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Taking the argument used by De Giorgi to obtain the rectifiability of the reduced
boundary of a set of finite perimeter in RV we prove that a set E of finite perimeter
in an open set 2 of RN may be approached, in the sense of the BV(£2) norm, by sets
whose boundary is included in a finite union of C! hypersurfaces; more precisely,
arbitrarily large parts (for the H _1 measure in §2) of the essential boundaries of E
and of the approximating set coincide and are included in a single C! hypersurface.

1. Introduction

It is well known that the continuous functions are not dense in the normed space
BV(£2), and that C*°(£2) is dense in BV (£2), only for the topology of the convergence
in L1(£2) associated with the convergence of the total variations of the derivatives
measures (see [2]). Next, for this topology (strict convergence in [1]), the sets of finite
perimeter in 2 are known to be limits of sets with C*° boundary in 2 (see [10]).

Taking again the argument used by De Giorgi to obtain the rectifiability of the
reduced boundary of a set of finite perimeter, we prove that a set of finite perimeter
in an open set 2 of RY may be approached, in the sense of the BV(£2) norm, by
sets whose boundaries are included in a finite union of C! hypersurfaces.

From this fact, we can deduce (as indicated in [14]), the density of the semi-
continuous functions in the normed space BV({2); this property was our earlier
motivation in view of a I'-convergence problem, studied by Picard [13].

The approximation theorem of integral currents by Federer (see [9, §4.2.20]) is
an analogous result. However, the following proof seems to be more direct and
quite different from Federer’s. Cerf has found a new use of this result in statistical
mechanics, namely in the approximation of Cacciopoli partitions (see [4]). This has
increased interest in the detailed proof presented here.

2. Notation

Let E C RN, N > 2. We denote by Y its characteristic function. If E is measurable,
we denote by my (E) or m(E) its Lebesgue measure. For {2 an open subset of R
and u € L (£2) we define

/Q|Du:sup{/u(x)div¢(x)dx (b1, o) €CHRDY, S ¢§<1}.

1<iKN
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In the case when [, [Du| < oo, we denote by Du the vector-bounded Radon mea-
sure defined by

/¢~Du: —/u(x)divgb(x)dx Vo € CL(n)N.

We denote by |Du| the total variation measure associated to Du. We also set
BV(2) = {u c L' () ’ / |Du| < oo},
2

BViee(£2) = {u €L ()

|Du| < oo for all open sets 2 CC (2}
QI

We then define Po(E) = [, |Dxgl; E is said to have a finite perimeter (respectively,
locally finite perimeter) in {2 if E is measurable and P (E) < co (respectively,
XE € BVio.(£2)). Let E be a set having locally finite perimeter in 2. A point = € {2
belongs to the reduced boundary of E in {2, denoted by 2N F*E, if

(i) |Dxel(B(z,p)) > 0 for all p > 0,

) ope) — 1 DXEBE0)
(W) ne(r) = lim 5 o B )

(iii) |ng(z)| = 1.

exists,

B(z, p) (respectively, Q(x, p)) denotes the open ball (respectively, the open cube)
of radius p centred at z. We extend the map ng(x) by setting ng(x) = 0 for
x € 2\ F*E. Besicovitch’s theorem implies that Dxr = ng|Dxg|. By localizing
De Giorgi’s results [5,6], we have the following.

(a) For any Borelian set B C (2,
|Dxel(B) =Hn-1(BNFE),
where H 1 is the (IV — 1)-dimensional Hausdorff measure.
(b) For any z € 2N F*E,

lim p~¥m(B(z,p) N ENIM,(z)) =0,

p—0t

lim p~m(B(z,p) N (2\ E) N II;(z)) =0,

p—0+
lim p'="|Dxp|(B(x,p)) = wn-1,
p—0t
where
wy_1 =my_1({z e RN | |z < 1})
and IT}(z), IT (x) are the half-spaces defined for z € 2N F*E by
I (x) = {y € RY | (y — ) - np(x) > 0},
Oy (z) = {y € RY | (y — ) - np(x) <O}
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In fact, when 2 is an arbitrary open set and B is an open ball whose closure is
contained in {2, BN E has finite perimeter in RY and BN F*(BNE) = BNF*E.
We also set wy = my({x € RV | |z| < 1}). For E a measurable subset of RY we
define the essential interior E, of E by

rze kb, <= lim

B E)y=1
lim ——cm(B(a.p) (1 )

and we call the essential boundary of E the set 0*E which, together with E, and
(RN \ E),, forms a partition of RY.

Whenever Pq(E) < oo, we have Hy_1(2N (0*E\ F*E)) = 0 (see [9,15]). We
denote by OF the topological boundary of E. We have QNF*E C 2N0*E C 2NOE.
In the special case where E = {z € 2 | g(x) > 0} for some function g in C'({2)
having 0 as a regular value (i.e. Dg(x) # 0 when g(z) =0), 2NF*E =02 NOE =
{z € 2| g(x) =0}, and if x € 2N IE, then ng(x) = Dg(x)/|Dg(x)|, which is
the usual interior normal vector to E at x. Note that, for some subset E of {2, the
regularity of 2N OF is not quite sufficient to imply the coincidence of 2N JFE with
QNF*E (see [7, §1.3]).

3. Strong approximation of sets of finite perimeter

THEOREM 3.1. Let 2 be an open subset of RN . Let E C {2 be a set having finite
perimeter in 2 (i.e. xg € Ll (2) and [,|Dxg| < o0). Let € > 0. There exists a

loc

set L C {2, having finite perimeter in {2, and a compact set C' C {2 such that

2N OL is contained in a finite union of C* hypersurfaces, (3.1)
/ Ixe — XLl <e, (3.2)

Q
[ 1Dt = )l <= (33)

Hy-1(2NOL\ F*L) < ¢, (3.4)
L C E+ B(0,¢), NR\LcC(2\E)+ B(0,¢), (3.5)
CCONFENF L, (3.6)
ng(x) =nr(z) VzeC, (3.7)
[Dxsl(2\C) <e. (3.8)
REMARK 3.2.

