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SUMMARY
This paper presents a design methodology to stabilize a
class of multi-variant nonlinear system after a high dis-
turbance occurs. It investigates application of Takagi-Sugeno
type fuzzy controller (T-S-FC) to an inverted pendulum
mechanism, actuated by an armature-controlled DC electrical
motor.

Fuzzy controllers use heuristic information in developing
design methodologies for control of non-linear dynamic
systems. This approach eliminates the need for comprehens-
ive knowledge and mathematical modeling of the system,
and in cases of more complex systems, approximation and
simplifications in order to achieve feasible mathematical
model is not required.

The paper presents the stages of development of the Fuzzy
Controller for an inverted pendulum by developing a two-
input, Mamdani type system. It evaluates the performance
of the system. Then a four-input T-S-FC type is developed.
The research compares performances of each controller
and presents the result of tests. A model for a DC motor is
developed in this study, in order to measure the effect of
time delays and response time caused by inherent properties
of the physical system. The final part will demonstrate the
complete operational system with the DC electrical motor
included in the test system.

KEYWORDS: Fuzzy control; Inverted pendulum; Multi-
variant system; Design methodology.

I. INTRODUCTION
The conventional approach in controlling the inverted
pendulum system is to use a PID (Proportional, Integral,
and Derivative) controller. In order to model the system the
developer would have to know every technical detail about
the system and be able to model it mathematically. Fuzzy
Logic control (FLC) challenges this traditional approach
by using educated guesses about the system to control it.1

Passino states that differential equations are the language
of conventional control (PID), while “rules” about how the
system works is the language of fuzzy control.2

Fuzzy logic has found its way into the everyday life
of people, since Lotfi Zedah first introduced fuzzy logic
in 1962. In Japan, the use of fuzzy logic in household
appliances is common. Fuzzy logic can be found in such

common household products as video cameras, rice cookers
and washing machines.3 From the weight of the clothes,
fuzzy logic would be able to determine how much water as
well as the time needed to effectively wash the clothes. Japan
developed one of the largest fuzzy logic projects, when they
opened the Sendai Subway in 1987.4 In this subway, trains
are controlled by fuzzy logic.

Fuzzy Logic is a subset of traditional Boolean logic.
Boolean logic states that something is either true or false,
on or off, 0 or 1. Fuzzy logic extends this into saying that
something is somewhat true, or not completely false. In fuzzy
logic there is no clear definition as to what is exactly true or
false. Fuzzy logic uses a degree of membership (DOM) to
generalize the inputs and outputs of the system.5 The DOM
ranges from [0 1], where the degree of membership can lie
anywhere in between.

The majority of Inverted pendulum systems developed
using fuzzy logic, are developed using a two dimensional
approach, where only the angle and angular velocity of the
pendulum’s arm are measured. The following research will
show why this method is insufficient for the development
of an inverted pendulum on a limited size track. To have
an efficient fuzzy controller for an inverted pendulum, the
system must also include inputs for the position of the
cart that the pendulum is balanced upon and the velocity
of the cart. Two-dimensional fuzzy controllers are very
simple examples of fuzzy control research. Many of them
will balance the inverted pendulum, but are not in control
of the cart’s position on the track. Adeel Nafis6 proposed
a two-dimensional fuzzy controller to balance the Inverted
pendulum on a track. Tests showed that the controller would
balance the pendulum but neglected to control the position of
the cart and eventually the cart’s position would exceed the
length of the track. Another FLC was proposed by Passino;2

again this cart had the same result as the previous FLC.
Control of the system requires that the cart holding the

pendulum be moved by some mechanism. For simulation
purposes an armature controlled, DC motor7 was used.

II. MULTI-INPUT FUZZY LOGIC CONTROLLERS
Fuzzy Logic Controllers can have more than one input.
Two-input FLC’s are easy to implement and receive great
performance responses from simulations. Layne [1] modeled
a fuzzy controller that had great performance balancing the
pendulum but the cart’s positioning was unstable, making it
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Table I. Rule-base for the Inverted Pendulum.

