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RESTRICTED MAD FAMILIES

OSVALDOGUZMÁN, MICHAEL HRUŠÁK, AND OSVALDO TÉLLEZ

Abstract. Let I be an ideal on �. By cov∗ (I) we denote the least size of a family B ⊆ I such that
for every infinite X ∈ I there is B ∈ B for which B ∩ X is infinite. We say that an AD familyA ⊆ I is a
MAD family restricted to I if for every infinite X ∈ I there is A ∈ A such that |X ∩ A| = �. Let a (I)
be the least size of an infinite MAD family restricted to I. We prove that If max{a,cov∗ (I)} = �1 then
a (I) = �1, and consequently, if I is tall and c ≤ �2 then a (I) =max{a,cov∗ (I)}. We use these results
to prove that if c ≤ �2 then o = o and that as = max{a,non(M)}. We also analyze the problem whether
it is consistent with the negation of CH that every AD family of size �1 can be extended to a MAD family
of size �1.

§1. Introduction and preliminaries. We say that a family A of infinite subsets
of the integers is an almost disjoint family (AD) if the intersection of any two of
its elements is finite and A is MAD if it is maximal with respect to this property.
MAD families have played a very important role in set theory, functional analysis
and topology (see [14]). It follows by Zorn’s lemma that every AD family can be
extended to a MAD family; however, we may still wonder how the extensions of
an AD family might be. This has been previously studied by Leathrum in [20] and
was the object of study in [9]. Understanding how AD families can be extended
to MAD families is fundamental to study certain combinatorial aspects of MAD
families. This is relevant in the study of forcing indestructibility of MAD families.
Given a MAD family A and a forcing P, we say that A is P-destructible if A is no
longer maximal after forcing with P. For example, it is known that if A is a MAD
family on the rational numbers such that every element ofA is nowhere dense, then
it will be destroyed by Cohen forcing. The reader that wishes to learn more about
destructibility of MAD families may consult [8,10,13,15,17] or [19].
To state the main results of the article, we need the following notions:

Definition 1.1. Let I be an ideal (in a countable set).
(1) We define cov∗ (I) as the least size of a family B ⊆ I such that for every
infinite X ∈ I there is B ∈ B for which B ∩X is infinite.

(2) We say that an AD family A ⊆ I is a MAD family restricted to I if for every
infinite X ∈ I there is A ∈ A such that |X ∩ A| = �.

(3) a (I) is the least size of an infiniteMAD family restricted to I.

The outline of the article is as follows:
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In the first section, we will prove our main combinatorial lemma: If themaximum
of a and cov∗ (I) is �1 then a (I) = �1. This is a simple, yet very useful result. In
the rest of the article, we will derive several applications of this theorem.
The second section deals with the off-branch numbers of Leathrum (see [20]):

Definition 1.2. (1) A set B ⊆ 2<� is called off-branch if it has finite inter-
section with every branch of 2<� (i.e., if r ∈ 2� then B ∩ {r � n | n ∈ �} is
finite).

(2) o is the smallest size of a maximal family of almost disjoint off-branch sets.
(3) o is the smallest size of a maximal family of almost disjoint antichains of
2<�.

It is easy to see that o ≤ o. It is an old open question of Leathrum if the inequality
o < o is consistent. We do not know the answer to this question, but we will prove
that o = �1 implies that o = �1. In particular, it is not possible to get the inequality
if the size of the continuum is at most �2.
In the third section, we study the cardinal invariant as , which is defined as the
smallest size of a maximal family of eventually different partial functions. In [7]
Brendle showed that it is consistent thatmax{a,non(M)} < as (where a is smallest
size of a MAD family and non(M) is the smallest size of a nonmeager subset of
the Baire space). In the model of Brendle, the continuum has size at least �3. This
is no coincidence, we will prove that if the continuum has size at most �2, then
as = max{a,non(M)}.
In the fourth section, we study the cardinal invariants a(nwd), a (tr (N )) and

a (NDN ). We use our results to answer some open questions found in [9].
In the fifth section, we obtain a preservation theorem for tight MAD families.
We will use this result in the following section, but we expect it to have further
applications.
In the sixth section, we look at the ideal K, which is the ideal generated by the
finitely branching subtrees of �<� . We compare a (K) with the cardinal invariant
aT ,which is defined as the smallest size of amaximalAD family of finitely branching
subtrees of �<� . At first glance, a (K) and aT seem very similar, however,we will
prove that they are consistently different. In fact, we will show that it is consistent
that a (K) < aT . We will use a forcing of Miller ([21]) that destroys witnesses of
aT without adding dominating reals. We will use our preservation result from the
previous section and our main combinatorial lemma.
The last section treats the cardinal invariant a+ (�1) (introduced in [9]), which
is defined as the least κ such that every AD family of size �1 can be extended
to a MAD family of size at most κ. In [9] it was proved that it is consistent that
�2 = a+ (�1) < c (where c denotes the cardinality of the continuum). Nevertheless,
the following problem is still open:

Problem 1.3 ([9]). Is�1 = a+ (�1) < c consistent? In otherwords, is the statement
“Every AD family of size �1 can be extended to aMAD family of size �1” consistent
with the negation of the Continuum Hypothesis?

We do not know the answer to the problem, but we will derive some consequences
from the assumption that �1 = a+ (�1) < c and show that it fails in most of the
known models of set theory.
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Our notation is mostly standard. If X is a set, by ℘ (X ) we denote its power set.
If X is a set of subsets of �, we denote by X⊥ the set of all infinite A ⊆ � that are
almost disjoint from every element ofX . If I is an ideal in�, we denote by I+ those
subsets of � that are not in I. If X ∈ I+ then by I � X we denote the restriction
of I to X . We say that I is tall if for every infinite X ⊆ � there is A ∈ I such
thatA ⊆ X . The relationship betweenMAD families and definable ideals (typically
Borel of low complexity) has been an active area of research (see e.g., [8, 14]).
If J is a �-ideal of a Polish space X , we denote by cov(J ) the smallest size of a
subfamily of J that covers X . By non(J ) we denote the smallest size of a subset of
X that it is not in J . ByM we denote the �-ideal of all meager sets in 2� , and by
N we denote the �-ideal of all Lebesgue null subsets of 2� .
The size of the continuum is denoted by c. Let f, g ∈ �� , define f ≤ g if
f (n) ≤ g (n) for every n ∈ �, and f ≤∗ g if f (n) ≤ g (n) for almost all n ∈ �
except finitely many. We say a family B ⊆ �� is unbounded if B is unbounded
with respect to ≤∗. The bounding number b is the size of the smallest unbounded
family. We say that S splits X if S ∩ X and X \ S are both infinite. A family S ⊆
[�]� is a splitting family if for every X ∈ [�]� there is S ∈ S such that S splits
X . The splitting number s is the smallest size of a splitting family. The reader may
consult the survey [5] for the main properties of the cardinal invariants used in this
article.

