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The flow of an electrically conducting fluid in a thin disc under the action of an azimuthal
Lorentz force is studied experimentally. At small forcing, the Lorentz force is balanced
by either viscosity or inertia, yielding quasi-Keplerian velocity profiles. For very large
current I and moderate magnetic field B, we observe a new regime, fully turbulent, which
exhibits large fluctuations and a Keplerian mean rotation profile Ω ∼ √

IB/r3/2, where r
is the distance from the axis. In this turbulent regime, the dynamics is typical of thin layer
turbulence, characterized by a direct cascade of energy towards the small scales and an
inverse cascade to large scales. Finally, at very large magnetic field, this turbulent flow
bifurcates to a quasi-bidimensional turbulent flow involving the formation of a large scale
condensate in the horizontal plane. These results are well understood as resulting from an
instability of the Bödewadt–Hartmann layers at large Reynolds number and discussed in
the framework of similar astrophysical flows.

Key words: transition to turbulence, MHD turbulence, boundary layer stability

1. Background

Since the pioneering work of Hartmann (Hartmann & Lazarus 1937) on electromagnetic
conduction pumps, several works have been devoted to the study of flows of liquid metals
driven by a stationary electromagnetic force. Experimentally, it is usually easier to study
this problem in a cylindrical geometry, in which the flow is driven in the azimuthal
direction under the effect of an axial magnetic field and the injection of a radial current.
Because of the relatively homogeneous and delocalized forcing, this configuration is also
advantageous over other set-ups when it comes to generate turbulent rotating flows.

In 1965, Hunt (1965) proposed one of the first theoretical studies of a
magnetohydrodynamic (MHD) flow in the presence of conductive walls and deduced a

† Email address for correspondence: marlone.vernet@phys.ens.fr

© The Author(s), 2021. Published by Cambridge University Press 924 A29-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:marlone.vernet@phys.ens.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.635&domain=pdf
https://doi.org/10.1017/jfm.2021.635


M. Vernet, M. Pereira, S. Fauve and C. Gissinger

theoretical expression for electrically driven flows. A first experimental confirmation of
this theory was obtained in 1971 by Baylis (1971) and Baylis & Hunt (1971), in a laboratory
experiment using mercury. By imposing a magnetic field strong enough to inhibit inertial
effects, the authors confirmed the linear dependence of the flow with the applied current I.
Later, Tabeling & Chabrerie (1981) proposed a new theoretical approach by looking at
the recirculation likely to occur when the external field is not too strong. They found
that a secondary flow involving no inertial effects is produced by Hartmann’s boundary
layers. On the contrary, Shercliff layers (boundary layers parallel to the field) produce
recirculation allowing inertial effects to penetrate the heart of the flow, thus modifying
the average velocity profile when the Reynolds number Re is sufficiently large. Similarly,
Potherat, Sommeria & Moreau (2000) analytically predicted two typical phenomena likely
to occur in such electromagnetically driven flows in annular geometry: first, a secondary
recirculation related to inertial effects in the Hartmann boundary layer, and second, the
possibility of a transverse dependence of the velocity in the bulk flow. These predictions
were confirmed experimentally by the same authors. It is now well accepted that the main
action of the magnetic field is thus to reduce the velocity gradients in its direction, and
that the nature of the transition between strongly magnetized bidimensional flows and
three-dimensional (3-D) flows is intimately linked to recirculations (Sommeria & Moreau
1982; Potherat 2012). Due to the substantial number of control parameters, there are still
several unanswered questions regarding the different flow regimes observed in electrically
driven annular duct flow.

More recently, several studies have focused on the destabilization of such flows
for moderate Reynolds numbers, when the Hartmann layers become unstable. The
experimental study by Moresco & Alboussière (2004a) looked at the distribution of
currents in the flow and reported how the destabilization of Hartmann’s boundary layers
is controlled by the parameter ReH = Re/Ha which is a critical Reynolds number based
on the thickness of the laminar Hartmann layer, with Ha the Hartmann number. In this
experience, the transition to turbulence is observed for values of ReH two orders of
magnitude smaller than what is predicted by linear stability theory, thus suggesting the
existence of a subcritical transition in this type of flow. These results have been completed
by direct numerical simulations (Krasnov et al. 2004), proposing an explanation for this
difference between simulations and experiments based on the growth of disturbances
of finite amplitude near the boundary layers. In some cases it has been shown that the
instability of the flow is rather controlled by the Reynolds number based on the thickness
of the Shercliff layer (Potherat 2007). Moreover, it has also been shown numerically that
current-driven flows in annular geometry can also become unstable at moderate Hartmann
numbers, via centrifugal-type instability (Zhao, Zikanov & Krasnov 2011, 2012)

Such destabilization is also reported in other laboratory experiments. In Tabeling &
Chabrerie (1981), it was shown that electrically driven flows can undergo a sequence
of instabilities involving slow oscillations just before the transition to turbulence. In
tall cylindrical apparatus, Boisson et al. (2012) and Boisson, Monchaux & Aumaitre
(2017) have shown that travelling waves can appear when the forcing is large enough
due to inertial terms. More recently, a Kelvin–Helmholtz destabilization of free shear
layers generated near the electrodes has also been observed (Stelzer et al. 2015a,b).
Finally, note that Messadek & Moreau (2002) also found that at very large Reynolds
and Hartmann numbers, in a configuration involving a sheared layer, the flow exhibits
quasi-2-D turbulence.

Most of the laboratory experiments described above rely on the generation of large
forcing by the use of very strong magnetic field. For example, the experiences of Messadek
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& Moreau (2002) reach IB ∼ 300 AT (where I is the injected current and B is the magnetic
field) in order to obtain high Reynolds number regimes. However, this is achieved by
using magnetic fields relatively large (between 1 and 10 Tesla). Thus, these laboratory
experiments describe inertial regimes, but always in a strongly magnetized limit, for which
the interaction parameter Nt (table 2) is large. One of the motivations of the experiment
reported here is to go beyond the classical inertial regime and to reach a fully turbulent
state at small Nt. As shown in the next sections, this is made possible by three important
features of the KEPLER experiment: a particularly thin-disc geometry (compared with the
usual square section), a driving which mostly relies on a very large current (rather than
strong magnetic field) and a large horizontal size leading to large Reynolds numbers.

Finally, the study of the fully turbulent flow of a magnetohydrodynamic thin disc
finds direct application in astrophysics. For example, accretion discs, one of the most
studied problems in astrophysical fluid dynamics, involve turbulent flows in which a
fluid is in Keplerian rotation around a massive central body, usually a star, a protostar
or a black hole. The exact mechanisms by which the angular momentum is transported
outward in these discs remain unknown. Indeed, the enormous accretion rates observed by
astrophysicists indicate that the transport of material inward, losing angular momentum,
must be compensated by a large transport of angular momentum outward. Keplerian
rotation profiles being hydrodynamically stable according to the Rayleigh criterion for
centrifugal instability, a hydrodynamic linear instability cannot be invoked to explain this
angular momentum transport (Rayleigh 1917; Ji et al. 2006; Velikhov et al. 2006; Fromang
& Lesur 2019). In order to understand the existence of this regime, different mechanisms
have been proposed like subcritical transition to turbulence (Lesur & Longaretti 2005),
extraction of angular momentum by MHD winds from the disc (Lesur 2021), or the
role of density stratification (Dubrulle et al. 2005). But the most accepted scenario is
the magnetorotational instability (MRI) (Balbus & Hawley 1991), which explains how
a conducting fluid in differential rotation subjected to a sufficiently large magnetic
field can be destabilized towards a fully turbulent state. Although extensively studied
numerically and theoretically, the experimental observation of MRI remains a major
challenge for modern fluid dynamics (Sisan et al. 2004; Stefani et al. 2006; Roach et al.
2012), mainly due to the difficulty in achieving a high magnetic Reynolds number in the
laboratory, but also because of the difficulty in generating a stable Keplerian flow. In this
regard, it has been proposed that electrically conducting boundaries (Winarto et al. 2020)
and electromagnetically driven flows might be an efficient configuration for stabilizing
Rayleigh-unstable flows near the boundaries (Stefani & Gerbeth 2004) and satisfy the
required conditions for observing MRI instability in the laboratory (Khalzov, Smolyakov
& Ilgisonis 2010). The interest of our experiment with respect to this problem is therefore
twofold: first, it reproduces the thin-disc configuration, the flow configuration and the
presence of a magnetic field typical of astrophysical discs, but it also elucidates the regime
of electromagnetically driven flows at large Reynolds number.

