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We discuss the existence, nonexistence and multiplicity of solutions for a class of
elliptic equations in the unit ball with zero Dirichlet boundary conditions involving
nonlinearities with supercritical growth. By using Pohozaev type identity we prove a
nonexistence result for a class of supercritical problems with variable exponent
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1. Introduction

Let Ω be a smooth domain in R
N , N � 3. In the theory of semilinear elliptic equa-

tions, the phenomena of subcritical and critical growth in the nonlinearity are well
known. For instance, the simplest model correspond to⎧⎨

⎩
−Δu = up in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where existence results were obtained for the subcritical case 1 < p < 2∗ − 1 =
(N + 2)/(N − 2) (see for instance [1]) when Ω is bounded, while for the supercritical
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case p � 2∗ − 1, in the classical work due to Pohozaev [7], it was proven that no pos-
itive solutions exist for (1.1) when Ω �= R

N and is strictly star-shaped. After that,
existence issues about critical problems have been the focus of an active research
area. For instance, Brezis and Nirenberg [3] showed that the nonexistence of solu-
tion may be reverted by adding a linear perturbation to the critical nonlinearity,
while Ambrosetti et al. [2] showed existence of solutions for a problem involving a
critical power perturbed by a concave nonlinearity. For more results related with
this class of problems, the reader can see [4,5].

1.1. Supercritical elliptic problems

Our approach in this paper allow us to study elliptic equations with variable
exponent, for instance, ⎧⎨

⎩
−Δu = up(r) in B1,
u > 0 in B1,
u = 0 on ∂B1,

(1.2)

where B1 is the unit ball centred at the origin, r = |x| and p(r) is a differentiable
function in [0, 1]. Observe that, as a consequence of the previous comments involving
the Pohozaev identity, it is natural to conjecture the following:

Problem (1.2) does not have any solution as p(r) � 2∗ − 1.

Surprisingly, this conjecture is false due to theorem 1.5 in [6], where it was proved
existence by considering the following increasing function

p(r) = 2∗ − 1 + rα, with 0 < α < min{N/2, N − 2}.

However, we have proved here that the conjecture holds for the class of nonincreas-
ing supercritical variable powers p(r). This will be a consequence of the following
Pohozaev type identity.

Theorem 1.1. Let u ∈ H1
0,rad(B1) be a solution of problem (1.2). Then u satisfies

1
2

∫
∂B1

|∇u|2σν dσ =
∫

B1

(
N

p(r) + 1
− (N − 2)

2

)
up(r)+1

+
rp′(r)up(r)+1

(p(r) + 1)2
(
lnup(r)+1 − 1

)
dx,

where ν denotes the unit outward normal to ∂B1.

As a consequence, we have the following nonexistence result.

Theorem 1.2. Suppose that p(r) is a nonincreasing function satisfying
p(r) � 2∗ − 1. Then problem (1.2) has no weak solution in H1

0,rad(B1).

Because of theorem 1.2, a natural question arises: does problem (1.2) have a
nonradial weak solution in the case p(r) � 2∗ − 1?
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Our second goal in this paper is to investigate the existence of positive radial
solution for the following class of problems

⎧⎨
⎩
−Δu = f(r, u) in B1,
u > 0 in B1,
u = 0 on ∂B1,

(P)

where the nonlinear term f : [0, 1] × R → R is a continuous function satisfying the
following conditions:

(f1) There exists 1 < p < 2∗ − 1 such that

lim sup
s→+∞
r→0

f(r, s)
sp

< +∞,

where 2∗ = 2N/(N − 2) is the critical Sobolev exponent.

(f2) lim
s→0

f(r, s)
s

= 0 uniformly in r ∈ [0, 1].

(f3) There exists θ > 2 and s0 > 0 such that

0 < θF (r, s) := θ

∫ s

0

f(r, t) dt � sf(r, s), ∀r ∈ [0, 1] and s > s0.