§2. Main combinatorial result. Let I be an ideal. It is easy to see that cov∗ (I) ≤
a (I). Furthermore, if I is a tall ideal, then every MAD family restricted to I is
actually a MAD family in the usual sense; hence a ≤ a (I). Hence, if I is tall, then
max{a,cov∗ (I)} ≤ a (I). We will show that there is a deeper connection between
these cardinals.
The following lemma is well known. We prove it for the sake of completeness:

Lemma 2.1. Let C = {Cn | n ∈ �} ⊆ [�]� be a partition of �. There is an almost
disjoint family D such that:
(1) D ⊆ C⊥,
(2) |D| = a, and
(3) for every X ∈ C⊥ there is D ∈ D such that |D ∩ X | = �.
Proof. Let A be a MAD family of size a. We may assume there is B =

{An | n ∈ �} ⊆ A that is a partition of �. Let f : � −→ � be a bijection such that
f [An] = Cn. It is easy to see that D = f[A \ B] has the desired properties. �
We can now prove the following:

Proposition 2.2. If max{a,cov∗ (I)} = �1 then a (I) = �1.
Proof. Let B = {Bα | α ∈ �1} ⊆ I such that for every X ∈ I ∩ [�]� , there is
α ∈ �1 for which X ∩ Bα is infinite. We may assume that {Bn | n ∈ �} ⊆ B is a
partition of �. We will recursively build a sequence of AD families 〈Aα〉α∈�1 such
that:

(1) 〈Aα〉α∈�1 is an increasing chain of almost disjoint families of size �1,
(2) Aα � Bα is a (possibly finite)MAD family in Bα for every α ∈ �1, and
(3) Aα = Aα \

⋃
�<α

A� ⊆ ℘ (Bα).
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We start by choosing {An | n ∈ �} such thatAn isMAD family of subsets ofBn of
size �1 for every n ∈ �. Assume α ≤ �1 is an infinite ordinal, and we have already
build all theA� for � < α.We shall see how to findAα . In case

⋃
�<α

A� � Bα is already

aMAD family in Bα , we define Aα =
⋃
�<α

A� . So we assume that
⋃
�<α

A� � Bα is not

maximal in Bα . Enumerate α = {αn | n ∈ �}. Note that Bα �∗ Bα0 ∪ · · · ∪Bαm for
all m ∈ �. If this was not the case, every infinite subset of Bα would have infinite
intersection with some Bαi and therefore Aα0 ∪ · · · ∪ Aαm would beMAD in Bα .

DefineCn =
(
Bαn \

⋃
i<n

Bαi

)
∩Bα . By possibly taking a subsequence andmaking

finite changes, we may assume all the Cn are infinite and form a partition of Bα .
Since a = �1, wemay findD anAD family inBα of size�1 such that everyCn ∈ D⊥,
and if X ⊆ Bα has finite intersection with every Cn, then there is D ∈ D such that
|X ∩D| = �.

We define Aα =
( ⋃
�<α

A�

)
∪ D, and prove that Aα � Bα is aMAD family in Bα .

To see this let X ∈ [Bα ]� , and proceed by cases. In case that there is n ∈ � such that
X ∩ Cn is infinite, the result follows since Aαn � Bαn isMAD. In case that X ∩ Cn is
finite for every n ∈ �, the result follows by the way we chose D.
Let A =

⋃
α<�1

Aα . It is clear that it is an AD family contained in I, and note that

if X ∈ I ∩ [�]� then there is some Bα such that Bα ∩ X is infinite and therefore
(since A � Bα is MAD) then there is en element of A with infinite intersection with
X , so A is beMAD. �
From the result, we get the following corollary:

Corollary 2.3. Assume c ≤ �2 and let I be an ideal.
(1) If a ≤ a (I), then a (I) = max{a,cov∗ (I)}.
(2) If I is tall, then a (I) = max{a,cov∗ (I)}.
Proof. Assume c ≤ �2 and that a ≤ a (I). In case max{a,cov∗ (I)} = �1 we
get a (I) = �1 by the last result, if max{a,cov∗ (I)} = �2 then a (I) = �2 because
max{a,cov∗ (I)} ≤ a (I) (recall that a ≤ a (I)).
Finally, if I is tall, then a ≤ a (I), so the second assertion follows from the
first. �

§3. The off-branch numbers. We will get some applications of the results proved
in the last section. Given r ∈ 2�, denote r̂ = {r � n | n ∈ �}. By BR we denote the
ideal on 2<� generated by {r̂ | r ∈ 2�}. In this way, X ⊆ 2<� belongs to the ideal
BR if and only ifX can be covered by finitely many branches. The elements ofBR⊥

are often called the off-branch sets. Note that every antichain is an off-branch set,
but there are off-branch sets that are not the union of finitely many antichains. The

cardinal invariant a
(
BR⊥

)
was introduced by Leathrum in [20] and it is denoted

by o. Witnesses of a
(
BR⊥

)
are usually calledMOB families.Although BR⊥ is not

a tall ideal, the following result was proved by Leathrum:

Proposition 3.1 (Leathrum). a ≤ o.
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In this way, we may conclude the following:

Corollary 3.2. If c ≤ �2, then o = max{a,cov∗
(
BR⊥

)
}.

Let AT be the ideal on 2<� generated by antichains. The invariant a (AT ) was
also studied by Leathrum and it is denoted as o. In this way, o is the smallest size
of a maximal almost disjoint family of antichains. Since AT ⊆ BR⊥ and every
infinite off-branch set contains an infinite antichain, it follows that cov∗

(
BR⊥

)
≤

cov∗ (AT ) and o ≤ o. The following is the most interesting problem regarding the
off-branch numbers:

Problem 3.3 ([20]). Is o = o?