(i) We might assume that L is open or closed in 2, for condition (3.1) implies
that m(£2NJL) = 0; thus, when the boundary in {2 is added to or subtracted
from L, conditions (3.1)—(3.8) hold (if necessary, € is increased a little to
ensure that (3.5) holds).

(ii) In fact, the proof of theorem 3.1 yields the following more detailed result,
used in [4] by Cerf, who also suggested to the author condition (3.4), above.

Let 2 be an open subset of RY, let E be a set of finite perimeter in 2
and let € be positive. There exists a set L of finite perimeter, a C' function
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f: 02— R, acompact set C, an open set V' and an open bounded set B such
that, setting F' = {x € 2 : f(x) > 0}, the set V N 9F is the hypersurface
{reV: f(z) =0} and
CcBcCcVc{zxe:Df(x)#0}, CCRNI*ENOIF,
LNB=FNB, VNJ'F=VNOJoF,
vg(z) = vr(z) = —|Df(x)| 7' Df(z) VaeC,
m(V) <e, m(EAL)<e,
Hyn_1(OF N (V\()) < e,
Hy_1(2NI*E\C) <e,
Hy_1(2N(0*EAIL)) < ¢,
LC E+ B(0,e), 2\LC(2\E)+ B(0,¢).

4. Preliminary lemmas

4.1. Results on the blow-up of the reduced boundary

LEMMA 4.1. Let U be an open subset of RN, let F = {z € U | f(z) = 0} for some
f € CYU) for which 0 is a regular value and let C' be a compact subset of U N OF.
Then the limits

lim p~Vm(B(z,p) N FNII;(z)) =0,

p—0t

lim p~"m(B(z,p) N FCNIT}(z)) =0

p—0t
are uniform over x € C.

Proof. The compact set C' is covered by a finite union of balls included in U, inside
which OF is, up to an isometry, the graph of a function of class C*, whose differential
map is uniformly continuous. O

LEMMA 4.2. Let E be a set having finite perimeter in 2. Let C' be a closed subset
of 2N F*E such that the limits

lim p~Nm(B(z,p) N E NI (z)) =0,
p—0Tt

lim p~Vm(B(z,p) N E°N I} (x)) =0

p—0+

are uniform over x € C, and such that the restriction of ng to C is continuous.
Then there exists f € C1(£2) such that

Cc{ze | f(x)=0, Df(z) =ng(z)}
Proof. See [6] or [11]. Let us recall that De Giorgi’s proof consists in proving that

lim ng(x)- Y9

|2 —y[ =0 o=yl

uniformly over (z,y) € C?, and then in applying Whitney’s extension theorem to
the germ (0,ng) on C. O
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4.2. Weak approximation in BV (2)

The following results rely on classical techniques originating from [2] (see also,
for example, [11]). We state and prove the precise versions that we need.

PROPOSITION 4.3. Let 2 be an open set in RN and let uw € L} _(£2) such that
Jo |Du| < oo. Let § > 0. There exists a sequence (un)nen € C>°(§2) such that

n— oo

lim / |Dun\:/ | D). (4.2)

Moreover, if a < u(y) < b for ally € 2N B(x,1/n), then ad < u,(x) < b(2 —9).
In particular, if u= xg, then

u, —u € LY(2) ¥YneN and hm/|un—u|—0 (4.1)

1 1
0 < up(zr) <d = dist(z, E) < - and dist(z, 2\ F) < — (4.3)
Proof. Let € > 0. There exists A such that, if we set
1
2 = {SL' e n ‘ dlSt(l’,a.Q) > X, |l'| < A},

then we have (25 # (). Now we set £2_; = () and

Qk:{xeﬂ‘dist(x,89)> , |x|<)\—|—k}.

1
A+ k)

We have 2,1 C {2, k = 0, 1,2,..., and ey 2k = 2. We define the relatively
compact open sets A; = 2,41\ £2,-1,1=0,1,2,..., which cover £2. We can find a
sequence (¢;);>o in C§°({2) such that >,.,¢; =1 and

Vi >0, (supporte;) C A;, 0<¢; <1

Let 7, be a regularizing kernel such that support n,. C B(0,r). We choose a sequence
(r;)i>o0 such that

0<r; <e, (4.4)
(support ¢;) + B(0,7;) C A, (4.5)
Hnm * ¢i - ¢Z||oo < 2_i(1 - 6)7 (4'6>
[ e o) —uo < 27, (4.7)

/ [0, * (uD¢i) — uDgy| < 27" (4.8)

We define g. = ;5o nr, * (ue;). For any i, n,, * (ug;) € C>(£2). In view of (4.5),
locally at most three terms of this series do not vanish, because if j € N, we have
A;NAj=0foralli¢{j—1,7,j+1}; thus g. € C>(2). Next,

/Qk |ga_“:/9k > (ugi) = > ugi| <

0<i<k 0<i<k
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Hence, g. —u € L'(£2) and [, |g- — u| < . Moreover,

= 0 # (@i D)+ mp x(uDé;) = 1y, #(¢iDu)+ > (ny,#(uD;)—uDe;),

i>0 i>0 i>0 i>0

since ;5o D¢i = 0. Thus,

[Dge| <3 e+ &ilDul + 3 [, * (uDi) — uDgy|.