Note that (f1) is a new notion of subcritical growth at infinity, since the non-
linear term must be subcritical only in a neighbourhood of the origin, and note
also that f(r, u) may have supercritical growth at infinity in another subset of
(0, 1). Nevertheless, we can directly associate a well-defined energy functional,
without a truncation argument, which is the usual technique in order to apply
variational methods for problems involving nonlinearities with the lack of subcrit-
ical growth. Assumptions (f2)–(f3) are the usual superlinearity condition at zero
and the classical Ambrosetti–Rabinowitz, respectively. Now let us precisely state
our existence result which is more in line with the classical work due to Ambrosetti
and Rabinowitz [1], where subcritical behaviour was assumed in the whole domain.

Theorem 1.3. Suppose that (f1)–(f3) holds. Then problem (P) has a nontrivial
radial weak solution.

As an application of theorem 1.3, we can obtain a nontrivial positive solution of
problem (1.2) when p(r) > 1.

1.2. Supercritical concave and convex problems

Our third target in this work is to analyse multiplicity results for supercritical
problems in the presence of a concave perturbation. Indeed, we will consider the
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following two classes of concave and convex nonlinearities:

f(r, s) + λa(r)uq with 0 < q < 1. (1.3)

K(r)uq(r) where q(0) < 1 < q(1). (1.4)

We will show that when we introduce a concave perturbation in the nonlinearity
f(r, u) of type (1.3), it produces some effect in the multiplicity of solutions. Note
that, in this case, the nonlinearity is concave–convex in the same subset of the
domain.

Theorem 1.4. Suppose that (f1)–(f3) holds. Then there exists Λ0 > 0 such that for
all λ ∈ (0,Λ0) problem

⎧⎨
⎩
−Δu = f(r, u) + λa(r)uq in B1,
u > 0 in B1,
u = 0 on ∂B1,

(C)

where 0 < q < 1 and a(r) is a continuous satisfying a(r0) > 0, for some r0 ∈ [0, 1]
possesses at least two nontrivial radial weak solutions.

The above result is more in line with the famous Ambrosetti–Brezis–Cerami prob-
lem studied in [2] where a concave perturbation of the critical power was considered.
Now, we state the following nonexistence result corresponding to problem (C) by
considering concave–convex nonlinearities of the first type.

Theorem 1.5. Assume that (f1)–(f3). Then there exists λ0 such that problem (C)
has no radial weak solutions for any λ > λ0.

Our second type of concave–convex nonlinearity of type (1.4) is concave in a
subset of the domain and convex in another. In order to generalize this kind of
nonlinearity, we consider the problem

⎧⎨
⎩
−Δu = λf(r, u) in B1,
u > 0 in B1,
u = 0 on ∂B1,

(D)

where f(r, s) satisfies

(f4) There exist 0 < r1 < 1, s0 > 0, θ > 2 and 0 < q < 1 such that for all s � s0
we have

θF (r, s) − sf(r, s) � c1s
q, for all r ∈ [0, r1]

and

θF (r, s) − sf(r, s) � 0, for all r ∈ [r1, 1].
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(f5) There exist 0 < q < 1 such that

lim sup
r→0+

f(r, s)
sq

< +∞, uniformly in s

and

0 < lim inf
s→0
r→0

F (r, s)
sq+1

.

(f6) There exist p > 1 such that

lim sup
s→0
r→1

f(r, s)
sp

< +∞.

(f7) For all [a, b] ⊂ (0, 1) there exists l � 1 such that

lim sup
s→0

f(r, s)
sl

< +∞, uniformly in r ∈ [a, b].

A basic model verifying all the above hypotheses (f4)–(f7) is given by⎧⎨
⎩
−Δu = λK(r)uq(r) in B1,
u > 0 in B1,
u = 0 on ∂B1,

(1.5)

where q is a increasing function with q(0) < 1 < q(1), q(r1) = 1 and K is a con-
tinuous function satisfying K(0),K(1) > 0 and K(r1) < 0. It is worth mentioning
that a main feature of problem (1.5) is the presence of the interphase q(r1) = 1
for some r1 ∈ (0, 1). This fact raises technical problems in several key points of our
variational approach, for instance, the validity of Palais–Smale condition. Note that
f(r, u) = K(r)uq(r) is a concave function for r ∈ (0, ε) and it is a convex function
for r ∈ (1 − ε, 1) for ε > 0 small enough. Now let us state our last result.