2. Experimental set-up

2.1. General description
The KEPLER experiment (see figure 1) consists of an annular cylindrical channel with
an internal diameter 2Ri = 12 cm and an external cylinder diameter 2Ro = 38 cm (mean
radius rm = 12.5 cm, gap �r = 13 cm). It is filled with Galinstan, a eutectic alloy
of gallium, indium and tin, that is liquid at room temperature and whose physical
characteristics are summarized in table 1. A strong electrical current (up to 3000 A) is
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Figure 1. Sketch of the experimental set-up. A thin disc of diameter D = 38 cm and thickness h = 1.5
cm is filled with a liquid metal (Galinstan) and placed between two Helmholtz coils generating a vertical
homogeneous magnetic field. The cell is confined by top and bottom walls (1) made of electrically insulating
Plexiglas and by electrically conducting cylindrical walls acting as an anode (4) and cathode (6). The
cross-section of the duct is rectangular (2), and characterized by a large aspect ratio �r/h � 9. The flow
is entirely driven by the Lorentz force generated by the combined action of the vertical magnetic field (B0)
and the strong radial current (I) passing from the anode to the cathode. Velocity measurements are made by
potential probes inserted in the top wall up to the middle of the gap (5) thanks to Doppler probes inserted
in a rail inclined at an angle of 45◦ analogous to (7) not represented here for clarity. Induced magnetic field
measurements were done thanks to Hall probes inserted in a rail (7) and the pressure sensor was inserted in the
top wall (8).

Name Galinstan MCP11

Chemical composition 68.5 % Ga, 21.5 % In, 10 % Sn
Density 6.44 × 103 kg m−3 (293 K)
Electric conductivity 3.46 × 106 S m−1

Melting point 254 K
Kinematic viscosity 3.7 × 10−7 m2 s−1

Sound speed 2730 m s−1

Table 1. Physical properties of the liquid metal Galinstan used in the experiment.

injected radially by a direct current generator Power TEN P66 Series 53000 from the inner
cylinder to the outer rim. The temperature of the inner cylinder is controlled by a water
cooling system. Both electrodes are made of brass and protected from the Galinstan by an
electrochemical deposit of nickel, in order to ensure a good electric contact with the liquid
metal. The height of the cell is h = 1.5 cm, corresponding to a relatively large aspect ratio
Γ = �r/h = 8.7. The top and bottom walls are electrically insulating Plexiglas plates.
The cylinder is placed between two large Helmholtz coils generating a homogeneous
vertical magnetic field along the vertical z-axis. The coils are powered by two direct
current generators, Ametek RS 20V-250A, producing magnetic fields of up to 110 mT.
The combination of the radial current and the vertical magnetic field generates a strong
Lorentz force in the azimuthal direction.

2.2. Measurement methods
The velocity field is recorded using two different measurement techniques. First, velocity
profiles are measured with ultrasonic Doppler velocimetry, by using the commercial
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Re Urm/ν >105

Reh Uh/ν >104

Ha B0h(σ/ρν)1/2 <60 (∼0.57B0[mT])
Rm Urm/η �1
Pm Rm/Re = ν/η �1
Υ I0/2πrmhσUB0 j0/jind
ReH UδHa/ν Re/Ha
ReB UδΩ/ν Re1/2

Λ σB2
0/ρΩ δ2

Ω/δ2
Ha

Nt σB2
0h/ρU(�r/h)2 Ha2/Re(�r/h)3 ∼ 10Λ

δΩ

√
ν/Ω ∼ rm/Re1/2

δHa

√
ρν/σB2

0 ∼ h/Ha

Table 2. List of dimensionless numbers.

system DOP3010 from Signal Processing SA, in which probes send ultrasonic pulses at
regular intervals. The phase shift between the sent pulse and its echo on particles in the
bulk (mostly oxides in liquid metals) is computed in order to obtain the velocity profile
along the direction pointed by the Doppler probe. The Doppler probes are installed into
the Plexiglas plates at an angle of 45◦ with the flow. Plexiglas and Galinstan have a close
acoustic impedance, ensuring a good transmission of the ultrasonic pulses. Note that due to
the angle, the measured velocity is a linear combination of the local azimuthal component
of the velocity uθ and the vertical component uz.

In addition, both azimuthal and radial components of the velocity are also measured
using potential probes. For a conductive fluid in motion, Ohm’s law specifies that the
current density j = ∇ × B/μ0 is given by the relation j = −σ∇φ + σ(u × B), where
μ0 is the vacuum magnetic permeability, σ is the electrical conductivity and φ is the
electric potential. After having removed the injected current, the local velocity is deduced
from the potential difference (δφ) between two probes separated by a small distance d
using the relation Uθ = δφ/(B0d) where B0 is the magnitude of the vertical magnetic
field. Nine small electrodes (1 mm diameter, separated from each other by d = 8 mm)
are inserted equidistantly into the top plate through holes located between inner and
outer cylinders. These probes are nickel wires electrically insulated everywhere but at
the tip. The mean component of the velocity is obtained through measurement of the
voltage by a nanovoltmeter, Keithley Model 182, and filtered via a filter amplifier, Stanford
Research Systems Model SR560 in DC mode. The turbulent fluctuations are obtained from
amplification of the signal through a filter amplifier, Princeton Applied Research Low
Noise Amplifier Model 1900, using smaller potential probes (d = 4 mm).

Pressure fluctuations are measured by a pressure sensor Kistler Type701A (sensitivity of
82.24 pC bar−1, acquisition frequency 10 kHz), placed in contact with the liquid metal
through a hole in the top Plexiglas plate and coupled to a charge amplifier Kistler
Type5018. Finally, induced magnetic field were measured by a Teslameter F.W. Bell
Model7030 connected to Hall probes (precision up to ∼10 μT) inserted in vertical holes
in the Plexiglas plate around two millimetres away from the liquid metal.

3. Length scales and dimensionless numbers of the experiment

The dynamics of an incompressible electrically conducting fluid is described by the MHD
equations, which couple the Navier–Stokes equation to the induction equation. The latter is
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obtained from a combination of Maxwell’s equations and Ohm’s law, such that the system
of equations is

ρ
∂u
∂t

+ ρu · ∇u = −∇p + ρν�u + j × B, (3.1)

∂B
∂t

= ∇ × (u × B) + η�B, (3.2)

∇ · u = 0 ∇ · B = 0, (3.3)

where u is the velocity field, B the magnetic field, j the current density, ρ the liquid metal
density, ν is the kinematic viscosity and η = 1/(μ0σ) is the magnetic diffusivity (where
μ0 is the magnetic permeability and σ is the electrical conductivity) (table 1).

In addition to the physical properties of the fluid (ρ, ν, σ , μ0) and the geometrical
parameters of the experiment (h, rm, �r), the typical azimuthal velocity U of the fluid
is controlled by the applied current I0 and magnetic field B0. Our experiment is therefore
described by a set of six independent dimensionless numbers, the two geometrical numbers
Γ = �r/h, h/rm and the kinetic Reynolds number Re and Ha (table 2)

Re = Urm

ν
and Ha = B0h

(
σ

ρν

)1/2

. (3.4a,b)

The Reynolds number compares advection with diffusion and the Hartmann number is a
dimensionless measure of the Lorentz force (compared with viscous dissipation). Note that
an important characteristic of the KEPLER experiment is the use of very high current I0 ∼
3000 A, which leads to large Reynolds number (Re > 105) while the Hartmann number
remains moderate (Ha < 60). In KEPLER experiment, Ha ∼ 0.57B0 with B0 in mT. As
discussed later, when the flow becomes quasi-bidimensional, a better definition of the
Reynolds number is Reh = Uh/ν.