We do not know the answer to the problem, but we will prove that this is the case
if size of the continuum is at most �2. We will need the following notions due to
Kamburelis and Weglorz (see [18]):

Definition 3.4. (1) A family of open setsU ⊆ ℘ (2�) is called an open splitting
family if for every infinite antichain {sn | n ∈ �} ⊆ 2<� there is U ∈ U such
that both sets {n | 〈sn〉 ⊆ U}1 and {n | 〈sn〉 ∩U = ∅} are infinite.

(2) s (B0) is the smallest size of an open splitting family.
(3) Given x ∈ 2� and n ∈ � let r (x, n) be the sequence of length n + 1 that
agrees with x in the first n places but disagrees in the last one.

(4) Let x ∈ 2� , A ∈ [�]� and U ⊆ 2� an open set. We say that U separates
(x,A) if x /∈ U and there are infinitely many n ∈ A such that 〈r (x, n)〉 ⊆ U .

(5) sep is the smallest size of a family of open sets U such that for every (x,A)
there is U ∈ U that separates (x,A).

Kamburelis and Weglorz proved that s (B0) = max {s, sep}. However, in [6]
Brendle proved that this two cardinal invariants are equal. In fact he proved the
following:

Proposition 3.5 ([6]).

(1) non(M) ≤ sep.
(2) sep = s (B0).
Note that the second assertion follows from the first since s ≤ non(M) and

s (B0) = max {s, sep}. In [10] the authors proved that cov∗
(
BR⊥

)
= sep. The

same argument shows that in fact cov∗ (AT ) = sep. We will provide the whole
argument for completeness. First we will need a definition and a lemma:

Definition 3.6. Let U ⊆ 2� be an open set. Define AU as the set of all minimal
s ∈ 2<� for which 〈s〉 ⊆ U .

It is easy to see that AU ⊆ 2<� is an antichain and if U is not clopen, then AU is
infinite. We now have the following:

Lemma 3.7. Let U be an open splitting family and C ⊆ 2<� an infinite antichain.
There is U ∈ U such that there are infinitely many t ∈ AU for which there is s ∈ C
such that 〈s〉 ⊆ 〈t〉.

1If s ∈ 2<� , define 〈s〉 = {f ∈ 2� | s ⊆ f}.
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Proof. By a compactness argument, we can find C1 = {sn | n ∈ �} and r ∈ 2�
with the following properties:

(1) C1 ⊆ C ,
(2) r � n ⊆ sm for every n ∈ � and for almost every m ∈ �,
(3) r /∈

⋃
n∈�

〈sn〉.

Since U is an open splitting family, we know there is U ∈ U such that both
sets {n | 〈sn〉 ⊆ U} and {n | 〈sn〉 ∩U = ∅} are infinite. We claim that U has the
desired properties. First note that r /∈ U , this is because if r ∈ U then the set
{n | 〈sn〉 ∩U = ∅} would be finite. Since every set 〈t〉 is clopen, then for every
t ∈ AU , 〈t〉 can only contained finitely many elements of C1. �
We have the following strengthening of Proposition 4.11 of [10]:

Proposition 3.8. cov∗
(
BR⊥

)
= cov∗ (AT ) = sep.

Proof. We will first prove that sep ≤ cov∗
(
BR⊥

)
. Take B ⊆ BR⊥ a witness

for cov∗
(
BR⊥

)
, we may even assume that B is closed under finite changes. For

every element B ∈ B, define UB =
⋃
{ 〈s〉 | s ∈ B}. We will now prove that the

family {UB | B ∈ B} is a witness for sep. Let x ∈ 2� , A ∈ [�]� . We first define
the set Y = {r (x, n) | n ∈ A} (note that Y is an off-branch family). We can now
find B ∈ B such that B ∩ Y is infinite. We may assume no restriction of x is
in B (this is because B is off-branch, so by substracting a finite subset of B if
needed, we can get that no restriction of x is in B). It then follows that UB separates
(x,A).
We will now show that cov∗ (AT ) ≤ s (B0). This completes the proof since

cov∗
(
BR⊥

)
≤ cov∗ (AT ) and sep = s (B0). Let

{
U� | � < s (B0)

}
be an open

splitting family. By Bartoszyński’s characterization of non(M) (see [4] Lemma
2.4.8) there is a family F = {fα | α < non(M) } with the following properties:
(1) fα : � −→ 2<� , and
(2) for every g : W −→ 2<�, whereW ∈ [�]� , there is α < non(M) such that
there are infinitely many n ∈W such that fα (n) = g (n).

For every � < s (B0) we fix an enumeration AU� = {s�n | n ∈ �} ⊆ 2<� (recall
that AU� is the set of all minimal nodes of

{
s | 〈s〉 ⊆ U�

}
). For every α < non(M)

and � < s (B0) we define B (α, �) = {fα (n) | s�n ⊆ fα (n)} which is an antichain
since AU� is an antichain. Let B be the set of all B (α, �) where α < non(M) and
� < s (B0).Wewill prove that that for every infinite antichainY there isB (α, �) ∈ B
such that B (α, �) ∩ Y is infinite.
Since U is an open splitting family, we know there is � < s (B0) such that there
are infinitely many s�n ∈ AU� for which there is t ∈ Y such that s�n ⊆ t. Let
W = {n | ∃t ∈ Y (s�n ⊆ t)} which is an infinite set. Define g : W −→ 2<� such
that for every n ∈W the following hold:

(1) s�n ⊆ g (n), and
(2) g (n) ∈ Y .
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We can now find α < non(M) such that there are infinitely many n ∈ W for
which fα (n) = g (n). It is then clear that B (α, �) ∩ Y is infinite. Finally since
non(M) ≤ s (B0) by the theorem of Brendle, we conclude that |B| = s (B0) and we
get the desired result. �
From this we can conclude that both o and o are equal to max{a, sep} in case

c ≤ �2. We get the following:
Corollary 3.9. (1) o = �1 implies o = �1.
(2) If c ≤ �2 then o = o = max{a, sep}.
As was mentioned before, it is still an open problem if o = o. Getting the consis-
tency of o < owill most likely be very hard. Our result shows that countable support
iteration can not be used to solve this problem and long finite support iterations
will not work either since cov(M) ≤ o.

