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The evolution and dynamics of a shallow-water vortex system with high initial
Reynolds numbers are investigated experimentally without background rotation. A
single vortex is generated by rotating a water mass at the centre of an experimental
tank using a bottomless cylinder with internal sectors. The surface velocity field
is observed via particle image velocimetry. The experimentally observed vorticity
fields indicate that strong shallowness (the ratio of the cylinder diameter to the
water depth) and high Reynolds number contribute to the formation of large-
scale coherent structures in the form of a tripolar vortex system. The shallow-water
vortices with high initial Reynolds numbers experience the transition from turbulent
to laminar regimes in their decay process. The proposed first-order vortex decay
model predicts that a shallow-water vortex decays as t−1 in the initial turbulent
stage and as e−t in the later laminar stage due to horizontal diffusion and bottom
friction. The estimated transition time scale from the turbulent to laminar stage
increases with initial vortex Reynolds number and with shallowness. By taking the
vortex expansion into consideration, the second-order vortex decay model is also
presented. The azimuthally ensemble-averaged data elucidate effects of the vortex
instabilities and of turbulent energy transfer on the formation of large-scale coherent
flow structures. Normal mode analysis of the vortex systems is conducted to study
the effect of shallowness and Reynolds number on the generation of two-dimensional
large-scale coherent structures. The results show that the perturbation wavenumber
of mode 2 is the fastest-growing instability in shallow-water conditions, and its effect
depends on initial Reynolds number and shallowness.

Key words: shear layer turbulence, vortex dynamics, vortex instability

1. Introduction
Coherent large-scale vortices in shallow-water conditions can be found in many

natural and engineering applications. Topographical forcing (e.g. islands, headlands,
groynes, etc.) creates velocity variations in the transverse direction and causes initial
flow instabilities (Jirka & Uijttewaal 2004). Because of the confinement provided
by flow depth, these instabilities grow in the horizontal dimension and lead to the
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Single shallow-water vortex 275

generation of large-scale predominantly two-dimensional coherent structures (2DCS),
whose horizontal length scale is much larger than the water depth (Uijttewaal &
Booij 2000). These flow structures are important for controlling the mass, momentum
and heat transport of the flow, and thereby strongly influence the mixing processes
of pollutants and the erosion process at the bottom surface (Lin, Ozgoren &
Rockwell 2003; Carmer, Rummel & Jirka 2004). The main signatures of these
inherently turbulent shallow flows are the inverse energy cascade leading to quasi-
two-dimensional large-scale coherent flow structures (Jirka 2001). The study of an
isolated single vortex in shallow flows can provide a basis for understanding the more
complex turbulent flows.

The limits on the ‘geometrical confinement’ for quasi-two-dimensional flow have not
yet been determined clearly. As a previous study to answer this question, Paret et al.
(1997) generated monopolar and dipolar structures electromagnetically to investigate
the physical process suppressing the three-dimensional effect by shallowness (e.g. 6 mm
thick two-layered NaCl solution in 20 cm × 27 cm PVC cell in their study). They found
that the flow could be treated as two-dimensional flow after a short transition time.
Sous, Bonneton & Sommeria (2005) also concluded that the damping of the vertical
motion by the water depth is responsible for the formation of large-scale horizontal
flow structures, such as a vortex dipole. Later, the effect of vertical restriction on
the flow was numerically confirmed for an evolving axisymmetric monopolar vortex
in shallow fluid by Satijn et al. (2001). They also found that the two-dimensionality
depends not only on the geometrical confinement but also on the Reynolds number.
This is due to the secondary flow generated by the no-slip bottom boundary. From the
previous studies, it was concluded that the vertical velocity structures in quasi-two-
dimensional flow relaxes to a Poiseuille flow, which is usually modelled by a Rayleigh
bottom friction term (Clercx, van Heijst & Zoeteweij 2003; Akkermans et al. 2008).
This bottom friction effect also has an influence on the peak vorticity resulting in
rapid attenuation of the vorticity level for the conditions of shallow-water depth (Lin
et al. 2003).