One can also define a magnetic Reynolds number Rm = Urm/η, which compares
induction with magnetic diffusion in the induction equation. Alternatively, the magnetic
Prandtl number Pm = ν/η can be used instead of Rm. In liquid metals, the kinematic
viscosity is much smaller than the magnetic resistivity (Pm = Rm/Re < 10−5). It follows
that the characteristic time of the fluctuations of the magnetic field τb ∼ l2/η is far smaller
than τν ∼ l2/ν (i.e. τb/τν � 1). Therefore, in the limit of small induction (Rm � 1), b
follows u in a ‘quasi-static’ way and the induction equation becomes (Moffatt 1961)

0 � B0 · ∇u + η�b. (3.5)

Because our experiment operates hardly outside this regime (Rm = 1 at most), MHD
phenomena requiring large induction effects are not expected. This rules out the possibility
of observing dynamo action or MRI instability for instance.

The dimensionless current is defined as

Υ = I0

2πrmhσUB0
. (3.6)

It is the ratio between the current density j0 = I0/2πrh directly injected between the
radial electrodes and the current jind � σuθB0 induced in the radial direction by the motion
of the fluid (at lowest order). Since this induced current is mostly generated in the bulk
flow, it controls the distribution of the current: at low Υ , most of the current passes through
the top and bottom boundary layers, while it occupies the whole height of the cell at
Υ � 1.

924 A29-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.635


Guidelines for authors

In principle, these six dimensionless numbers are sufficient to fully describe the flow.
However, it is useful to define two additional dimensionless ratios. The first one is related
to the boundary layers generated at the vertical walls of the experiment: two different
types of boundary layers can be generated in such MHD rotating flows at the top and
bottom boundaries. First, Hartmann layers arise when a shear flow approaches walls
perpendicular to a magnetic field. These boundary layers are characterized by a force
balance between the Lorentz force and the viscous dissipation inside a typical thickness
δHa given by δ−1

Ha ∼ B
√

σ/ρν. These layers are known (Murgatroyd 1953; Moresco &
Alboussière 2004a) to become unstable when the Reynolds number of the boundary
layer ReH = UδHa/ν = Re/Ha becomes sufficiently large. On the other hand, purely
hydrodynamical boundary layers can also be generated at the Hartmann walls: as the
rapidly rotating fluid reaches the boundaries where viscous forces dominate, an imbalance
between the decreasing centrifugal force and the radial pressure gradient produces a radial
flow in a boundary layer of typical thickness δΩ = (ν/Ω)1/2. Such Bödewadt layers can
also exhibit an instability at large Reynolds number. Following Davidson & Potherat
(2002), we introduce the Elsasser number defined by

Λ = σB2
0

ρΩ
= δ2

Ω

δ2
Ha

. (3.7)

As a ratio between the Lorentz and centrifugal forces, the Elsasser number tells which
effect dominates the establishment of the boundary layer close to the walls.

One last important dimensionless number is the interaction parameter (also known as
the Stuart number) which is the ratio between the Lorentz force and inertia, up to some
geometric factor

Nt = σB2
0h

ρU

(
�r
h

)2

= Ha2

Re

(
�r
h

)3

, (3.8)

where Nt quantifies the strength of the magnetic field compared with the inertia of the
flow. It has been shown that this true interaction parameter accurately describes the
dimensionality of MHD flows (Sommeria & Moreau 1982; Messadek & Moreau 2002;
Potherat & Klein 2014). As Nt becomes large, the velocity field becomes independent of
the direction in which the magnetic field is applied. In particular, if both Re and Nt are
sufficiently large, a quasi-bidimensional turbulent flow is expected.

3.1. Parameter space and outline of the results
Figure 2 summarizes the various results obtained with the KEPLER experiment. The
colour plot shows interpolated values of log(uθ ) in the (I0, B0) parameter space. Four
different domains have been identified. These regimes will be described in more details
in the next sections, but it is insightful to give a short overview of the parameter space
now: at large magnetic field (Nt > 10, indicated by the red dashed line) and small
Reynolds number (Re < 9000, indicated by the black solid line), the viscous–ideal regime
corresponds to a balance between the Lorentz force and the viscous dissipation, and is
characterized by a strong value of the external magnetic field such that the induction term
u × B0 dominates the magnetic diffusion term η�b where b is the induced field. The flow
is laminar, and the velocity field scales as uθ ∝ I0/r, independently of B.

At smaller magnetic field but moderate Reynolds number, the inertial–resistive regime
is obtained. The Lorentz force is now balanced by inertia, but the boundary layers
remain laminar. In addition, a significant amount of current passes through the bulk flow.
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Figure 2. Map of the logarithm of the mean azimuthal flow, log(	uθ ) as a function of (I0, B0), measured
with the potential probes. The red dashed line (Nc = 10) and the black solid line (ReB = 300) delimitate the
transition between the different regimes generated in the experiment. The points indicate the four typical runs
discussed in § 6.

The corresponding velocity field scales as uθ ∝ (IB)2/3r−1/3f (�r/r) (f being an unknown
function) and remains in a quasi-Keplerian state. Note that the first regime has been
identified in previous MHD experiments and well described theoretically (Baylis 1971;
Messadek & Moreau 2002). Although not discussed in detail by previous experimental
studies, analysis of published data suggests that the second regime has also been observed
in previous experiments.

However, when the Reynolds number is increased, the flow then bifurcates to a
quasi-bidimensional turbulent flow regime, in which both the bulk and the boundary layers
are turbulent. In this so-called ultimate regime, we observe a new scaling uθ ∝ √

IB/r,
corresponding to a turbulent Keplerian velocity profile sharing some similarities with
the velocity profile expected in accretion discs. This turbulent regime is observed only
if the magnetic field is not too large, for Nt < 10, and therefore requires an extremely large
applied current.

Finally, at large magnetic field (Nt > 10) and large Reynolds number (Re > 9000),
we observe a bi-dimensional turbulent regime which exhibits a slow dynamics and
condensation of the energy at large scale.

4. Flow regimes and transition to turbulence

Most of previous experimental studies focused either on the laminar regime (obtained
at small Re, large Ha) or on the regime of quasi-bidimensional turbulence (observed at
large Nt, large Re). The novelty of the KEPLER experiment lies in the use of very large
applied current (maximum current Im

0 = 3000 A) and a moderate applied magnetic field
(maximum field Bm

0 ∼ 0.11 T). The forcing, controlled by the product I0B0, can therefore
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reach very large values (Im
0 Bm

0 ∼ 300 TA) while keeping the Hartmann number small
(Ha = 60 at most). By comparison, Messadek & Moreau (2002) reach comparable values,
Im
0 Bm

0 ∼ 500 TA, but only at very large magnetic fields (B0 ∼ 5 T), corresponding to
Ha ∼ 1500. Here, the smallness of Ha makes possible to observe a full destabilization
of the Hartmann layers, leading to flows that are significantly more turbulent. On the other
hand, the relatively weak values of our applied magnetic fields are somehow compensated
by the large aspect ratio of the experiment �r/h ∼ 9 and the large value of �r. This leads
to values of the interaction parameter Nt that are not too small, allowing us to observe
quasi-bidimensional turbulence in some parameter range.

To see how these different regimes are generated, figure 3(a) shows time-averaged
measurements obtained from the potential probes located at a radial distance r = 12 cm,
approximately in the middle of the cylindrical gap. We plot the mean value of uθ as a
function of the applied current I0, for different values of the magnetic field, ranging from
B0 = 6 mT to the highest possible value B0 = 110 mT. The typical velocities of the flow
span a large range of values, from 1 cm s−1 to a few metres per second, yielding Re ∼ 105

at most. Since the applied field can both drive flow motions and laminarize it, figure 3
shows the same data but with uθ plotted as a function of I0B0 instead. Three different
scaling laws can be deduced from these data.

4.1. Viscous–ideal flows
At large magnetic field (Ha ≥ 30), figure 3(a) shows that the velocity scales linearly with
the applied current at low I0. This regime has been first described theoretically by Baylis &
Hunt (1971) for a laminar axisymmetric flow in a toroidal channel of square cross-section,
and later confirmed by most experimental studies mentioned in the introduction.

