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Av. Universitária 661, 64049-550 Teresina – PI, Brazil
(liane@ufpi.br)

Marcelo José Saia
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We show that there exist an infinite number of topological orbits in K classes of
complex map germs from the plane to the plane that have a representative of type
(xy, xa + yb), with (a, b) �= (2, 3) or (2, 5). Our key tool to prove this existence is the
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show that the K class (xy, x2 + y5) has two topological orbits.
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1. Introduction

The description of the topological orbits of map germs is a central problem in
singularity theory; even finding when a K class has a finite (or not) number of
topological orbits is, in general, an open problem. Concerning complex map germs
from the plane to the plane, Gaffney and Mond described in [4] the topological
orbits of semi-quasi-homogeneous map germs that have a representative that is
finitely determined.

In the co-rank 2 case, of interest here, there are germs that belong to a given
K class, but are not semi-quasi-homogenous, particularly if the germ belongs to a
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K class with a representative (xy, xa + yb) with gcd(a, b) = 1. The simplest case is
the K class (xy, x2 + y3), where the germs (xy, x2 + αxy + y3) are not semi-quasi-
homogeneous for any α �= 0, but are A-equivalent to (xy, x2 + y3) and there exists
only one topological orbit (see [4, example 5.11]).

Another simple case is the K class (xy, x3 + y4) [4, example 5.12]: if α or β �= 0,
the germs gα,β(xy, x3 + y4 +αxy2 +βx2y) are not semi-quasi-homogeneous and we
cannot apply the results of [4, example 5.11] to describe the topological orbits of
these germs. The expectation here was to obtain only a finite number of topological
orbits. However, we show in § 3 that the number of different topological orbits in
this K class is not finite. Our key tool is the existence of stems, i.e. germs that
are not A-finitely determined; using these we can construct a non-finite family of
A-finitely determined germs that are in different topological orbits.

We show that the number of topological orbits in any K class of type (xy, xa+yb)
is not finite, with two exceptions: the classes (xy, x2 + y3) and (xy, x2 + y5). We
describe how to obtain stems in all other classes. For the class (xy, x2 +y5) we show
that there are two topological orbits.

The method of obtaining these orbits is to study the vanishing cusps and transver-
sal double-fold points that appear in the discriminant curve of any generic defor-
mation of the germ.

Such numbers may be thought of as reflecting the complexity of the original map
germs. Whitney showed in [15] that any real stable map germ in these dimensions
has only a finite number of cusps and double folds as singular points of the dis-
criminant curve. In [3] Gaffney and Mond showed sufficient conditions for finite
determinacy in terms of the finiteness of the number of these singularities. More-
over, the constancy of these singularities is a necessary and sufficient condition for
topological triviality in a family [3, corollary 1.10].

First, we show formulae to compute the number of cusps. For this we describe the
Milnor number of the critical curve using geometric conditions given by its Newton
polygon and apply the relationship between this Milnor number and the number of
cusps.

Alternatively, the transversal double-fold points are related to the Milnor number
and the Fitting ideals of the discriminant curve. With the aid of computational
methods we can describe the Fitting ideals and thus the defining equation of the
discriminant curve. Then we use geometric conditions given by the Newton polygon
of the discriminant curve, which allow us to determine whether or not the Milnor
number of the discriminant is constant in a family.

2. Cusps and double folds

Given a map germ f : (C2, 0) → (C2, 0), denote its critical set by Σ(f). The Jaco-
bian ideal, denoted by J(f), is the ideal generated by the determinant of the matrix
of the partial derivatives of f , and ∆(f) = f(Σ(f)) is the discriminant of f .

For any finitely determined germ f with Σ(f) �= ∅, the curves Σ(f) and ∆(f)
have isolated singularities. When f is perturbed so that it becomes stable, a finite
number of cusps, denoted by c(f), and double folds, denoted by d(f), appear on
the discriminant curve. In [3, corollary 1.10] it is shown that the constancy of the
numbers d(gt) and c(gt) is a necessary and sufficient condition for the topological
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triviality in a family of finitely determined map germs gt. Moreover, in [2, theo-
rem 9.9] it is shown that the family is topologically trivial if and only if the Milnor
number of the discriminant curve is constant in the family.

2.1. Cusps and the Milnor number µ(Σ(g))

Denote by µ(Σ(f)) the Milnor number of the critical curve, and by µ(∆(f)) the
Milnor number of the discriminant curve. As usual m(f) denotes the degree of f .
Then we see in [3] that

c(f) = µ(Σ(f)) + m(f) − 2. (2.1)

A formula for the number of cusps of semi-quasi-homogeneous maps is given
in [4].

Theorem 2.1 (Gaffney and Mond [4, theorem 2.1.i]). Let f : (C2, 0) → (C2, 0) be
a semi-quasi-homogeneous map germ of type (w1, w2; d1, d2). Then

c(f) =
{(d1 + d2 − (w1 + w2))(d1 + d2 − 2(w1 + w2)) + d1d2 − w1w2}

w1w2
.

In this section we apply (2.1) to show formulae to compute the number of cusps
of some map germs in a K class (xy, xa + yb) with gcd(a, b) = 1. Here we consider
only germs of type (xy, xa + yb +

∑
αr,sx

rys) with as + br < ab. As we see in [12],
these germs, called pre-quasi-homogeneous germs, are finitely determined.

First, we compute the Milnor number of the critical curve when the Jacobian
ideal is Newton non-degenerate. Remember that m(f) = a + b for any germ f in
the K class (xy, xa + yb). We now recall some ideas that help us to compute the
Milnor number.

Let On be the local ring of germs from (Cn, 0) to C for any g =
∑

k akxk in On.
The support of g, denoted by supp g, is the set of points k in Z

n such that ak �= 0.
If I is an ideal in On, the support of I is defined as supp I :=

⋃
g∈I supp g.