§4. Families of eventually different partial functions. For every n ∈ � we define
Cn = {(n,m) | m ∈ �}. Recall that ED is the ideal on � × � generated by
{Cn | n ∈ �} and (the graphs of) functions from � to �. It is easy to see that
ED is a tall ideal. The invariant as [3] is defined as the smallest size of a maximal
family of eventually different partial functions. In other words, as is the smallest
size of a family B with the following properties:
(1) For every f ∈ B there is A ∈ [�]� such that f : A −→ �,
(2) for every f = g ∈ B {n ∈ dom (f) ∩ dom (g) | f (n) = g (n)} is finite, and
(3) for every function h : A −→ � with A ∈ [�]� there is f ∈ B such that there
are infinitely many n ∈ � for which f (n) = h (n).

We now have the following result:

Lemma 4.1. as = a (ED).
Proof. LetB be amaximal family of eventually different partial functions.Define

D = B ∪ {Cn | n ∈ �}. Note that D ⊆ ED and it is easy to see that D is a MAD
family. In this way we conclude that a (ED) ≤ as .
For the other inequality, let A ⊆ ED be a MAD family contained in ED. Note
that for every A ∈ A, there is a pair (XA, FA) with the following properties:
(1) There is m ∈ � such that XA ⊆ C0 ∪ · · · ∪ Cm,
(2) FA is a finite set of disjoint partial functions, and
(3) A = XA ∪ {(n, h (n)) | h ∈ FA ∧ n ∈ dom (h)}.
Let B =

⋃
A∈A
FA. It is easy to see that |B| = |A|, and that B is a maximal family

of eventually different partial functions. So as ≤ a (ED). �
In [16] it was proved that cov∗ (ED) = non(M). We conclude the following:
Corollary 4.2. If c ≤ �2, then as = max{a,non(M)}.
We should mention that the hypothesis c ≤ �2 is needed. In [7] Brendle used the
technique of forcing along a template to prove the following:

Proposition 4.3 (Brendle). The following is relatively consistent with the axioms
of ZFC: a = �1, non(M) = �2 and as = c = �3.
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Our result shows that the theorem of Brendle can not be improved to get a =
non(M) = �1 and as = c = �2.

Definition 4.4. If a ⊆ �<� we define 	 (a) = {f ∈ �� | ∃∞n (f � n ∈ a)}.
Let I be a �-ideal on �� (or 2�). We define tr (I) the trace ideal of I (which will
be an ideal on �<� or 2<�) where a ∈ tr (I) if and only if 	 (a) ∈ I.

§5. Trace ideals. Note that if a ⊆ �<� then 	 (a) is aG
 set (furthermore, every
G
 set is of this form).While both tr (M) and tr (N ) are Borel, in general, the trace
ideals are not Borel (see [17] for more information). By nwd we will denote the
ideal of the nowhere dense subsets of the rational numbers. It is well known that
tr (M) is equivalent to nwd. By NDN we will denote the ideal tr (M) ∩ tr (N ).
In [9] the cardinal invariants a (tr (M)), a (tr (N )) and a (NDN ) were studied. In
that article, the following results were proven:
Proposition 5.1 ([9]).
(1) cov(M) , a ≤ a(nwd),
(2) cov(N ) , a ≤ a (tr (N )), and
(3) a(nwd), a (tr (N )) ≤ a (NDN ).
and the following question was asked:
Problem 5.2 ([9]). Are the inequalities between a(nwd), a (tr (N )) , a (NDN )
consistently strict and complete?
We can readily provide the following:
Corollary 5.3. Both a(nwd) < a (tr (N )) and a (tr (N )) < a(nwd) are
consistent.
Proof. It is easy to see that both nwd and tr (N ) are tall ideals. It is a theorem of
Keremedis that cov(M) = cov∗(nwd) (see e.g., [2] for a proof). In this way, if c = �2
and a = �1 then a(nwd) = cov(M) and a (tr (N )) = cov∗ (tr (N )). Furthermore,
in [11] it was proved that cov(N ) ≤ cov∗ (tr (N )) ≤ non(M). From these results it
is clear that in the Cohenmodel (the model obtained after adding�2 Cohen reals to
a model of CH) the inequality a (tr (N )) < a(nwd) holds and in the random model
(the model obtained after adding �2 random reals to a model of CH) the inequality
a(nwd) < a (tr (N )) holds. �
Problem 5.4. Is a (NDN ) the maximum of a(nwd) and a (tr (N ))?
Another problem from [9] is the following:
Problem 5.5. Are a(nwd), a (tr (N )) , a (NDN ) incomparable with o, o, as?
Wewill provide some partial answers to the question.We start with the following:
Proposition 5.6. a(nwd) and as are incomparable.
Proof. We know that if c = �2 and a = �1 then a(nwd) = cov(M) and as =

non(M). The result follows since cov(M) and non(M) are independent (with
c = �2). �
Regarding a (tr (N )) and as we have the following:
Proposition 5.7. It is consistent that a (tr (N )) < as .
Proof. By Proposition 4.1 of [17], we know that

cov (N ) ≤ cov∗ (tr (N )) ≤ max{d, cov (N )}.
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In this way, to obtain a model of a (tr (N )) < as , it is enough to find a model
of c = non(M) = �2, and a = d = cov(N ) = �1. The existence of such models
is well known, for example, they can be obtained by iterating the Mathias forcing
associated to the ideal ED. �
Finally, the next proposition follows from Corollary 2.3 and known inequalities
between cardinal invariants:

Proposition 5.8. If c ≤ �2 then the following hold :
(1) as ≤ o,
(2) a (tr (N )) ≤ as , and
(3) a(nwd) ≤ o.

§6. A preservation theorem for tight MAD families. In this section, we will prove
a preservation theorem for tightMAD families that will be needed in the following
section. Recall that an AD familyA is tight if for every {Xn | n ∈ �} ⊆ I (A)+ there
is B ∈ I (A) such thatB ∩Xn is infinite for every n ∈ �. Note that tight AD families
are MAD families. In [15] it was proved that tight MAD families exists assuming
b = c and that they are Cohen-indestructible (recall that if A is a MAD family and
P is a partial order, then A is P-indestructible if A is still maximal after forcing
with P).

