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Strong approximation of sets in BV(Ω)
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Taking the argument used by De Giorgi to obtain the rectifiability of the reduced
boundary of a set of finite perimeter in R

N , we prove that a set E of finite perimeter
in an open set Ω of R

N may be approached, in the sense of the BV(Ω) norm, by sets
whose boundary is included in a finite union of C1 hypersurfaces; more precisely,
arbitrarily large parts (for the HN−1 measure in Ω) of the essential boundaries of E
and of the approximating set coincide and are included in a single C1 hypersurface.

1. Introduction

It is well known that the continuous functions are not dense in the normed space
BV(Ω), and that C∞(Ω) is dense in BV(Ω), only for the topology of the convergence
in L1(Ω) associated with the convergence of the total variations of the derivatives
measures (see [2]). Next, for this topology (strict convergence in [1]), the sets of finite
perimeter in Ω are known to be limits of sets with C∞ boundary in Ω (see [10]).

Taking again the argument used by De Giorgi to obtain the rectifiability of the
reduced boundary of a set of finite perimeter, we prove that a set of finite perimeter
in an open set Ω of R

N may be approached, in the sense of the BV(Ω) norm, by
sets whose boundaries are included in a finite union of C1 hypersurfaces.

From this fact, we can deduce (as indicated in [14]), the density of the semi-
continuous functions in the normed space BV(Ω); this property was our earlier
motivation in view of a Γ -convergence problem, studied by Picard [13].

The approximation theorem of integral currents by Federer (see [9, § 4.2.20]) is
an analogous result. However, the following proof seems to be more direct and
quite different from Federer’s. Cerf has found a new use of this result in statistical
mechanics, namely in the approximation of Cacciopoli partitions (see [4]). This has
increased interest in the detailed proof presented here.

2. Notation

Let E ⊂ R
N , N � 2. We denote by χE its characteristic function. If E is measurable,

we denote by mN (E) or m(E) its Lebesgue measure. For Ω an open subset of R
N

and u ∈ L1
loc(Ω) we define

∫
Ω

|Du| = sup
{ ∫

u(x) div φ(x) dx

∣∣∣∣ (φ1, . . . , φN ) ∈ C1
0(Ω)N ,

∑
1�i�N

φ2
i � 1

}
.
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In the case when
∫

Ω
|Du| < ∞, we denote by Du the vector-bounded Radon mea-

sure defined by ∫
φ · Du = −

∫
u(x) div φ(x) dx ∀φ ∈ C1

0(Ω)N .

We denote by |Du| the total variation measure associated to Du. We also set

BV(Ω) =
{

u ∈ L1(Ω)
∣∣∣∣
∫

Ω

|Du| < ∞
}

,

BVloc(Ω) =
{

u ∈ L1
loc(Ω)

∣∣∣∣
∫

Ω′
|Du| < ∞ for all open sets Ω′ ⊂⊂ Ω

}
.

We then define PΩ(E) =
∫

Ω
|DχE |; E is said to have a finite perimeter (respectively,

locally finite perimeter) in Ω if E is measurable and PΩ(E) < ∞ (respectively,
χE ∈ BVloc(Ω)). Let E be a set having locally finite perimeter in Ω. A point x ∈ Ω
belongs to the reduced boundary of E in Ω, denoted by Ω ∩ F∗E, if

(i) |DχE |(B(x, ρ)) > 0 for all ρ > 0,

(ii) nE(x) = lim
ρ→0+

DχE(B(x, ρ))
|DχE |(B(x, ρ))

exists,

(iii) |nE(x)| = 1.

B(x, ρ) (respectively, Q(x, ρ)) denotes the open ball (respectively, the open cube)
of radius ρ centred at x. We extend the map nE(x) by setting nE(x) = 0 for
x ∈ Ω \ F∗E. Besicovitch’s theorem implies that DχE = nE |DχE |. By localizing
De Giorgi’s results [5, 6], we have the following.

(a) For any Borelian set B ⊂ Ω,

|DχE |(B) = HN−1(B ∩ F∗E),

where HN−1 is the (N − 1)-dimensional Hausdorff measure.

(b) For any x ∈ Ω ∩ F∗E,

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ E ∩ Π−
E (x)) = 0,

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ (Ω \ E) ∩ Π+
E (x)) = 0,

lim
ρ→0+

ρ1−N |DχE |(B(x, ρ)) = ωN−1,

where
ωN−1 = mN−1({x ∈ R

N−1 | |x| � 1})

and Π+
E (x), Π−

E (x) are the half-spaces defined for x ∈ Ω ∩ F∗E by

Π+
E (x) = {y ∈ R

N | (y − x) · nE(x) > 0},

Π−
E (x) = {y ∈ R

N | (y − x) · nE(x) < 0}.
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In fact, when Ω is an arbitrary open set and B is an open ball whose closure is
contained in Ω, B ∩ E has finite perimeter in R

N and B ∩ F∗(B ∩ E) = B ∩ F∗E.
We also set ωN = mN ({x ∈ R

N | |x| � 1}). For E a measurable subset of R
N , we

define the essential interior E∗ of E by

x ∈ E∗ ⇐⇒ lim
ρ→0+

1
ωNρN

m(B(x, ρ) ∩ E) = 1

and we call the essential boundary of E the set ∂∗E which, together with E∗ and
(RN \ E)∗, forms a partition of R

N .
Whenever PΩ(E) < ∞, we have HN−1(Ω ∩ (∂∗E \ F∗E)) = 0 (see [9, 15]). We

denote by ∂E the topological boundary of E. We have Ω∩F∗E ⊂ Ω∩∂∗E ⊂ Ω∩∂E.
In the special case where E = {x ∈ Ω | g(x) � 0} for some function g in C1(Ω)
having 0 as a regular value (i.e. Dg(x) �= 0 when g(x) = 0), Ω ∩ F∗E = Ω ∩ ∂E =
{x ∈ Ω | g(x) = 0}, and if x ∈ Ω ∩ ∂E, then nE(x) = Dg(x)/|Dg(x)|, which is
the usual interior normal vector to E at x. Note that, for some subset E of Ω, the
regularity of Ω ∩ ∂E is not quite sufficient to imply the coincidence of Ω ∩ ∂E with
Ω ∩ F∗E (see [7, § 1.3]).

3. Strong approximation of sets of finite perimeter

Theorem 3.1. Let Ω be an open subset of R
N . Let E ⊂ Ω be a set having finite

perimeter in Ω (i.e. χE ∈ L1
loc(Ω) and

∫
Ω

|DχE | < ∞). Let ε > 0. There exists a
set L ⊂ Ω, having finite perimeter in Ω, and a compact set C ⊂ Ω such that

Ω ∩ ∂L is contained in a finite union of C1 hypersurfaces, (3.1)∫
Ω

|χE − χL| < ε, (3.2)

∫
Ω

|D(χE − χL)| < ε, (3.3)

HN−1(Ω ∩ ∂L \ F∗L) < ε, (3.4)

L ⊂ E + B(0, ε), Ω \ L ⊂ (Ω \ E) + B(0, ε), (3.5)

C ⊂ Ω ∩ F∗E ∩ F∗L, (3.6)

nE(x) = nL(x) ∀x ∈ C, (3.7)

|DχE |(Ω \ C) < ε. (3.8)

Remark 3.2.