Definition 2.2. The Newton polyhedron of an ideal I in On, denoted by Γ+(I), is
the convex hull in R

n
+ of {k + v : v ∈ R

n
+, k ∈ supp(I)}. Γ (I) denotes the union of

the compact faces of Γ+(I), and Γ−(I) is the closure of R
n \ Γ+(I).

If D is a fixed subset of Γ+(I) and g =
∑

k akxk in On, we define

gD =
∑
k∈D

akxk.

Given a face ∆ ⊆ Γ (I), denote the union of half-rays emanating from the origin
and passing through ∆ by C(∆). O∆ denotes the set of all germs g∆.

Definition 2.3 (Saia [11]). An ideal I of finite codimension in On is Newton non-
degenerate if there exists a system of generators g1, . . . , gs of I such that, for each
compact face ∆ ⊆ Γ (I), the ideal I∆ generated by g1∆ , . . . , gs∆ has finite codimen-
sion in O∆. A germ f ∈ O2 is Newton non-degenerate if the ideal 〈x∂f/∂x, y∂f/∂y〉
is Newton non-degenerate (see [7]).
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Theorem 2.4 (Kouchnirenko [7, theorem I(ii)]). A germ f is Newton non-degen-
erate in O2 if and only if µ(f) = 2S − i − j + 1. Here S denotes the volume of the
Newton polygon Γ−(f) and the numbers i and j are those for which Γ−(g) meets
the coordinate axis in the points (i, 0) and (0, j).

Lemma 2.5. The germs J(g) of the germs below are Newton non-degenerate.

(1) g(x, y) = (xy, xa + yb + kxrys).

(2) g(x, y) = (xy, xa + yb + k1x
r1ys1 + k2x

r2ys2), with k1, k2 �= 0.

(3) g(x, y) = (xy, xa + yb +
∑3

i=1 kix
riysi) with r1 < r2 < r3 and s3 < s2 < s1.

(4) g(x, y) = (xy, xa+yb+
∑t

i=1 kix
riysi) with ki �= 0 for all i = 1, 2, . . . , t, t � 4,

r1 < r2 < · · · < rt, st < st−1 < · · · < s2 < s1 and Γ+(J(g)) has t + 1 facets.

Proof. The Newton non-degeneracy of (1) follows from [12, proposition 2.6], since
all monomials of J(g) correspond to vertices of its Newton polygon.

To prove (2) and (3) we consider the number of compact facets of the Newton
polygon of J(g).

For the germ given in (2), if Γ+(J(g)) has three compact facets, again from [12,
proposition 2.6] we obtain the result, since all monomials of J(g) correspond to ver-
tices of its Newton polygon. If Γ+(J(g)) has two compact facets, a straightforward
calculation also shows that the germ J(g) is Newton non-degenerate.

To show the Newton non-degeneracy of the germ in (3), if Γ+(J(g)) has three or
four compact facets, the proof is analogous to that of (2).

If Γ+(J(g)) has two compact facets, we consider the following cases:

• (r2, s2) is a vertex;

• (r1, s1) or (r3, s3) is a vertex with xa + k1x
r1ys1 + k2x

r2ys2 + k3x
r3ys3 �=

xr(xm − yq)3; or

• yb + k1x
r1ys1 + k2x

r2ys2 + k3x
r3ys3 �= ys(xn − y�)3.

The proof of the two first cases is straightforward. We show that the third case
does not hold. Suppose that it holds and the Newton polygon has two compact
facets. Then we can have yb +k1x

r1ys1 +k2x
r2ys2 = ys(xn −y�)2 or xa +k2x

r2ys2 +
k3x

r3ys3 = xr(xm − yq)2, but these equalities hold if r = 2n and s = 2q, and this
implies that a = 2(n + m) and b = 2(q + �). Therefore, gcd(a, b) �= 1, and the germ
g is not finitely determined.

The Newton non-degeneracy of the germ in (4) is immediate from [12, proposi-
tion 2.6].

In table 1 we show the formulae for computing c(g) and µ(Σ(g)). In these cases,
#Γ denotes the number of one-dimensional facets of the Newton polygon.
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2.2. Double-fold points and Milnor number µ(∆(g))

For any finitely determined map germ g : (C2, 0) → (C2, 0), a formula to compute
the number d(g) is shown in [3, 1.2′]:

d(g) + c(g) = 1
2{µ(∆(g)) − µ(Σ(g))}. (2.2)

For semi-quasi-homogeneous map germs from the plane to the plane, in [4, the-
orem 2.1(ii)] we see the following.

Theorem 2.6. Let g : (C2, 0) → (C2, 0) be a semi-quasi-homogeneous germ of type
(w1, w2; d1, d2). Then

d(g) =
1

2(w1w2)2
((d1d2 − 4w1w2)(d1 + d2 − (w1 + w2))2

+ 2w1w2((w1 + w2)(d1 + d2 − (w1 + w2)) − (d1d2 − w1w2))).

This formula is possible because the defining equation of the discriminant curve
is also semi-quasi-homogeneous; hence, its Milnor number is written in terms of
the weights w1, w2 and the degrees d1, d2. However, if the germ is not semi-quasi-
homogeneous, it is harder to describe the defining equation of the discriminant.
We remark that the defining equation of the discriminant curve is the defining
equation of the zeroth Fitting ideal of the O2-module g∗OΣ(g), which we denote by
F0(g) = F0(g∗OΣ(g)).