In this experimental study, we restrict our flow conditions to the shallow single-
vortex flow over limited length scales below the Rossby radius (in fact, without any
Coriolis force) and to initial conditions with high Reynolds numbers. Therefore, in the
absence of Coriolis effects (i.e. large Ekman number), the evolution of the flow field
is primarily governed by the interplay of inertial and viscous effects, the latter linked
to horizontal as well as to bottom shear stresses. By setting these limits, we emphasize
the purpose of our study towards small-scale geographical applications, such as
shallow vortices behind small islands (e.g. Chen & Jirka 1995), or tidal efflux eddies
from coastal lagoons (e.g. Chen & Jirka 1995; Wells & van Heijst 2003; Nicolau
del Roure, Socolofsky & Chang 2009), or engineering applications such as vortex
shedding behind groynes in rivers (e.g. Sukhodolov, Uijttewaal & Engelhardt 2002).
The Reynolds numbers in our experiment of O(104 ∼ 105), based on initial peripheral
velocities and water depth, are large enough to exhibit a Reynolds-invariant turbulent
regime, similar to the field situation, and the ratio of horizontal vortex length scale
to water depth O(10) is also similar.

In two-dimensional confined flow conditions, the turbulent flow undergoes
reorganization to form a coherent multipole vortex system. Monopolar vortices may
emerge in two-dimensional turbulence from an initial state of randomly distributed
vorticity fields (McWilliams 1984). Dipoles can be formed when two of such vortices
with oppositely signed circulations interact to create a self-propelling compound
vortex. The emergence of tripolar vortices was first observed by Legras, Santangelo &
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Benzi (1988) in numerical simulations of randomly distributed vortices. Carton,
Flierl & Polvani (1989) numerically studied the generation of tripoles from an unstable
axisymmetric isolated monopolar vortex. The formation of a stable tripolar vortex
from an unstable axisymmetric vortex was investigated experimentally in a rotating
homogeneous fluid (van Heijst & Flór 1989; van Heijst & Kloosterziel 1991). It
was found that the tripole formation is the result of an azimuthal wavenumber 2
instability of an unstable isolated circular vortex. This tripole vortex has been
observed, for example, in the Bay of Biscay as a result of topographic destabilization
of oceanic eddies (Pingree & Le Cann 1992; Carton 2001). From further laboratory
and numerical experiments, triangular and square vortices due to the wavenumber 3
and 4 instabilities were also reported (Carnevale & Kloosterziel 1994; Beckers &
van Heijst 1998; Kloosterziel & Carnevale 1999). One of the main purposes of the
present study is to investigate the correlation between the flow instabilities and the
flow conditions.

We investigate experimentally a single large-scale vortex as a precursor to future
studies of a more complex multiple vortex system. Different methods to create a
single vortex have been used in laboratory experiments. A comprehensive review on
the laboratory techniques for single-vortex generation in a rotating fluid can be found
in van Heijst & Clercx (2009). To generate an isolated vortex (the net vorticity is zero),
Kloosterziel & van Heijst (1991) stirred the water mass inside a hollow cylinder in a
rotating tank. After the flow inside the cylinder is stabilized to purely azimuthal, they
released the single vortex by removing the cylinder wall. A similar technique has been
used to generate a self-propagating quasi-monopolar vortex with angular momentum
and linear momentum (Voropayev et al. 1999). Another generation technique is the
sink technique, in which the cyclonic vortex is produced by pumping out some fluid
through a sink (e.g. a perforated tube). For this method, a background rotation is
necessary for fluid parcels to be deflected to one side while moving towards a sink.
The vortex generated by this method is non-isolated (Kloosterziel & van Heijst 1992;
Zavala Sansón & van Heijst 2002). A third method is the gravitational collapse
technique (Kloosterziel & van Heijst 1992). A thin-walled open cylinder is placed in
the rotating fluid tank, and the fluid level inside this cylinder is lower than that of the
outside. When the cylinder is lifted, a gravity-driven flow arises in the radial direction
immediately followed by a deflection due to the Coriolis acceleration. This method
is dynamically similar to the stirring method. A baroclinically forced cyclonic vortex
can also be generated by placing an ice cube inside a circular hollow cylinder in the
rotating water tank (Cenedese, Adduce & Fratantoni 2005). These previous vortex
generation methods require background rotation to achieve two-dimensionality of the
vortex, where the background rotation suppresses any variation of the flow in the
vertical direction (Orlandi & Carnevale 1999). In stratified fluids, a single vortex was
created by a rotating sphere, a thin bent rod, or injecting fluid along the inner wall
of a submerged open cylinder (Flór & van Heijst 1996; Trieling & van Heijst 1998).
These studies shed light on the importance of vertical as well as horizontal diffusion
in vortex decay. Furthermore, vortex flow can be initiated by electromagnetic forcing
in an electrolyte fluid (e.g. mercury, salt solution) (Nguyen Duc & Sommeria 1988;
Akkermans et al. 2008), although this method generally generates vortex couples due
to the inherent properties of the magnetic force fields.