=0 =0

Note that, for » > 0 and ¢ € Cy({2) such that (support ¢) + B(0,7) C {2, we have

[ s @lu = [ alpul;

hence, recalling that ;5 ¢; = 1 and in view of (4.8), we obtain

[ 100 < [ 1Dul +e.
7 Q
limsup/ \Dgs|</ | Du.
e—=0t J ]

Since g converges towards u in Li({2), then

/|Du|§liminf/ |Dge |
0 e—=0t Jn
lim / |Dg€|:/ | Dul.
e—=0t J 0

We finally consider the case where u = yg, F being a measurable subset of (2.
First, g-(z) > 0 implies that dist(x, E) < ¢; indeed, if B(z,e) N E = @, then, by
(4.4), for any ¢ > 0, B(z,r;) N E = 0 and n,, * (¢;xg)(z) =0, whence g.(z) = 0.
Let now x € {2 be such that B(z,e) N (2\ E) = 0. By (4.4), for any i, we have
e, * (ixE)(®) = 0y, * ¢i(x), and clearly (dixg)(x) = ¢i(z); from (4.6) we may

infer that
Z Nr; * Z ®i

=0 20

Thus,

and thus

<1—5

and hence g.(z) > 0. Thus, g.(z) < J that implies dist(z, 2 \ E) < . In the
case (not used below) where ¢ < u < b on 2N B(z,¢e), we also clearly obtain
ad < go(x) < b(2 — 9); taking a = 1 and b = 0, we should also again obtain the
result (4.3) for a set E.

We conclude by setting u, = g1 /y- O

LEMMA 4.4. Let £2 be an open subset of RN and let E be a set having finite perime-
ter in (2. There exists a sequence (G )nen of relatively closed subsets of {2, having
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finite perimeter in §2, such that 2 N 0G,, is a hypersurface of class C*° coinciding
with 2N 0*G,,, and

lim m(EAGn) =0, lim PQ(Gn) = P-(?(E)’

n—oo n—oo
1 1
GncE+B<0,), Q\GnC(Q\E)JrB(O,) Vn € N.
n n

REMARK 4.5. If the sets £ and G,,, n € N, satisfy the hypothesis and the conclusion
of lemma 4.4 and if A is an open subset of {2 such that |[Dxg|(2NJA) =0, then

lim / |Dxa,, :/ |Dx gl

This is a direct consequence of the lower semicontinuity of the perimeters relative
to A and £2\ A (see also [11, §1.13]).

Proof. We fix some 4 in ]0, 1] and apply proposition 4.3 to the function u = x g to get
a sequence (Un)nen in C*°(2) satisfying conditions (4.1)—(4.3). We next reproduce
the argument of De Giorgi (see [11, §1.24]). We set G,,; = {x € 2 | u,(z) > t}.
Since, for any t € ]0, 1],

/ |un, — xE| = min(t, 1 — t)m(EAG, 1),
10

condition (4.1) readily implies that
lim m(EAG,,) =0 ¥te]l0,1].

n— o0

By lower semicontinuity, we then have

hminf/ |DXGM|>/ |Dxg| Vte]o,1].
2 2

n— oo

On the other hand, for any n € N, from the co-area formula we have

1
/ Duy| > / at / Dxc.,
n 0 n '

whence, with (4.2) and by Fatou’s lemma,

1
[ 10xel = i [ (pun > (hminf [ pxa.
0 n—00 0 0 n—00 0 ?

It follows that, for almost all ¢ € |0, 1],

liminf/ ‘DXGMJZ/ |Dx gl

However, for each n, by Sard’s theorem, almost every real number ¢ is a regular value
of uy,. Therefore, we can choose ¢ in ]0, §[ such that, setting G,, = Gy ¢, 2NOG,, is a
C® hypersurface which coincides with 2 N 9*G,, for all n and, up to the extraction
of a subsequence, lim, ., Pn(G,) = Po(E). Finally, from the condition (4.3), we
deduce G,, C E + B(0,1/n) (because t > 0) and 2\ G,, C (2\ E) + B(0,1/n)
(because t < 9). O

)

2
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4.3. An elementary covering lemma

The use of the following covering lemma instead of Besicovitch’s lemma (see [9,
§2.8.14]) was suggested to the author by Patrice Assouad.

LEMMA 4.6. Let py > 0, let C be a compact subset of RN and let x — p(z) be a
map defined on C with values in |po/2, po[. We can cover C' with a finite set of cubes
Qi = Q(xi,p(x3)), i € I, such that, for any a € RN, we have |{i € I | a € Q;}| <
K(N) (where K(N) < 8V ).

Proof. We choose a maximal set {x;,i € I} of points of C such that ||z; — 2| c >
po/2 for any i,j distinct and in such a way that the cubes Q; = Q(z;, p(x;)),
i € I, cover C. The cubes Q; contain the disjoint cubes Q(z;, po/4); therefore
1] < (po/2)"¥m(C + Q(0,pp/2)) < oo, and if a € Q;, N -+ N Q;,, then k < 8Y

since

k(po/2)™ <m(Qi, U---UQu,) <m(Q(a,2p0)) = (4p0)" .

4.4. Computation of |Dxgar| and |D(xg — XF)]
LEMMA 4.7. Let E, F be two sets having finite perimeter in an open set 2. We
have the following equalities between measures on §2:
|Dxear| = (1= xo-r)|Dxe| + (1 — xo-5) | DXFl,
|ID(xE — xr)| = |Dxear| + g — nr|xoEno-FHN-1-

COROLLARY 4.8. |D(xg — xr)| = |DXxEAF| + 2X(6+ Eno* F)\o+ (BnF) HN-1-

Proof. According to [15], whenever A and B are two sets having finite perime-
ter in 2, the same holds for A N B and, moreover, Dxang = XaDxB + XBDxa,
where x4 = xa, + %Xa*A and Dxa = xo9-anaHy_1, with similar expressions for
X8, Dxp. Therefore,