Theorem 1.6. Suppose that (f4)–(f7) holds. Then, there exists Λ1 > 0 such that for
all λ ∈ (0,Λ1), problem (D) possesses at least two nontrivial radial weak solutions.

The paper is structured as follows: In § 2, we prove a Pohozaev-type identity and
our nonexistence result. In § 3, we show the variational structure needed to apply
the min–max methods for our supercritical problems and the proof of theorem 1.3.
Section 4 is dedicated to prove theorems 1.4, 1.5 and 1.6 related with the concave–
convex problems.

2. Pohozaev-type identity and nonexistence result

Here we present a Pohozaev identity for a class of nonlinear elliptic problems involv-
ing variable exponent. As a consequence of this identity, we prove the nonexistence
of positive solutions to semilinear problems with supercritical nonlinearities in a
ball.
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Proof of theorem 1.1. Let u ∈ H1
0,rad(B1) be a solution of problem (1.2). Observe

that

div
(
xup(r)+1

p(r) + 1

)
=
Nup(r)+1

p(r) + 1
+
rp′(r)up(r)+1 lnu

p(r) + 1
+ 〈x,∇u〉up(r) − rp′(r)up(r)+1

(p(r) + 1)2
.

and

〈x,∇u〉Δu = div
(
〈x,∇u〉∇u− x|∇u|2

2

)
+
N − 2

2
|∇u|2.

Multiplying the equation (1.2) by 〈x,∇u〉 and integrating by parts we obtain

∫
∂B1

[
〈σ,∇u〉∇u− σ|∇u|2

2
+
σup(r)+1

p(r) + 1

]
ν dσ

=
∫

B1

Nup(r)+1

p(r) + 1
− rp′(r)up(r)+1

(p(r) + 1)2
dx

+
∫

B1

rp′(r)up(r)+1 lnu
p(r) + 1

− (N − 2)|∇u|2
2

dx.

Since u = 0 on ∂B1 and ∇u = 〈∇u, ν〉ν we have

1
2

∫
∂B1

|∇u|2σν dσ =
∫

B1

(
N

p(r) + 1
− (N − 2)

2

)
up(r)+1

+
rp′(r)up(r)+1

(p(r) + 1)2
(
lnup(r)+1 − 1

)
dx,

and we finish the proof. �

Proof of theorem 1.2. We can use the identity in theorem 1.1 to obtain

0 <
∫ 1

0

[
N

p(r) + 1
− N − 2

2

]
rN−1up(r)+1 +

p′(r)rN

(p(r) + 1)2
up(r)+1

(
lnup(r)+1 − 1

)
dr.

Observe that the function s→ s(ln s− 1) is bounded from below. Thus, since p(r) �
2∗ − 1 and p(r) is nonincreasing we have

0 < −
∫ 1

0

p′(r)rN

(p(r) + 1)2
dr =

∫ 1

0

(
rN

p(r) + 1

)′
− NrN−1

p(r) + 1
dr

=
1

p(1) + 1
−N

∫ 1

0

rN−1

p(r) + 1
� 0,

which is a contradiction and we finish the proof. �
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3. Problem (P)

3.1. Variational background for problem (P)

Assumption (f1) implies that there exist constants ρ ∈ (0, 1) and C1, C2 > 0 such
that

|f(r, s)| � C1|s|p + C2 ∀ (r, s) ∈ (0, ρ) × R. (3.1)

The inequality (3.1) is a subcriticality condition just around a neighbourhood of
the origin. It is easy to see that using assumption (f2) we have

lim
s→0

F (r, s)
s2

= 0. (3.2)

Hereafter, for each u ∈ H1
0,rad(B1) we denote ‖u‖H1

0,rad(B1) := ‖u‖. We are going to
use the following version of the radial lemma (see [8]).

Lemma 3.1 Radial Lemma. If u ∈ H1
0,rad(B1), then

|u(r)| � ‖u‖ (1 − r)1/2

r(N−2)/2
.