Another way to obtain the number d(g) is shown in [3, remark 1.5], using the
first Fitting ideal of the O2-module g∗OΣ(g), defined as F1(g) = F1(g∗OΣ(g)):

c(g) + d(g) = dimC

O2

F1(g)
. (2.3)

Equation (2.3) is a particular case of a more general result of Mond and Pellikaan
relating the sum of the 0-stable invariants of map germs and the Fitting ideals of
the discriminant [9, §§ 1 and 2]. The key tool is the determination of the matrix of
a presentation of g∗OΣ(g) over O2. We recall these concepts here.

For any multi-germ of a Cohen–Macaulay variety (X, x) ∈ C
m of dimension

(m − 1), call O(X,x) the set of germs h in Om such that h(X) = 0 for a fixed finite
analytic map f : (X, x) → (Cm, 0). From the Weierstrass preparation theorem,
O(X,x) is a finite Om-module via the function f∗.

A presentation of O(X,x) over Om is an exact sequence of Om-modules:

Oh
m

λ−→ Oh
m

α−→ O(X,x) → 0. (2.4)

The presentation matrix λ is given by the relations between the set of generators
g1, . . . , gh of O(X,x) as an Om-module.

Definition 2.7. The kth fitting ideal of O(X,x), denoted by Fk(λ), is the ideal in
Om generated by all (q − k) × (q − k) minors of the matrix λ. For q > k � q − p,
Fk(λ) = Om, and for k � q or k < q − p we have Fk(λ) = 0.

To compute the presentation matrix we use Maple [14] and Singular [5] soft-
ware and apply the algorithm developed by Hernandes et al . in [6].
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Table 2. First orbits in K(xy, x3 + y4).

Germ g µ(Σ(g)) µ(∆(g)) c(g) d(g)

Orbit (0): (xy, x3 + y4) 6 66 11 19
Orbit (1): (xy, x3 + y4 + xy2) 4 52 9 15
Orbit (2): (xy, x3 + y4 + x2y) 5 59 10 17
Orbit (3): (xy, y4 + x(x + y)2) 4 54 9 16

3. Topological orbits in the K class (xy, x3 + y4)

In this section we obtain a non-finite number of topological orbits in the K class
(xy, x3 + y4). First we describe the topological orbits for the germs fu,v(x, y) =
(xy, x3 + y4 + uxy2 + vx2y).

For the particular values of (u, v) = (0, 0), (1, 0), (0, 1) and (1, 2) the normal
forms in this family are shown in table 2.

The next step is to consider the family fu,v(x, y) = (xy, x3 + y4 + uxy2 + vx2y).

3.1. The family fu,v(x, y) = (xy, x3 + y4 + uxy2 + vx2y)

For each pair (u, v), the defining equation of the discriminant curve denoted by
Gu,v(X, Y ) is

Gu,v(X, Y )

= ( 1
2v2u6 − 1

16v4u5 − u7)X10 + Y 7 + ( 4
27v3 − 91

12uv)X3Y 5 + 27
256u4X4Y 4

− 343
12 vX5Y 4 + ( 2401

48 vu3 − 94 325
1728 v3u2 + 30 625

1728 v5 − 3125
1728v7)X11

+ ( 1
64u4v3 − 9

16u5v)X7Y 2 + ( 57 127
3456 v2u2 − 25

27uv4 − 18 571
1728 u3)X6Y 3

× ( 420 175
3456 v2 − 117 649

576 u)X10Y + (− 1015
96 u3v3 + 125

96 u2v5 + 539
24 u4v)X9Y

− 823 543
6912 X12 + (− 112 847

1152 u2 − 116 375
6912 v4 + 70 315

1728 uv2)X8Y 2.

When Gu,v is Newton non-degenerate we apply theorem 2.4 to compute the
Milnor number µ(Gu,v) = µ(∆(gu,v)). The possible monomials that can contribute
to vertices in the Newton polygon Γ+(Gu,v) are

{Y 7, 27
256u4X4Y 4,− 1

64u4v(−v2 + 36u)X7Y 2,− 1
16u5(4u − v2)2X10}.

Then one has the following.

(i) The points on the line (u, 0) are in orbit (1) (see figure 1(a)). The points on
the line (0, v) are in orbit (2) (see figure 1(b)). In both cases the discriminant
curve is Newton non-degenerate.

(ii) When 36u−v2 = 0, the monomial − 1
64X7Y 2u4v(−v2 +36u) does not appear

in the defining equation for Gv2/36,v. Hence, its corresponding vertex is elim-
inated from the Newton polygon and one has orbit (1). Here the discriminant
curve is Newton non-degenerate. Note that the Newton polygon of Gv2/36,v

is equal to that in the case (u, 0).
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Figure 1. Newton polygon: (a) case (u, 0); (b) case (0, v).
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Figure 2. Newton polygon: case ( 1
4v2, v).

(iii) When u = 1
4v2, the monomial X10 does not appear in the germ Gv2/4,v(X, Y ).

In this case the discriminant curve is Newton degenerate. Hence, it is not
possible to apply the theorem 2.4.

We now show in figure 2 that for u = 1
4v2 the germs that appear are in orbit (3).

In fact, we show that the Milnor number of the discriminant curve Gv2/4,v, denoted
by Gv, is constant for these values.

To do this we can apply the results given in [1] by Damon and Gaffney, who show
how to compute families that have constant Milnor number using jump conditions.
We can also apply the results of Yoshinaga [16] and Kouchnirenko [7], or we can
show that the integral closure of the ideals Iv := 〈X∂Gv/∂X, Y ∂Gv/∂Y 〉 does not
depend on v �= 0 (see [10]). According to Teissier [13], one has the following.

Remark 3.1 (valuative criterion). An element h in O2 is in the integral closure of
the ideal I if, for each analytic curve ϕ : (C, 0) → (C2, x0), h ◦ ϕ is in ϕ∗(I)O1.