In our experiments, a single vortex is generated by the initial solid body rotation of
a fluid mass within a rotating open-bottom cylinder that is lifted out of the water at
the start of the experiment. The subsequent instabilities, turbulent growth and decay
of the resulting vortex are the objectives of the study.
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Figure 1. Experimental set-up.

The paper is organized as follows. In § 2, we describe the experimental procedures
and analysis methods. In § 3, we present the general properties of a single vortex with
different Reynolds numbers and shallowness conditions. In § 4, we discuss the global
vortex decay properties. The physical properties of the ensemble averaged shallow
vortex are presented in § 5. Final conclusions are given in § 6.

2. Experiments
2.1. Generation of single vortex

The laboratory experiments were conducted in a shallow-water tank with a dimension
of 160 cm × 160 cm × 20 cm without background rotation. The size of the tank is large
enough to prevent any disturbances from the sidewalls. For optical access, the tank
bottom and sidewalls are made with glass and Plexiglas, respectively. The experimental
tank was filled with regular tap water at room temperature with different depths to test
shallowness effects. The vortex generator consists of a bottomless Plexiglas cylinder,
divided into several sectors, mounted vertically and driven by a stepper motor, and
is mounted on a movable bridge. The generation system is controlled by a PC. A
schematic side view of the experimental set-up is shown in figure 1.

Prior to the experiment, the tank is filled with a water depth of H . For vortex
generation, the water mass inside the cylinder is rotated during an initial spin-up time
(4 s). This spin-up from the situation at rest causes four principal disturbances. (i) The
surface-water level is disturbed with a deflection, �h= Ω2

0 (r
2 − R2

0/2)/2g, in which
Ω0 is the initial angular velocity, r is the radius from centre, R0 is the cylinder radius
and g is the gravitational acceleration. Upon removal of the cylinder, this causes
surface waves in the tank. In order to minimize the waves, the maximum deflection,
�h(R0) = Ω2

0R0
2/4g, is kept small (less than 1 cm). (ii) Internal circulations are set up

within the internal sectors installed within the cylinder. Given that sufficient internal
sectors are installed (typically 4–8 sectors), these circulations are sufficiently weak as
observed by a camera and diminish rapidly compared to the time subjected to initial
forcing in which the flow becomes the solid body rotation. (iii) The excess of pressure
at the cylinder periphery causes some leakage losses through the gap between the
rotating cylinder wall and the tank bottom (less than 0.5 mm). A sufficiently small
gap and the short spin-up time (4 s) were found adequate to minimize the losses.
(iv) As the cylinder is removed from the water, we observe strong turbulent mixing
followed by water inflow and surface waves in the radial direction due to the displaced
cylinder wall volume. This radial inflow is overwhelmed by the rotational flow in a
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Water Cylinder Number of
Experiment depth Initial angular diameter internal Shallowness Reynolds

number H (cm) velocity Ω0 (1/s) D (cm) sectors S = D/H (−) number Re (−)

I 2 3.14 10 4 5 7850
II 2 6.28 10 4 5 14 000
III 2 9.42 10 4 5 21 000
IV 2 12.56 10 4 5 28 000
V 3 6.28 10 4 3.3 14 000
VI 4 6.28 10 4 2.5 14 000
VII 5 6.28 10 4 2 14 000
VIII 6 6.28 10 4 1.7 14 000
IX 2 6.28 20 8 10 56 000

Table 1. Experimental conditions.

few rotations. The generated surface waves are damped out and have little influence
on the vortex formation as observed by van Heijst & Kloosterziel (1991).