Definition 6.1. Let A be a tight MAD family. We say that a proper forcing P
strongly preserves the tightness of A if for every p ∈ P,M a countable elementary
submodel of H(κ) (whereκ is a large enough regular cardinal) such thatP,A, p ∈M
and B ∈ I (A) for which |B ∩ Y | = � for every Y ∈ I (A)+ ∩M , there is q ≤ p an
(M,P)-generic condition such that q � “∀Ż ∈

(
I (A)+ ∩M [Ġ ]

) (∣∣Ż ∩ B
∣∣ = �) ”

(where Ġ denotes the name of the generic filter). We say that q is an (M,P,A, B)-
generic condition.

It is easy to see that if P strongly preserves the tightness of A, then A is a tight
MAD family after forcing with P. We will need the following well known fact:

Lemma 6.2. Let A be an AD family, P a partial order, Ḃ a P-name for a subset of
� and p ∈ P such that p � “Ḃ ∈ I (A)+ ”. The set

C = {n | ∃q ≤ p (q � “n ∈ Ḃ”)} ∈ I (A)+ .

Proof. Since Ḃ is forced to be a subset of C, the result follows. �
We will prove that the countable support iteration of forcings that strongly pre-
serve A-tightness, also strongly preserve A-tightness. Our proof will be a variation
of the preservation of properness under countable support iteration by Shelah
([23]). First we do the two step iteration:

Lemma 6.3. Let A be a tight MAD family. If P is a proper forcing that strongly
preserves the tightness of A and Q̇ is a P-name for a proper forcing such that P �“Q̇
strongly preserves the tightness ofA”, then P ∗ Q̇ strongly preserves the tightness ofA.
Furthermore, if B ∈ I (A),M is a countable elementary submodel withA,P, Q̇ ∈M ,
p ∈ P, is an (M,P,A, B)-generic condition and q̇ is a P-name for an element of
Q̇ such that p � “q̇ is an (M

[
Ġ
]
, Q̇,A, B)-generic condition”, then (p, q̇) is an

(M,P ∗ Q̇,A, B)-generic condition.
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Proof. LetG ⊆ P∗Q̇ be a generic filter with (p, q̇) ∈ G , denoteGP the projection
ofG to P. Since p is an (M,P,A, B)-generic condition, it follows thatB has infinite
intersection with every element ofM [GP] ∩ I (A)+. Finally, since q̇ is forced to be
an (M

[
Ġ
]
, Q̇,A, B)-generic condition, then B will have infinite intersection with

every element ofM [G ]∩I (A)+. Finally, note that (p, q̇) is an (M,P ∗ Q̇)-condition
(see [1]). �
We will now prove the “proper iteration lemma” ([1] Lemma 2.8) for (M,P,A)-
generic conditions. In the following, if P = 〈Pα, Q̇α | α ≤ �〉 is a countable support
iteration of proper forcings and α ≤ �, by �α we will denote �Pαand by Ġα the
canonical name for a Pα-generic filter.

Proposition 6.4. Let A be a tight MAD family. Let P = 〈Pα, Q̇α | α ≤ �〉 be a
countable support iteration of proper forcings such that Pα �α “Q̇α strongly preserves
the tightness of A”. Let B ∈ I (A),M be a countable elementary submodel of H(κ)
(where κ is a large enough regular cardinal ) with A,P , � ∈M . For every α ∈M ∩ �
and an (M,Pα,A, B)-generic condition p ∈ Pα the following holds:
If q̇ is a Pα-name such that p �α “q̇ ∈ P� ∩M” and p �α “q̇ � α ∈ Ġα”, then there
is an (M,Pα,A, B)-generic condition p ∈ P� such that p � α = p and p �� “q̇ ∈ Ġ”.
Proof. We will prove the proposition by induction on �. The case where � is a
successors follows easily by the last lemma, so we assume that � is a limit ordinal and
the proposition holds for every ordinal smaller that �. Let 〈αn〉n∈� be an increasing
sequence of ordinals in M ∩ � such that α0 = α and

⋃
αn =

⋃
M ∩ �. We fix

an enumeration {Dn | n ∈ �} of all open dense sets of P� that are in M and fix{
Żn | n ∈ �

}
an enumeration of all P� -names for elements of I (A)+ that are in

M such that every name appears infinitely many times in the enumeration. We will
recursively construct sequences 〈q̇n〉n∈�, 〈pn〉n∈� and 〈ṁn〉n∈� with the following
properties:

(1) p0 = p, q̇0 = q̇,
(2) pn ∈ Pαn is an (M,Pαn ,A, B)-generic condition,
(3) pn+1 � αn = pn,
(4) q̇n is aPαn -name such thatpn �αn “q̇n ∈ P�∩M” andpn �αn “q̇n � αn ∈ Ġαn”,
(5) pn+1 �αn+1 “q̇n+1 ≤ q̇n” and pn+1 �αn+1 “q̇n+1 ∈ Dn”, and
(6) ṁn is a P� -name for a natural number such that pn+1 �αn “q̇n �� “ṁn ∈(

Żn ∩ B
)
\ n””.

Assume we have constructed q̇n, pn, and ṁn. We will see how to construct
q̇n+1, pn+1, and ṁn+1. Let Gαn ⊆ Pαn be a generic filter with pn ∈ Gαn . We know
that q̇n

[
Gαn
]
∈ P� ∩M and q̇n

[
Gαn
]
� αn ∈ Gαn . We now argue in V

[
Gαn
]
: Since

pn is an (M,Pαn )-generic condition, there is r ∈ Dn ∩M such that r ≤ q̇n
[
Gαn

]
and

r � αn ∈ Gαn . LetW be the set of all m ∈ � such that there is r ∈ P� such that the
following holds:
(1) r ≤ r,
(2) r � αn ∈ Gαn , and
(3) r �� “m ∈ Żn \ n”.
ClearlyW ∈M

[
Gαn
]
∩ I (A)+. Since pn is an (M,Pαn ,A, B)-generic condition,

there is mn ∈ B and qn+1 ∈ P� such that qn+1 ≤ r, qn+1 � αn ∈ Gαn , and qn+1 ��
“mn ∈ Żn \n”. Back in V , let q̇n+1 and ṁn be names for qn+1 andmn that are forced
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by pn to have all the properties above. We now apply the inductive hypothesis on
�n+1 and find pn+1 with the desired properties.
Let p =

⋃
n∈�
pn, it is easy to see that p is an (M,P�) -generic condition and

p � “q̇n ∈ G�” for every n ∈ � (see the proof of Lemma 2.8 in [1] for more details).
It is clear that p is a (M,P� ,A, B)-generic condition. �
We conclude the following:

Corollary 6.5. Let A be a tight MAD family. If P = 〈Pα, Q̇α | α ≤ �〉 is a
countable support iteration of proper forcings such that Pα �α “Q̇α strongly preserves
the tightness of A”, then P�2 � “A is a tightMAD family”.