(i) We might assume that L is open or closed in Ω, for condition (3.1) implies
that m(Ω ∩∂L) = 0; thus, when the boundary in Ω is added to or subtracted
from L, conditions (3.1)–(3.8) hold (if necessary, ε is increased a little to
ensure that (3.5) holds).

(ii) In fact, the proof of theorem 3.1 yields the following more detailed result,
used in [4] by Cerf, who also suggested to the author condition (3.4), above.

Let Ω be an open subset of R
N , let E be a set of finite perimeter in Ω

and let ε be positive. There exists a set L of finite perimeter, a C1 function
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f : Ω 	→ R, a compact set C, an open set V and an open bounded set B such
that, setting F = {x ∈ Ω : f(x) � 0}, the set V ∩ ∂F is the hypersurface
{x ∈ V : f(x) = 0} and

C ⊂ B ⊂ V ⊂ {x ∈ Ω : Df(x) �= 0}, C ⊂ Ω ∩ ∂∗E ∩ ∂F,

L ∩ B = F ∩ B, V ∩ ∂∗F = V ∩ ∂F,

νE(x) = νF (x) = −|Df(x)|−1Df(x) ∀x ∈ C,

m(V ) < ε, m(E∆L) < ε,

HN−1(∂F ∩ (V \ C)) < ε,

HN−1(Ω ∩ ∂∗E \ C) < ε,

HN−1(Ω ∩ (∂∗E∆∂L)) < ε,

L ⊂ E + B(0, ε), Ω \ L ⊂ (Ω \ E) + B(0, ε).

4. Preliminary lemmas

4.1. Results on the blow-up of the reduced boundary

Lemma 4.1. Let U be an open subset of R
N , let F = {x ∈ U | f(x) � 0} for some

f ∈ C1(U) for which 0 is a regular value and let C be a compact subset of U ∩ ∂F .
Then the limits

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ F ∩ Π−
F (x)) = 0,

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ F c ∩ Π+
F (x)) = 0

are uniform over x ∈ C.

Proof. The compact set C is covered by a finite union of balls included in U , inside
which ∂F is, up to an isometry, the graph of a function of class C1, whose differential
map is uniformly continuous.

Lemma 4.2. Let E be a set having finite perimeter in Ω. Let C be a closed subset
of Ω ∩ F∗E such that the limits

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ E ∩ Π−
E (x)) = 0,

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ Ec ∩ Π+
E (x)) = 0

are uniform over x ∈ C, and such that the restriction of nE to C is continuous.
Then there exists f ∈ C1(Ω) such that

C ⊂ {x ∈ Ω | f(x) = 0, Df(x) = nE(x)}

Proof. See [6] or [11]. Let us recall that De Giorgi’s proof consists in proving that

lim
|x−y|→0

nE(x) · x − y

|x − y| = 0

uniformly over (x, y) ∈ C2, and then in applying Whitney’s extension theorem to
the germ (0, nE) on C.
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4.2. Weak approximation in BV(Ω)

The following results rely on classical techniques originating from [2] (see also,
for example, [11]). We state and prove the precise versions that we need.

Proposition 4.3. Let Ω be an open set in R
N and let u ∈ L1

loc(Ω) such that∫
Ω

|Du| < ∞. Let δ > 0. There exists a sequence (un)n∈N ∈ C∞(Ω) such that

un − u ∈ L1(Ω) ∀n ∈ N and lim
n→∞

∫
Ω

|un − u| = 0, (4.1)

lim
n→∞

∫
Ω

|Dun| =
∫

Ω

|Du|. (4.2)

Moreover, if a � u(y) � b for all y ∈ Ω ∩ B(x, 1/n), then aδ � un(x) � b(2 − δ).
In particular, if u = χE, then

0 < un(x) < δ =⇒ dist(x, E) <
1
n

and dist(x, Ω \ E) <
1
n

. (4.3)

Proof. Let ε > 0. There exists λ such that, if we set

Ω0 =
{

x ∈ Ω

∣∣∣∣ dist(x, ∂Ω) >
1
λ

, |x| < λ

}
,

then we have Ω0 �= ∅. Now we set Ω−1 = ∅ and

Ωk =
{

x ∈ Ω

∣∣∣∣ dist(x, ∂Ω) >
1

(λ + k)
, |x| < λ + k

}
.

We have Ω̄k−1 ⊆ Ωk, k = 0, 1, 2, . . . , and
⋃

k∈N
Ωk = Ω. We define the relatively

compact open sets Ai = Ωi+1 \ Ω̄i−1, i = 0, 1, 2, . . . , which cover Ω. We can find a
sequence (φi)i�0 in C∞

0 (Ω) such that
∑

i�0 φi = 1 and

∀i � 0, (supportφi) ⊂ Ai, 0 � φi � 1.

Let ηr be a regularizing kernel such that support ηr ⊆ B(0, r). We choose a sequence
(ri)i�0 such that

0 < ri < ε, (4.4)
(supportφi) + B(0, ri) ⊂ Ai, (4.5)

‖ηri ∗ φi − φi‖∞ < 2−i(1 − δ), (4.6)∫
|ηri ∗ (uφi) − uφi| < 2−iε, (4.7)

∫
|ηri

∗ (uDφi) − uDφi| < 2−iε. (4.8)

We define gε =
∑

i�0 ηri
∗ (uφi). For any i, ηri

∗ (uφi) ∈ C∞(Ω). In view of (4.5),
locally at most three terms of this series do not vanish, because if j ∈ N, we have
Ai ∩ Aj = ∅ for all i /∈ {j − 1, j, j + 1}; thus gε ∈ C∞(Ω). Next,

∫
Ωk

|gε − u| =
∫

Ωk

∣∣∣∣
∑

0�i�k

ηri ∗ (uφi) −
∑

0�i�k

uφi

∣∣∣∣ � ε
∑

1�i�k

2−i = ε(1 − 2−k).
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Hence, gε − u ∈ L1(Ω) and
∫

Ω
|gε − u| � ε. Moreover,

Dgε =
∑
i�0

ηri∗(φiDu)+
∑
i�0

ηri∗(uDφi) =
∑
i�0

ηri∗(φiDu)+
∑
i�0

(ηri∗(uDφi)−uDφi),

since
∑

i�0 Dφi = 0. Thus,

|Dgε| �
∑
i�0

ηri ∗ φi|Du| +
∑
i�0

|ηri ∗ (uDφi) − uDφi|.

Note that, for r > 0 and φ ∈ C0(Ω) such that (supportφ) + B(0, r) ⊂ Ω, we have
∫

Ω

ηr ∗ (φ|Du|) =
∫

Ω

φ|Du|;

hence, recalling that
∑

i�0 φi = 1 and in view of (4.8), we obtain
∫

Ω

|Dgε| �
∫

Ω

|Du| + ε.

Thus,

lim sup
ε→0+

∫
Ω

|Dgε| �
∫

Ω

|Du|.