X/X-dot − 2 − 1 0 1 2

− 2 2 2 2 1 0
− 1 2 2 1 0 − 1

0 2 1 0 − 1 − 2
1 1 0 − 1 − 2 − 2
2 0 − 1 − 2 − 2 − 2

an impractical rule set for real life implementation. Two-input
FLC’s are the most commonly researched inverted pendulum
systems.

The 2-input system received theta (angle θ) and theta-dot
(angular velocity θ̇ = ω) as its inputs. The system uses 5
membership functions for each input, and another 5 for the
outputs (Force). The system consists of 25 (that is 5 to power
2; 52) rules. Table I shows the rule base for the inverted
pendulum system.

According to Table I a value of − 2 represents a negative
large value for angle or angular velocity, and 2 represents a
positive large angle/angular velocity. If there is a situation
where the angle is 0 and the angular velocity is 1 then the
rule − 1 will be fired.

Figure 1 shows a simulation that is run over a time period
of 1 second. The pendulum has an initial angle of 0.2 radians
(dashed line). When the simulation is run, the angle of
pendulum balances quickly, in about 1 second, but the posi-
tion of the cart is not controlled (continuous line) so the cart’s
position will eventually drift off into the end of the track,
even though the pendulum’s arm is balanced.

The benefit of adding two more inputs to the system to
control the X-position of the cart and the velocity of the cart
will greatly benefit the stability of the system. There is a cost
for better stability; this is a greater computation time, and
greater complexity in the model. The cost of adding more
inputs increases exponentially with the number of inputs
added. The above two-input system used five membership
function for each input used; this resulted in a 25 (i.e. 52) rule
base. By adding two more inputs to the system, the systems
rule base would grow to 625 (i.e. 54) rules. Development time
for a rule base this size can be very time consuming, both
in development and in computational time. Bush proposed
using an equation to calculate the rules, rather than taking
the time to develop the rules individually.8 The system was a

θ (rad)/X(m)
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Fig. 1. Angle (θ /rad – dashed) and Position (X/m – continuous) of
Pendulum V. S. time t (Sec).

54 system with 17 output membership functions (OMF). The
equation used was:

I + (J − 1) + (−K + 5) + (L + 5) (1)

This equation results in values ranging between 1 and 17.
This corresponds to the OMF that is to be used in the cal-
culation of the output. The performance of the system using
this approach is not consistent with that of the original simu-
lation, given by the author of the above Equation 1.8 The
force given to the cart holding the pendulum was found not
to be enough to balance the pendulum and the system failed
within a small amount of time. It can be concluded that this
system would be a good starting point for one to base a large
rule set on, but the system would need some tweaking of the
rules and membership functions to get to balance the system
effectively.

The final FLC controller that was modeled for simulation
was a Takagi-Sugeno type fuzzy controller. All the previous
FLC’s modeled were of Mamdani type. A Takagi-Sugeno
type fuzzy controller9−12 varies from the traditional Mamdani
type controller by using linear or constant OMF’s instead
of triangular, trapezoidal, Gaussian or any other method the
developer decided to use. The system uses 4-inputs with only
2 input membership functions for each. This resulted in a 24,
16 rule system. The linear output membership functions are
calculate using the equation

y = c0 + (c1 ∗ x1) + (c2 ∗ x2) + (c3 ∗ x3) + (c4 ∗ x4) (2)

Where cn is the parameters of the OMF, and xn is the values
of θ , θ-dot, X and X-dot respectively. The system modeled
here uses fuzzy logic toolbox of Matlab.9

The control of all 4 parameters with only 2 membership
functions causes the system to run very quickly. The down
side to this quick response is that it takes more time for
the system to stabilize when there are so few membership
functions. The system will overshoot the targeted position
and eventually come to rest. The settling time of this system
takes more time than any other system.

Figure 2 is the result of the simulation. The pendulum
is started with an initial disturbance of 0.2 radians. As
shown, the fuzzy controller overcompensates for this initial
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Fig. 2. Angle (θ /rad – dashed) and Position (X/m – continuous) of
Pendulum V. S. time t (Sec).
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disturbance and sends the pendulum’s angle (dashed line)
in an opposite direction in an attempt to balance it, this
is the overshoot. It takes approximately 5 seconds for the
pendulums arm to balance.