Table 1 summarizes the experimental programme, in which the effects of initial
angular velocity Ω0, water depth H and cylinder diameter D have been studied. The
shallowness and the Reynolds number for the study are defined by S = D/H and
Re = V0R0/ν respectively, where V0 is the initial azimuthal velocity at the cylinder
periphery, and ν is the kinematic viscosity of water (=1.12 × 10−2 cm2 s−1), range from
1.7 to 10 and from 7850 to 56 000, respectively. After a short spin-up time (ts) of 4 s,
the vortex generator is rapidly lifted with the PC-controlled pneumatic cylinder, and
the whole vortex generation system is moved outside the tank manually. The time
origin (t = 0) is defined as the moment when the controlling PC sends a signal to
remove the vortex-generating cylinder from the water. Note that the cylinder is still
rotating while it is lifted up from the water.

2.2. Measurements on surface flow fields

To obtain quantitative information about the flow field, surface particle image
velocimetry (PIV) was applied. In this study, we consider the surface velocity field as
being representative of the underlying flow field. It is noteworthy, however, that an
adequate ratio between average cross-sectional and surface velocities is proposed as
0.85–0.90 by assuming a logarithmic velocity profile (Creutin et al. 2003). This means
that the measured surface flow field overestimates the mean flow properties by around
10 %. Furthermore, we also assume that the secondary flow due to the secondary
circulation near the bottom has negligible effects on the vortex instability. As reported
in Sous et al. (2005), the ratio of the kinetic energy associated with the vertical and
horizontal velocity components decreases below 0.10 for strong shallowness (C � 3,
where C represents the vertical confinement coefficient by Sous et al. 2005; this can
be converted to S ≈ 5 in this study).

The experimental set-up for surface PIV is rather simpler than the conventional
laser PIV system. The flow field is illuminated with normal floodlights and seeded
with buoyant polyester glitter particles with size distribution of 0.5–1.5 mm (Sigmund
Lindner GmbH). The images of the tracer particles are recorded using a CCD camera
(Imager Compact, LaVision GmbH, 1024 pixel × 1024 pixel with 12-bit greyscale
intensity) with a Nikkor 15 mm wide-angle lens. The camera is mounted at 285 cm
directly above the water surface to cover a measurement area of about 130 cm × 130 cm
(maximum 2.5 % of image distortion at the image edge). The tracer particle images
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are taken in a single-frame mode with a frequency of 10 Hz with the exposure time
of 50 ms. The measurements are taken for 2 min, which is long enough to record the
whole lifetime of the vortex system. To account for the initial disturbances (e.g. re-
moving the vortex generator, dripping waters from the cylinder, etc.) in the flow fields,
the measurements for the first 2 s are not considered for the analysis of the flow fields.

A commercial PIV software (DaVis 6.2, LaVision GmbH) is used to process the
captured images to obtain a velocity vector field. Contrary to a typical PIV image
of individual tracer particles, the recorded image in the surface PIV appears as a
brightness pattern image of groups of moving particles in the flow (Fujita, Muste &
Kruger 1998). In this type of image, the measurement error was estimated about 5 %
with the seeding density (the percentage ratio of seeded to total image area) of 33 %
(Meselhe, Peeva & Muste 2004). The adaptive-multipass algorithm is used for the
PIV processing with decreasingly smaller interrogation window size based on cross-
correlation. The initial and final interrogation window sizes were 128 pixel × 128 pixel
and 32 pixel × 32 pixel with 50 % overlapping region, respectively. The resulting data
resolution is about 2 cm. To remove erroneous velocity vectors, the vector maps have
been post-processed using a velocity median filter.

From the obtained velocity vector field, the vertical component of vorticity, ω, is
determined as

ω =
∂v

∂x
− ∂u

∂y
, (2.1)

where u and v are the horizontal velocity components at the water surface. The
vorticity field was estimated using the least-squares approach by calculating spatial
derivatives of the local velocity gradient (Raffel, Willert & Kompenhans 1998).