Since gε converges towards u in L1
loc(Ω), then

∫
Ω

|Du| � lim inf
ε→0+

∫
Ω

|Dgε|

and thus

lim
ε→0+

∫
Ω

|Dgε| =
∫

Ω

|Du|.

We finally consider the case where u = χE , E being a measurable subset of Ω.
First, gε(x) > 0 implies that dist(x, E) < ε; indeed, if B(x, ε) ∩ E = ∅, then, by
(4.4), for any i � 0, B(x, ri) ∩ E = ∅ and ηri ∗ (φiχE)(x) = 0, whence gε(x) = 0.
Let now x ∈ Ω be such that B(x, ε) ∩ (Ω \ E) = ∅. By (4.4), for any i, we have
ηri ∗ (φiχE)(x) = ηri ∗ φi(x), and clearly (φiχE)(x) = φi(x); from (4.6) we may
infer that ∥∥∥∥

∑
i�0

ηri ∗ φi −
∑
i�0

φi

∥∥∥∥
∞

< 1 − δ

and hence gε(x) > δ. Thus, gε(x) < δ that implies dist(x, Ω \ E) < ε. In the
case (not used below) where a � u � b on Ω ∩ B(x, ε), we also clearly obtain
aδ � gε(x) � b(2 − δ); taking a = 1 and b = 0, we should also again obtain the
result (4.3) for a set E.

We conclude by setting un = g1/n.

Lemma 4.4. Let Ω be an open subset of R
N and let E be a set having finite perime-

ter in Ω. There exists a sequence (Gn)n∈N of relatively closed subsets of Ω, having
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finite perimeter in Ω, such that Ω ∩ ∂Gn is a hypersurface of class C∞ coinciding
with Ω ∩ ∂∗Gn, and

lim
n→∞

m(E∆Gn) = 0, lim
n→∞

PΩ(Gn) = PΩ(E),

Gn ⊂ E + B

(
0,

1
n

)
, Ω \ Gn ⊂ (Ω \ E) + B

(
0,

1
n

)
∀n ∈ N.

Remark 4.5. If the sets E and Gn, n ∈ N, satisfy the hypothesis and the conclusion
of lemma 4.4 and if A is an open subset of Ω such that |DχE |(Ω ∩ ∂A) = 0, then

lim
n→∞

∫
A

|DχGn
| =

∫
A

|DχE |.

This is a direct consequence of the lower semicontinuity of the perimeters relative
to A and Ω \ Ā (see also [11, § 1.13]).

Proof. We fix some δ in ]0, 1[ and apply proposition 4.3 to the function u = χE to get
a sequence (un)n∈N in C∞(Ω) satisfying conditions (4.1)–(4.3). We next reproduce
the argument of De Giorgi (see [11, § 1.24]). We set Gn,t = {x ∈ Ω | un(x) � t}.
Since, for any t ∈ ]0, 1[,∫

Ω

|un − χE | � min(t, 1 − t)m(E∆Gn,t),

condition (4.1) readily implies that

lim
n→∞

m(E∆Gn,t) = 0 ∀t ∈ ]0, 1[.

By lower semicontinuity, we then have

lim inf
n→∞

∫
Ω

|DχGt,n | �
∫

Ω

|DχE | ∀t ∈ ]0, 1[.

On the other hand, for any n ∈ N, from the co-area formula we have∫
Ω

|Dun| �
∫ 1

0
dt

∫
Ω

|DχGt,n
|,

whence, with (4.2) and by Fatou’s lemma,
∫

Ω

|DχE | = lim
n→∞

∫
Ω

|Dun| �
∫ 1

0

(
lim inf
n→∞

∫
Ω

|DχGt,n |
)

dt �
∫

Ω

|DχE |.

It follows that, for almost all t ∈ ]0, 1[,

lim inf
n→∞

∫
Ω

|DχGt,n | =
∫

Ω

|DχE |.

However, for each n, by Sard’s theorem, almost every real number t is a regular value
of un. Therefore, we can choose t in ]0, δ[ such that, setting Gn = Gn,t, Ω∩∂Gn is a
C∞ hypersurface which coincides with Ω ∩ ∂∗Gn for all n and, up to the extraction
of a subsequence, limn→∞ PΩ(Gn) = PΩ(E). Finally, from the condition (4.3), we
deduce Gn ⊂ E + B(0, 1/n) (because t > 0) and Ω \ Gn ⊂ (Ω \ E) + B(0, 1/n)
(because t < δ).
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4.3. An elementary covering lemma

The use of the following covering lemma instead of Besicovitch’s lemma (see [9,
§ 2.8.14]) was suggested to the author by Patrice Assouad.

Lemma 4.6. Let ρ0 > 0, let C be a compact subset of R
N and let x 	→ ρ(x) be a

map defined on C with values in ]ρ0/2, ρ0[. We can cover C with a finite set of cubes
Qi = Q(xi, ρ(xi)), i ∈ I, such that, for any a ∈ R

N , we have |{i ∈ I | a ∈ Qi}| �
K(N) (where K(N) � 8N ).

Proof. We choose a maximal set {xi, i ∈ I} of points of C such that ‖xi − xj‖∞ �
ρ0/2 for any i, j distinct and in such a way that the cubes Qi = Q(xi, ρ(xi)),
i ∈ I, cover C. The cubes Qi contain the disjoint cubes Q(xi, ρ0/4); therefore
|I| � (ρ0/2)−Nm(C + Q(0, ρ0/2)) < ∞, and if a ∈ Qi1 ∩ · · · ∩ Qik

, then k � 8N

since
k(ρ0/2)N � m(Qi1 ∪ · · · ∪ Qik

) � m(Q(a, 2ρ0)) = (4ρ0)N .

4.4. Computation of |DχE∆F | and |D(χE − χF )|
Lemma 4.7. Let E, F be two sets having finite perimeter in an open set Ω. We
have the following equalities between measures on Ω:

|DχE∆F | = (1 − χ∂∗F )|DχE | + (1 − χ∂∗E)|DχF |,
|D(χE − χF )| = |DχE∆F | + |nE − nF |χ∂∗E∩∂∗F HN−1.

Corollary 4.8. |D(χE − χF )| = |DχE∆F | + 2χ(∂∗E∩∂∗F )\∂∗(E∩F )HN−1.

Proof. According to [15], whenever A and B are two sets having finite perime-
ter in Ω, the same holds for A ∩ B and, moreover, DχA∩B = χ̄ADχB + χ̄BDχA,
where χ̄A = χA∗ + 1

2χ∂∗A and DχA = χ∂∗AnAHN−1, with similar expressions for
χ̄B , DχB . Therefore,

DχA∩B = χA∗DχB + χB∗DχA + 1
2χ∂∗A∩∂∗B(nA + nB)HN−1, (4.9)

where it should be noted that (see [7, Ch. IV]), for HN−1 almost all x ∈ ∂∗A∩∂∗B,

nA(x) = ±nB(x) and nA(x) = nB(x) ⇐⇒ x ∈ ∂∗(A ∩ B). (4.10)

We remark that χE − χF = χE\F − χF\E and χE∆F = χE\F + χF\E . We apply
formula (4.9) to compute DχE∩F c and DχF∩Ec . We have DχEc = −DχE , nEc =
−nE , ∂∗(Ec) = ∂∗E, χE∗ + χ(Ec)∗ = 1 − χ∂∗E , and similar equalities for F , so we
obtain

D(χE − χF ) = (1 − χ∂∗F )DχE − (1 − χ∂∗E)DχF + (nE − nF )χ∂∗E∩∂∗F HN−1,

DχE∆F = (1 − χ∂∗F )DχE + (1 − χ∂∗E)DχF .