Proof. Assume that u ∈ C∞
c (B1) is radial, since u(r) =

∫ r

1
u′(s) ds, by using

Cauchy–Schwartz inequality we have

|u(r)| �
∣∣∣∣
∫ 1

r

u′(s) ds
∣∣∣∣ �

∫ 1

r

∣∣∣∣u′(s)s(N−1)/2 1
s(N−1)/2

∣∣∣∣ds
� ‖u‖ · ‖1/s(N−1)/2‖L2([r,1]) = ‖u‖

(
r2−N − 1
N − 2

)1/2

= ‖u‖ 1√
N − 2

1
rN−2/2

(
(1 + r)(1 + r + · · · + rN−3)

)1/2

� ‖u‖ (1 − r)
1
2

r
N−2

2

,

which finishes the proof. �

We employ variational methods in order to prove the existence of solutions. Our
next lemma shows that the energy functional for problem (P) J : H1

0,rad(B1) → R

given by

J(u) :=
1
2

∫
B1

|∇u|2 dx−
∫

B1

F (r, u) dx

is well-defined and of class C1, which brought some complication since the nonlinear
term is not necessarily subcritical.

Lemma 3.2. Under our assumptions, the associated energy functional J is well-
defined in H1

0,rad(B1) and belongs to class C1.
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Proof. First we will prove that J is well-defined in H1
0,rad(B1). Indeed,

∫
B1

F (r, u) dx = C

∫ 1

0

F (r, u)rN−1 dr

= C

∫ ρ

0

F (r, u)rN−1 dr + C

∫ 1

ρ

F (r, u)rN−1 dr.

Note that the assumption (f1) implies that there exist constants C3, C4 > 0 such
that

|F (r, u)| � C3|u|p+1 + C4, 0 � r � ρ.

Then, by Sobolev embedding,∣∣∣∣
∫ ρ

0

F (r, u)rN−1 dr
∣∣∣∣ � C2

∫ ρ

0

|u|p+1rN−1 dr

� C3‖u‖p+1.

On the other hand, using Radial lemma 3.1,

|u(r)| � Cρ‖u‖, ∀ ρ � r � 1.

Since F (r, s) is continuous in [ρ, 1] × [−Cρ‖u‖, Cρ‖u‖], we obtain that F (·, u(·)) ∈
L∞[ρ, 1]. Thus

∫
B1
F (r, u) dx is well-defined. To conclude we need to prove that

I(u) :=
∫

B1

F (r, u) dx

belongs to class C1. The Gateaux derivative of functional I is given by

〈Lu, v〉 :=
∫

B1

f(r, u)v dx, ∀u, v ∈ H1
0,rad(B1) (3.3)

In fact, we need to prove that

lim
t→0

I(u+ tv) − I(u)
t

= lim
t→0

∫
B1

F (r, u+ tv) − F (r, u)
t

dx

=
∫

B1

f(r, u)v dx.

Using the Mean Value Theorem, we have

F (r, u+ tv) − F (r, u)
t

dx = f(r, u+ txv)v

Note that if r ∈ (0, ρ) we can estimate

|f(r, u+ txv)v| � (C|u(x) + txv(x)|p + C) v(x) � (C (|u(x)| + |v(x)|)p + C) |v(x)|
and if r ∈ [ρ, 1], using the Radial Lemma we obtain

|f(r, u(x) + txv(x))v(x)| � Mρ, ∀ r ∈ [ρ, 1].
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Hence

|f(r, u+ txv)v| � C (|u(x)| + |v(x)|)p |v(x)| +Mρ, ∀ r ∈ (0, 1).

Note that the constant Mρ also depends on ‖u‖ and ‖v‖. To complete it is sufficient
to prove that L defined in (3.3) is continuous in H1

0,rad(B1). Assume that un → u

in H1
0,rad(B1) and consider

|〈L(un − u), v〉| =
∣∣∣∣
∫

B1

(f(r, un) − f(r, u)) v
∣∣∣∣ , v ∈ H1

0,rad(B1).

Note that ‖un‖ � C and by using equation (3.1) and Radial lemma 3.1 we have

|f(r, un(x))| �
{
C|un(x)|p + C if r ∈ (0, ρ)
Mρ if r ∈ [ρ, 1].