The curves ϕ that we need to study appear when the germ is not Newton non-
degenerate and are obviously associated with the degenerate faces of the Newton
polygon of the germ Gv, which is given by

Gv(X, Y ) = − 1
2048v11X7Y 2 + 1

256v9X9Y − 1
128v7X11 + 27

65 536v8X4Y 4

− 343
12 vX5Y 4 + Y 7 + 7787

12 288v6X6Y 3 − 707 021
55 296 v4X8Y 2

+ 487 403
6912 v2X10Y − 823 543

6912 X12 − 755
432v3X3Y 5.
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Here there exists one degenerate face of the Newton polygon of Gv with vertices
{(11, 0), (7, 2)}; we denote this face by F .

To show that this face is degenerate we consider the restriction of the germ Gv

to the monomials that correspond to elements in the face F :

Gv|F := − 1
2048v7X7(4X2 − v2Y )2.

Since this restriction has the square factor (4X2 − v2Y )2, the face is degenerate.
Now, for any parametrization ϕ of the curve 4X2 −v2Y = 0, Gv|F ◦ ϕ = 0. Thus,

we consider the restriction of the germ Gv to the parallel lines above the face F ,
denoted by F i, and find the first parallel line such that the restriction of Gv to it
does not have the polynomial (4X2 − Y v2) as a square factor. In this case, we see
that the first parallel line F 1 satisfies this condition, since

Gv|F 1 = − X4

1769 472
(210 827 008X8 − 124 775 168v2X6Y + 22 624 672v4X4Y 2

− 1121 328v6X2Y 3 − 729v8Y 4)

and there is no v such that (4X2 − Y v2) is a factor of Gv|F 1 .
Therefore, for u = 1

4v2 and v �= 0, we conclude that the multiplicity of the integral
closure of the ideals, Iv := 〈X∂Gv/∂X, Y ∂Gv/∂Y 〉, does not depend on v. Hence,
µ(Gv) = µ(∆(fv2/4,v)) = 54, and these germs are in topological orbit (3).

To conclude, this two-dimensional space of variables (u, v) splits into four topo-
logical orbits:

(0) the origin, with normal form (xy, x3 + y4),

(3) the curve 4u = v2, with normal form (xy, y4 + x(x + y)2),

(2) the line u = 0, with normal form (xy, x3 + y4 + x2y), and

(1) the two-dimensional space formed by the complement of these curves, with
normal form (xy, x3 + y4 + xy2).

Other orbits appear when we add more monomials to the second coordinate of
these normal forms and proceed analogously.

For the orbits (0), (1) and (2) the discriminant curve is Newton non-degenerate.
Therefore, if we add monomials with higher degree to the second coordinate germ,
the Milnor numbers of the discriminant are constant.

Next we add monomials to the germ (xy, y4 + x(x + y)2). First, we consider
monomials of degree 4.

3.2. The family fu,v,w = (xy, y4 + x(x + y)2 + uxy3 + vx3y + wx4)

For generic values of (u, v, w), the defining equation of the discriminant of the
germ fu,v,w = (xy, y4 +x(x+y)2 +uxy3 +vx3y+wx4) has 39 monomials with huge
coefficients depending on the parameters (u, v, w). We do not include this equation
here, but we show the monomials that contribute to vertices of the Newton polygon
of the germ Gu,v,w:

{Y 7, 27
256X4Y 4,−X7Y 2,−2(v − w + u − 1)X9Y,−(v − w + u − 1)2X11}.

We study these Newton polygons in the space of variables (u, v, w).
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Table 3. More orbits in K(xy, x3 + y4).

Germ g µ(Σ(g)) µ(∆(g)) c(g) d(g)

Orbit (0): (xy, x3 + y4) 6 66 11 19
Orbit (1): (xy, x3 + y4 + xy2) 4 52 9 15
Orbit (2): (xy, x3 + y4 + x2y) 5 59 10 17
Orbit (3): (xy, y4 + x(x + y)2) 4 54 9 16
Orbit (4): (xy, y4 + x(x + y)2 + x5) 4 56 9 17
Orbit (5): (xy, y4 + x(x + y)2 + 2xy3 + x6) 4 58 9 18
Orbit (6): (xy, y4 + x(x + y)2 + 2xy3 + x11) 4 60 9 19

Case 1 (v − w + u − 1 = 0). The Newton polygon has vertices associated with the
following monomials:

{Y 7, 27
256X4Y 4,−X7Y 2,− 1

16 (2v − 3w + 1)4X12}.

If 2v − 3w + 1 �= 0, the germ is Newton non-degenerate and µ(Gu,v,w) = 54;
hence, these germs are in orbit (3).

If 2v − 3w + 1 = 0, then µ(Gu,v,w) = ∞ and the germs fu,v,w are not finitely
determined.

Case 2 (v − w + u − 1 �= 0). In this case there exists one face, denoted by F , that
is degenerate. The monomials of the germ that correspond to points in the face F
are

{−Y 2X7,−2(v − w + u − 1)Y X9,−(v − w + u − 1)2X11}

and the restriction of the germ Gu,v,w to the monomials of F gives

Gu,v,w|F := −X7(X2(v − w + u − 1) + Y )2.

Hence, this face is degenerate.
Analogously, we find the special set

u = v − 2w + 2 with Gv−2w+2,v,w := ((2v − 3w + 1)X2 + Y )2Kv,w(X, Y )

and µ(Gv−2w+2,v,w) = µ(∆(fv−2w+2,v,w)) = ∞. Hence, we obtain a new set of
germs in this K class that are not A-finitely determined.

On the other hand, if we consider u �= v − 2w + 2, the restriction of the germ
Gu,v,w to the first parallel line to F , denoted by F 1, shows that Gu,v,w|F 1 does not
have the polynomial (X2(v − w + u − 1) + Y ) as a common factor. Therefore, we
conclude that the Milnor numbers µ(Gu,v,w) are constant with µ(Gu,v,w) = 54, and
these germs are in orbit (3).