Dxans = Xa.DxB + xB.Dxa + X0+ an0B(na +np)Hn_1, (4.9)
where it should be noted that (see [7, Ch. IV]), for Hy_1 almost all z € 9*ANO*B,
na(z) =+np(x) and na(zx)=nglx) <= z€I*(ANB). (4.10)

We remark that xg — xr = Xp\r — Xr\g and Xear = Xp\F + Xr\g- We apply
formula (4.9) to compute Dxgnpe and Dxpape. We have Dxge = —Dx g, nge =
—ng, 0" (E°) = 0*E, xg, + X(g<). = 1 — Xo-E, and similar equalities for I, so we
obtain

D(xe —xr) = (1 = xo-r)DxE — (1 = Xo-£)DxF + (nE — nF)Xo-Eno- FHN-1,
Dxgar = (1 = Xxo-r)Dxe + (1 — xo-E)DXF.
The total variations associated to mutually singular measures sum up and we obtain

the conclusion of lemma 4.7. Together with property (4.10), we obtain corollary 4.8.
O
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4.5. A trace inequality at the boundary of a cube
The following result is elementary and simpler than a genuine trace lemma (as

in [17, §5.10.7] or [8, §5.3]).

LEMMA 4.9. Let u € L{ (£2) and z¢ € 2. We set Q, = Q(z¢,p). For almost all

loc

p > 0, such that Q(xq, p) C £2, we have

N
/ lul dHN—1 < 7/ \u|dx+\/ﬁ/ | Du.
2Q, P Jq, Qp

Proof. We need only to prove the inequality for almost all p € ]0, R[ such that
®Rr C 2 and fQR |Du| < co. Let 8; be a regularizing sequence. For sufficiently
large j, ¢; = u*0; € C*°(Qr) and

lim lu—¢;| =0 for all p € ]0, R], (4.11)
j—o0 Q,
lim |Do;| = / |Du| for almost all p € ]0, R]. (4.12)
j—o0 Q, Q,

In fact, (4.12) holds for all p € |0, R[ such that |Du|(0Q,) = 0. By Fatou’s lemma,

we have
0= lim lu — @5l
]—)OO QR
R
= ‘lim (/ |u - ¢j| dHNl) dp
j—oo Jo oQ,
R
> / (liminf/ |u—¢jdHN_1> dp;
0 J—00 an
thus,

j—o0

limil’lf/ |u—¢j\d7{N_1 =0

9Q,

for almost all p € |0, R[. In other words, for almost all p € ]0, R[, we may extract
from the sequence ¢; a subsequence, still denoted by ¢;, which satisfies (4.11) and
(4.12) as well as

j—o0 )

lim lu—¢;|dHn—1 =0. (4.13)
Qp
To end the proof, it is sufficient to prove the inequality of the lemma for an arbitrary

¢ € CY(Qr) and for any p € ]0, R[. Therefore, let ¢ € C1(Qr), let p € ]0, R[ and
suppose that 2o = 0. For i € {1,..., N} and € R, we set x = (x;,2}). Then

p
o(p, ) = d(x;, x}) +/ Dio(t,x})dt if 0 < m; < p,

whence )
160, 2)] < (s, )] + / Did(t, )] dt 0 < i < p.
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By integrating with respect to x;, we get

1 P P
6(pad)| < 5 [ lotas ) dni+ [ Dot de
P Jo 0
and, similarly,

0 0
WF&%H<%/|M%JM¢W+/ Dio(t, )] dt

—p —p

whence

|mmwm¢m+/ﬂDmmanw

—p

RPN B L
|Mm%ﬂ+@(m%ﬂ<p/

—p

We integrate with respect to z/, for ||z}||. < p, and we get

1
T —p,ay)|) day < =~ x)|dx D;¢(x)| dz,
L. st +iscpriar< [ jp@ldss [ Do)

p 2 Qp

whence, by summing over ¢ in {1,..., N}, and remarking that El<i<N |D;p| <

VN|Dg|,
N
d 1< — d N Daol.
[;pw HN1<ﬁhLJM x+¢[¥|¢

4.6. A particular use of Egoroff’s theorem

We want to apply Egoroff’s theorem, not as usual to a sequence (f,), but to
a real indexed family (f,) of measurable functions; some additional assumption
is needed (see [16]). Such a situation occurs when differentiating measures. The
following remark originates from a common work with Assouad (see [3]) but is not
included there; it is implicitly supposed by De Giorgi in the case of continuity of
the functions f, that are considered below.

LEMMA 4.10. Let p be a positive bounded Radon measure in 2, k > 0, f,(z) =
p~Fu(20 B(z, p)) for each x € 2 and p € 10,+00[, and f a p-measurable function
such that lim,_,oy f,(x) = f(x) for p-almost every x in §2. Then, for each € > 0,
there exists a compact set C in 2, verifying u(2\C) < €, such that the convergence
of fp to f is uniform on C.

Proof. Let us set

wrw) = sup fy), (o) = int f(@), he(e) = s |f,(@) ~ S

Clearly, h, = max(u, — f, f — v,.). One readily verifies that u, (respectively, v,.)
is lower semicontinuous (respectively, upper semicontinuous) on (2. Thus, h, are
p-measurable functions decreasing to 0 p-almost everywhere on (2. Then, follow-
ing [16], one may apply the usual Egoroff theorem to the sequence hy /. O
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5. Proof of theorem 3.1

Let £2 be an open subset of RY and let E be a set having finite perimeter in f2.
Let € > 0. Following the ideas of De Giorgi (see [6,11]), applying Lusin and Egoroff
theorems (see lemma 4.10), there exists a compact set C C 2N F*E such that the
restriction of ng to C' is continuous,

[Dxel(2\C) <e, (5.1)
and the following limits are uniform over z € C"
lim p~Vm(B(z,p) N ENII,(z)) =0, (5.2)
p—0+
lim p~Nm(B(z,p)NE NI (z)) =0, (5.3)
p—0t
lim p'"N|Dxg|(B(z,p)) = wn-1. (54)
p—0t

By lemma 4.2, there exists f € C!(£2) such that
f(x)=0 and Df(z)=ng(x) VzeCl.

