,

condition (WSii) is still met. �

We can now proceed with the proof.
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Proof of Theorem 6.4

The proof will be established by showing the following facts: (1) P satisfies (WS)

with respect to MP and lP . (2) If I is a model of P and l an I -partial level mapping

such that P satisfies (WS) with respect to I and l , then I ⊆ MP .

(1) Let A ∈ dom(lP ) and lP (A) = (α, n). We consider two cases.

(Case i) If A ∈ MP , then A ∈ T+
Lα
↑ (n + 1). Hence there exists a definite

clause A ← A1, . . . ,Ak in Lα with A1, . . . ,Ak ∈ T+
Lα
↑ n , so A1, . . . ,Ak ∈ MP with

lP (A) > lP (Ai ) for all i . Since P/Nα �Nα
P by Lemma 1, there must exist a clause

A ← A1, . . . ,Ak ,L1, . . . ,Lm in P with literals L1, . . . ,Lm ∈ Nα ⊆ MP , and we obtain

lP (Lj ) < lP (A) for all j = 1, . . . ,m . So (WSi) holds in this case.

(Case ii) If ¬A ∈ MP , then let A ← A1, . . . ,Ak ,¬B1, . . . ,¬Bm be a clause in P ,

noting that (WSii) is trivially satisfied in case no such clause exists. We consider the

following two subcases.

(Subcase ii.a) Assume A is undefined in Nα and was eliminated from P by reducing

it with respect to Nα, i.e. A ∈ Rα. Then, in particular, there must be some ¬Ai ∈ Nα

or some Bj ∈ Nα, which yields lP (Ai ) < lP (A), respectively lP (Bj ) < lP (A), and hence

one of (WSiia), (WSiic) holds.

(Subcase ii.b) Assume ¬A ∈ H , where H is the definite (partial) model of Lα. Since

P/Nα subsumes P model-consistently with respect to Nα, we obtain that there must

be some Ai with ¬Ai ∈ H , and by definition of lP we obtain lP (A) = lP (Ai ) = (α, ω),

and hence also lP (Ai ′) � lP (Ai ) for all i ′ �= i . Furthermore, since P/Nα is definite, we

obtain that ¬Bj ∈ Nα for all j , hence lP (Bj ) < lP (A) for all j . So condition (WSiib)

is satisfied.

(2) First note that for all models M , N of P with M ⊆ N we have (P/M )/N =

P/(M ∪N ) = P/N and (P/N )/∅ = P/N .

Let Iα denote I restricted to the atoms which are not undefined in Nα ∪ Rα. It

suffices to show the following: For all α > 0 we have Iα ⊆ Nα ∪Rα, and I \MP = ∅.
We next show by induction that if α> 0 is an ordinal, then the following state-

ments hold. (a) The bottom stratum of P/Nα is non-empty and consists of trivial

components only. (b) The bottom layer of P/Nα is definite. (c) Iα ⊆ Nα ∪ Rα.

(d) P/Nα+1 satisfies (WS) with respect to I \Nα+1 and l/Nα+1.

Note first that P satisfies the hypothesis of Lemma 2, hence also its consequences.

So P/N1 = P/∅ satisfies (WS) with respect to I \N1 and l/N1, and by application

of Lemma 2 we obtain that statements (a) and (b) hold. For (c), note that no atom

in R1 can be true in I , because no atom in R1 can appear as head of a clause in P ,

and apply Lemma 2 (c). For (d), apply Lemma 2, noting that P/N2 �N2
P .

For α being a limit ordinal, we can show exactly as in the proof of Lemma 2 (d),

that P satisfies (WS) with respect to I \ Nα and l/Nα. So Lemma 2 is applicable

and statements (a) and (b) follow. For (c), let A ∈ Rα. Then every clause in P with

head A contains a body literal which is false in Nα. By induction hypothesis, this

implies that no clause with head A in P can have a body which is true in I . So

A �∈ I . Together with Lemma 2 (c), this proves statement (c). For (d), apply again

Lemma 2 (d), noting that P/Nα+1 �Nα+1
P .

For α = β + 1 being a successor ordinal, we obtain by induction hypothesis that

P/Nβ satisfies the hypothesis of Lemma 2, so again statements (a) and (b) follow
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immediately from this lemma, and (c), (d) follow as in the case for α being a limit

ordinal.