The total variations associated to mutually singular measures sum up and we obtain
the conclusion of lemma 4.7. Together with property (4.10), we obtain corollary 4.8.
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4.5. A trace inequality at the boundary of a cube

The following result is elementary and simpler than a genuine trace lemma (as
in [17, § 5.10.7] or [8, § 5.3]).

Lemma 4.9. Let u ∈ L1
loc(Ω) and x0 ∈ Ω. We set Qρ = Q(x0, ρ). For almost all

ρ > 0, such that Q(x0, ρ) ⊂ Ω, we have
∫

∂Qρ

|u| dHN−1 � N

ρ

∫
Qρ

|u| dx +
√

N

∫
Qρ

|Du|.

Proof. We need only to prove the inequality for almost all ρ ∈ ]0, R[ such that
Q̄R ⊂ Ω and

∫
QR

|Du| < ∞. Let θj be a regularizing sequence. For sufficiently
large j, φj = u ∗ θj ∈ C∞(QR) and

lim
j→∞

∫
Qρ

|u − φj | = 0 for all ρ ∈ ]0, R[, (4.11)

lim
j→∞

∫
Qρ

|Dφj | =
∫

Qρ

|Du| for almost all ρ ∈ ]0, R[. (4.12)

In fact, (4.12) holds for all ρ ∈ ]0, R[ such that |Du|(∂Qρ) = 0. By Fatou’s lemma,
we have

0 = lim
j→∞

∫
QR

|u − φj |

= lim
j→∞

∫ R

0

( ∫
∂Qρ

|u − φj | dHN−1

)
dρ

�
∫ R

0

(
lim inf
j→∞

∫
∂Qρ

|u − φj | dHN−1

)
dρ;

thus,

lim inf
j→∞

∫
∂Qρ

|u − φj | dHN−1 = 0

for almost all ρ ∈ ]0, R[. In other words, for almost all ρ ∈ ]0, R[, we may extract
from the sequence φj a subsequence, still denoted by φj , which satisfies (4.11) and
(4.12) as well as

lim
j→∞

∫
∂Qρ

|u − φj | dHN−1 = 0. (4.13)

To end the proof, it is sufficient to prove the inequality of the lemma for an arbitrary
φ ∈ C1(QR) and for any ρ ∈ ]0, R[. Therefore, let φ ∈ C1(QR), let ρ ∈ ]0, R[ and
suppose that x0 = 0. For i ∈ {1, . . . , N} and x ∈ R

N , we set x = (xi, x
′
i). Then

φ(ρ, x′
i) = φ(xi, x

′
i) +

∫ ρ

xi

Diφ(t, x′
i) dt if 0 < xi < ρ,

whence

|φ(ρ, x′
i)| � |φ(xi, x

′
i)| +

∫ ρ

xi

|Diφ(t, x′
i)| dt if 0 < xi < ρ.
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By integrating with respect to xi, we get

|φ(ρ, x′
i)| � 1

ρ

∫ ρ

0
|φ(xi, x

′
i)| dxi +

∫ ρ

0
|Diφ(t, x′

i)| dt

and, similarly,

|φ(−ρ, x′
i)| � 1

ρ

∫ 0

−ρ

|φ(xi, x
′
i)| dxi +

∫ 0

−ρ

|Diφ(t, x′
i)| dt,

whence

|φ(ρ, x′
i)| + |φ(−ρ, x′

i)| � 1
ρ

∫ ρ

−ρ

|φ(xi, x
′
i)| dxi +

∫ ρ

−ρ

|Diφ(t, x′
i)| dt.

We integrate with respect to x′
i, for ‖x′

i‖∞ < ρ, and we get
∫

‖x′
i‖∞<ρ

(|φ(ρ, x′
i)| + |φ(−ρ, x′

i)|) dx′
i � 1

ρ

∫
Qρ

|φ(x)| dx +
∫

Qρ

|Diφ(x)| dx,

whence, by summing over i in {1, . . . , N}, and remarking that
∑

1�i�N |Diφ| �√
N |Dφ|, ∫

∂Qρ

|φ| dHN−1 � N

ρ

∫
Qρ

|φ| dx +
√

N

∫
Qρ

|Dφ|.

4.6. A particular use of Egoroff’s theorem

We want to apply Egoroff’s theorem, not as usual to a sequence (fn), but to
a real indexed family (fρ) of measurable functions; some additional assumption
is needed (see [16]). Such a situation occurs when differentiating measures. The
following remark originates from a common work with Assouad (see [3]) but is not
included there; it is implicitly supposed by De Giorgi in the case of continuity of
the functions fρ that are considered below.

Lemma 4.10. Let µ be a positive bounded Radon measure in Ω, k > 0, fρ(x) =
ρ−kµ(Ω ∩ B(x, ρ)) for each x ∈ Ω and ρ ∈ ]0, +∞[, and f a µ-measurable function
such that limρ→0+ fρ(x) = f(x) for µ-almost every x in Ω. Then, for each ε > 0,
there exists a compact set C in Ω, verifying µ(Ω\C) < ε, such that the convergence
of fρ to f is uniform on C.

Proof. Let us set

ur(x) = sup
0<ρ<r

fρ(x), vr(x) = inf
0<ρ<r

fρ(x), hr(x) = sup
0<ρ<r

|fρ(x) − f(x)|.

Clearly, hr = max(ur − f, f − vr). One readily verifies that ur (respectively, vr)
is lower semicontinuous (respectively, upper semicontinuous) on Ω. Thus, hr are
µ-measurable functions decreasing to 0 µ-almost everywhere on Ω. Then, follow-
ing [16], one may apply the usual Egoroff theorem to the sequence h1/n.
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5. Proof of theorem 3.1

Let Ω be an open subset of R
N and let E be a set having finite perimeter in Ω.

Let ε > 0. Following the ideas of De Giorgi (see [6,11]), applying Lusin and Egoroff
theorems (see lemma 4.10), there exists a compact set C ⊂ Ω ∩ F∗E such that the
restriction of nE to C is continuous,

|DχE |(Ω \ C) < ε, (5.1)

and the following limits are uniform over x ∈ C:

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ E ∩ Π−
E (x)) = 0, (5.2)

lim
ρ→0+

ρ−Nm(B(x, ρ) ∩ Ec ∩ Π+
E (x)) = 0, (5.3)

lim
ρ→0+

ρ1−N |DχE |(B(x, ρ)) = ωN−1. (5.4)

By lemma 4.2, there exists f ∈ C1(Ω) such that

f(x) = 0 and Df(x) = nE(x) ∀x ∈ C.