2.3. Coordinate transformation

We assume that the initial shallow vortex flow field is purely azimuthal, where
the fluid rotates about the axis. In the study of the axisymmetric rotating flow
structures, it is convenient to transform from a Cartesian to a polar coordinate
system. Both the vorticity maximum and the streamfunction maximum can be used to
determine the vortex centre for the coordinate system transformation. The method
based on the maximum vorticity did not work very well for the case where the
centre vortex has a hollow vorticity region, such as in the early stage just after the
cylinder is removed from the water. In addition, the maximum streamfunction method
also failed due to inaccuracies introduced in integrating the velocity field to obtain
the streamfunction. Therefore, we define the vortex centre in the following manner.
First, the vorticity field is separated by its sign, in which the central vortex has a
positive sign (clockwise rotation). Second, the vorticity contours satisfying ω = δ ωmax ,
where δ is a constant varying 0.5–0.7 and ωmax is the measured maximum vorticity,
are defined from the separated vorticity field. Finally, the vortex centre is defined by
calculating the centre of a mass within the contour area. With the defined vortex centre,
the azimuthal and radial components of velocity, vθ and vr , can be calculated from the
Cartesian velocities u and v in x and y direction for the radial distance, r , and the
azimuthal angle, θ .

2.4. Azimuthal average

Each experimental condition is repeated about 7–10 times and ensemble-averaged
to ensure repeatability and to gain insight on the mean flow properties of the
generated shallow vortex system. For azimuthal averaging, each instantaneous flow
field is converted to a polar coordinate system as explained in § 2.3. It is difficult to
superimpose all the vortices for the average in a Cartesian coordinate system due to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

39
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003915


280 D.-G. Seol and G. H. Jirka

. . . .

1

(a)

(b)

2 M <->

θ

r

Number of experiments in ensemble

t =
 ti

T
im

e sequence0 2π

2 4 6 8 100

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 v
al

id
 m

ea
su

re
m

en
t

Number of experiments in ensemble

 
2.5 s
  5 s
10 s
20 s

Figure 2. Ensemble-averaging of vortex system in azimuthal direction: (a) schematic of the
process and (b) estimated fraction of valid measurements for the number of experiments in
ensemble.

the random distribution of small vortex patches around the central vortex at an early
stage. After conversion to a polar coordinate system, the velocity components (vr and
vθ ) are averaged over the azimuthal direction. As shown in figure 2(a), the azimuthal
averages of the velocity components are ensemble-averaged over the total number M

of instantaneous velocity fields.
The performance of the ensemble-averaging can be quantified by calculating the

fraction of valid measurements for the number of experiments in the ensemble
(Meinhart, Wereley & Santiago 2000). To quantify the convergence of the ensemble
average, the fraction of valid measurements was estimated by counting the number
of azimuthal velocity components that are deviated by more than 10 % from the
ensemble-averaged velocity profile with 10 data sets. Figure 2(b) shows the estimated
fraction of valid measurements as a function of the number of experiments used in the
ensemble average. As shown in the figure, about 95 % convergence can be achieved
by ensemble-averaging more than five data sets, except for the very first stage (e.g.
2.5 s), where the flow is still in a highly unstable turbulent condition. This test proves
the convergence of the ensemble average provided more than five data sets are used.

3. General observations
3.1. Initial development of instability

Instabilities occurring in the initial vortex forcing stage are studied by measuring
the flow fields before removing the cylinder (figure 3). The measurements were
conducted by installing the camera below the experimental tank for the experiment
II condition. The flow field inside the internal section was not measured due to the
optical disturbance by the inner walls. Figures 3(a) and 3(b) illustrate the velocity and
vorticity fields at 2 and 4 s after starting the cylinder rotation, respectively. The flow
fields clearly show that the vortex core is surrounded by a ring of opposite-signed
vorticity due to the boundary layer outside the rotating cylinder; also, the thickness
of the boundary layer grows over time. During the forcing, the flow in this outer
boundary layer is already susceptible to centrifugal instability, which is demonstrated
well as negative vorticity patches in figure 3(b).