It remains to show that I \MP = ∅. Indeed by the transfinite induction argument

just given we obtain that P/MP satisfies (WS) with respect to I \MP and l/MP . If

I \MP is non-empty, then by Lemma 2 the bottom stratum S (P/MP ) is non-empty

and the bottom layer L(P/MP ) is definite with definite (partial) model M . Hence by

definition of the weakly perfect model MP of P we must have that M ⊆ MP which

contradicts the fact that M is the definite model of L(P/MP ). Hence I \MP must

be empty which concludes the proof. �

Of independent interest is again the case, where the model in question is total.

We see immediately, for example, in the light of Theorem 3.3, that the model is then

stable.

Corollary 6.6

A normal logic program P is weakly stratified, i.e. has a total weakly perfect model,

if and only if there is a total model I of P and a (total) level mapping l for P such

that P satisfies (WS) with respect to I and l .

We also obtain the following corollary as a trivial consequence of our uniform

characterizations by level mappings.

Corollary 6.7

Let P be a normal logic progam with Fitting model MF, weakly perfect model

MWP, and well-founded model MWF. Then MF ⊆ MWP ⊆ MWF.

Example 6.8

Consider the program P from Example 6.3. Then MF = ∅, MWP = {¬d ,¬e}, and

MWF = {a ,¬b,¬c,¬d ,¬e}.

7 Related work

As already mentioned in the introduction, level mappings have been used for

studying semantic aspects of logic programs in a number of different ways. Our

presentation suggests a novel application of level mappings, namely for providing

uniform characterizations of different fixed-point semantics for logic programs with

negation. Although we believe our perspective to be new in this general form, there

nevertheless have been results in the literature which are very close in spirit to our

characterizations.

A first noteable example of this is Fages’ characterization of stable models

(Fages 1994), which we have stated in Theorem 3.3. Another result which uses level

mappings to characterize a semantics is by Lifschitz et al. (1995, Lemma 3). We

briefly compare their characterization of the well-founded semantics and ours. In

fact, this discussion can be based upon two different characterizations of the least

fixed point of a monotonic operator F . On the one hand, this least fixed point is

of course the least of all fixed points of F , and on the other hand, this least fixed

point is the limit of the sequence of powers (F ↑ α)α, and in this latter sense is

https://doi.org/10.1017/S1471068404002212 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002212


Uniform LP semantics 115

the least iterate of F which is also a fixed point. Our characterizations of definite,

Fitting, well-founded, and weakly stratified semantics use the latter approach, which

is reflected in our general proof scheme, which defines level mappings according to

powers, or iterates, of the respective operators. The results by Fages (Fitting 1994)

and Lifschitz et al. (1995) hinge upon the former approach, i.e. they are based on

the idea of characterizing the fixed points of an operator – GLP , respectively ΨP

(Przymusinski 1989; Bonnier et al. 1991) – and so the sought fixed point turns out to

be the least of those. Consequently, as can be seen in the proof of Theorem 3.3, the

level mapping in Fages’ characterization, and likewise in the result by Lifschitz et al.

arises only indirectly from the operator – GLP , respectively ΨP – whose fixed point

is sought. Indeed, the level mapping by Fages is defined according to iterates of

TP/I , which is the operator for obtaining GLP (I ), for any I . The result by Lifschitz

et al. is obtained similarly based on a three-valued operator ΨP .

Unforunately, these characterizations by Fages, in Theorem 3.3, respectively by

Lifschitz et al. (1995), seem to be applicable only to operators which are defined by

least fixed points of other operators, as is the case for GLP and ΨP , and it seems

that the approach by Lifschitz et al. is unlikely to scale to other semantics. For

example, we attempted a straightforward characterization of the Fitting semantics

in the spririt of Lifschitz et al. which failed.