The theoretical prediction for this laminar flow can be retrieved by simple arguments.
When the Elsasser number Λ is sufficiently large, the Hartmann layers are much thinner
than Bödewadt layers, meaning that most of the velocity gradient occurs in layers of
size δHa. In addition, if Υ is small, most of the applied current I0 passes through the
two Hartmann layers with a current density j � (I0/(2πr(2δHa)))er in each layer. The
azimuthal Lorentz force Fθ = jrB0 is then balanced in the Hartmann layer by the viscous
dissipation ρν�u ∼ ρνuθ /δ

2
Haeθ , leading to

Uθ = I0

4πr
√

ρνσ
. (4.1)

In this expression, B0 does not appear explicitly, although it controls the
bi-dimensionalization of the flow. Note that this expression stands only if the Shercliff
boundary layers generated at the surface of the cylinders parallel to the magnetic field do
not interfere with the bulk flow. This means r2 − r1 � h/

√
Ha, which is well satisfied in

the KEPLER experiment. Note that the ideal term used here refers to the fact that magnetic
diffusion term η�b can be neglected compared with the induction uB0. It is, however,
important to mention that this comes from the fact that the field B0 is strong, and is quite
different from the classical ideal MHD generally obtained when Rm � 1.

The velocity field obtained at large B0 and low current agrees very well with this
prediction, indicated by the dashed line in figure 3.

4.2. Inertial–resistive flows
Figure 3(b) shows that, in fact, two different scaling laws can be obtained at low forcing:
for Ha ≥ 30, the linear scaling uθ ∝ I0 of the viscous–ideal regime described above,
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Figure 3. (a) Mean azimuthal flow 	uθ vs the applied current product I0 measured by the potential probes for
different values of the applied field B0. The velocity is measured at a radial distance from the centre r = 12 cm.
(b) Same, plotted as a function of the product I0B0. Three different scaling laws can be observed, indicated
by the solid line (uθ ∝ √

I0B0), the dashed line (uθ ∝ I0) and the dash-dotted line (uθ ∝ (I0B0)
2/3). Here,

Ha ∼ 0.57B0 with B0 in mT.

and a scaling of the form uθ ∝ (I0B0)
2/3 at smaller Ha. A similar regime seems to have

been observed in at least one previous experiments (Baylis 1971) and one recent numerical
study (Poye et al. 2020). As shown by figure 3, this regime is observed for I0B0 < 10 and
B0 < 40 mT. We give below simple arguments to explain this regime, following closely
Poye et al. (2020).

In the bulk flow, inertia terms in the azimuthal direction are balanced by the applied
Lorentz force I0B0/(2πrh). In contrast to the previous case, experimental values of Υ

suggest that the fraction of current passing through the bulk should be relatively large.
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It follows that

uθ � I0B0

2πρhur
f
(

�r
r

)
, (4.2)

where the inertial term ρuruθ /r is larger than ρur∂ruθ because r is smaller than the gap �r
in the inner part of the disc. At large radii, r > �r and the second term might be dominant,
which is taken into account by the function f . Because r ∼ �r in any cases, the function
f is expected to be of order one and the choice of the inertial term will not change the
scaling law.

For moderate magnetic fields, when Λ ≤ 1, the radial inflow near the boundaries is
mostly dominated by the Bödewadt layers. The corresponding imbalance between the
centrifugal force in the layer and the pressure gradient ∂rp ∼ ρu2

θ leads to

uBL
r ∼ δ2

Bu2
θ

νr
, (4.3)

where uBL
r is the typical radial velocity in the Bödewadt layer of thickness δB. Because

uz is presumably small in the bulk flow, incompressibility implies
∫ h

0 ur dr ≈ 0 at lowest
order and so urh ∼ 2δBuBL

r . By combining this last result, with expressions (4.2) and (4.3),
one finally obtains

uθ =
(

I0B0

4πρ
√

ν

)2/3

r−1/3f
(

�r
r

)
. (4.4)

Note that the unknown function f may influence the radial dependence, but not the
scaling law for the magnitude of the flow because f ∼ 1. Although the scaling law (4.4)
shares some similarities with the one found by Poye et al. (2020), our full expression is
quite different, and leads to values one order of magnitude smaller. This is due to some
differences between our experiment and the set-up studied by these authors, in particular
the relatively large aspect ratio used here (�r/h ∼ 9) and the fact that rm ∼ �r in the
KEPLER experiment. When plotting the results of Baylis (1971) in this form, it appears
that their data follow a similar dependence uθ ∝ (I0B0)

2/3. A dependence uθ ∝ (I0)
2/3

based on a different argument was also observed by Potherat & Klein (2014), although
their set-up is quite different. At the exception of Messadek & Moreau (2002) where a very
turbulent flow is reached, we argue that this regime is probably the one mostly observed
in previous experiments operating at large Reynolds number.

Prediction (4.4) (with f = 1) is shown by the dash-dotted line in figure 3. It fits our
experimental data with a very good agreement.

4.3. Keplerian turbulence
Finally, when the forcing due to the Lorentz force becomes sufficiently strong, the flow
undergoes a new transition from the previous laminar flows toward a presumably turbulent
state. Figure 4(a) shows that for I0B0 > 10, all the data collapse on a single curve. The
best power law to fit the data is uθ ∝ (I0B0)

0.54±0.01.
This result can be understood by assuming that the bulk flow is fully turbulent, such

that the Reynolds stress gradient ρ∂iuiuj overcomes the inertial terms involving the
mean velocity ρ(	ui∂i)ūj. In addition, because of the large aspect ratio of the experiment
h � rm, �r, the Reynolds stress is mostly dominated by the components τiz = ρ∂zuiuz.
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Figure 4. (a) Mean azimuthal flow uθ vs the forcing I0B0 in the fully turbulent regime. All our data collapse
onto the theoretical prediction given by (4.8) (solid line). (b) Turbulent velocity u∗ estimated from the standard
deviation of uθ for B = 20 mT, and compared with (4.5). Here, Ha ∼ 0.57B0 with B0 in mT.

The azimuthal component of the Navier–Stokes equation therefore reduces to a balance
between the Reynolds stress ρ∂zuθuz and the applied Lorentz force

u∗ =
√

I0B0

4πρr
, (4.5)

where the additional factor 2 comes from the estimate ∂zuθuz ∼ 2(u∗)2/h, with u∗ the
typical velocity of the turbulent structures. This prediction for the intensity of the turbulent
fluctuations matches very well our experimental data, as shown by figure 4(b).

In the KEPLER experiment, the relevant boundary layers at the vertical wall are either
the Hartmann layer at high Λ or the Bödewadt layer at low Λ. In the former, the stability
of the layer is controlled by the Reynolds number ReH based on δH , while in the latter,
the relevant critical number is the Reynolds number ReB based on the thickness of the
Bödewadt layer. Moresco & Alboussière (2004b) have predicted that pure Hartmann
layers should become turbulent for ReH = Ha/Re > 400. Although it is well known that
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this criterion strongly depends on the Elsasser number when rotation effects are present
(Davidson & Potherat 2002; Moresco & Alboussière 2004b), we expect a similar value
here, since Λ is never much larger than one in our experiment (except in the viscous–ideal
regime where Λ ∼ 10). In the regime studied here, as long as the forcing I0B0 remains
larger than 10, ReH is between 400 and 2500 and RB is larger than 200. It is therefore
reasonable to expect the Hartmann–Bödewadt boundary layers to become turbulent at large
forcing. Let assume a classical logarithmic profile for the turbulent boundary layer

	uθ (z)
u∗ = 1

κ
ln

(
u∗z
ν

)
+ C, (4.6)

where κ is the Kármán constant and C ≈ 5. Figure 4 shows that the turbulence intensity
is relatively small, u∗/	uθ ∼ 3.10−2 � 1, so (4.6) evaluated in the bulk (z = h/2) can be
approximated by

	uθ

u∗ = ln(Reh)

κ
, (4.7)

where the Reynolds number is supposed large enough to overcome contributions from
neglected terms. By combining relations (4.5) and (4.7), we finally obtain the following
prediction for the turbulent regime:

	uθ = α
ln Reh

κ

√
I0B0

4πρr
. (4.8)

Note that because of the assumptions made during the derivation of this law, agreement
between this prediction and experiments is only expected up to some pre-factor α of order
one. In particular, MHD effects may very well modify the properties of the turbulent layer
through the value of the parameters κ and C.