Since ng(x) # 0 for x € C, we have C C OF, where F = {z € 2 | f(z) > 0}.
There exists an open set U such that C C U CC {2 and Df(x) # 0 for x € U.
Thus, U NOF is a hypersurface of class C!, coinciding with UNO*F, UNF is a set
having finite perimeter in U and m(C) = 0. Therefore, there exists an open set V
such that C C V C U and

|Dxr|(V\C) <e, (5.5)
m(V) <e. (5.6)

In addition, the limit lim, o+ p~Vm((EAF) N B(x, p)) = 0 is uniform over = € C,
according to lemma 4.1 and the limits (5.2), (5.3). From this remark, the limit (5.4)
and the fact that the map = — dist(z, V°) admits a minimum over C, we deduce
the existence of a real number pg, 0 < po < £/v/N, such that, for any p € 0, po|
and any z € C,

Qla,p) C V, (5.7)
wN—leil < 2|DXE‘(Q("E7p))7 (58)
p Nm((EAF)NQ(z,p)) < ¢. (5.9)

By lemma 4.4, there exists a sequence (G, )nen of closed subsets of {2 such that, for
all n, 2NOG,, is a hypersurface of class C' coinciding with £2N0*G,,. Furthermore,
G, CE+ B(0,1/n), 2\ G, C (2\ E)+ B(0,1/n) and

ILm m(EAG,) =0, (5.10)
li_)rn Po(Gy) = Pa(E). (5.11)

We fix x € C. For all n, we have

PO
m(EAG,) 2/ XEAG, 2/ (/ XEAG,, dHN1) dp.
Q(x,p0) 0 9Q(xz,p)
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From this inequality and equation (5.10), with the help of Fatou’s lemma, we deduce
that

lim inf/ XeAaG, dHn—1 =0 for almost all p € ]0, pol.
0Q(z,p)

n— o0

If 1 is a positive measure on Q(x, pg) such that pu(Q(x, pg)) < oo, then the set

is at most countable. Therefore, we can choose a negligible subset o(x) of ]0, po[
such that, for all p € ]0, po[, the trace inequality of lemma 4.9 holds for the cube
Q(z, p) and the function u = ygar and

lim inf Xeaag, dHNn—1 =0, (5.12)
"o JaQ(a,p)
|Dxc, [(0Q(z,p)) =0 Vn €N, (5.13)
|Dxe|(0Q(z, p)) = 0, (5.14)
|Dxr|(0Q(z,p)) = 0. (5.15)

Let x — p(z) be a map from C' to ]pg/2, po| such that, for all z € C, p(x) & o(x).
According to lemma 4.6, there exists a finite collection of cubes Q; = Q(z;, p(x;)),
i € I, which covers C' and such that, for any a € R, we have [{i € I | a € Q;}| <
K(N). We set B =|J;c; Qi and A = 2\ B, I = 0B. We obtain a partition of 2
as 2 = AU BUI, where A, B are open. Up to a finite number of subsequences
extractions, we might assume that the sequence (G,,)nen satisfies, for any index i,

lim XeAG, dHN-1 =0. (5.16)

Moreover, since 9A = I' C |J, 0Q;, we deduce from (5.14) that |Dxg|(0A) = 0.
Applying remark 4.5, we get

Tim_ |Dxa, |(4) = [Dxzl(4) (517)
and, since A C 2\ C, equation (5.1) yields
|Dxgl(A) < e. (5.18)

Considering (5.16)—(5.18) and (5.10), we can choose n and define G = G,, in such
a way that G C E+ B(0,¢), 2\ G C (2\ E)+ B(0,¢) and

Z/ xeacdHn-1 <e, (5.19)
iel Y OQi
|Dxcl(4) <e, (5.20)
m(EAG) < e. (5.21)

We set L = (F'N B)U (G N A). First we have
LCcGuUB, 2\Lc (2\G)UB, B C (2N0E)+ B(0,¢);
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thus,
L C E+ B(0,¢), NR\LcC(2\E)+ B(0,¢).

We will next prove that
m(LAFE) < 2¢, (5.22)

/Q ID(xz — xe)| < K(N, 2, E)e, (5.23)

as well as the conclusions (3.1), (3.6)—(3.8) of theorem 3.1.
Since
L=(FNB)U(GNA)U((FUG)NT), (5.24)

we then have 2NIL C (BNIF)U (ANIG)U I, whence
QNAL C (UNOF)U(2NAG)UT,
which gives (3.1). From [7, §1.3, theorems 3.2 and 3.3], we have
BNF*L=BNF'F=BNOJF.

Therefore, the inclusions C € BN IF and C C 2N F*E imply (3.6). Moreover,
the same theorems of [7] yield

_ Df()
Df ()]

In particular, if z € C, then Df(x) = ng(z), which proves (3.7), while (3.8) comes
from (5.1). From (5.24) we obtain

Vax € BN OF.

nr(x) =np(z)

m(EAL) = m((EAF) N B) + m((EAG) N A),

whence m(EAL) < m(B) + m(EAG) and, using (5.6) and (5.21), m(EAL) < 2e.
It remains to prove (5.23), where K (N, {2,¢) will be a constant depending only on
N and Pq(E). According to lemma 4.7,

|D(xe — x1)| = |[Dxeacl + Ing — nilxo-ero-t Hy-1. (5.25)
From (3.7) and (3.8), we deduce the inequalities