Since nE(x) �= 0 for x ∈ C, we have C ⊂ ∂F , where F = {x ∈ Ω | f(x) � 0}.
There exists an open set U such that C ⊂ U ⊂⊂ Ω and Df(x) �= 0 for x ∈ U .
Thus, U ∩ ∂F is a hypersurface of class C1, coinciding with U ∩ ∂∗F , U ∩ F is a set
having finite perimeter in U and m(C) = 0. Therefore, there exists an open set V
such that C ⊂ V ⊂ U and

|DχF |(V \ C) < ε, (5.5)
m(V ) < ε. (5.6)

In addition, the limit limρ→0+ ρ−Nm((E∆F ) ∩ B(x, ρ)) = 0 is uniform over x ∈ C,
according to lemma 4.1 and the limits (5.2), (5.3). From this remark, the limit (5.4)
and the fact that the map x 	→ dist(x, V c) admits a minimum over C, we deduce
the existence of a real number ρ0, 0 < ρ0 < ε/

√
N , such that, for any ρ ∈ ]0, ρ0[

and any x ∈ C,

Q̄(x, ρ) ⊂ V, (5.7)

ωN−1ρ
N−1 � 2|DχE |(Q(x, ρ)), (5.8)

ρ−Nm((E∆F ) ∩ Q(x, ρ)) < ε. (5.9)

By lemma 4.4, there exists a sequence (Gn)n∈N of closed subsets of Ω such that, for
all n, Ω ∩∂Gn is a hypersurface of class C1 coinciding with Ω ∩∂∗Gn. Furthermore,
Gn ⊂ E + B(0, 1/n), Ω \ Gn ⊂ (Ω \ E) + B(0, 1/n) and

lim
n→∞

m(E∆Gn) = 0, (5.10)

lim
n→∞

PΩ(Gn) = PΩ(E). (5.11)

We fix x ∈ C. For all n, we have

m(E∆Gn) �
∫

Q(x,ρ0)
χE∆Gn �

∫ ρ0

0

( ∫
∂Q(x,ρ)

χE∆Gn dHN−1

)
dρ.
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From this inequality and equation (5.10), with the help of Fatou’s lemma, we deduce
that

lim inf
n→∞

∫
∂Q(x,ρ)

χE∆Gn dHN−1 = 0 for almost all ρ ∈ ]0, ρ0[.

If µ is a positive measure on Q(x, ρ0) such that µ(Q(x, ρ0)) < ∞, then the set

{ρ ∈ ]0, ρ0[ | µ(∂Q(x, ρ)) �= 0}

is at most countable. Therefore, we can choose a negligible subset σ(x) of ]0, ρ0[
such that, for all ρ ∈ ]0, ρ0[, the trace inequality of lemma 4.9 holds for the cube
Q(x, ρ) and the function u = χE∆F and

lim inf
n→∞

∫
∂Q(x,ρ)

χE∆Gn dHN−1 = 0, (5.12)

|DχGn
|(∂Q(x, ρ)) = 0 ∀n ∈ N, (5.13)

|DχE |(∂Q(x, ρ)) = 0, (5.14)
|DχF |(∂Q(x, ρ)) = 0. (5.15)

Let x 	→ ρ(x) be a map from C to ]ρ0/2, ρ0[ such that, for all x ∈ C, ρ(x) �∈ σ(x).
According to lemma 4.6, there exists a finite collection of cubes Qi = Q(xi, ρ(xi)),
i ∈ I, which covers C and such that, for any a ∈ R

N , we have |{i ∈ I | a ∈ Qi}| �
K(N). We set B =

⋃
i∈I Qi and A = Ω \ B̄, Γ = ∂B. We obtain a partition of Ω

as Ω = A ∪ B ∪ Γ , where A, B are open. Up to a finite number of subsequences
extractions, we might assume that the sequence (Gn)n∈N satisfies, for any index i,

lim
n→∞

∫
∂Qi

χE∆Gn dHN−1 = 0. (5.16)

Moreover, since ∂A = Γ ⊂
⋃

i ∂Qi, we deduce from (5.14) that |DχE |(∂A) = 0.
Applying remark 4.5, we get

lim
n→∞

|DχGn |(A) = |DχE |(A) (5.17)

and, since A ⊂ Ω \ C, equation (5.1) yields

|DχE |(A) < ε. (5.18)

Considering (5.16)–(5.18) and (5.10), we can choose n and define G = Gn in such
a way that G ⊂ E + B(0, ε), Ω \ G ⊂ (Ω \ E) + B(0, ε) and

∑
i∈I

∫
∂Qi

χE∆G dHN−1 < ε, (5.19)

|DχG|(A) < ε, (5.20)

m(E∆G) < ε. (5.21)

We set L = (F ∩ B̄) ∪ (G ∩ Ā). First we have

L ⊂ G ∪ B̄, Ω \ L ⊂ (Ω \ G) ∪ B, B ⊂ (Ω ∩ ∂E) + B(0, ε);
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thus,
L ⊂ E + B(0, ε), Ω \ L ⊂ (Ω \ E) + B(0, ε).

We will next prove that

m(L∆E) < 2ε, (5.22)∫
Ω

|D(χL − χE)| � K(N, Ω, E)ε, (5.23)

as well as the conclusions (3.1), (3.6)–(3.8) of theorem 3.1.
Since

L = (F ∩ B) ∪ (G ∩ A) ∪
(
(F ∪ G) ∩ Γ

)
, (5.24)

we then have Ω ∩ ∂L ⊂ (B ∩ ∂F ) ∪ (A ∩ ∂G) ∪ Γ , whence

Ω ∩ ∂L ⊂ (U ∩ ∂F ) ∪ (Ω ∩ ∂G) ∪ Γ,

which gives (3.1). From [7, § 1.3, theorems 3.2 and 3.3], we have

B ∩ F∗L = B ∩ F∗F = B ∩ ∂F.

Therefore, the inclusions C ⊂ B ∩ ∂F and C ⊂ Ω ∩ F∗E imply (3.6). Moreover,
the same theorems of [7] yield

nL(x) = nF (x) =
Df(x)
|Df(x)| ∀x ∈ B ∩ ∂F.

In particular, if x ∈ C, then Df(x) = nE(x), which proves (3.7), while (3.8) comes
from (5.1). From (5.24) we obtain

m(E∆L) = m((E∆F ) ∩ B) + m((E∆G) ∩ A),

whence m(E∆L) � m(B) + m(E∆G) and, using (5.6) and (5.21), m(E∆L) � 2ε.
It remains to prove (5.23), where K(N, Ω, ε) will be a constant depending only on
N and PΩ(E). According to lemma 4.7,

|D(χE − χL)| = |DχE∆L| + |nE − nL|χ∂∗E∩∂∗LHN−1. (5.25)

From (3.7) and (3.8), we deduce the inequalities∫
Ω

|nE − nL|χ∂∗E∩∂∗LHN−1 � 2HN−1(Ω ∩ ∂∗E \ C) < 2ε. (5.26)

It remains to evaluate
∫

Ω
|DχE∆L| or, equivalently, the values of the measure

|DχE∆L| on the sets A, B and Γ . From lemma 4.7, we get |DχE∆L| � |DχE | +
|DχL|. However, |DχL|(A) = |DχG|(A), since L∩A = G∩A. Together with (5.18)
and (5.20), we obtain

|DχE∆L|(A) < 2ε. (5.27)