Despite these approximations, solution (4.8) with α = 1.5, represented by the solid blue
line in figure 4, matches remarkably well the experimental data. In particular, figure 4
shows that the logarithmic correction is necessary to fit the data, as it clearly increases the
exponent of the power law.

Several remarks can be made on this prediction. First, except for the logarithmic
correction, it is independent of h. This is reminiscent of the turbulent nature of the
boundary layers. This expression is only valid in the limit of a thin-disc geometry, which
leads to take h rather than r in the nonlinear term. When h is increased (experiments
not reported here), we observed that this Keplerian profile (the radial scaling in r−1/2)
disappears. However, the square-root dependency in I0B0 stands because it comes from
a natural balance between the advection and the Lorentz force (Boisson et al. 2017).
Note also that because this expression requires a destabilization of the boundary layers,
it relies on a 3-D cascade of energy. This forward transfer of energy towards small
scales is, however, only required for scales smaller than the typical thickness h, and no
constrains exists on the larger scales. This explains why the scaling law (4.8) can be
associated with quasi-bidimensional turbulence. On the other hand, this regime is only
observed for interaction parameter not too large, namely Nt < 10. It means that although
quasi-bidimensional, it cannot be described by purely 2-D Navier–Stokes equations.

Because the angular velocity profile is Ω ∝ r−3/2, we refer to this solution as Keplerian
turbulence. Although generated through a different mechanism, such profiles are expected
in many astrophysical objects in which the centrifugal force balances gravity forces, as
discussed in more details in § 5.
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Figure 5. Colour map of the exponent ξ of the mean azimuthal flow uθ ∝ Iξ
0 in the parameter space (I0, B0).

The three regimes ξ ∼ 1, ξ ∼ 2/3 and ξ ∼ 1/2 can be clearly distinguished (see the text).

4.4. Transitions between the different regimes
Figure 5 is very insightful to understand what controls the transition between the different
regimes discussed above. To obtain this figure, we calculate the characteristic exponent of
the scaling law

ξ = ∂ ln(	uθ )

∂ ln I0
(4.9)

and plot it in the parameter space (I0, B0). The red area corresponds to the viscous–ideal
regime (ξ ∼ 1), the light blue to the inertial–resistive case (ξ ∼ 2/3) and the dark blue
to the Keplerian turbulence (ξ ∼ 1/2). The red dash-dotted line corresponds to Nt = 10
and delimitates the region between strong and moderate magnetic field. Indeed, for large
interaction parameter, most of the current passes through the thin Hartmann layers where
the corresponding Lorentz force is balanced by viscosity (rather than inertia). As Nt is
reduced below 10, the Bödewadt boundary layer generates a strong radial inflow near
the wall. The interaction between this wind and the inertia in the bulk leads to the 2/3
scaling law, as explained in the previous section. Note that in this regime, the Reynolds
number Re is sufficiently small so the flow remains laminar. Alternatively, this transition
can be predicted by balancing the two expressions for the mean azimuthal velocity given by
(4.1) and (4.4), leading to the (velocity-free) dimensionless ratio 4πr2B2

0

√
νσ 3/I0

√
ρ. The

transition between the viscous–ideal and the inertial–resistive regime then occurs when
this ratio is equal to one. Note that this ratio is an Elsasser number Λ in which the velocity
is evaluated thanks to (4.1).

The transition from the 2/3 regime to the turbulent one is less trivial. At small magnetic
field, the Bödewadt layer is much smaller than the Hartmann one, and its stability is
fully controlled by a critical Reynolds number ReB = uδB/ν based on the Bödewadt layer
thickness (black solid line). In contrast, at large magnetic field, the stability of the thinner
Hartmann layer is measured by the Reynolds number ReH based on the thickness of this
layer. We observe that the flow consequently bifurcates to the Keplerian turbulent regime
along the line ReB ∼ 400 (solid black line) at low field, while the transition rather takes
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Figure 6. (a) Fluctuations (standard deviation) of the three components of the magnetic field as a function of
the injected current I for an imposed magnetic field B0 = 800G (80 mT). (b) Fluctuations (standard deviation)
of the pressure as a function of the injected current I for an imposed magnetic field B0 = 700G (70 mT).

place at a critical ReH ∼ 300 (dashed black line) at large field (for B0 > 50 mT). Figure 5
therefore strongly suggests that the transition to the Keplerian turbulence is therefore
ultimately triggered by the instability of Hartmann–Bödewadt layers.

Figures 6(a) and 6(b) show that the transition to turbulence in the experiment is
associated with a strong (yet continuous) increase of the fluctuations of both induced
magnetic field and pressure, without hysteresis. These results suggest that the Keplerian
turbulence always occurs through a smooth supercritical transition.

4.5. Energy budget
Because conducting fluids can either dissipate energy viscously or by ohmic dissipation,
the question of the energy budget of such electromagnetically driven flows is highly
non-trivial. In electromagnetically driven flows, the energy equation is (Reddy, Fauve &
Gissinger 2018)

∂tEu = −Dν + T, (4.10)

∂tEb = −Dη − T + F, (4.11)

where Eu = ρ
∫

V d3x(u2/2), (respectively Eb = ∫
V d3x(B2/2μ0)) is the total kinetic

(respectively magnetic) energy, Dν = ρν
∫

V d3x(∇ × u)2 (respectively Dη = (1/σ)∫
V d3x j2) is the viscous (respectively ohmic) dissipation; T = (1/μ0)

∫
V d3xB ⊗ B : ∇ ⊗

u is the term which couples the two equation and corresponds to the transfer of energy
between the two fields and F = η

∮
∂V dS · ( j × B) is the injected power.

In addition, one can also define the efficiency γ of the transformation as the ratio
between the work of the Lorentz force and the total injected power γ = T/F. In stationary
state, this measure of the amount of energy which is transferred to the kinetic part can
also be written γ = Dν/(Dν + Dη). This energy budget essentially depends on the flow
regime, or more precisely on the degree of turbulence in the flow. First, in the viscous–ideal
regime, the velocity gradients are essentially confined to the two top and bottom Hartmann
boundary layers and the electrically current almost entirely passes through these layers.
At the leading order, the current density is therefore given by j ∼ I0/(4πrδHa), and the
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dissipations are given by

Dν ∼ 2ρνSU2

δHa
, (4.12)

Dη ∼ 2SI2
0

(4πr)2δHa
, (4.13)

where S is the surface of the endcap. In the laminar regime, the velocity U is given by
expression (4.1), and the dissipation ratio Dν/Dη is simply equal to one. The efficiency γ

of the magnetic to kinetic energy conversion is therefore 50 %.
An exact calculation is not possible in the turbulent regime, but a general trend can be

obtained: our scaling laws in this regime suggest that most of the viscous dissipation occurs
in the Bodewadt boundary layer of typical size δΩ , and that the electrical current flows
through the entire height of the channel. At leading order one would get j ∼ I0/(2πrh)

and

Dν ∼ ρνSU2

δΩ

∼ ρνSU5/2
√

νr
, (4.14)

Dη ∼ SI2
0

σ4π2r2h
. (4.15)

This leads to the dissipation ratio: Dν/Dη ∼ 4π2r3/2ν1/2hσ(U5/2/I2
0) where the prefactor

is equal to 0.1 in our set-up. By setting U ∼ 1 m s−1 and I0 ∼ 1000 A as typical values
of the turbulent regime, one gets Dν/Dη ∼ 10−7. In other words, the turbulence ‘destroys’
the efficiency of the energy transformation, and the dissipation in the turbulent regime is
almost entirely due to ohmic dissipation, thus leading to a strong Joule heating of the liquid
metal at large current and large magnetic field. As explained in § 2, the inner cylinder is
therefore cooled in order to keep the experiment at variations of σ less than one per cent.