Following this method, we describe in table 3 the orbits with 15 � d(g) � 19.
Note that 15 is the smallest number of double folds that appear in any germ in
this K class, and 19 is the corresponding number of double folds of the quasi-
homogeneous germ (xy, x3 + y4).

We also show some germs that belong to these orbits.
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• Orbit (3): (xy, x3 + y4 + uxy2 + vx2y), with u = 1
4v2.

• Orbit (4): (xy, y4 + x(x + y)2 + uxy3 + vx3y + wx4 +
∑

r+s=5 αr,sx
rys), with

1
4 (u − v + 2w − 2)2 + α0,5 − α1,4 + α2,3 − α3,2 + α4,1 − α5,0 = 0 and αr,s �= 0
for some r, s.

• Orbit (5): (xy, y4 + x(x + y)2 + uxy3 + vx3y + wx4 +
∑

r+s=6 αr,sx
rys), with

v − 2w − u + 2 = 0 and αr,s �= 0 for some r, s.

• Orbit (6): (xy, y4 +x(x+ y)2 +uxy3 + vx3y +wx4 +
∑

r+s=11 αr,sx
rys), with

v − 2w − u + 2 = 0 and αr,s �= 0 for some r, s.

3.3. Stems in K(xy, x3 + y4)

The germs (xy, y4 + x(x + y)2 + uxy3 + vx3y + wx4) with v − w + u − 1 �= 0
and u − v + 2w − 2 = 0 are the key tool for answering the question of Gaffney and
Mond about the number of topological orbits in this K class. These germs are stems
in this family; they are not A-finitely determined and from them we construct a
non-finite family of A-finitely determined germs in this K class such that the Milnor
number of the discriminant is increasing.

The stems are well known in the class of germs of maps from surfaces to 3-space.
For example, in [8] we see the stems S∞, B∞ and H∞. Concerning map germs
from the plane to the plane, (x2, y2) is a stem; other stems are (xy, xa + yb) with
gcd(a, b) �= 1.

For simplicity we consider u = 2 and v = w = 0 to show the following.

Theorem 3.2. The K class of the germ f(x, y) = (xy, x3 + y4) has infinitely many
topological types of A-finitely determined germs.

Proof. Consider the family

fs(x, y) = (xy, y4 + x(x + y)2 + 2xy3 + xsys+1) with s > 3.

The defining equation of the discriminant, denoted by Gs(X, Y ), is the determi-
nant of the presentation matrix λ with respect to f , which is the 7 × 7 matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y − 4
3 X 0 − 4

3 X − 4
3 Xs − 10

3 X 0 − 7
3

ε Y − 4
3 X − 10

3 X2 0 − 7
3 X 0

δ γ Y 6
5 Xs+1 + 6

5 X2 0 0 11
10 X

− 5
2 X2 0 − 7

4 X Y θ −X 0

0 − 7
4 X2 0 − 5

2 X2 Y θ −X

− 37
12 X3 0 − 4

3 X2 1
3 XY − 5

2 X2 Y + 2
3 X2 θ

ν β X2( 21
16 − Xs−1) α X( 9

16 Xs + Y ) 0 Y − 63
160 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here

α = − 1
2XY − 9

4X3 − 9
40X2 − 1

40Xs(9X − 10Y ),

β = − 5
2X3 − 9

40X2 − 3
4XY,

γ = − 4
3Xs+1 + 6

5X2,
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θ = − 3
4Xs − 3

4X,

ε = − 4
3Xs+1 − 4

3X2,

δ = − 10
3 X3 − 37

30XY

and

ν = 15
8 X3 + 27

160XY.

We show that the Milnor number µ(Gs(X, Y )) > 2s + 7 for all s > 3.
First, we recall that

µ(Gs(X, Y )) = dimC

O(C2,0)

〈∂Gs/∂X, ∂Gs/∂Y 〉 ,

and this dimension is the multiplicity of the integral closure of this ideal.
Then one has Gs(X, Y ) := (X2 + Y )2P (X, Y ) − X2s+8 + Rs(X, Y ), where

P (X, Y ) := −X7 + 1
256X4(6587X4 + 7382X2Y + 27Y 2) + Y 5 − 41

8 Xs+6

− 1
216X3(50 000X6 + 82 500X4Y + 35 925X2Y 2 + 2777Y 3)

+ 1
192Xs+3(26 050X4 + 9307X2Y + 81Y 2)

− 5
12Xs+2Y 2(100X2 + 31Y )

and

Rs(X, Y ) := 1
4X2s+5(−42Y 2 + 31X2Y + 61X4)

− 1
3456X2s+2(−2187Y 4 + 11 474Y 3X2 + 903 309Y 2X4

+ 2066 280X6Y + 1187 000X8)

+ 1
8X2s+1Y 4(9Y + X2) − 5X3s+7

+ 1
24X3s+4(−258Y 2 + 554X2Y + 2921X4)

− 1
1728X3s+1Y (−729Y 3 + 40 765X2Y 2 + 116 558X4Y + 25 600X6)

− 10X4s+6 − 1
12X4s+3(66Y 2 + 97X2Y + 1564X4) + 27

256X4sY 4

− 10X5s+5 − 5X6s+4 − X7s+3

− 1
216X5s+2(243Y 2 + 3276X2Y + 256X4).

We apply the valuative criterion to show that, for all � < 2s + 7, any monomial
X� is not in the integral closure of the ideal 〈∂Gs/∂X, ∂Gs/∂Y 〉.