III. ARMATURE-CONTROLLED DC MOTOR
The DC motor model chosen for the simulation is an
armature-controlled DC motor. The motor is modeled using
the motors’ transfer function [7].

θ(s)

Vf (s)
= Km

(Ra + Las)(J s + b) + (KbKm)
(3)

The parameters of the motor are as follows:

Km Motor constant [(N∗m)/A]
Kb Motor constant [(N∗m)/A]
J Rotor Inertia [(N∗m∗s2)/rad]
R Electric Resistance [�]
La Electric Inductance [H]
b damping ratio [N∗m∗s]

In this simulation it was assumed that Km = Kb.
The transfer function of this DC motor yields angular

velocity (ω) as the motor shaft output. In the simulation,
ω was easily converted into the force on the cart. The motor
responded well, reaching its maximum force exerted on the
cart in less than 0.5 seconds.

IV. SIMULATION RESULTS
The simulation consists of four main components, the Fuzzy
controller, DC Motor, the cart and the inverted pendulum,
Figure 3. The cart passes the fuzzy controller 4 parameters
θ, θ̇ , X, and Ẋ. Based on these 4 parameters the fuzzy
controller outputs a voltage to the motor. The motor in
turn calculates the force that will be exerted on the cart.
The system then calculates the new values for parameters
θ, θ̇ , X, and Ẋ and the cycle will be repeated.

The fuzzy controller used in the simulation, with the DC
motor included, is a 24 FLC as described above. The system
runs identical to the 24 system only the settling time for
the simulation, with the motor included, is larger. Figure 4

Fig. 3. Block diagram of Fuzzy Control Inverted Pendulum.
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Fig. 4. Angle (θ /rad – dashed) and Position (X/m – continuous) of
Pendulum V. S. time t (Sec).

shows the results of the simulation ran using the same fuzzy
controller as of [9] with the DC motor included in the
simulation.

The DC motor has a delay, where it takes the motor a
given time to reach a maximum force. This in turn causes
the simulation to take longer to reach a steady state. The
following parameters are used in the simulation of the motor:

Km/ Kb = 50 × 10−3 Nm/A L = 0.5 H
J = 1 × 10−3 Nms2/rad b = 0.1 Nms
R = 1.00 � r (radius) = 0.03 m

Figure 4 shows that it takes approximately 8 seconds for
the pendulum’s angle to become steady, and even longer for
the cart’s position to stabilize. The difference in the response
time of this system can be found in the motor. The motor has
a time constant which delays the motor’s response time to an
inputted voltage. A typical armature controlled DC motor has
a time constant around 100 ms. The shorter the time constant
of the motor, the quicker the system will respond.

The simulation shows that the system responds well even
with a motor attached to the system. The cost of imple-
menting a motor into the simulation is response time for the
pendulum to stabilize. Simulations done without the addi-
tion of the DC motor can not be considered for real life
implementation because the motor is needed to investigate
the response time that the system will observe in real life.

V. CONCLUSION
Developing Fuzzy controllers can be a time consuming
procedure. There is no absolute answer when it comes
to developing fuzzy logic controllers. When developing
a FLC, the developer must consider whether precision
will be sacrificed for performance and simplicity. The 52

system developed was very simple and computed quickly.
The drawback of this system was that precision was
compromised. The 24 system was also very simple and ran
quickly but the performance of the system was not good. The
settling time for the pendulum and cart could be quicker. The
54 system was very complex and performance was slow, but
if tuned correctly, a system of this size would be very precise.
Unfortunately time did not allow for this system to be tuned
correctly during the course of this research.
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A real life implementation of the system would require
a high performance DC motor. Simulation results showed
that the system would work for this type of motor. Having
a smaller time constant in the DC motor would result in a
shorter response time of the system. The FLC would need to
be fine tuned for other types of motors.

With the DC motor implemented in the simulation, the
system did not react as well to high disturbances as it did
when the motor was neglected in the simulation. This means
that the system will react well to small disturbances and be
able to recover from them quickly. In order for this system
to handle large disturbances a motor with high perform-
ance dynamics need to be used that has a very small time
constant.
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