From lemma 4.7, we also obtain

|DχE∆L|(B) =
∫

B

(1 − χ∂∗E)|DχL| +
∫

B

(1 − χ∂∗L)|DχE |.
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However, L∩B = F ∩B; hence, B∩∂∗L = B∩∂∗F = B∩∂F and the restrictions to
B of the measures |DχL| and |DχF | are equal. Since C ⊆ B∩∂∗E and C ⊆ B∩∂∗L,
we have

|DχE∆L|(B) �
∫

B\C

|DχL| +
∫

B\C

|DχE | =
∫

B\C

|DχF | +
∫

B\C

|DχE |,

whence, taking into account (5.1) and (5.5),

|DχE∆L|(B) � 2ε. (5.28)

It remains to evaluate |DχE∆L|(Γ ). We have

|DχE |(Γ ) �
∑
i∈I

|DχE |(∂Qi)

which, together with (5.14), yields

|DχE |(Γ ) = 0. (5.29)

We also have ∫
Γ

χ∂∗E |DχL| � HN−1(Γ ∩ ∂∗E) = |DχE |(Γ ),

whence, together with lemma 4.7, we obtain

|DχE∆L|(Γ ) = |DχL|(Γ ) =
∫

Γ

χ∂∗L dHN−1.

Since L is closed in Ω, we have Ω ∩ ∂∗L ⊂ L and

|DχE∆L|(Γ ) =
∫

Γ∩L

χ∂∗L dHN−1

=
∫

Γ∩(F∪G)
χ∂∗L dHN−1

=
∫

Γ∩(F∩G)
χ∂∗L dHN−1 +

∫
Γ∩(F∆G)

χ∂∗L dHN−1.

However,
F ∩ G ⊆ ∂F ∪ ∂G ∪ (F̊ ∩ G̊).

We deduce from (5.13) and (5.15), as in (5.29), that

|DχF |(Γ ) = |DχG|(Γ ) = 0,

whence
HN−1(Γ ∩ ∂∗F ) = HN−1(Γ ∩ ∂∗G) = 0. (5.30)

However, Γ ⊆ U and U ∩ ∂F = U ∩ ∂∗F ; hence,

HN−1(Γ ∩ ∂F ) = 0. (5.31)

Similarly, Ω ∩ ∂G = Ω ∩ ∂∗G; hence,

HN−1(Γ ∩ ∂G) = 0. (5.32)
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We next prove that
F̊ ∩ G̊ ∩ Γ ∩ ∂∗L = ∅. (5.33)

Let x ∈ F̊ ∩ G̊ ∩ Γ . If B(x, ρ) ⊆ F̊ ∩ G̊, then

m(B(x, ρ) ∩ L) = m(B(x, ρ) ∩ B) + m(B(x, ρ) ∩ A) = m(B(x, ρ))

(recall that m(Γ ) = 0). Therefore, x ∈ L∗ and, in particular, x �∈ ∂∗L.
From (5.31)–(5.33), we obtain∫

Γ∩F∩G

χ∂∗L dHN−1 = 0

and

|DχE∆L|(Γ ) � HN−1(Γ ∩ (F∆G)) �
∑
i∈I

∫
∂Qi

χF∆G dHN−1. (5.34)

Using the inequality χF∆G � χF∆E + χE∆G, for any i in I we get∫
∂Qi

χF∆G dHN−1 �
∫

∂Qi

χF∆E dHN−1 +
∫

∂Qi

χE∆G dHN−1. (5.35)

Applying lemma 4.9, we get∫
∂Qi

χF∆E dHN−1 � N

ρi

∫
Qi

χF∆E +
√

N

∫
Qi

|DχF∆E |. (5.36)

We examine next the term
N

ρi

∫
Qi

χF∆E .

According to (5.9),

1
ρi

∫
Qi

χF∆E =
1
ρi

m(Qi ∩ (F∆E)) � ερN−1
i (5.37)

and, by (5.8),
ωN−1ρ

N−1
i � 2|DχE |(Qi).

The multiplicity of the covering Qi, i ∈ I, is bounded by K(N). Thus,

∑
i∈I

1
2ωN−1ρ

N−1
i �

∑
i∈I

|DχE |(Qi) � K(N)|DχE |
( ⋃

i∈I

Qi

)

� K(N)PΩ(E). (5.38)

Combining (5.37) and (5.38), we get

∑
i∈I

N

ρi

∫
Qi

χF∆E � 2ε
NK(N)
ωN−1

PΩ(E). (5.39)

Similarly, ∑
i∈I

√
N

∫
Qi

|DχF∆E | �
√

NK(N)|DχF∆E |(B) (5.40)
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and, using lemma 4.7, as in (5.28), with (5.1) and (5.5), we have
∫

B

|DχF∆E | � |DχF |(B \ C) + |DχE |(B \ C) � 2ε. (5.41)

From equations (5.19), (5.34)–(5.36) and (5.39)–(5.41), we deduce that

|DχE∆L|(Γ ) � HN−1(Γ ∩ (F∆G))

�
(

1 + 2
NK(N)
ωN−1

PΩ(E) + 2
√

NK(N)
)

ε. (5.42)

From (5.25)–(5.28) and (5.42), we conclude that
∫

Ω

|D(χE − χL)| �
(

7 + 2
NK(N)
ωN−1

PΩ(E) + 2
√

NK(N)
)

ε,

which proves (5.23).
We finally prove (3.4). Firstly, since L ∩ B = F ∩ B, where B is open, and

B ∩ ∂F = B ∩ F∗F , we have B ∩ F∗L = B ∩ ∂L. Secondly, L ∩ A = G ∩ A
and A ∩ ∂L = A ∩ ∂G, implying that A ∩ F∗L = A ∩ ∂L. It remains to study
HN−1(Γ ∩ (∂L) \ F∗L). Next, from (5.24), and since L is closed in Ω,

HN−1(Γ ∩ ∂L) = HN−1(Γ ∩ (F ∪ G) ∩ ∂L)
� HN−1(Γ ∩ F ∩ G ∩ ∂L) + HN−1(Γ ∩ (F∆G) ∩ ∂L).

Yet F ∩ G ⊂ ∂F ∪ ∂G ∪ (F̊ ∩ G̊). Moreover, by (5.31), (5.32), HN−1(Γ ∩ ∂G) = 0
and HN−1(Γ ∩∂F ) = 0. We claim that F̊ ∩G̊∩Γ ∩∂L = ∅. Let x ∈ F̊ ∩G̊∩Γ . There
exists ρ > 0 such that B(x, ρ) ⊆ F ∩ G. Then B(x, ρ) ⊆ L (we check separately
that B(x, ρ) ∩ B ⊆ L, B(x, ρ) ∩ A ⊆ L, B(x, ρ) ∩ Γ ⊆ L), and hence x �∈ ∂L. Thus,
HN−1(Γ ∩ F ∩ G ∩ ∂L) = 0. Using (5.42), we conclude that

HN−1(Γ ∩ ∂L) � HN−1(Γ ∩ (F∆G)) �
(

1 + 2
NK(N)
ωN−1

PΩ(E) + 2
√

NK(N)
)

ε,

and this ends the proof of theorem 3.1.