On a more technical level, a difference between our result, Theorem 5.2, and the

characterization by Lifschitz et al. (1995) of the well-founded semantics is this: In our

characterization, the model is described using conditions on atoms which are true or

false (i.e. not undefined) in the well-founded model, whereas in theirs the conditions

are on those atoms which are true or undefined (i.e. not false) in the well-founded

model. The reason for this is that we consider iterates of WP , where WP ↑ 0 = ∅,
while they use the fact that each fixed point of ΨP is a least fixed point of ΦP/I

with respect to the truth ordering on interpretations (note that in this case P/I

denotes a three-valued generalization of the Gelfond-Lifschitz transformation due

to Przymusinski (1989)). In this ordering we have ΦP/I ↑ 0 = ¬BP . It is nevertheless

nice to note that in the special case of the well-founded semantics there exist two

complementary characterizations using level mappings.

Since our proposal emphasizes uniformity of characterizations, it is related to

the large body of work on uniform approaches to logic programming semantics, of

which we will discuss two in more detail: the algebraic approach via bilattices due

to Fitting, and the work of Dix.

Bilattice-based semantics has a long tradition in logic programming theory,

starting out from the four-valued logic of Belnap (1977). The underlying set of truth

values, a four-element lattice, was recognized to admit two ordering relations which

can be interpreted as truth- and knowledge-order. As such it has the structure of a

bilattice, a term due to Ginsberg (1986), who was the first to note the importance

of bilattices for inference in artificial intelligence (Ginsberg 1992). This general

approach was imported into logic programming theory by Fitting (1991a). Although

multi-valued logics had been used for logic programming semantics before (Fitting

1985), bilattices provided an interesting approach to semantics as they are capable

of incorporating both reasoning about truth and reasoning about knowledge, and,
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more technically, because they have nice algebraic behaviour. Using this general

framework Fitting was able to show interesting relationships between the stable and

the well-founded semantics (Fitting 1991b, 1993, 2003).

Without claiming completeness we note two current developments in the bilattice-

based approach to logic programming: Fitting’s framework has been extended

to an algebraic approach for approximating operators by Denecker et al. (2000).

The inspiring starting point of this work was the noted relationship between the

stable model semantics and the well-founded semantics, the latter approximating

the former. The other line of research was pursued mainly by Arieli and Avron

(1994, 1998) and Arieli (2002), who use bilattices for paraconsistent reasoning in

logic programming. The above outline of the historical development of bilattices in

logic programming theory suggests a similar kind of uniformity as we claim for our

approach. The exact relationship between both approaches, however, is still to be

investigated. On the one hand, bilattices can cope with paraconsistency – an issue

of logic programming and deductive databases, which is becoming more and more

important – in a very convenient way. On the other hand, our approach can deal

with semantics based on multi-valued logics, whose underlying truth structure is not

a bilattice. A starting point for investigations in this direction could be the obvious

meeting point of both theories: the well-founded semantics for which we can provide

a characterization and which is a special case of the general approximation theory

of Denecker et al. (2000).

Another very general, and uniform, approach to logic programming pursues a

different point of view, namely logic programming semantics as nonmonotonic

inference. The general theory of nonmonotonic inference and a classification of

properties of nonmonotonic operators was developed by Kraus et al. (1990), leading

to the notion KLM-axioms for these properties, and developed further by Makinson

(1994). These axioms were adopted to the terminology of logic programming and

extended to a general theory of logic programming semantics by Dix (1995a, 1995b).

In this framework, different known semantics are classified according to strong

properties – the KLM-axioms which hold for the semantics – and weak properties –

specific properties which deal with the irregularities of negation-as-failure. As such

Dix’ framework is indeed a general and uniform approach to logic programming,

its main focus being on semantic properties of logic programs. Our approach in

turn could be called semi-syntactic in that definitions that employ level mappings

naturally take the structure of the logic program into account. As in the case

of the bilattice-based approaches, it is not yet completely clear whether these two

approaches can be amalgamated in the sense of a correspondence between properties

of level mappings, e.g. strict or semi-strict descent of the level, etc., on the one hand,

and KLM-properties of the logic program on the other. However, we believe that it

is possible to develop a proof scheme for nonmonotonic properties of logic programs

in the style of the proof scheme presented in the paper, which can be used to cast

semantics based on monotonic operators into level mapping form.