It is worth mentioning that this result can be used to prove that a = �1 in the
Sacks andMiller models, since such forcings strongly preserve the tightness ofMAD
families.

6.1. AD families of finitely branching trees. Next we consider the idealK, i.e., the
ideal generated by the finitely branching subtrees of �<� Regarding the cardinal
invariant a (K), we have the following:
Proposition 6.6. a ≤ a (K).
Proof. For every n ∈ �, let zn : n −→ � be the constant 0 function. Define
Xn = {zn�i | i ∈ �} and X =

⋃
n∈�
Xn. Let f : X −→ � be a bijection and define

An = f [Xn]. We now find a family B = {Kα | � ≤ α < a (K)} ⊆ K such that for
every infinite Y ∈ K there is α such that |Kα ∩ Y | = �. For every � ≤ α < a (K)
letAα = f [X ∩Kα] andA = {Aα | α < a (K)} \ [�]<� . We claim thatA is aMAD
family.
Note that if Kα ∈ B and n ∈ �, then Xn ∩ Kα is finite, this implies that A is an
almost disjoint family. To prove that A is maximal, note that for every Z ⊆ �, if
Z is almost disjoint with every An for n ∈ �, then f−1 (Z) ∈ K and hence there is
Kα ∈ B such that f−1 (Z) ∩Kα is infinite, which implies that Z ∩ Aα is infinite. �
The idealWF is defined as the ideal generated by well-founded subtrees of �<� .
It is easy to see that K⊥=WF . Recall that an ideal I on � is called Fréchet (or
nowhere tall) if for every A ∈ I+ there is B ∈ [A]� such that B ∈ I⊥. It is not hard
to see that BR, BR⊥,WF and K are Fréchet ideals.
It is easy to see that I ⊆ I⊥⊥ for any ideal I, while I is Fréchet if and only if

I = I⊥⊥. It follows that I⊥ is a Fréchet ideal for any ideal I.
Lemma 6.7.

(1) cov∗ (BR) = c.
(2) cov∗ (K) = d.
(3) cov∗ (WF) = b.

Proof. We will first prove that cov∗ (BR) = c. Let κ < c and X = {Bα | α < κ}
a subset of BR. For every α < κ there is a set Fα ∈ [2�]<� such that Bα ⊆

⋃
α<κ
r̂.

Since κ < c there is x /∈
⋃
α<κ
Fα. Clearly x̂ ∈ BR and it is almost disjoint with Bα . It

follows that cov∗ (BR) = c.
We will now prove that cov∗ (K) = d. It is easy to see that for every finitely
branching tree T ⊆ �<� there is f ∈ �� such that [T ] ⊆ {h ∈ �� | h ≤ f}. It
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follows from this fact that cov∗ (K) ≤ d. We will now prove that d ≤ cov∗ (K). Let
D ⊆ K such that for every infinite X ∈ K there isD ∈ D such thatX ∩D is infinite.
We may assume that every element of D is a finitely branching tree. Since �� ⊆ K,
it follows that �� =

⋃
T∈D
[T ], which implies that d ≤ cov∗ (K).

Finally, we will show that cov∗ (WF) = b. We will first prove that cov∗ (WF)
is at most b. Let B ⊆ �� be an unbounded family of increasing functions with
|B| = b. For every s ∈ �<� , let 〈s〉<� = {t ∈ �<� | s ⊆ t}. Fix an enumeration
�<� = {tn | n ∈ �}.
If f ∈ B, s ∈ �<� and n ∈ �, define Xn (s, f) =

{
ti ∈ 〈s�n〉<� | i ≤ f (n)

}
and let X (s, f) =

⋃
n∈�
Xn (s, f). It is easy to see that {X (s, f) | f ∈ B ∧ s ∈ �<�}

is a witness for cov∗ (WF), so cov∗ (WF) ≤ b.
We will now prove that b ≤ cov∗ (WF). Let D ⊆ WF such that for every infinite
A ∈ WF there is W ∈ D such that A ∩W is infinite and |D| = cov∗ (WF). For
every n ∈ �, let rn ∈ �� such that rn (0) = n and rn (m) = 0 for every m > 0.
Let W ∈ D, since W is contained in a well-founded tree, we can find a function
gW : � −→ � such that r̂n ∩W ⊆ �gW (n) for every n ∈ �. It is easy to see that
{gW |W ∈ D} is an unbounded family. �
It follows that if c ≤ �2 then a (K) = max {a, d}. The cardinal invariant aT is
defined as the smallest size of a maximal AD family of finitely branching subtrees
of �<� (or 2<�). This cardinal invariant has been studied by Miller ([21]) and
Newelski ([22]). It is easy to see that aT is the smallest cardinality of a partition of
�� into disjoint compact sets. It follows that d ≤ aT . Spinas ([25]) proved that the
inequality d < aT is consistent, answering a question on [12]. The invariants aT and
a (K) are very similar, it would be tempting to conjecture that in fact a (K) = aT .
We will now prove that this is not the case.
Recall that a tree p ⊆ 2<� is a Sacks tree if for for every s ∈ p there is t ∈ p
such that s ⊆ t and t is a splitting node of p (i.e., t�0, t�1 ∈ p). Recall that Sacks
forcing is the set of Sacks trees ordered by inclusion. The following forcing notion
was introduced by Miller in [21]:

Definition 6.8. Let C = {Cα | α ∈ �1} be a partition of 2� into compact sets.
P (C) is the collection of all p such that the following hold:
(1) p ⊆ 2<� is a Sacks tree, and
(2) if α < �1, then Cα ∩ [p] is nowhere dense in [p] (i.e., for every s ∈ p, there
is t ∈ p such that s ⊆ t and 〈t〉 ∩ [p] ∩ Cα = ∅).