3.2. Effects of Reynolds number

For different initial angular velocities with the same shallowness (S = 5) and a fixed
cylinder diameter (D = 10 cm) and water depth (H = 2 cm), the instantaneous vorticity
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Figure 3. Measured velocity and vorticity fields during vortex forcing stage for experiment
II: 2 s (a) and 4 s (b) after starting cylinder rotation. Vorticity countours are normalized with
observed maximum vorticity value.

maps at different times were plotted in figure 4. For all conditions, positive vorticity
(shown in red) has been created inside the cylinder (grey circle represents the initial
position of the cylinder). It can be observed that patches of negative vorticity (shown
in blue) are created and slowly rotate around the central vortex in the anti-clockwise
direction. For higher initial angular velocities, the central vortex has a more irregular
shape. While rotating, the outside vortex patches reorganize themselves (mainly
merging with neighbouring vorticity patches) and form two large patches of negative-
signed vorticity (satellite vortices). It appears that all cases converge to form a tripole
system, even though the low-Reynolds-number case does not fully complete the tripole
formation process (see figure 4d ). In all these shallow cases, the horizontal scale of the
final vortices greatly exceeds the water depth H (indicated by the error bar of 2 cm
length in figures 4a, 4e, 4i and 4m). This observed sequence is dominated by the follow-
ing mechanics: the initial solid body rotating mass after removal of the cylinder forms
a single vortex surrounded by a ring of opposite-signed vorticity in the outer boundary
layer. The action of these opposite vorticity patches develops azimuthal instabilities.
According to the two-dimensional vortex linear stability analysis (Flierl 1988), an
azimuthal wavenumber k instability may deform the annulus into k satellite vortices
surrounding the core vortex based on the relative width of the outer annulus of the
opposite-signed vorticity. After the cylinder removal, vigorous vertical and horizontal
mixing occur around the central vortex. This turbulent mixing triggers the instabilities
around the central vortex. Except for the low-Reynolds-number case, where the
azimuthal wavenumber 4 instability is dominating (figures 4a, 4b, 4c), the competition
between unstable modes of different wavenumbers can be observed in the early stage
of the vorticity maps (Carnevale & Kloosterziel 1994). As shown in the plots for low
initial rotational velocity, the negative vorticity patches are nearly stagnant at the
beginning and slowly merge together to form a tripole. In contrast, for higher initial
rotation velocity cases, the azimuthal wavenumber 2 instability is developed and trans-
formed into the tripole system at a much quicker pace than for smaller initial rotation
velocity. In summary, it appears that the higher-Reynolds-number cases clearly exhibit
a Reynolds-invariant behaviour in that the large-scale flow features at larger times
become self-similar. This seems to hold for Re � 14 000 within the times shown in
figure 4.
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Figure 4. Snapshots of instantaneous vorticity maps for different Reynolds numbers with the
same shallowness (S =5). (a–d ) Re = 7850 at t = 2.5, 3.7, 5.7 and 20.3 s, respectively, (e–h)
Re = 14 000, (i–l ) Re = 21 000, (m–p) Re =28 000. The grey circles and error bars in (a), (e),
(i ) and (m) represent the initial cylinder contour and water depth, respectively. The vorticity
contour levels are normalized with the maximum vorticity value observed in each plot.

3.3. Effects of shallowness

Figure 5 shows the time sequence of instantaneous vorticity maps for different
shallowness S (2–10) and for high-Reynolds-number cases (Re � 14 000). This should
be compared to figure 4, which corresponds to the case of S =5. It is obvious that
the shallowness has a pronounced influence on the distribution of vorticity. Again,
error bars in figures 5(a), 5(e), 5(i ) and 5(m) indicate the variable water depth H .
For the strongest shallowness (S = 10), the flow has an irregular vortex distribution
in the very initial times within t = 3.7 s and starts forming the tripole system after 5 s
(figure 5c), in which the horizontal vortex size greatly exceeds the water depth H .
On the other extreme, the weak shallowness (i.e. deep) cases (S = 2.5 and 2) show a
distinctly different flow behaviour. The annulus of the negative vorticity originated
from the initial shear boundary layer around the central vortex is stagnating and
gradually diffuses with time. This horizontal diffusion, evident from the shape of
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Figure 5. Snapshots of instantaneous vorticity maps for different shallowness (S) with the
same Reynolds number (Re = 14 000). (a–d ) S = 10 at t = 2.5, 3.7, 5.7 and 20.3 s, respectively,
(e–h) S = 5, (i–l ) S = 2.5, (m–p) S =2. The vorticity contour levels are normalized with the
maximum vorticity value observed in each plot.