/ |TLE — nL|X8*Eﬂ6*L’HN71 < 27‘[}\[71(9 No*E \ C) < 2e. (5.26)
2

It remains to evaluate f.o |DxEarL| or, equivalently, the values of the measure
|[Dxgar| on the sets A, B and I'. From lemma 4.7, we get |Dxgar| < |Dxg| +
|Dx |- However, |Dxr|(A) = |Dx¢a|(4), since LN A = GN A. Together with (5.18)
and (5.20), we obtain

|Dxparl(4) < 2e. (5.27)

From lemma 4.7, we also obtain

Dxgazl(B) = / (1 - xo-2)| x| + / (1 xo-2)|Dxzl.
B B
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However, LNB = FNB; hence, BNO*L = BNO*F = BNJOF and the restrictions to
B of the measures |Dx | and |Dxp| are equal. Since C C BNO*FE and C C BNJ*L,
we have

|DxEar|(B) </ |Dxi| +/ |Dx el :/ |DxF| +/ |DxEkl,
B\C B\C B\C B\C

whence, taking into account (5.1) and (5.5),
|DxEeaL|(B) < 2e. (5.28)

It remains to evaluate |[Dxgar|(I"). We have

|Dxe|(I') < Z |Dxe|(0Q:)

iel
which, together with (5.14), yields
|Dxe|(I") = 0. (5.29)

We also have
/ xo-e|DxL| < Hn-1(I'NO"E) = [Dxe|(I),
r

whence, together with lemma 4.7, we obtain
IDxparl(P) = IDxalT) = [ xorsdbc.
r
Since L is closed in {2, we have 2N 0*L C L and

Dxparl(T) = / Yo dHn 1
I'NnL

= / Xo-r dHn_1
rN(FUG)

= / Xor dHn-1+ / Xo+r dHn-1.
I'n(FNG) IN(FAG)

FNGCOFUIGU(FNG).
We deduce from (5.13) and (5.15), as in (5.29), that

However,

[Dxr|(I') = [Dxel|(I') =0,

whence
Hy_1(IT'NI*'F)=Hny_1(I'NI*G) =0. (5.30)

However, I' C U and U NOF = U N 0*F'; hence,

Hn_1(I'NIF) =0. (5.31)
Similarly, 2 N 9G = 2 N J*G; hence,

Hy-1(I'NIG) =0. (5.32)
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We next prove that o
FNGNnI'no*L =. (5.33)

Let z € FNGNI.If B(x,p) C F'NG, then
m(B(z, p) N L) =m(B(x,p) N B) + m(B(z,p) N A) =m(B(z,p))

(recall that m(I") = 0). Therefore, z € L, and, in particular, z ¢ 9* L.
From (5.31)—(5.33), we obtain

/ Xo-rL dHy-_1 =0
I'nFNG

and

|DXEAL|(F) < HN_l(Fﬂ (FAG)) < Z/ xXrag dHN 1. (534)
9Q;

el

Using the inequality xpag < XFaAE + XEAG, for any i in I we get

/ xrac dHn—1 </ XFaepdHn_1 +/ Xeac dHy—_1. (5.35)
Q) 9Q; 0Q;
Applying lemma 4.9, we get
N
/ XraedHn_1 < — | Xxrae+ \/]V/ |IDXFaE|- (5.36)
0Q; Pi JQ; Qi
We examine next the term N
XFAE-
Pi JQ
According to (5.9),
1 1 N—1
o XFAE = ;771(QZ N(FAE)) < ep; (5.37)
i JQ, i

and, by (5.8),
wy_1pN Tt < 2|DxE|(Q)).

The multiplicity of the covering @;, @ € I, is bounded by K (N). Thus,

Ua)

Z swn_1p) < Z [Dxel(Qi) < K(N)|DXE|<

iel iel iel
< K(N)Po(E). (5.38)
Combining (5.37) and (5.38), we get
N NK(N
Z — | XFAE < 267( )PQ(E)- (5.39)
el Pi JQ, WN-1
Similarly,
SV [ IDxear| < VNEN)Dxearl(B) (5.40)
1=y QL
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and, using lemma 4.7, as in (5.28), with (5.1) and (5.5), we have

| 1Dxral < IDxr|(B\C) + [Dxs| B\ 0) < 2= (5.41)
From equations (5.19), (5.34)—(5.36) and (5.39)~(5.41), we deduce that
Dxpazl(I) < Hy—i (' (FAG))
< <1 + 2MP9(E) - NNK(N));. (5.42)

WN-1

From (5.25)—(5.28) and (5.42), we conclude that

/|D XE — Xo)| < (7+2NK(N)PQ(E)+2\/NK(N)>5,

WN-1

which proves (5.23).

We finally prove (3.4). Firstly, since L " B = F N B, where B is open, and
BNOF = BNF*F, we have BN F*L = BN JL. Secondly, LNA =GnNA
and ANOL = AN JG, implying that AN F*L = AN JL. It remains to study
Hy—1(I'N(OL) \ F*L). Next, from (5.24), and since L is closed in 2,

HN_1(IT'NIL) =HNn_1(IT'N(FUG)NIL)
SHN1(TNFNGNIL)+Hn-1(I'N(FAG)NOL).
Yet FNG COFUAGU (FNG). Moreover, by (5.31), (5.32), Hy_1(L'NIG) =0
and Hy_1(I'NIF) = 0. We claim that FNGNT'NOL = (). Let x € FNGNI'. There
exists p > 0 such that B(z,p) C F N G. Then B(z,p) C L (we check separately

that B(z,p)NB C L, B(x,p)NAC L, B(x,p)NI C L), and hence x ¢ OL. Thus,
Hy_1(T'NFNGNAL) = 0. Using (5.42), we conclude that

HN_l(FﬂaL) < /HN_l(Fﬂ (FAG)) < (1 +2MPQ(E) +2\/NK(N>>E,

WN -1

and this ends the proof of theorem 3.1.