If p, q ∈ P (C), then p ≤ q if p ⊆ q.

In [21] Miller proved that P (C) is proper, has the Laver property and forces
that C is no longer a partition of 2� . In [25] Spinas showed that P (C) is ��-
bounding. It follows by the results ofMiller and Spinas thatP (C) even has the Sacks
property. We will prove that P (C) does not increase a. We fix C = {Cα | α ∈ �1} a
partition of 2� into compact sets. We will need some basic results about the forcing
P (C):

Definition 6.9. We say that X = {xs | s ∈ �<�} ⊆ 2� is nice if the following
conditions hold:
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(1) For every s ∈ �<� , the sequence 〈xs�n〉n∈� converges to xs ; furthermore,
Δ (xs , xs�n) < Δ (xs , xs�n+1)2,

(2) for every s, t, z ∈ �<� , if s ⊆ t ⊆ z, then Δ (xs, xz) < Δ (xt, xz), and
(3) for every s ∈ �<� , let αs < �1 such that xs ∈ Cαs , and
(4) If s ⊆ t then αs = αt .
The following was proved implicitly in [25]:

Lemma 6.10. Let p be a Sacks tree. If there is a nice X = {xs | s ∈ �<�} that is
dense in [p], then p ∈ P (C).
Proof. We need to prove that every C� is nowhere dense in [p]. Let � < �1 and
t ∈ p. Since X is nice and dense in [p], we can find s ∈ �<� such that t ⊆ xs and
αs = � . Since xs /∈ C� and C� is closed, there is z ∈ p such that t ⊆ z ⊆ xs and
〈z〉 ∩ p ∩ C� = ∅. �
If p is a Sacks tree and s ∈ p, let ps = {t ∈ p | s ⊆ t ∨ t ⊆ s}.
Proposition 6.11. IfA is a tightMAD family and C = {Cα | α ∈ �1} is a partition
of 2� in compact sets, then P (C) strongly preserves the tightness of A.
Proof. Let p ∈ P (C),M a countable elementary submodel of H(κ) (where κ is
a large enough regular cardinal) such that C,A, p ∈ M , and B ∈ I (A) for which
|B ∩ Y | = � for every Y ∈ I (A)+ ∩M . Let {Dn | n ∈ �} be an enumeration of
all open dense subsets of P (C) that are inM and fix

{
Żn | n ∈ �

}
an enumeration

of all P� -names for elements of I (A)+ that are inM such that every name appears
infinitely many times in the enumeration. We will recursively construct 〈pn〉n∈� and
X = {xs | s ∈ �<�} such that the following conditions hold:
(1) p0 = p,
(2) 〈pn〉n∈� is a decreasing sequence and pn ∈M for every n ∈ �,
(3) X is nice and X ⊆ 2� ∩M ,
(4) X ⊆ [pn] for every n ∈ �, and
(5) For every s ∈ �n and i, m ∈ � if m = Δ(xs , xs�i) and t = (xs�i) � m then
(pn+1)t ∈ Dn and (pn+1)t � “

(
Żn ∩ B

)
\ n = ∅”.

To start let p0 = p, and let x∅ be any element of [p0] ∩M . Assume we have
defined pn and

{
xs | s ∈ �≤n}, we will define pn+1 and {xs | s ∈ �n+1}.

Let s ∈ �n and choose l ∈ � such that l > Δ (xs, xs′) for all s ′ � s . Define
Ys as the set of all m > l such that xs � m is a splitting node of pn. For every
m ∈ Ys , let tm = (xs � m)� (1− xs (m)) (which is a node pn) and let psm = (pn)tm ,
clearly psm ∈ M . Let Cm = {j | ∃r ≤ psm(r � “j ∈ Żn”)}. Since Cm ∈ I (A)+ ,
there is j ∈ Cm ∩ B such that j > n. We choose rsm ≤ psm such that rsm ∈ M and
rsm � “j ∈ Żn”. We may further assume that rsm ∈ Dn and

[
rsm
]
∩Cαz = ∅ for every

z ⊆ s (recall that if z ∈ �<� , αz denoted the unique ordinal such that xz ∈ Cαz ).
Let Ys =

{
mis | i ∈ �

}
. For every i ∈ �, choose xs�i be any branch in rsmis and let

pn+1 =
⋃
{rsmis | s ∈ �

n ∧ i ∈ �}.
We now let q =

⋂
n∈�
pn. It is easy to see that X is a dense subset of [q] and q is a

Sacks tree, so q ∈ P (C). Moreover, it is not hard to see that q is an (M,P (C) ,A, B)-
generic condition. �

2If x, y ∈ 2� and x �= y, denote Δ (x, y) = min {n | x (n) �= y (n)}.

https://doi.org/10.1017/jsl.2019.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.76
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It follows that the forcings of the type P (C) preserve tightMAD families, even in
the iteration. We can now prove the consistency result:

Proposition 6.12. It is consistent that a (K) < aT .

Proof. We start with a model of GCH and perform a countable support iteration
〈Pα, Q̇α | α < �2〉 such that Pα forces that Q̇α is a forcing of the type P (C).
Furthermore, with a suitable bookkeeping we make sure that aT = c = �2 holds in
the final extension. Since P�2 strongly preserves the tightness of A, it follows that
there is a (tight) MAD family of size �1. Moreover, d = �1 holds in the extension
since each Pα is ��-bounding. In this way, a = d = �1 hence a (K) = �1. �
We do not, however, know the answer to the following question:

Problem 6.13. Is a (K) ≤ aT ?

It seems difficult to produce a model of aT < a (K). A model of aT < a (K) and
c = �2 would be a model of d = �1 and a = �2, which would answer a famous open
problem of Roitman. In fact, in all known models of c = �2 the equality d = a (K)
holds. It is possible to build models of d < a (K) by template iterations (see [24]
and [7]) but this approach does not seem to help to build a model of aT < a (K).