6. Strong approximation of functions in BV(Ω)

We want to approximate a function u of bounded variation in Ω by mean of its
hypograph H (which lies in Ω ×R and thus in R

N+1). Only the first N coordinates
of DχH depend on Du, so we first need to modify theorem 3.1 slightly.

Fix α = (1, . . . , k) with 1 � k � N . For x = (x1, . . . , xN ), we set

Dα = (∂/∂x1, . . . , ∂/∂xk), pα(x) = (x1, . . . , xk)

and Λα(x, ρ) = {y ∈ ∂Q(x, ρ) | ∀h > k, |yh − xh| < ρ}. For Ω an open subset of
R

N and u ∈ L1
loc(Ω) we define

∫
Ω

|Dαu| = sup
{ ∫ ∑

1�i�k

u(x)Diφi(x) dx

∣∣∣∣ (φ1, . . . , φk) ∈ C1
0(Ω)k,

∑
1�i�k

φ2
i � 1

}
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and say that a set E ⊂ Ω has finite α-perimeter in Ω if E is measurable and∫
Ω

|DαχE | < ∞.
For χE ∈ BVloc(Ω), we have DαχE = pα(nE)|DχE |. We set

Ω ∩ F∗
αE = {x ∈ Ω ∩ F∗E | pα(nE(x)) �= 0}.

For all x ∈ Ω ∩ F∗
αE, in the same way as in [6], one obtains

lim
ρ→0+

ρ1−N |DαχE |(B(x, ρ)) = ωN−1|pα(nE(x))|.

6.1. Strong approximation of sets of finite α-perimeter

Theorem 6.1. Let Ω be an open subset of R
N . Let E ⊂ Ω, having locally finite

perimeter in Ω (i.e. χE ∈ BVloc(Ω)) such that
∫

Ω

|DαχE | < ∞.

Let ε > 0. There exists a set L ⊂ Ω, having locally finite perimeter in Ω, and a
compact set C ⊂ Ω such that

Ω ∩ ∂L is contained in a finite union of C1 hypersurfaces, (6.1)∫
Ω

|χE − χL| < ε, (6.2)
∫

Ω

|Dα(χE − χL)| < ε, (6.3)

L ⊂ E + B(0, ε), Ω \ L ⊂ (Ω \ E) + B(0, ε), (6.4)
C ⊂ Ω ∩ F∗

αE ∩ F∗
αL, (6.5)

nE(x) = nL(x) ∀x ∈ C, (6.6)
|DαχE |(Ω \ C) < ε. (6.7)

6.2. Modified preliminary lemma

When substituting Dα for D, proposition 4.3 remains valid, as does its proof. In
the same way, lemma 4.4 becomes the following.

Lemma 6.2. Let Ω be an open subset of R
N and let E be a set having finite α-

perimeter in Ω. There exists a sequence (Gn)n∈N of relatively closed subsets of Ω,
having finite α-perimeter in Ω, such that Ω ∩ ∂Gn is a hypersurface of class C∞

coinciding with Ω ∩ ∂∗Gn, and

lim
n→∞

m(E∆Gn) = 0, lim
n→∞

∫
Ω

|DαχGn | =
∫

Ω

|DαχE |,

Gn ⊂ E + B

(
0,

1
n

)
and Ω \ Gn ⊂ (Ω \ E) + B

(
0,

1
n

)
∀n ∈ N.

We compute vector-valued measures involved in the proof of lemma 4.7, above,
and take their projections under pα, so that lemma 4.7 becomes the following.
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Lemma 6.3. Let E and F be two sets having locally finite perimeter in an open
set Ω. We have the following equalities between measures on Ω:

|DαχE∆F | = (1 − χ∂∗F )|DαχE | + (1 − χ∂∗E)|DαχF |,
|Dα(χE − χF )| = |DαχE∆F | + |pα(nE − nF )|χ∂∗E∩∂∗F HN−1.

Lemma 6.4. Let u ∈ L1
loc(Ω) and x0 ∈ Ω. We set Qρ = Q(x0, ρ) and Λρ =

Λα(x0, ρ). For almost all ρ > 0, such that Q(x0, ρ) ⊂ Ω, we have∫
Λρ

|u| dHN−1 � k

ρ

∫
Qρ

|u| dx +
√

k

∫
Qρ

|Dαu|.

Proof. We take up the proof of lemma 4.9 again. For almost all ρ ∈ ]0, R[, we find a
sequence φj ∈ C∞(QR) such that following conditions hold: (4.11), (4.12) with Dα

in place of D; (4.13), which implies that

lim
j→∞

∫
Λρ

|u − φj | dHN−1 = 0.

The proof of the asserted inequality for φ ∈ C∞(QR) is quite similar to the corre-
sponding one for lemma 4.9.

6.3. Proof of theorem 6.1

We shall follow the proof of theorem 3.1, given in § 5 and indicate modifications
if necessary. We choose a compact set C ⊂ Ω ∩ F∗

αE such that |DαχE |(Ω \ C) < ε,
the restriction of nE to C is continuous and the limits (5.2), (5.3) as well as

lim
ρ→0+

ρ1−N |DαχE |(B(x, ρ)) = ωN−1|pα(nE(x))|

hold uniformly over x ∈ C. We have µ = minx∈C |pα(nE(x))| > 0 and choose ρ0 > 0
in the same manner but with conditions (5.8), (5.9) replaced by

µωN−1ρ
N−1 � 2|DαχE |(Q(x, ρ)) and ρ−Nm((E∆F ) ∩ Q(x, ρ)) < µε.

We construct a sequence (Gn)n∈N as in § 5, but with (5.11) replaced by

lim
n→∞

∫
Ω

|DαχGn | =
∫

Ω

|DαχE |

and associate to each x ∈ C a negligible subset σ(x) of ]0, ρ0[ such that, for all
ρ ∈ ]0, ρ0[, the trace inequality of lemma 6.4 holds for the cube Q(x, ρ) and the
function u = χE∆F , together with conditions (5.12)–(5.15). Clearly, |DχE |(∂A) = 0
implies |DαχE |(∂A) = 0 and thus

lim
n→∞

|DαχGn |(A) = |DαχE |(A) < ε.

We choose the set G with the same properties as before, but with Dα replacing D
in (5.20), and define L in the same manner. If x ∈ C, then nE(x) = nF (x) = nL(x)
and hence C ⊂ Ω ∩ F∗

αE ∩ F∗
αL. We have essentially to evaluate

∫
Ω

|D(χL − χE)|.
According to lemma 6.3,∫

Ω

|Dα(χE − χL)| =
∫

Ω

|DαχE∆L| +
∫

Ω

|pα(nE − nL)|χ∂∗E∩∂∗L dHN−1.
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The second term is not greater than∫
Ω\C

(|pα(nE)| + |pα(nL)|)χ∂∗E∩∂∗L dHN−1,

where ∫
Ω\C

|pα(nE)|χ∂∗E dHN−1 = |DαχE |(Ω \ C) < ε

and, as HN−1(Γ ∩ ∂∗E) = 0, L ∩ B = F ∩ B, L ∩ A = G ∩ A, we have∫
Ω\C

|pα(nL)|χ∂∗E∩∂∗L dHN−1 � |DαχF |(B \ C) + |DαχG|(A) < 2ε.