Thus,

|f(r, un(x))| � C|un(x)|p +Mρ, ∀ r ∈ [0, 1]

and

|〈L(un − u), v〉| � ‖f(r, un) − f(r, u)‖Lq/p‖v‖L(q/p)′

where q = (p+ 1)/p, which proves that L is continuous in H1
0,rad(B1). �

3.2. Existence results for problem (P)

In the next two lemmas we will be concerned to prove that the energy functional
J satisfies the mountain pass geometry.

Lemma 3.3. There exist α > 0 and η > 0 such that

J(u) � α > 0, if ‖u‖ = η.

Proof. We first recall that using conditions (f1) and (f2), we have that given ε1 > 0,
there exists M > 0 such that

F (r, u) � ε1u
2 +Mup+1, ∀r ∈ (0, ρ).

Thus, using Sobolev embedding we obtain the following estimate∫ ρ

0

F (r, u)rN−1 dr � C1M‖u‖p+1 + ε1C2‖u‖2

On the other hand, from Radial lemma 3.1 we have

|u(r)| � ρ−(N+2)/2‖u‖ if r ∈ (ρ, 1). (3.4)

Thus, by using (3.4) and (f2), given ε2 > 0,

F (r, u) � ε2u
2,
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for all r ∈ (ρ, 1) and ‖u‖ = η with η sufficiently small. This implies that

∫ 1

ρ

F (r, u)rN−1 dr � ε2C‖u‖2.

Hence

J(u) � 1
2
‖u‖2 − C1‖u‖p+1 − ε2C‖u‖2 − ε1C‖u‖2

=
(

1
2
− εC

)
‖u‖2 − C1‖u‖p+1.

Now, choosing ε = ε1 + ε2 < 1/(2C), there exists η > 0 sufficiently small such that
if ‖u‖ = η then J(u) � α > 0 and the lemma is proved. �

Lemma 3.4. Assume (f3). Then there exist w ∈ H1
0,rad(B1) such that ‖w‖ > η and

J(w) < 0.

Proof. It is well known that if condition (f3) holds, then by integration we can
prove that there exist constants c, d ∈ R such that F (r, u) � c|u|θ − d. Thus, given
φ ∈ C∞

0 (B1, [0,+∞)) a nontrivial function it is easy to see that

lim
t→+∞J(tφ) = −∞,

which proves the lemma. �

Lemma 3.5 Palais–Smale condition. The functional J : H1
0,rad(B1) → R satisfies

the Palais–Smale condition.

Proof. We need to prove that any Palais–Smale sequence admits a convergent sub-
sequence. Let (un) ⊂ H1

0,rad(B1) be a Palais–Smale sequence of the functional J at
level c, that is,

J(un) → c and J ′(un) → 0.

Thus, we have |J ′(un)un| � εn‖un‖ where εn → 0 as n→ ∞. Hence,

θJ(un) − J ′(un)un =
(
θ

2
− 1
)
‖un‖2 + C1

∫ 1

0

(unf(r, un) − θF (r, un)) rN−1 dr

� εn‖un‖ + C2

Thus, by hypothesis (f3), the sequence (un) is bounded in H1
0,rad(B1). Hence, up to

a subsequence, we can assume that un ⇀ u weakly in H1
0,rad(B1). From J ′(un) → 0
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we obtain ∣∣∣∣
∫

B1

∇un · ∇φ−
∫

B1

f(r, un)φ
∣∣∣∣ � εn‖φ‖, ∀φ ∈ H1

0,rad(B1).

Taking φ = un − u we can get∣∣∣∣
∫

B1

∇un · ∇(un − u) −
∫

B1

f(r, un)(un − u)
∣∣∣∣ � εn‖(un − u)‖.

To conclude our proof it is enough to verify that∫
B1

f(r, un)(un − u) → 0.