6. Strong approximation of functions in BV (£2)

We want to approximate a function w of bounded variation in {2 by mean of its
hypograph H (which lies in 2 x R and thus in RN¥*+1). Only the first N coordinates
of Dx g depend on Du, so we first need to modify theorem 3.1 slightly.

Fix a=(1,...,k) with 1 <k < N. For z = (x1,...,xn), we set

D, = (0/0x,...,0/0xy), Do) = (21,...,2k)

and Ay (z,p) = {y € 0Q(x,p) | Yh > k, |yn — x| < p}. For £2 an open subset of
RN and u € L] (£2) we define

/|Dau|—bup{/ > ul@)Digix (B1,--,61) €Co(RF, > ¢7 < }

1<igk 1<i<k
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and say that a set F C (2 has finite a-perimeter in {2 if F is measurable and

Jo 1Daxe| < co.
For xg € BVio(£2), we have Do xg = pa(ne)|Dxe|. We set

ONFE={zx € QNF'E | pa(ne(x)) # 0}.
For all z € 2 N FXE, in the same way as in [6], one obtains

lim p'"N|Doxpl(B(x, p) = wn-1|pa(ne(z))].
p—0t

6.1. Strong approximation of sets of finite a-perimeter

THEOREM 6.1. Let £2 be an open subset of RN. Let E C (2, having locally finite
perimeter in §2 (i.e. xg € BVioc(£2)) such that

/ Daxs] < .
0

Let € > 0. There exists a set L C {2, having locally finite perimeter in 2, and a
compact set C C {2 such that

2N OL is contained in a finite union of C* hypersurfaces, (6.1)

/ Ixe — xL| <e, (6.2)
o)

/ |Do(xE — XL)| <&,
(9]

(6.3)

LCE+B(0e), 0\LcC(Q\E)+B(,e), (6.4)
CCONFLENFLL, (6.5)

ng(z) =np(z) VzeCl, (6.6)
|Daxpl(2\C) <e. (6.7)

6.2. Modified preliminary lemma

When substituting D, for D, proposition 4.3 remains valid, as does its proof. In
the same way, lemma 4.4 becomes the following.

LEMMA 6.2. Let £2 be an open subset of RN and let E be a set having finite a-
perimeter in (2. There exists a sequence (Gy)nen of relatively closed subsets of (2,
having finite a-perimeter in (2, such that 2N 0G,, is a hypersurface of class C*°
coinciding with 20 0*G,,, and

lim m(EAG,,) =0, lim / |Daxcn\:/ [DaxEl;
2 2

n—oo n— oo

1 1
GnCE—i—B(O,) and Q\GnC(Q\E)—i—B(O,) Vn € N.
n n

We compute vector-valued measures involved in the proof of lemma 4.7, above,
and take their projections under p,, so that lemma 4.7 becomes the following.
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LEMMA 6.3. Let E and F be two sets having locally finite perimeter in an open
set £2. We have the following equalities between measures on {2:
|Daxear| = (1= Xo<r)|Daxe| + (1 = xo-E)|Daxrl,
|Do(XE — XF)| = |[DaXEAF| + |Pa(nE —nF)|X0*ENO* FHN -1

LEMMA 6.4. Let u € Li (2) and zo € 2. We set Q, = Q(xo,p) and A, =
Ao (0, p). For almost all p > 0, such that Q(xo, p) C £2, we have

k
/ lu|dHN-1 < f/ |u|dx—|—\/E/ |Dqul.
A PJQ, Qp

P

Proof. We take up the proof of lemma 4.9 again. For almost all p € ]0, R[, we find a
sequence ¢; € C*(Qr) such that following conditions hold: (4.11), (4.12) with D,
in place of D; (4.13), which implies that

lim [ |u— ;| dHy_1 = 0.
J]—00 Ap

The proof of the asserted inequality for ¢ € C*°(Qg) is quite similar to the corre-
sponding one for lemma 4.9. O

6.3. Proof of theorem 6.1

We shall follow the proof of theorem 3.1, given in §5 and indicate modifications
if necessary. We choose a compact set C' C 2N F:E such that |D,xg|(2\ C) <,
the restriction of ng to C' is continuous and the limits (5.2), (5.3) as well as

lim p'~N|Daoxe|(B(z,p) = wn-1|pa(ne(z))]
p—0+

hold uniformly over z € C. We have u = mingec¢ |po(ng(x))| > 0 and choose pg > 0
in the same manner but with conditions (5.8), (5.9) replaced by

pon—1p ! <2Daxsl(Q(x,p)) and  pNm((EAF) N Q(x,p)) < pe.

We construct a sequence (Gp,)nen as in §5, but with (5.11) replaced by

lim / Dave,| = / Darsl

and associate to each € C a negligible subset o(z) of |0, po[ such that, for all
p € ]0, po[, the trace inequality of lemma 6.4 holds for the cube Q(z,p) and the
function u = xgar, together with conditions (5.12)—(5.15). Clearly, |[Dxg|(0A) =0
implies |Dyxg|(0A) = 0 and thus

lim |Dyxa, |(A) = |Daxe|(4) < e.
n—oo

We choose the set G with the same properties as before, but with D,, replacing D
in (5.20), and define L in the same manner. If z € C, then ng(z) = np(z) = np(x)
and hence C' C 2N F;E N F} L. We have essentially to evaluate [, [D(xz — x&)|-
According to lemma 6.3,

/IDQ(XE*XL)\ :/ \DaXEAL|+/ IPa(nE —nr)|xo- Bro-L dHN—1.
o 17 17
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The second term is not greater than
| anm)] +palna) o snas Mo
\Cc

where

/ IPa(ns)|xor s Myt = [Daxsl(2)\ C) < ¢
2\C

and, as Hy_1(I'NO*E) =0, LNB=FNB,LNA=GnNA, we have
/\ Ipa(nr)Xxo oL dHn—1 < |Daxr|(B\ C) + |Daxc|(4) < 2e.
2\C

Then we consider [, [DaXxparl|- At first the values of [Dyxgar| on A and B, taking
account of lemma 6.3, are less than 2e. Secondly, we compute

[Daxear|(I') = [Daxc|(I') = [Daxc|(I' N (FAG)).