the three-dimensional vortex, whose length scale is below, or at most, of the order
of the water depth, leads finally to an irregular turbulent region. This is seen most
distinctively in figure 5(p), where the surface signature of the turbulent eddies, mostly
in the form of eddies with concentrated negative vorticity at scales of the order of or
below the water depth, are visible.

4. Global vortex decay properties
4.1. Scale analysis on the vortex decay mechanism

In this section, we attempt to analyse the relative importance of flow scales on
the vortex decay as observed in § 3. We consider the two-dimensional shallow-water
equations for turbulent flow in a fluid layer of depth h(x, y) over a local water bottom
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elevation zb(x, y) obtained by using the hydrostatic approximation

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0, (4.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = −g

∂

∂x
(h + zb) +

νeff

h

∂

∂x

(
h

∂u

∂x

)
+

νeff

h

∂

∂y

(
h

∂u

∂y

)
− τbx

ρh
, (4.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = −g

∂

∂y
(h + zb) +

νeff

h

∂

∂x

(
h

∂v

∂x

)
+

νeff

h

∂

∂y

(
h

∂v

∂y

)
− τby

ρh
, (4.3)

in which u, v are the depth-averaged velocities in the horizontal x, y directions, f is
the Coriolis parameter, g is the gravitational acceleration, νeff is the effective viscosity
as the sum of molecular and turbulent contributions, νeff = ν + νturb , ρ is the reference
fluid density and τbx , τby are the turbulent bottom shear stresses in the horizontal x,
y directions, expressed by a quadratic friction law,

τbx = ρ
cf

2
u
√

u2 + v2, τby = ρ
cf

2
v
√

u2 + v2, (4.4)

in which cf is the bed-friction coefficient (Streeter & Wylie 1985). By taking the
curl of the momentum equations and using the continuity equation for constant
bottom boundary condition (zb = 0), the conservation equation for the depth-averaged
vorticity is given by

h
D

Dt

(
ω + f

h

)
=

∂

∂x

[
νeff

h

∂

∂x

(
h

∂u

∂x

)
+

νeff

h

∂

∂y

(
h

∂u

∂y

)]

− ∂

∂y

[
νeff

h

∂

∂x

(
h

∂u

∂x

)
+

νeff

h

∂

∂y

(
h

∂u

∂y

)]

− ∂

∂x

(
ρ

cf

2h
v
√

u2 + v2

)
+

∂

∂y

(
ρ

cf

2h
u
√

u2 + v2

)
, (4.5)

in which D( )/Dt is the material derivative following the fluid motion (Jirka & Seol
2010).

Equation (4.5) expresses the conservation of potential vorticity (ω + f )/h for a
fluid element containing, for example, a 2DCS. In frictionless flow, the potential
vorticity is conserved, D((ω + f )/h)/Dt = 0. This is a useful approximation for the
inertial behaviour of a vortex flow over short times. In order to evaluate the effect of
the turbulence terms in (4.5), we restrict attention to conditions without background
rotation, f → 0, and with constant water depth so that (4.5) can be simplified as

Dω

Dt
= νeff

(
∂2ω

∂x2
+

∂2ω

∂y2

)
− cf

2h

[
ω

√
u2 + v2 + u

∂

∂y

√
u2 + v2 − v

∂

∂x

√
u2 + v2

]
. (4.6)

A change of vorticity for the 2DCS-like vortex elements is therefore induced by
the two terms on the right-hand side of (4.6). The first term describes the turbulent
diffusion of vorticity due to the turbulent growth of the vortex element. The second
term represents the spin-down of the vortex element due to turbulent bottom friction
acting at its base. In principle, both effects can decrease the vorticity in the core
region of the vortex element.