§7. Remarks on �1 = a+ (�1) < c. Recall that a+ (�1) is defined as the least κ
such that every AD family of size �1 can be extended to a MAD family of size at
most κ. In this way,�1 = a+ (�1) is equivalent to the assertion that everyAD of size
�1 can be extended to a MAD family of size �1. This is obviously true under CH,
but it is unknown if it is consistent with the failure of the Continuum Hypothesis:

Problem 7.1 ([9]). Is it consistent that �1 = a+ (�1) < c?

In [9] it was proved that it is consistent that �2 = a+ (�1) < �3 = c, so at least
a+ (�1) is consistently less than c. One “rule of thumb” which one learns when
working on cardinal invariants, is that if an invariant is consistently less than c,
then this will already happen in the Sacks model. This intuition is formalized by the
following interesting theorem of Zapletal: (see [26] Chapter 6).

Proposition 7.2 (LC). If j is a tame invariant3 such that j < c is consistent, then
“j = �1” holds in the Sacks model.

Unfortunately, the theorem of Zapletal can not be applied to a+ (�1). Further-
more, it follows by the results on [9] that a+ (�1) = c holds in the Sacks model. In
this section, we will derive some consequences of �1 = a+ (�1) < c. Our main tool
is the following result:

Proposition 7.3. The following are equivalent:

(1) a+ (�1) = �1.
(2) a = �1 and for every ideal I on �, if cov∗ (I) ≤ �1, then cov∗

(
I⊥) ≤ �1.

Proof. We first assume that a+ (�1) = �1. Let I be an ideal on � such that
cov∗ (I) ≤ �1. Clearly a+ (�1) = �1 implies a = �1, so max{a,cov∗ (I)} = �1
which we already know implies that a (I) = �1. In this way, there is A ⊆ I aMAD
family restricted to I such that |A| = �1. Since a+ (�1) = �1, we can find an AD
family B ⊆ A⊥ such that A ∪ B is aMAD family and |B| ≤ �1. By the maximality

3The reader may consult [26] for the definition of tame invariant.
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ofA, it follows that B ⊆ I⊥. SinceA ∪ B is aMAD family, we have that B is aMAD
family restricted to I⊥, so cov∗

(
I⊥) ≤ |B| ≤ �1.

We now assume that a = �1 and if I is a ideal on � such that cov∗ (I) ≤ �1,
then cov∗

(
I⊥) ≤ �1. We will prove that a+ (�1) = �1. Let A be an AD family of

size �1, we must prove that A can be extended to a MAD family of the same size.

It suffices to show that a
(
I (A)⊥

)
≤ �1. If a

(
I (A)⊥

)
= � there is nothing to

prove, so we assume that �1 ≤ a
(
I (A)⊥

)
, which implies that a ≤ a

(
I (A)⊥

)
. It

is easy to see that cov∗ (I (A)) = �1, hence cov∗
(
I (A)⊥

)
≤ �1. �

We can now prove the following:

Proposition 7.4. If a+ (�1) = �1 < c then

(1) �1 < sep, and
(2) d = �1.

Proof. First assume that sep = �1. Since sep = cov∗
(
BR⊥

)
= �1 and we

are assuming that a+ (�1) = �1 holds, we conclude that c = cov∗
(
BR⊥

)
=

cov∗
(
BR⊥⊥

)
= �1 which is in contradiction with our hypothesis.

Since a+ (�1) = �1 implies a = �1, we conclude that cov∗ (WF) = b = �1,

which implies that �1 = cov∗
(
WF⊥

)
= cov∗ (K) = d. �

It follows from the result that a+ (�1) = �1 fails in the Sacks, Cohen, Hechler,
Laver,Mathias andMiller models. We will now prove that it also fails in the random
model. By we will denote the standardmeasure on 2� and ∗ denotes the exterior
measure.

Lemma 7.5. There is a set A ⊆ 2� such that ∗ (A) = 1 and |A| = non(N ).
Proof. Let S ⊆ [0, 1] be the set of all x ∈ [0, 1] such that there is B ⊆ 2� with

|B| = non(N ) for which x ≤ ∗ (B). Let z be the supremum of S (note thatS = ∅).
We claim that z ∈ S. Since z is the supremum of S, there is an increasing sequence
〈zn〉n∈� of elements of S that converges to z. For every n ∈ �, we choose Bn ⊆ 2�
such that zn ≤ ∗ (Bn) and |Bn| = non(N ). Clearly B =

⋃
n∈�
Bn has size non(N )

and z = ∗ (B). We now claim that z = 1. We argue by contradiction. Assume that
z < 1. Let B ⊆ 2� such that |B| = non(N ) and ∗ (B) = z. Since ∗ (B) < 1, there
is a nonnull compact set C ⊆ 2� such that B ∩C = ∅. Let A ⊆ C such thatA /∈ N
and |A| = non(N ). Let D = A ∪ B, clearly D has size non(N ) and z < ∗ (D),
which is a contradiction. �
We can now prove the following:

Proposition 7.6 (a+ (�1) = �1). If non(N ) = �1, then cov∗ (tr (N )) = �1.
Proof. Assume that non(N ) = �1. Let X ⊆ 2� such that ∗ (X ) = 1 and |X | =

non(N ) = �1. Define A = {r̂ | r ∈ X}, clearly A is an AD family of size �1 and
A ⊆ tr (N ). We claim thatA⊥ ⊆ tr (N ). Let B ∈ tr (N )+, thus, 	 (B) is a nonnull
G
 set. Since ∗ (X ) = 1, there is an r ∈ X ∩ 	 (B), which implies that r̂ ∩ B is
infinite, so B /∈ A⊥.
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Since a+ (�1) = �1, there is a MAD family B such that A ⊆ B and |B| = �1. By
the comment above, we know that B ⊆ tr (N ), Since B is a MAD family, it follows
that cov∗ (tr (N )) ≤ |B| = �1. �
Since cov(N ) ≤ cov∗ (tr (N )) and non(N ) = �1 holds in the random model, we
can conclude the following:
Corollary 7.7. a+ (�1) = �1 fails in the random model.
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[10] O. Guzmán, M. Hrušák, C. Martı́nez, andA. Ramos, Generic existence of MAD families, this

Journal, vol. 82 (2017), no. 1, pp. 303–316.
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