In fact, ∫
B1

f(r, un)(un − u) = C

∫ ρ

0

f(r, un)(un − u)rN−1 dr

+ C

∫ 1

ρ

f(r, un)(un − u)rN−1 dr

But ∣∣∣∣
∫ ρ

0

f(r, un)(un − u)rN−1 dr
∣∣∣∣ � C

∫ ρ

0

|un|p|un − u|rN−1 dr

� C‖un‖p
Lp+1‖un − u‖Lp+1

� C‖un − u‖Lp+1 → 0

since p+ 1 < 2∗. On the other hand, f(r, un) is bounded in [ρ, 1] by the Radial
lemma 3.1 and that the sequence is bounded in H1

0,rad(B1), hence

∫ 1

ρ

f(r, un)(un − u)rN−1 dr → 0

which completes the proof. �

Proof of theorem 1.3. In view of lemmas 3.3, 3.4 and 3.5, we can apply the
Mountain Pass Theorem to obtain a positive level c and a nontrivial solution
u ∈ H1

0,rad(B1) of problem (P). �

4. Semilinear elliptic equations with concave–convex nonlinearities

4.1. Problem (C)

Here we are going to prove our multiplicity and nonexistence results for
supercritical problems in the presence of a concave perturbation.
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Proof of theorem 1.4. The energy functional associated to problem (C) is given by

Jλ(u) :=
1
2
‖u‖2 −

∫
B1

F (r, u) dx− λ

q + 1

∫
B1

|u|q+1 dx, u ∈ H1
0,rad(B1)

Note that it follows from similar calculations as lemma 3.2 that the functional Jλ

is well-defined and belongs to class C1. Since q < 1, we can use similar arguments
to the lemma 3.3 to prove that

Jλ(u) �
(

1
2
− ε

)
‖u‖2 − ‖u‖p+1 − λC‖u‖q+1.

Hence if we take ‖u‖ = λα, we have

Jλ(u) �
(

1
2
− ε

)
λ2α − λα(p+1) − Cλα(q+1)+1.

Thus if 0 < α < 1/(1 − q), then there exists Λ0 > 0 such that for all λ ∈ (0,Λ0),

Jλ(u) > αλ > 0, ‖u‖ = ηλ

for some αλ, ηλ > 0. We can also prove versions of lemmas 3.4 and 3.5 for our
functional Jλ. Hence by using the Mountain Pass Theorem we obtain a nontrivial
solution of positive energy for problem (C). The second solution we will obtain
through minimization on a small ball. In fact, since a(r0) > 0, there exist c0, δ >
0 such that a(r0) > c0 and a(r) > 0 for all r ∈ (r0 − δ, r0 + δ). Now, taking φ ∈
C1

0 (0, 1) such that suppφ ⊂ [r0 − δ, r0 + δ] then for t > 0,

J(tφ) =
t2

2
‖φ‖2 − C

∫ 1

0

F (r, tφ)rN−1 dr − λCtq+1

q + 1

∫ 1

0

|φ|q+1rN−1 dr.

Thus, by using (3.2), it is not difficult to prove that

∫ 1

0

F (r, tφ)rN−1

tq+1
dr → 0 as t→ 0.

Thus, there exist points of negative energy w ∈ H1
0,rad(B1) with ‖w‖ < ηλ. Since the

functional Jλ is lower semicontinuous we can obtain a second solution of negative
energy. �

Proof of theorem 1.5. Since a(r0) > 0 we can choose δ > 0 sufficiently small such
that a(r) > 0 for all r ∈ (r0 − δ, r0 + δ). On the other hand, observe that (f1) and
(f3) imply that [f(|x|, s) + λa(r)sq]/s blows-up near the origin and at infinity
for r ∈ (r0 − δ, r0 + δ). By compactness, it must attain a minimum and for
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r ∈ (r0 − δ, r0 + δ),

f(|x|, s) + λa(r)sq

s
� c1s

p−1 + λc0s
q−1 � C(p, q, c0, c1)λ(p−1)/(p−q),

where

C(p, q, c0, c1) =

(
cp−1
0

cq−1
1

)1/(p−q)(
1 − q

p− 1

)(p−1)/(p−q) [
1 +

p− 1
1 − q

]
.

Now, denote by Aδ = Br0+δ \Br0−δ and let ψ1 > 0 be the first eigenfunction for
(−Δ,H1

0 (Aδ)). Thus,

λ1

∫
Aδ

uψ dx =
∫

B1

∇u · ∇ψ dx =
∫

B1

[f(r, u) + λa(r)uq]ψ dx

� C(p, q, c0, c1)λ(p−1)/(p−q)

∫
Aδ

uψ dx.