AsLN(F\G)=Bn(F\G) (respectively, LN (G \ F) = An (G \ F)), if they are
restricted to £ \ G (respectively, G \ F), the measures Dy, and Dxp (respectively,
Dy 4) coincide; thus, if z € (F'\ G) N F*L (respectively, z € (G \ F) N F*L), then
z € F*B and nL( ) =np(z) (respectively, np(x) = na(x) = —np(x)), so in each
case |po(nr(z))| = |pa(np(x))|. Hence, as Hy_1(I' N OF) = Hn_1(I' N OG) = 0,
we obtain

Daxestl )< [ xrac(@lpa(ns ()] dy- (o)

We set A; = Aq (24, p(2;)) for i € I, recall that I' C |J;; 0Q; and observe that if x
is in (0Q;) N F*B, then |p,(np(x))| equals 1 if 2 € A;, and 0 otherwise. Thus,

|Daxeacl(I” Z/ xrag dHy-1 < €+Z/ xrap dHy-1.

icl el

Applying lemma 6.4 and recalling that we have, for each index i,

1 _ 2e
—m((EAF)NQ;) < pepy ' < ———|DaxEl(Q:),
Pi WN-1

we conclude in the same way that
/ ID(x& — x1)| < (7+2kK(N Wyt 1/ |Daxr| + 2VEK (N )) :

6.4. Strong approximation of functions of bounded variation

For each real-valued function u defined on the open set §2 of RY, we set
H(u) = {(z,y) € 2 xR |u(z) >y}

and take o = (1,...,N). We know (see [12]) that if u € BV(S2), then H(u) has
locally finite perimeter in {2 X R,

/ |DaXH(u)| <
2xR
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and, for each Borelian subset S of (2,
DU(S) = DQXH(H)(S X R)
LEMMA 6.5. Let M > 0. Let L be a closed subset of {2 x R having a locally finite
perimeter in {2 X R, such that

/ |[Doaxr| < oo and §2x]—oo,—M[C L C 2% ]—o0, M]|.
xR

For x € 2, we set

M
flx) = /MXL(x,y)dy — M.

Then

(i) for each x € 2, [o(Xu(p) (2,y) — xL(z,y))dy =0,

(ii) f e Li,.(2) and [, |Df] < oo,

(iii) for each Borelian subset S of £2, Df(S) = Duoxr(S X R),
(iv) f is upper semicontinuous in 2.

Proof. Although the following techniques essentially derive from [12], for the sake
of completeness we provide details. For z € 2, we have —M < f(z) < M and infer
that x g s (z,y) — xz(z,y) = 0if [y| > M and that

M M
/ xu()(z,y)dy = f(z) + M = / xr(z,y)dy.
M —M

Hence, (i) is obvious. Suppose that ¢ € C}(£2) and set n(y) = 1 if |y| < M and
n(y) = 0 if |y| > M + 1; otherwise, n is linear. For 1 < ¢ < N, the measure D;x[,
has its support in 2 x [—M, M]. Thus, using, in addition, some regularization, we
obtain

/ 6(2) Dixz (de dy) = / o(2)n(y) Dixz(de dy)

--f Di¢<x>( [nratey) dy) da

= —/Dmﬁ(m)(/n(y)m(%y) dy — M — ;) dz
—~ [ Dbty (@) de,
However,

/ |D04XL| < 00,
02xR

and thus we deduce [, |Df| < oo together with conclusion (iii). Let (z)nen be a
sequence which converges to some x € (2. The function 1 — x, is lower semicontin-
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uous. Thus, by Fatou’s lemma,

M M
[ 0=ty <tmint [ 0= xuten)dy
ie. f(z) = limsup,,_, ., f(zy). Then f is upper semicontinuous. O

REMARK 6.6. If we suppose L to be an open subset of {2 X R, in the same way we
find that f is lower semicontinuous.

THEOREM 6.7. Let £2 be an open subset of RN and let u € BV(£2). There exists a
sequence (un)nen in BV(£2) of upper semicontinuous functions (respectively, lower

semicontinuous functions) converging towards u with respect to the norm of the
space BV(2), i.e.

lim / |uy, —u| = lim / |D(u, —u)| = 0.
n—oo | n—oo |

Proof. As a consequence of the co-area formula, we know that BV(£2) N L>°(2) is
dense in the space BV(2) with respect to its norm (see [10]). Therefore, we may
suppose that u € BV(£2) N L*°(£2). We apply theorem 6.1 in the open set 2 x R
of RN*1 with @ = (1,...,N). Let € € ]0,1[. We associate to E = H(u) a set L,
having a locally finite perimeter in {2 x R and verifying properties (6.1)—(6.4). If
we set M = ||lul|co + 1, then L verifies the hypothesis of lemma 6.5 and we consider
the corresponding function f, satisfying conditions (i)—(iv). We know that for each
Borelian subset S of (2

/ D(u—f) = / Do(XH(w) — XL)-
s SxR
Thus,
[1ptw=pl< [ (Patxi —xel

2 2 xR

which, with condition (6.3), gives
[ o= pi<e
I?)
On the other hand, for each x € (2,
) = £@) = [ Ca) = e ) dy = [ G (o9) = xao) o

which, with condition (6.2), gives

/ () — f(z)] dz < / Xt (@ y) — xo ()| dedy < e
(9]

N2xR

and completes the proof of theorem 6.7. O
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