These results of an efficiency bounded by 50 % and decreasing with the level of
turbulence are surprisingly similar to the one obtained by Reddy et al. (2018) in a very
different MHD set-up, suggesting some universal behaviour of the energy budget of
electromagnetically driven flows.

4.6. Low frequency oscillations
At large magnetic field and moderate current, there is a small region of the parameter
space in which both ReB and Nt are beyond their critical values Rec

B and Nc
t . Interestingly,

in this region, the velocity field exhibits a slow dynamics characterized by low frequency
oscillations and interpreted as large scale structures being advected by the mean flow.

Indeed, for B0 > 95 mT, 30 A < I0 < 100 A, the frequency spectra generally show a
peak of energy at low frequencies (f ∼ 1–5 Hz). Time series of figure 7(a) show that this
condensate of energy at large scale corresponds to a periodic oscillation of the flow with
its lowest frequency at f ∼ 2 Hz, quite comparable to the advection time tu = �r/uθ ∼
5 × 10−1 s. As shown by figure 7(b), these oscillations appear only at a critical current
I0 ∼ 30 A, corresponding to ReB > Rec

B = 400. The transition to this regime takes the
form of a supercritical bifurcation which occurs only in a given range of current with no
sign of hysteresis. As the current is increased at fixed magnetic field, the amplitude of these
oscillations suddenly goes to zero (for Nt ∼ 10) and they are replaced by the turbulent flow
described above (see figure 7c).
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Figure 7. (a) Time series of the fluctuations of uθ , measured with a potential probe for B0 = 110 mT and
I = 30 A. (b) Amplitude of the low frequency oscillation as a function of the magnetic field B0 for different
values of I0. (c) Same as a function of the current, together with the standard deviation of the azimuthal
component of the velocity.

These results are very close to the ones obtained by Messadek & Moreau (2002), who
reported similar low frequency oscillations. In their experiment, the current was injected
by an array of electrodes located at an intermediate radius between the inner electrode
and the outer cylinder of the experiment. These oscillations were therefore attributed to
an instability of the shear layer generated near the electrodes between the active flow and
the fluid at rest in the outer part of the experiment. There is, however, no steady region
in our experiment, since the current is injected directly between the inner and the outer
cylinder. These oscillations are more likely to be the consequence of some boundary layer
instability. In this perspective, it is interesting to note that the Reynolds number based
on the thickness of Shercliff layers generated at the radial boundaries is also relatively
large (Resh > 103), such that an instability of these layers could be responsible for the
oscillations. In this regard, these results are much closer to the periodic oscillations found
by Tabeling near the onset of turbulence in electromagnetically driven Taylor–Couette
flows (Tabeling & Chabrerie 1981).

In any case, these oscillations can be attributed to large scale bi-dimensional structures
of typical size l ∼ 6 cm which are advected by the mean azimuthal flow. Because
they occur in the region delimited by (Nt > 10, Re > 9000), they could in principle be
described by purely 2-D Navier–Stokes equations.

5. Velocity profiles and transport of angular momentum

Expressions (4.1), (4.4) and (4.8) lead to three different predictions for the velocity profile.
Interestingly, each of these profiles describes a well-known physical situation encountered
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Figure 8. (a) Angular velocity Ω(r) obtained from potential probes, for three typical sets of parameters
(I0, B0), corresponding to the three different regimes predicted. (b) Global angular momentum vs I0B0. Here,
Ha ∼ 0.57B0 with B0 in mT.

when studying the stability of toroidal flows. Figure 8(a) shows the angular velocity Ω for
three different sets of parameters corresponding to these three regimes.

First, the black circles correspond to the viscous–ideal profile Ω ∝ 1/r2 which
generates an angular momentum l = Ωr2 that is constant in radius. This profile is therefore
marginally stable, since l = cste is precisely Rayleigh’s criterion for the stability of
inviscid circular flows. Except close to the inner cylinder, the data are relatively close
to the prediction. Note that the transport of angular momentum is then achieved by the
viscous dissipation in the boundary layer.

The inertial–resistive regime (green squares) exhibits a less steep profile, as predicted
by (4.4). This type of profile between global rotation and marginal stability (in which q =
−∂ ln Ω/∂ ln r is between 0 and 2) is generally called a quasi-Keplerian profile. However,
if the theory succeeds in predicting the magnitude of the flow, the predicted profile
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Ω ∝ r−4/3 is only observed for a small range of r in the middle of the gap. This is not
surprising, as the unknown function f (�r/r) in the prediction (4.4) must strongly modify
the velocity profile.

Finally, the turbulent regime exhibits a large range on which the velocity field satisfies
the predicted Keplerian rotation rate, with q = 3/2. Such Keplerian profiles are very
different from what is observed in Taylor–Couette flows at large Reynolds number. In the
latter, once both the bulk flow and the radial boundary layers are turbulent, the differential
rotation remains generally confined close to the radial boundaries, and the bulk flow
exhibits a flat profile. The persistence of a mean Keplerian profile uθ ∝ 1/

√
r in the bulk

flow comes from the volumic Lorentz force driving the flow, absent in boundary-driven
Taylor–Couette (TC) flows (Avila 2012; Lopez & Avila 2017).

Figure 9(a) (respectively figure 9b) shows radial profiles of the mean azimuthal velocity
field obtained from potential probes (respectively Doppler velocimetry). First, the good
agreement between the two types of measurement indicates that, at least in this regime,
the vertical component of the velocity is negligible. In addition, it shows that the change
in the velocity profile from marginal flows to Keplerian rotation rates appears smoothly
when the current is increased at fixed magnetic field. Moreover, figure 9(b) focuses on the
Keplerian regime only, and shows that once in the turbulent regime, the velocity profile
remains completely unchanged (the current has been varied by an order of magnitude
without noticing any change). This suggests some ultimate nature of this turbulent regime.

The term ultimate regime used here refers to the ultimate regime of thermal convection
predicted by Kraichnan (1962), who used similar arguments to derive a law for heat
transport in strongly turbulent flows. Because of the analogy between Rayleigh–Bénard
convection and Taylor–Couette flows, an analogue ultimate regime has been extensively
studied in rotating flows in a cylindrical geometry, see for instance Huisman et al. (2012).
The evolution of the global angular momentum

L =
∫ rmax

rmin

r2 	uθ (r) dr (5.1)

is shown in figure 8(b) and clearly illustrates the existence of three different types of
angular momentum transport. As in Taylor–Couette flows, the Keplerian regime can be
regarded as an ultimate turbulent regime occurring only at very large Reynolds number
and transporting very effectively the angular momentum outward.

This question of the angular momentum transport is crucial in astrophysics. As
explained in the introduction, accretion discs around black holes and proto-stars are known
to exhibit similar turbulent rotation profiles Ω ∝ r−3/2 and exhibit very efficient angular
momentum transport for reasons that are still unclear. Keplerian rotation rates can only be
approached in Taylor–Couette experiments, and there is a fairly active debate as to whether
or not such quasi-Keplerian flows are turbulent and efficient in transporting angular
momentum at large Reynolds number (Ji et al. 2006; Eckhardt, Grossmann & Lohse
2007; Paoletti & Lathrop 2011; Avila 2012; Paoletti et al. 2012; Fromang & Lesur 2019).
It is therefore interesting to obtain here a truly Keplerian flow, in a regime undoubtedly
turbulent. Although the turbulence originates from mechanisms radically different from its
astrophysical counterpart, the KEPLER experiment provides an interesting experimental
analogue of a Keplerian accretion disc, at least regarding the angular momentum profiles,
the aspect ratio and the presence of a magnetic field which are typical of these astrophysical
objects. Naturally, the problem is quite different from the Taylor–Couette problem, mostly
because of the presence of the volumetric Lorentz force driving the flow and the fact that
the mean flow is Rayleigh stable. In particular, the KEPLER experiment is associated with
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Figure 9. (a) Angular velocity obtained from potential probes for B0 = 110 mT, for increasing current showing
the transition from the laminar profile (4.1) (dashed black line) to Keplerian turbulent flows (4.8) (solid red
line). (b) Angular velocity Ω(r) obtained from Doppler probes, for five values of injected current I (200, 400,
600, 800 and 1000 A). The dashed line corresponds to a power law r−3/2. Here, B0 = 80 mT, Ha ∼ 0.57B0.

a transverse current of azimuthal motion which is not conserved in the radial direction,
contrary to classical set-ups. In this regard, the transport of angular momentum in our
system is therefore more analogous to Rayleigh–Bénard convection with internal heating.
A full discussion of this analogy and of the angular momentum transport in this experiment
is thus beyond the scope of this paper, and will be reported in a forthcoming article.