We finally mention the work by Hitzler and Seda (1999), which was the root and

starting point for our investigations. This framework aims at the characterization of

program classes, such as (locally) stratified programs (Apt et al. 1988; Przymusinski
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1988), acceptable programs (Apt and Pedreschi 1993), or Φ-accessible programs

(Hitzler and Seda 1999). Such program classes appear naturally whenever a se-

mantics is not defined for all logic programs. In these cases one tries to characterize

those programs, for which the semantics is well-defined or well-behaved. Their main

tool were monotonic operators in three-valued logic, in the spirit of Fitting’s ΦP ,

rather than level mappings. With each operator comes a least fixed point, hence a

semantics, and it is easily checked that these semantics can be characterized using

our approach, again by straightforward application of our proof scheme. Indeed,

preliminary steps in this direction already led to an independent proof of a special

case of Corollary 6.7 (Hitzler and Seda 2001).

8 Conclusions and further work

We have proposed a novel approach for obtaining uniform characterizations of dif-

ferent semantics for logic programs. We have exemplified this by giving new

alternative characterizations of some of the major semantics from the literature.

We have developed and presented a methodology for obtaining characterizations

from monotonic semantic operators or related constructions, and a proof scheme for

showing correctness of the obtained characterizations. We consider our contribution

to be fundamental, with potential for extension in many directions.

Our approach employs level mappings as central tool. The uniformity with which

our characterizations were obtained and proven to be correct suggests that our

method should be of wider applicability. In fact, since it builds upon the well-known

Tarski fixed point theorem, it should scale well to most, if not all semantics, which are

defined by means of a monotonic operator. The main contribution of this paper is

thus, that we have developed a novel way of presenting logic programming semantics

in some kind of normal or standard form. This can be used for easy comparison of

semantics with respect to the syntactic structures that can be used with a certain

semantics, i.e. to what extent the semantics is able to ‘break up’ positive or negative

dependencies or loops between atoms in the program, as in Corollary 6.7.

However, there are many more requirements which a general and uniform

approach to logic program semantics should eventually be able to meet, including

(i) a better understanding of known semantics, (ii) proof schemes for deriving proper-

ties of semantics, (iii) extendability to new programming constructs, and (iv) support

for designing new semantics for special purposes.

Requirement (i) is met to some extent by our appoach, since it enables easy

comparison of semantics, as discussed earlier. However, in order to meet the other

requirements, i.e. to set up a meta-theory of level-mapping-based semantics, a lot

of further research is needed. We list some topics to be pursued in the future,

some of which are under current investigation by the authors. There are many

properties which are interesting to know about a certain semantics, depending on

one’s perspective. For the nonmonotonic reasoning aspect of logic programming it

would certainly be interesting to have a proof scheme as flexible and uniform as the

one presented in this paper. Results and proofs in the literature (Fages 1994; Dix

1995a; Turner 2001) suggest that there is a strong dependency between notions
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of ordering on the Herbrand base, as expressed by level mappings, and KLM-

properties satisfied by a semantics, which constitutes some evidence that a general

proof scheme for proving KLM-properties from level mapping definitions can be

developed. Other interesting properties are e.g. the computational complexity of a

semantics, but also logical characterizations of the behaviour of negation in logic

programs, a line of research initiated by Pearce (1997).

For (iii), it would be desirable to extend our characterizations also to disjunctive

programs, which could perhaps contribute to the discussion about appropriate

generalizations of semantics of normal logic programs to the disjunctive case.

We finally want to mention that the elegant mathematical framework of level

mapping definitions naturally gives rise to the design of new semantics. However,

at the time being this is only a partial fulfillment of (iv): As long as a meta-theory

for level-mapping-based semantics is missing, one still has to apply conventional

methods for extracting properties of the respective semantics from its definition.
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Bonnier, S., Nilsson, U. and Näslund, T. 1991. A simple fixed point characterization of

three-valued stable model semantics. Information Processing Letters 40, 2, 73–78.

Cavedon, L. 1991. Acyclic programs and the completeness of SLDNF-resolution. Theoretical

Computer Science 86, 81–92.

Denecker, M., Marek, V. W. and Truszczynski, M. 2000. Approximating operators, stable

operators, well-founded fixpoints and applications in non-monotonic reasoning. In Logic-

based Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers, Boston, Chapter 6,

127–144.

https://doi.org/10.1017/S1471068404002212 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002212


Uniform LP semantics 119

Dix, J. 1995a. A classification theory of semantics of normal logic programs: I. Strong

properties. Fundamenta Informaticae 22, 3, 227–255.