Then

∂Gs

∂X
(X, Y ) := (X2 + Y )[4XP (X, Y ) + (X2 + Y )PX(X, Y )]

− (2s + 8)X2s+7 +
∂Rs

∂X
(X, Y )

and

∂Gs

∂Y
(X, Y ) := (X2 + Y )[2P (X, Y ) + (X2 + Y )PY (X, Y )] +

∂Rs

∂Y
(X, Y ).
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Consider the parametrization ϕ(t) = (t, −t2) of the curve X2 +Y = 0. Therefore,

ϕ∗ ∂Gs

∂X
=

∂Gs

∂X
◦ ϕ =

∂Gs

∂X
(t, −t2) = −(2s + 8)t2s+7 + ϕ∗ ∂Rs

∂X

and

ϕ∗ ∂Gs

∂Y
= ϕ∗ ∂Rs

∂Y
.

Since the monomials (in the variable t) of ϕ∗∂Rs/∂X and ϕ∗∂Rs/∂Y have order
greater than 2s+7, X� is not in the integral closure of the ideal 〈∂Gs/∂X, ∂Gs/∂Y 〉
for all � < 2s + 7. Hence, µ(Gs) > 2s + 7.

To obtain the exact Milnor number for each s, we compute the Milnor number
for some fixed values of s. Then we obtain µ(∆(fs)) = 2s + 50. Computing all
invariants of this family, one has µ(Σ(fs)) = 4, c(fs) = 9 and d(fs) = s + 14.

4. Number of topological orbits in K(xy, xa + yb)

In this section we show how to obtain stems in a K-class (xy, xa +yb). Moreover, we
show that there exists a non-finite number of topological types of finitely determined
map germs, answering the question posed by Gaffney and Mond.

The only exceptions are the classes K(xy, x2 + y3) and K(xy, x2 + y5), where it
is not possible to obtain non-A-finitely determined map germs. Hence, there are no
stems. In the K class (xy, x2 + y3) there is only one topological class, and in § 4.3
we show that the K class (xy, x2 + y5) has two topological types. We note that in
any K class that has a representative of type (xy, xa + yb) with gcd(a, b) > 1, the
germ (xy, xa + yb) is a stem.

First, we consider a > 2 and, to describe the remaining K classes (xy, x2 + yb)
with b � 7, we show a result that holds for any a even.

4.1. The K classes (xy, xa + yb) with a > 2

In theorem 4.1 we show the stems for each K class (xy, xa + yb) with a > 2,
and in theorem 4.2 we show the corresponding family of A-finitely determined map
germs fs that have Milnor number µ(Σ(fs)) depending on the parameter s.

Theorem 4.1.

(i) For a or b not equal to 2 or 4, the germ

f∞
a,b(x, y) =

(
xy,−xa

a
+

2
2 − a

yxa−1 +
y2xa−2

4 − a
+

yb

b
+

2xyb−1

b − 2
+

x2yb−2

b − 4

)

is a stem in the class K(xy, xa + yb).

(ii) The germ

f∞
3,4(x, y) = (xy, 3x4 + 6x3y − 3y4 − 6xy3 + 4x3 + 24x2y − 12xy2)

is a stem in the class K(xy, x3 + y4).
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(iii) The germ

f∞
4,b(x, y) =

(
xy,−x4

4
− 2x3y2 +

x2y4

2
+

yb

b
+

2xyb−2

b − 3
+

x2yb−4

b − 6

)

is a stem in the class K(xy, x4 + yb).

If b = 6, the germ (xy, x4 + y6) is not A-finite and is a stem in its K class. The
case b = 3 is obviously not considered.

Proof.
(i) Here J(f∞

a,b(x, y)) := (xa−2 + yb−2)(x + y)2 and µ(Σ(f∞
a,b(x, y))) = ∞. There-

fore, c(f∞
a,b(x, y)) = ∞ and the germ is not A-finitely determined. To show that it

is a stem, consider the family

fa,b,s(x, y) = f∞
a,b(x, y) + (0, xs) with s > a.

Hence,
J(fs) := (xa−2 + yb−2)(x + y)2 − sxs,

as Σ(fs,a,b) is reduced and fa,b,s : Σ(fs,a,b) → ∆(fs,a,b) is one to one, according
to [3, proposition 1.1]. The germ fs is A-finitely determined for all s > a.

(ii) In this case J(f∞
3,4(x, y)) := −12(x2 −xy+x+y2)(y+x)2 is not reduced. Hence,

f∞
3,4 is not A-finitely determined. The corresponding family of A-finitely determined

map germs is
f3,4,s(x, y) = f∞

3,4(x, y) + (0, xs) with s > 3.

(iii) The germ J(f∞
4,b(x, y)) := (x2 + yb−4)(x + y2)2 is not reduced. Hence, f∞

3,4 is
not A-finitely determined. The corresponding family is

f4,b,s(x, y) = f∞
4,b(x, y) + (0, xs) with s > 4.

The answer to the question by Gaffney and Mond in these cases is given below.

Theorem 4.2. The K class of any A-finitely determined map germ f(x, y) =
(xy, xa+yb) with a > 2 has infinitely many topological types of A-finitely determined
germs.

Proof. We show that, for each pair (a, b), the Milnor number µ(Σ(fa,b,s)) depends
on s, and the number of cusps also depends on s.

We apply the valuative criterion to show that x� is not in the integral closure of
the Jacobian ideals 〈∂J(fa,b,s)/∂x, ∂J(fa,b,s)/∂y〉 for all � < s − 1 to conclude that
µ(Σ(fa,b,s)) > s − 1.