6. Quasi-bidimensional turbulence

6.1. Power spectra and energy fluxes
The above results show that, at large forcing I0B0, the flow is clearly turbulent. The
dimensionality of this flow is, however, less trivial. Most previous experiments on similar
electrically driven flows reported the generation of quasi-bidimensional turbulent flows
at large magnetic field. There are, however, two important differences with the results
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Figure 10. (a) Power spectral densities measured with the potential probes at four different points in the
parameter space. The lines correspond to scalings E(k) ∝ k−5/3 and E(k) ∝ k−3. (b) Coefficient of the slope
of the power spectral density as a function of the injected current I in the range: k = [100–300]. Here,
Ha ∼ 0.57B0 with B0 in mT.

reported here: our experiment operates at a significantly smaller interaction parameter Nt,
and takes place in a very thin layer of thickness h � �r, leading to a different regime.

Figure 10(a) shows typical examples of power spectra obtained in the turbulent regime.
These spatial spectra were obtained from time series using a Taylor hypothesis based on
the fact that the mean azimuthal flow is much larger than the fluctuations. Note that the
four cases studied here are indicated by circles in figure 2.

In three of the four cases presented in figure 10, Re > 1, 5 × 105, RB > 360 and Λ < 1,
such that they all belong to the turbulent regime described in the previous section, but
the interaction parameter Nt remains between 0.25 and 16. Such values are much smaller
than the ones used previously in similar experiments, but sufficiently large for quasi-2-D
turbulence to be generated.

In all cases except for the low frequency region, the velocity field uθ exhibits important
turbulent fluctuations (u′

θ /	uθ ∼ 10 %) and all energy spectra computed at B0 < 100 mT
follow closely E( f ) ∝ f −5/3 for 2π/�r < k < 2π/h with a much steeper slope for
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k > 2π/h. The latter can probably be attributed to the cutoff of the potential probes,
which are limited by the finite distance lp between the two electrodes measuring the
local voltage and generate a k−11/3 spectrum for wavenumbers k > 2π/lp (Berhanu et al.
2008). Figure 10(b) reports the slope α of the power spectral density (PSD) computed for
wavenumbers k = [100–300], which correspond to distances midway between the largest
(horizontal) scale �r and the smaller vertical scale h of the experiment. It shows that this
k−5/3 exponent is observed for a large range of the parameters (I0, B0), and deviations
from it occur only at very large field and small current.

This k−5/3 spectrum could correspond either to a direct 3-D turbulent cascade of energy
as predicted by Kolmogorov, or to the Kraichnan prediction of an inverse cascade of energy
towards the large scales.

In order to access the energy flux characterizing the turbulent cascade, one can compute
the third order structure functions of the velocity field defined by

S3(�) = 〈(u(x, � + d�) − u(x, �))3〉x, (6.1)

where 〈· · · 〉x denotes a spatial average. Since we do not have access to well resolved
spatial measurements, we rather computed S3 from very long time series of the velocity
field acquired from the potential probes. To do so, we introduce the velocity increment
δu(t, τ ) = u(t + τ) − u(t) as the difference between the values of the flow velocity at
time t + τ and t. One can then take advantage of the strong mean azimuthal flow to
transform the quantity S3(τ ) = 〈δu(t, τ )3〉t into S3(�) by use of the Taylor hypothesis
� = τ 	uθ . Depending on the direction of the flux of energy (in the k-space), two different
behaviours are possible: in 3-D turbulence, the famous Kolmogorov 4/5 law S3(�) =
−4

5ε� is expected from the injection scale to the viscous dissipation scale. In the case
of an inverse cascade, Kraichnan rather predicted an inverse cascade towards large scale
with a positive structure function S3(�) = −3

2ε�, where ε is now negative.
Figure 11 shows typical structure functions S3(l), obtained for the same set of parameters

as for figure 10. They all correspond to different physical situations. For B0 = 20 mT and
I0 = 400 A, the energy is injected at a scale slightly smaller than h. It then essentially
cascades towards the large scales, as evidenced by the positive value of S3(�) and its linear
dependence S3(�) ∝ � in the range � = [h − �r]. The corresponding k−5/3 spectrum of
the PSD therefore corresponds to an inverse cascade of energy as predicted by Kraichnan.

For larger forcings (I0B0 = 20 or I0B0 = 65), the structure functions now clearly exhibit
negative values in the range � = 1–30 mm, and positive values for � > 3 cm. The injection
energy presumably takes place at an intermediate scale, leading to a (limited) scale
separation �r > �inj > h, which is typical of thin layer turbulence. The negative values
of S3(�) are therefore the signature of a direct cascade of energy which takes place from
�inj to smaller scale. On the other hand, some part of the energy also cascades upscale
from �inj to �r, as shown by the positive values of S3 in this range. This split cascade of
energy, in which the energy is injected at an intermediate scale h < �inj < �r and cascades
in both directions, is very similar to the one predicted for turbulence in very thin layers
when the injection scale is much larger than the thickness h but much smaller than the
largest scale (here �r) (Celani, Musacchio & Vincenzi 2010; Xia et al. 2011; Benavides &
Alexakis 2017). Here, the natural integral scale for the 3-D structures is the height of the
disc, such that we expect �inj not too far from h. In this regime, the k−5/3 spectrum of the
PSD for k > 2πh describes a forward cascade of energy, while the rest of the spectrum
still corresponds to the inverse cascade. Note that, in thin layer turbulence, the forward
cascade of energy at small scale is accompanied by a co-directional cascade of enstrophy
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Figure 11. Structure function S3(l) at four different points in the parameter space. Inset: log–log plot of the
modified structure functions 〈|δVL|3〉. Here, Ha ∼ 0.57B0 with B0 in mT.

in the range [linj − h]. This enstrophy spectrum is not visible in our data, probably because
of the very limited scale separation of the experiment.

Finally, the regime observed at B0 = 110 mT, I0 = 60 A and reported in figures 10
and 11 obviously corresponds to a different regime than the double cascade described
above. These parameters are located deep inside the regime of low frequency
oscillations described in section 4.5. When this large scale instability occurs, it produces
bi-dimensional vortices of the size of the gap � ∼ �r which are advected by the mean
flow and periodically passes through the probe. These vortices can be regarded as a type
of condensate resulting from the inverse cascade (Sommeria 1986). The k−3 spectrum
shown in figure 10 may therefore be a signature of this condensate, which takes the form
of localized vortices travelling along the azimuthal direction.

This scenario is very different from the one given by Messadek et al., where the
k−3 spectrum is interpreted as an inverse cascade of energy modified by the strong
Hartmann damping when the dissipation in the Hartmann layer is dominant at each
wavenumber within the inertial range. We, however, emphasize that, because the low
frequency oscillations strongly dominate the dynamics of the flow at large scale, the values
of the structure function in the range � = 1–10 cm probably does not accurately describe
the energy flux. It is then difficult to determine which of these scenarios is correct. In any
case, this regime is associated with a very small energy flux at scales smaller than h.