Since
∫

Bδ
uψ dx is positive, one deduces that C(p, q, c0, c1)λ(p−1)/(p−q) � λ1, which

is a contradiction if λ is large enough and the proof is complete. �

4.2. Problem (D)

Now we will prove our existence result related with problem (D). For our purpose,
we introduce the functional I : H1

0,rad(B1) → R given by

I(u) :=
1
2

∫
B1

|∇u|2 dx− λ

∫
B1

F (r, u) dx,

which is well-defined and of class C1.
We emphasize that the classical superquadraticity condition of Ambrosetti–

Rabinowitz [1] will not be satisfied for problem (D). In order to overcome this
difficulty, we use an alternative condition introduced by de Figueiredo et al. [4].

Lemma 4.1. The Palais–Smale sequence for the functional I is bounded.

Proof. Let (un) ⊂ H1
0,rad(B1) be a Palais–Smale sequence of the functional I at

level c, that is,

I(un) → c and I ′(un) → 0.

Thus, we have |I ′(un)un| � εn‖un‖ where εn → 0 as n→ ∞ which implies(
θ

2
− 1
)
‖un‖2 +

∫ 1

0

(sf(r, s) − θF (r, s)) rN−1 dr = θI(un) − I ′(un)un

� εn‖un‖ + C. (4.1)

On the other hand, by using hypothesis (f4) we have the following inequalities∫ r1

0

(sf(r, s) − θF (r, s)) rN−1 dr � −C1

∫ 1

0

uq+1
n , (4.2)
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and ∫ 1

r1

(sf(r, s) − θF (r, s)) rN−1 dr � 0,

for some 0 < r1 < 1. Thus, by using Sobolev embedding in (4.2) follows

∫ r1

0

(sf(r, s) − θF (r, s)) rN−1 dr � −C2‖un‖q+1.

Returning to (4.1) we obtain

(
θ

2
− 1
)
‖un‖2 � εn‖un‖ + C2‖un‖q+1 + C,

which implies that (un) is bounded and we finished the proof. �

Proof of theorem 1.6. Let 0 < q < 1 given by (f5). Thus, there exists δ > 0 such
that

∫ δ

0

F (r, u)rN−1 dx � C1

∫ δ

0

uq+1rN−1 dx

� C2‖u‖q+1.

On the other hand, the Radial lemma 3.1 and (f6) imply that

∫ 1

r

F (r, u) dx � C2

∫ 1

r

up+1rN−1 dx � C3‖u‖p+1.

Now, (f7) implies that

∫ r

δ

F (r, u) dx � C2

∫ r

δ

ul+1rN−1 dx � C3‖u‖l+1.

Gathering above inequalities we obtain that

I(u) � 1
2
‖u‖2 − Cλ

(‖u‖p+1 + ‖u‖l+1 + ‖u‖q+1
)

Taking ‖u‖ = λα and 0 < α < 1/(1 − q), there exists Λ1 > 0 such that for all λ ∈
(0,Λ1),

I(u) > αλ > 0, ‖u‖ = ηλ

for some αλ, ηλ > 0. Hence by using lemma 4.1 and the Mountain Pass Theorem we
obtain a nontrivial solution of positive energy of problem (D). The second solution
we will obtain through minimization on a small ball. By hypothesis (f5), there exist
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s, δ > 0 such that

F (r, s) � c̃sq+1,

for all 0 < s � s and 0 < r � δ. Let φ ∈ C1
0 (0, 1) a nonnegative function and ε > 0

such that suppφ ⊂⊂ (0, δ) and εφ � s. Then for ε > 0,

I(εφ) =
‖εφ‖2

2
− λC

∫ 1

0

F (r, εφ)rN−1 dx

� ε2

2
‖φ‖2 − λCεq+1

∫ 1

0

φq+1rN−1 dr.

Thus, for ε > 0 sufficiently small there exist points of negative energy v ∈ H1
0,rad(B1)

with ‖v‖ < ηλ. Since the functional I is lower semicontinuous we can obtain a second
solution of negative energy and we finish the proof. �
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