If a �= 2, 4 and b �= 2, 4,

∂J(fa,b,s)
∂x

:= 2(x + y)(xa−2 + yb−2) + (a − 2)xa−3(x + y)2 − s2xs−1

and
∂J(fa,b,s)

∂y
:= 2(x + y)(xa−2 + yb−2) + (b − 2)ya−3(x + y)2,
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for ϕ(t) = (t, −t), one has

ϕ∗(x�) = t�, ϕ∗
(

∂J(fa,b,s)
∂x

)
= −s2ts−1, ϕ∗

(
∂J(fa,b,s)

∂y

)
= 0,

and the result follows.

For the K class (xy, x3+y4), since J(f3,4,s) := −12(x2−xy+x+y2)(x+y)2−sxs

we consider the curve ϕ(t) = (t, −t).

For K(xy, x4 + yb), since J(f4,b,s) := (x2 + yb−4)(x + y2)2 − sxs we consider
ϕ(t) = (−t2, t).

To conclude we recall that mfa,b,s
= a + b. Then

c(fa,b,s) = µ(Σ(fa,b,s)) + mfa,b,s
− 2 > (s − 1) + (a + b) − 2 = s + a + b − 3.

Therefore, for any a > 2, the K class (xy, xa + yb) has a non-finite number of
topological types.

4.2. The K classes (xy, xa + yb) with a even

Here we describe stems such that the Milnor number of the discriminant curve
is not finite. The only exceptions are (xy, x2 + y3) and (xy, x2 + y5).

Theorem 4.3. The K class f(x, y) = (xy, x2n + ym+6) with n, m > 0 has a non-
finite number of A-finitely determined topological types.

Proof. Consider the following family:

f2n,m+6,s(x, y) =
(

xy, x2n + ym(x − y3)2 +
n

3n − 2
xy6n−3 +

(
x − y3

5

)
xsys+2

)

with a corresponding defining equation for the critical curve:

J(f2n,m+6,s) = −2nx2n + 2nxy6n−3 + (m + 6)ym+6 + (−4 − 2m)xym+3

+ (−2 + m)ymx2 + xsys+2(x − y3).

We write J(f2n,m+6,s)(x, y) = (x − y3)ηs(x, y) and show that the image of the
restriction to the curve x − y3 has a Milnor number depending on s.

If n is even, then the presentation matrix λ2n,m+6,s|V (x−y3) of the restriction of
f2n,m+6,s to the component V (x − y3) is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y − 4n − 2
3n − 2

X3n/2 −4Xs+1

5
0 0

0 Y − 4n − 2
3n − 2

X3n/2 −4Xs+1

5
0

0 0 Y − 4n − 2
3n − 2

X3n/2 −4Xs+1

5

−4Xs+2

5
0 0 Y − 4n − 2

3n − 2
X3n/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Therefore, we can write the defining equation of the discriminant as

G2n,m+6,s(X, Y ) = G1(X, Y ).P (X, Y )

with

G1(X, Y ) =
16

(3n − 2)4

((
1 − 3n

2

)
Y + (2n − 1)X3n/2

)4

− 256
625

X4s+5.

If n is odd, then λ2n,m+6,s|V (x−y3) is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y −4Xs+1

5
−4n − 2

3n − 2
X(3n−1)/2 0

0 Y −4Xs+1

5
−4n − 2

3n − 2
X(3n−1)/2

−4n − 2
3n − 2

X(3n+1)/2 0 Y −4Xs+1

5

−4Xs+2

5
−4n − 2

3n − 2
X(3n+1)/2 0 Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, we write G2n,m+6,s(X, Y ) = G2(X, Y ) · Q(X, Y ) with

G2(X, Y ) =
(

−Y 2+
(

4n − 2
3n − 2

)2

X3n

)2

− 128
25

(
2n − 1
3n − 2

)
Y X(3n+5)/2+2s− 256

625
X4s+5.

Now we apply the valuative criterion to show which monomials X� are not in the
integral closure of the ideals 〈∂Gi/∂X, ∂Gi/∂Y 〉, i = 1, 2, with � depending on s.

Consider the parametrization

ϕ1(t) =
(

t,
4n − 2
3n − 2

t3n/2
)

for even n and the parametrization

ϕ2(t) =
(

t2,
4n − 2
3n − 2

t3n

)

for odd n.
Then

ϕ∗
1

(
∂G1

∂X

)
=

∂G1

∂X
◦ ϕ1 = t4s+4, ϕ∗

1

(
∂G1

∂Y

)
=

∂G1

∂Y
◦ ϕ1 = 0

and

ϕ∗
2

(
∂G2

∂X

)
=

∂G2

∂X
◦ ϕ = t8s, ϕ∗

2

(
∂G2

∂Y

)
=

∂G2

∂Y
◦ ϕ1 = t4s+3n+5.

Hence, if � < 4s+4, X� is not in the integral closure of the ideal 〈∂G1/∂X, ∂G1/∂Y 〉,
and if � < min{8s, 4s + 3n + 5}, X� is not in the integral closure of the ideal
〈∂G2/∂X, ∂G2/∂Y 〉.

Therefore, as µ(G2n,m+6,s(X, Y )) � µ(Gi(X, Y )) � 4s + 4, these K classes have
a non-finite number of different topological types.
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Figure 3. Newton polygons of the discriminant curves of (a) the germ (xy, x2 + y5 + xy2)
and (b) the germ (xy, x2 + y5 + xy2 + xy3 + x2y).

4.3. The K class (xy, x2 + y5)

We show that this K class has only two topological orbits. Note that it has at
least two orbits, since the germ (xy, x2 + y5 + xy2) is not in the topological orbit
of (xy, x2 + y5). The invariants of these germs are as follows.

(i) Germ g(x, y) = (xy, x2 + y5), µ(Σ(g)) = 4, µ(∆(g)) = 54, c(g) = 9 and
d(g) = 16.

(ii) Germ g(x, y) = (xy, x2 + y5 + xy2), µ(Σ(g)) = 3, µ(∆(g)) = 47, c(g) = 8 and
d(g) = 14.