6.2. Transition from direct to inverse cascade
In the recent years, the question of the transition from direct to inverse energy transfer in
quasi-2-D systems has been at the centre of many studies, as summarized in the review of
Alexakis & Biferale (2018). To follow the transition between these different regimes, we
estimate the energy flux at a given scale �∗ by computing the quantity

ε = −
〈

S3(�)

�

〉
, (6.2)
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Figure 12. (a) Energy flux at large wavenumber (� = [10−3 − 10−2] m) as a function of 	Uθ /
√

B0, showing
a direct cascade of energy. (b) Energy flux at small wavenumber (� = [10−2 − 10−1] m) as a function of
	Uθ /

√
B0, showing a transition from a direct to an inverse cascade of energy. The two black dashed lines

correspond to the scaling |ε| ∝ 	Uθ
3. Here, Ha ∼ 0.57B0 with B0 in mT.

where the average is taken on a given range of � centred on �∗. With this definition, a
positive (respectively negative) value of ε corresponds to a flux of energy towards the
small (respectively large) scales. Figure 12(a) shows the flux εf calculated on the range
� = 10−3 − 10−2 m at small scale, while figure 12(b) shows the flux εi calculated on the
range � = 10−2 − 10−1 m, at large scale. We plot this energy flux as a function of the
ratio 	Uθ /

√
B0 which rescales on a single curve the data obtained for different Hartmann

numbers.
Two different states are clearly identified: the regime generated at 	Uθ /

√
B0 < 1 by the

large scale oscillations of the flow is associated with a very weak flux of energy at small
scale (figure 12a) and a condensate at large scale (S3 > 0, see figure 12b). For 	Uθ /

√
B0 >

1, this regime is replaced by a state characteristic of thin layer turbulence: scales smaller
than h are characterized by a direct cascade of energy (ε > 0, see figure 12a). The energy
flux strongly increases with the velocity, and seems to follow a turbulent scaling ε ∝ 	Uθ

3.
At large scales h < � < �r, the flux is negative in this regime, as expected for an inverse
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cascade of energy and follows the same scaling |ε| ∝ 	Uθ
3 but with a larger amplitude:

most of the injected energy cascades upscale.
At 	Uθ /

√
B0 ≈ 1, a sharp bifurcation is observed between these two states. Although it

describes a bifurcation between the condensate and some sort of thin layer turbulence, it
is interesting to note that it takes the form of a second-order phase transition, similarly
to what was observed in numerical shell models (Benavides & Alexakis 2017) for the
transition between direct and inverse cascade.

7. Concluding remarks

The thin-disc geometry h/�r ∼ 0.1 of the KEPLER experiment, combined with the use
of a very large applied current and a large horizontal size allows us to study regimes
of electromagnetically driven flow previously unexplored. Three different regimes were
observed, depending solely on the values of the interaction parameter Nt and the Reynolds
number Re compared to their critical values Nc

t � 10, Rec � 9 × 104.
At large interaction parameter (Nt > Nc

t ) but small Reynolds number (Re < Rec), the
Lorentz force is balanced by viscosity, leading to the classical laminar solution, in which
the velocity is independent of the magnetic field at the lowest order. In our thin-disc
geometry, this solution exhibits a marginally stable profile Ω ∝ r−2.

At smaller interaction parameter (Nt < Nc
t ) and moderate Reynolds number (Re < Rec),

this laminar solution bifurcates to a regime in which the Lorentz force is now balanced
by inertia, leading to a non-trivial dependence uθ ∝ (IB)2/3r−1/3f (�r/r). Although
dominated by inertia, the azimuthal flow is still laminar, and strongly influenced by
the laminar Hartmann–Bödewadt layers generated near the endcaps. The radial flow
is non-negligible, especially near the boundaries, but the angular velocity Ω ∝ r−4/3

corresponds to quasi-Keplerian rotation.
If the magnetic field remains moderate (Nt < 10), a transition to turbulence occurs at

large Reynolds number (Re > Rec). This regime uθ ∝ √
IB/r log(Re) is now fully driven

by the turbulent Reynolds stress and relies on the turbulence of the Hartmann–Bödewadt
boundary layers. For this reason, it may be regarded as a regime of strong turbulence,
somehow analogous to the ultimate regime observed in Taylor–Couette flows. It shows
strong fluctuating velocity field and an efficient transport of angular momentum. The
velocity profile exhibits a true Keplerian rotation rate, in which the angular velocity is
Ω ∝ r−3/2. This regime provides a very interesting analogue of the flow in accretion discs,
which can be roughly described as Keplerian turbulent flows in thin magnetized discs.

Finally, in the small region of the parameter space defined by Nt > 10, Re > Rec, we
report the existence of a large scale instability of the flow generating low-frequency
perturbations at the largest scale �inj ≈ 10 cm. In this regime of bi-dimensional turbulence,
third-order structure functions indicate that the energy mostly condensate at the largest
available scale, with only very weak energy flux at small scale and fluctuations mostly
confined in the horizontal plane.

On the contrary, the Keplerian turbulent regime is characterized by a quasi-bidimensional
flow, in which the energy is injected at an intermediate scale h < �inj < �r. Because of
the thin layer geometry, this injected energy also cascades towards the large horizontal
scales. But in addition to this inverse cascade of energy, a direct forward cascade of energy
towards scales smaller than h is also observed, reproducing the phenomenology expected
in thin layer turbulence. Surprisingly, the transition from one regime to the other occurs
quite abruptly, leading to a well-defined critical threshold for the occurrence of inverse
(respectively direct) cascade of energy towards large (respectively small) scales.
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From the astrophysical point of view, it is important to emphasize that the Kepler
experiment is not a laboratory study of the magneto-rotational instability. Indeed, MRI
experiments aim at generating turbulence from an hydrodynamically stable pre-existing
Keplerian flow, while the Keplerian turbulence in our system results from the instability
of top and bottom boundary layers. This active role of the vertical velocity gradient
shares some interesting similarities with the vertical shear instability considered for
weakly ionized accretion discs (Nelson, Gressel & Umurhan 2013). In consequence,
the KEPLER experiment can rather be seen as an attempt to circumvent the current
difficulties encountered by laboratory MRI experiments in generating magnetized
Keplerian turbulence, in order to directly study the angular momentum transport or
induction properties of accretion discs: the thin-disc geometry together with the use of a
moderate magnetic field provides an interesting analogue to these astrophysical objects. In
addition, the angular momentum is not injected at the radial boundaries of the system, but
re-enforced in volume by the Lorentz force. Compared with classical Taylor–Couette flows,
we believe that studying the detailed angular momentum transport in such a configuration
may offer new insights on this matter for turbulent astrophysical flows. More precisely, the
fact that a true Keplerian rotation rate can be obtained in a turbulent regime is a significant
advantage compared with relatively stable quasi-Keplerian Taylor–Couette flows.

Finally, an appealing continuation of this work would be to design a larger version of
the experiment for which the magneto-rotational instability is possibly accessible. Several
remarks can be made on the feasibility of this. First, as the electromagnetic forcing involves
no moving parts, it reduces the risk of leaks compared with classical Taylor–Couette
set-ups. Using liquid sodium (μ0σ = 12 s m−2), a larger horizontal size (L = 50 cm),
and a slightly larger electromagnetic forcing (I0 = 5000 A and B0 = 0.15 T), (4.8) yields a
typical velocity of 6 m s−1 leading to Rm ∼ 40, which may be sufficient for the observation
of MRI. Note, however, that, in such configuration, the effect of the MRI would be
to increase the angular momentum transport rather than triggering the turbulence. This
means that the presence of turbulent fluctuations inherent to the generation of a Keplerian
flow in our set-up may very well increase the onset through turbulent diffusion, or
complicate the measurements of angular momentum transport induced by MRI. Besides
strong induction effects, the MRI also requires that the applied magnetic field is not too
strong, namely k · V A < Ω with VA = B0/

√
μ0ρ, the Alfvén velocity. As Ω decreases

radially, this condition would be easily fulfilled, but only in the inner part of the flow.
In this perspective, a numerical modelling of the experiment described here would be
interesting, because it would clarify the critical onset for the occurrence of MRI, and
help understanding of the various regimes described in this paper. Rather than using
liquid sodium, our experiment can also be half-filled with liquid gallium, half-filled with
mercury, thus providing a quasi-free surface condition for the bottom mercury (capillary
length lc ∼ 0.6 mm). For large currents, the azimuthal flow is expected to be an order of
magnitude faster than the non-dispersive gravity waves generated at the gallium–mercury
interface. This would provide an interesting shallow-water analogue of compressible
turbulence in the presence of shock waves, a situation once again encountered in accretion
discs and in the interstellar medium.
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