Dix, J. 1995b. A classification theory of semantics of normal logic programs: II. Weak

properties. Fundamenta Informaticae 22, 3, 257–288.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. 1997. A deductive

system for nonmonotonic reasoning. In Proceedings of the 4th International Conference

on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), J. Dix, U. Furbach,

and A. Nerode, Eds. Lecture Notes in Artificial Intelligence, vol. 1265. Springer, Berlin,

364–375.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of

Methods of Logic in Computer Science 1, 51–60.

Fitting, M. 1985. A Kripke-Kleene semantics for general logic programs. The Journal of Logic

Programming 2, 295–312.

Fitting, M. 1991a. Bilattices and the semantics of logic programming. The Journal of Logic

Programming 11, 91–116.

Fitting, M. 1991b. Well-founded semantics, generalized. In Logic Programming, Proceedings

of the 1991 International Symposium. MIT Press, Cambridge, MA, 71–84.

Fitting, M. 1993. The family of stable models. Journal of Logic Programming 17, 197–225.

Fitting, M. 1994. Metric methods: Three examples and a theorem. The Journal of Logic

Programming 21, 3, 113–127.

Fitting, M. 2002. Fixpoint semantics for logic programming – A survey. Theoretical Computer

Science 278, 1–2, 25–51.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Logic Programming. Proceedings of the 5th International Conference and Symposium on

Logic Programming, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, 1070–1080.

Ginsberg, M. L. 1986. Bilattices. Tech. Rep. 86-72, Stanford University, KSL.

Ginsberg, M. L. 1992. Multivalued logics: A uniform approach to inference in artificial

intelligence. Computational Intelligence 4, 3, 256–316.

Hitzler, P. 2001. Generalized metrics and topology in logic programming semantics. Ph.D.

thesis, Department of Mathematics, National University of Ireland, University College

Cork.

Hitzler, P. 2003. Towards a systematic account of different logic programming semantics.

In Proceedings of the 26th German Conference on Artificial Intelligence, KI2003, Hamburg,

September 2003, A. Günter, R. Krause, and B. Neumann, Eds. Lecture Notes in Artificial

Intelligence, vol. 2821. Springer, Berlin, 355–369.

Hitzler, P. and Seda, A. K. 1999. Characterizations of classes of programs by three-valued

operators. In Logic Programming and Nonmonotonic Reasoning, Proceedings of the 5th

International Conference on Logic Programming and Non-Monotonic Reasoning, LPNMR’99,

El Paso, Texas, USA, M. Gelfond, N. Leone, and G. Pfeifer, Eds. Lecture Notes in Artificial

Intelligence, vol. 1730. Springer, Berlin, 357–371.

Hitzler, P. and Seda, A. K. 2000. A note on relationships between logic programs and

neural networks. In Proceedings of the Fourth Irish Workshop on Formal Methods, IWFM’00,

P. Gibson and D. Sinclair, Eds. Electronic Workshops in Comupting (eWiC). British

Computer Society.

Hitzler, P. and Seda, A. K. 2001. Unique supported-model classes of logic programs.

Information 4, 3, 295–302.

Hitzler, P. and Seda, A. K. 2003a. Continuity of semantic operators in logic programming

and their approximation by artificial neural networks. In Proceedings of the 26th German

Conference on Artificial Intelligence, KI2003, A. Günter, R. Krause, and B. Neumann, Eds.

Lecture Notes in Artificial Intelligence, vol. 2821. Springer, 105–119.

https://doi.org/10.1017/S1471068404002212 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002212


120 P. Hitzler and M. Wendt

Hitzler, P. and Seda, A. K. 2003b. Generalized metrics and uniquely determined logic

programs. Theoretical Computer Science 305, 1–3, 187–219.

Hitzler, P. and Wendt, M. 2002. The well-founded semantics is a stratified Fitting semantics.

In Proceedings of the 25th Annual German Conference on Artificial Intelligence, KI2002,

Aachen, Germany, September 2002, M. Jarke, J. Koehler, and G. Lakemeyer, Eds. Lecture

Notes in Artificial Intelligence, vol. 2479. Springer, Berlin, 205–221.
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