To show that any other germ is in one of these orbits, first we consider the family
gt(x, y) = (xy, x2 + y5 + txy2). For t �= 0 the defining equation Gt(X, Y ) of the
discriminant curve of gt(x, y) = (xy, x2 + y5 + txy2) is given by

Gt(X, Y ) = − 1728
3125 t7X9 + 256

3125 t5Y 3X5 + 49 392
3125 t4X8Y − 931

100 t2X4Y 4

− 16 807
250 tX7Y 2 − 823 543

12 500 X10 + Y 7.

For all t �= 0, the germ Gt is Newton non-degenerate. Then all germs gt are in
the topological orbit of g1(x, y) = (xy, x2 + y5 + xy2) and the result follows.

Now we consider a deformation (xy, x2 + y5 + xy2 +
∑

α,β aα,βxαyβ) of the germ
(xy, x2+y5+xy2) with (α, β) above the Newton polygon of x2+y5+xy2. In this case
the corresponding monomials that appear in the defining equation Gα,β(X, Y ) of
the discriminant curve are also above the Newton polygon of the defining equation
of the germ (xy, x2 + y5 + xy2).

Since for any (α, β) satisfying this condition the germ Gα,β(X, Y ) is Newton non-
degenerate and the Newton polygon of Gα,β does not change, the result follows.

To illustrate, we show in figure 3 the Newton polygons of the discriminant curves
of the germs (xy, x2 + y5 + xy2) and (xy, x2 + y5 + xy2 + xy3 + x2y), respectively.

5. How to obtain stems in a K class (xy, xa + yb)

We developed an algorithm to compute stems in a K class (xy, xa + yb) with a > 2
and gcd(a, b) = 1. This algorithm is obtained using the Newton polygon of the germ
xa + yb.
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Figure 4. Possible exponents of the germs for stems in the K class (xy, x5 + y7).

The main idea is to find stems f in the K class with a non-reduced defining
equation of the critical curve, and hence with a non-finite Milnor number of the
critical curve.

We begin by fixing the germ J(f) of the critical curve and find the appropriate
germs f that have this critical curve. Then we obtain the families of germs fs =
f + (0, xs), which are finitely determined, with Milnor numbers of the critical and
of the discriminant curves depending on s.

As an application we describe some stems in the K class (xy, x5 + y7).

(i) Critical curve J(f) := (x3 + y5)(x + y)2, germ

f(x, y) = (xy,− 1
5x5 + 1

7y7 − 2
3x4y − x3y2 + 1

3x2y5 + 2
5xy6),

with Milnor numbers µ(Σ(fs)) = s + 15 and µ(∆(fs)) = 3s + 311.

(ii) Critical curve J(f) := −(x − y2)(x + y2)(x + y)3, germ

f(x, y) = (xy, 1
5x5 + 1

7y7 + yx4 + 3y2x3 − x2y3 + y4x3 + x2y5 + 3
5xy6),

with Milnor numbers µ(Σ(fs)) = 2s + 8 and µ(∆(fs)) = 8s + 262.

(iii) Critical curve: J(f) := (x + y3)(x + y)4, germ

f(x, y) = (xy,− 1
5x5 + 1

7y7 − 4
3x4y − 6x3y2 + 4x2y3

+ 1
3xy4 − x4y3 + 4x3y4 + 2x2y5 + 4

5xy6),

with Milnor numbers µ(Σ(fs)) = 3s + 1 and µ(∆(fs)) = 15s + 187.
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(iv) Critical curve J(f) := −(x − y)(x2 + xy + y2)(x + y2)2, germ

f(x, y) = (xy, 1
5x5 + 1

7y7 + x4y2 − x3y4 + 1
2xy5 + x2y3),

with Milnor numbers µ(Σ(fs)) = 2s + 11 and µ(∆(fs)) = 6s + 281.

(v) Critical curve J(f) := −(x − y5)(x2 + y)2, germ

f(x, y) = (xy, 1
5x5 + 1

7y7 + x3y − xy2 + x4y5 + 1
2x2y6),

with Milnor numbers µ(Σ(fs)) = s + 1 and µ(∆(fs)) = 3s + 143.

(vi) Critical curve: J(f) := −(x2 − y)(x + y2)3, germ

f(x, y) = (xy, 1
5x5 + 1

7y7 + 3
4xy5 + 3x2y3 − 1

2x3y − 3y4x3 + 3
2y2x4 − 1

4x2y6),

with Milnor numbers µ(Σ(fs)) = 4s + 1 and µ(∆(fs)) = 16s + 201.

(vii) Critical curve J(f) := −(x3 − y)(x + y3)2, germ

f(x, y) = (xy, 1
5x5 + 1

7y7 + 2x4y3 − 1
3x3y6 + 2

3xy4 − x2y),

with Milnor numbers µ(Σ(fs)) = 3s + 1 and µ(∆(fs)) = 9s + 161.

(viii) Critical curve J(f) := (x + y3)(x2 + y2)2, germ

f(x, y) = (xy,− 1
5x5 + 1

7y7 − 2x3y2 + 1
3xy4 − x4y3 + 2

3x2y5),

with Milnor numbers: µ(Σ(fs)) = 2s + 6 and µ(∆(fs)) = 6s + 232.

In figure 4 we show the possible exponents of the germs above:

• the solid black line corresponds to the Newton polygon of the germ x5 + y7,

• the dashed black line corresponds to factors (x+y) or (x2 +y2) in the critical
curve,

• the solid grey line corresponds to the factor (x + y3) in the critical curve,

• the dashed grey line corresponds to the factor (x + y2) in critical curve and

• the dotted grey line corresponds to the factor (x2 + y) in the critical curve.
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