Then we consider
∫

Ω
|DαχE∆L|. At first the values of |DαχE∆L| on A and B, taking

account of lemma 6.3, are less than 2ε. Secondly, we compute

|DαχE∆L|(Γ ) = |DαχL|(Γ ) = |DαχL|(Γ ∩ (F∆G)).

As L ∩ (F̊ \ G) = B̄ ∩ (F̊ \ G) (respectively, L ∩ (G̊ \ F ) = Ā ∩ (G̊ \ F )), if they are
restricted to F̊ \ G (respectively, G̊ \ F ), the measures DχL and DχB (respectively,
DχA) coincide; thus, if x ∈ (F̊ \ G) ∩ F∗L (respectively, x ∈ (G̊ \ F ) ∩ F∗L), then
x ∈ F∗B and nL(x) = nB(x) (respectively, nL(x) = nA(x) = −nB(x)), so in each
case |pα(nL(x))| = |pα(nB(x))|. Hence, as HN−1(Γ ∩ ∂F ) = HN−1(Γ ∩ ∂G) = 0,
we obtain

|DαχE∆L|(Γ ) �
∫

Γ∩F∗B

χF∆G(x)|pα(nB(x))| dHN−1(x).

We set Λi = Λα(xi, ρ(xi)) for i ∈ I, recall that Γ ⊂
⋃

i∈I ∂Qi and observe that if x
is in (∂Qi) ∩ F∗B, then |pα(nB(x))| equals 1 if x ∈ Λi, and 0 otherwise. Thus,

|DαχE∆L|(Γ ) �
∑
i∈I

∫
Λi

χF∆G dHN−1 � ε +
∑
i∈I

∫
Λi

χF∆E dHN−1.

Applying lemma 6.4 and recalling that we have, for each index i,

1
ρi

m((E∆F ) ∩ Qi) � µερN−1
i � 2ε

ωN−1
|DαχE |(Qi),

we conclude in the same way that∫
Ω

|D(χE − χL)| �
(

7 + 2kK(N)ω−1
N−1

∫
Ω

|DαχE | + 2
√

kK(N)
)

ε.

6.4. Strong approximation of functions of bounded variation

For each real-valued function u defined on the open set Ω of R
N , we set

H(u) = {(x, y) ∈ Ω × R | u(x) > y}

and take α = (1, . . . , N). We know (see [12]) that if u ∈ BV(Ω), then H(u) has
locally finite perimeter in Ω × R,∫

Ω×R

|DαχH(u)| < ∞
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and, for each Borelian subset S of Ω,

Du(S) = DαχH(u)(S × R).

Lemma 6.5. Let M > 0. Let L be a closed subset of Ω × R having a locally finite
perimeter in Ω × R, such that∫

Ω×R

|DαχL| < ∞ and Ω × ]−∞,−M [ ⊂ L ⊂ Ω × ]−∞, M [.

For x ∈ Ω, we set

f(x) =
∫ M

−M

χL(x, y) dy − M.

Then

(i) for each x ∈ Ω,
∫

R
(χH(f)(x, y) − χL(x, y)) dy = 0,

(ii) f ∈ L1
loc(Ω) and

∫
Ω

|Df | < ∞,

(iii) for each Borelian subset S of Ω, Df(S) = DαχL(S × R),

(iv) f is upper semicontinuous in Ω.

Proof. Although the following techniques essentially derive from [12], for the sake
of completeness we provide details. For x ∈ Ω, we have −M � f(x) � M and infer
that χH(f)(x, y) − χL(x, y) = 0 if |y| > M and that

∫ M

−M

χH(f)(x, y) dy = f(x) + M =
∫ M

−M

χL(x, y) dy.

Hence, (i) is obvious. Suppose that φ ∈ C1
0(Ω) and set η(y) = 1 if |y| � M and

η(y) = 0 if |y| > M + 1; otherwise, η is linear. For 1 � i � N , the measure DiχL

has its support in Ω × [−M, M ]. Thus, using, in addition, some regularization, we
obtain∫

φ(x)DiχL(dxdy) =
∫

φ(x)η(y)DiχL(dxdy)

= −
∫

Diφ(x)
( ∫

η(y)χL(x, y) dy

)
dx

= −
∫

Diφ(x)
( ∫

η(y)χL(x, y) dy − M − 1
2

)
dx

= −
∫

Diφ(x)f(x) dx.

However, ∫
Ω×R

|DαχL| < ∞,

and thus we deduce
∫

Ω
|Df | < ∞ together with conclusion (iii). Let (xn)n∈N be a

sequence which converges to some x ∈ Ω. The function 1 − χL is lower semicontin-
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uous. Thus, by Fatou’s lemma,∫ M

−M

(1 − χL(x, y)) dy � lim inf
n→∞

∫ M

−M

(1 − χL(xn, y)) dy

i.e. f(x) � lim supn→∞ f(xn). Then f is upper semicontinuous.

Remark 6.6. If we suppose L to be an open subset of Ω × R, in the same way we
find that f is lower semicontinuous.

Theorem 6.7. Let Ω be an open subset of R
N and let u ∈ BV(Ω). There exists a

sequence (un)n∈N in BV(Ω) of upper semicontinuous functions (respectively, lower
semicontinuous functions) converging towards u with respect to the norm of the
space BV(Ω), i.e.

lim
n→∞

∫
Ω

|un − u| = lim
n→∞

∫
Ω

|D(un − u)| = 0.

Proof. As a consequence of the co-area formula, we know that BV(Ω) ∩ L∞(Ω) is
dense in the space BV(Ω) with respect to its norm (see [10]). Therefore, we may
suppose that u ∈ BV(Ω) ∩ L∞(Ω). We apply theorem 6.1 in the open set Ω × R

of R
N+1, with α = (1, . . . , N). Let ε ∈ ]0, 1[. We associate to E = H(u) a set L,

having a locally finite perimeter in Ω × R and verifying properties (6.1)–(6.4). If
we set M = ‖u‖∞ + 1, then L verifies the hypothesis of lemma 6.5 and we consider
the corresponding function f , satisfying conditions (i)–(iv). We know that for each
Borelian subset S of Ω∫

S

D(u − f) =
∫

S×R

Dα(χH(u) − χL).

Thus, ∫
Ω

|D(u − f)| �
∫

Ω×R

|Dα(χH(u) − χL)|,

which, with condition (6.3), gives∫
Ω

|D(u − f)| < ε.

On the other hand, for each x ∈ Ω,

u(x) − f(x) =
∫

R

(χH(u)(x, y) − χH(f)(x, y)) dy =
∫

R

(χH(u)(x, y) − χL(x, y)) dy,

which, with condition (6.2), gives∫
Ω

|u(x) − f(x)| dx �
∫

Ω×R

|χH(u)(x, y) − χL(x, y)| dxdy < ε

and completes the proof of theorem 6.7.
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