A scaling argument shows, however, that in shallow flows the bottom friction
effectively controls the vortex spin-down. For that purpose, the following scale
variables are introduced: horizontal lengths x, y ∼ L, depth h ∼ H , velocities u, v ∼ U ,
vorticity ω ∼ Ω and U ∼ ΩL. The turbulent diffusivity in shallow flow, L/H � 1, is
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Figure 6. Time series of measured maximum azimuthal velocity (a) and vorticity (b) and
non-dimensionalized maximum azimuthal velocity (c) and vorticity (d ) with exponential
decay model for various horizontal Reynolds numbers with the same shallowness (S = 5).
�, Re = 7850; �, Re = 14 000; �, Re = 20 000; �, Re = 28 000. The dashed lines for early
and late times, respectively, correspond to the first-order vortex model, (4.10) and (4.11),
respectively.

governed by the bottom friction, νeff ∼ νturb = βu∗h, in which u∗ =
√

cf /2
√

u2 + v2 is
the shear velocity and β a constant (usually about 0.1) (Fischer et al. 1979). Thus, the
order of magnitude for the turbulent diffusion term in (4.6) is O(0.1

√
cf /2(H/L)Ω2)

and for the bottom friction term O((cf /2)(L/H )Ω2), respectively. With typical
values of open channel flow friction coefficients, cf = 0.002 ∼ 0.004, for field and
laboratory conditions (Uijttewaal & Booij 2000), the orders of magnitude for both
terms are estimated as O((0.003 ∼ 0.005)(H/L)Ω2) and O((0.001 ∼ 0.002)(L/H )Ω2),
respectively. This shows that the bottom friction term dominates over the turbulent
diffusion term by a quadratic factor, (L/H )2, and for L/H � 1, is practically solely
responsible for the spin-down of isolated shallow turbulent vortex elements. On the
other hand, the reverse argument holds for ‘deep-water vortices’: turbulent diffusion
is the controlling factor, and bottom friction is unimportant.

4.2. Decay of mean vortex properties

The temporal decay of the maximum azimuthal velocity and vorticity of the vortex
system for different initial angular velocity is shown in figure 6. Figures 6(a) and 6(b)
show the maximum azimuthal velocity and vorticity from the ensemble-averaging
described in § 2.4 in dimensional form. It can be observed that the magnitudes
increase until a certain time and then decrease gradually. The initial increase of
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Figure 7. Time series of non-dimensionalized maximum azimuthal velocity (a) and vorticity
(b) normalized with exponential decay model for various shallowness.

vorticity and azimuthal velocity magnitudes appears to be related to the transition
from highly turbulent initial stage to quasi-two-dimensional flow. During this period,
the maximum vorticity undergoes the initial oscillation until it reaches its peak value.
This initial oscillation was observed and found to be related to the inertial surface
waves with similar vortex generation method (Lodewijks 2008). Then, the whole
vortex system starts decaying under the action of lateral entrainment of irrotational
ambient fluid and bottom friction. As a result, the magnitudes of the azimuthal
velocity and vorticity of the vortex decrease over time.

In two-dimensional axisymmetric flow, the decaying motion of a viscous flow can
be expressed by ω = exp(−γ 2νt), where γ is a constant (see e.g. Batchelor 1967).
To further study the decay properties of the vortex system, the exponential decay
model was applied to the maximum vorticities as ωmax (t) = ω′

0 exp(−λt), where ω′
0 is

the initial maximum vorticity, and λ is the vorticity decay rate. Following Paireau,
Tabeling & Legras (1997), it was assumed that the vortex system is dominated by
rotational momentum initially and decays due to viscous dissipation after a certain
time. When the maximum vorticity is normalized with the exponential decay model as
the compensated maximum vorticity, ωc = ωmax (t)/ω′

0 exp(−λt), where ω′
c is obtained

from the curve fit, then the compensated vorticity remains unity. This can also be
applied to the azimuthal velocity, namely vθc

as the compensated azimuthal velocity.
To test this assumption, we fitted the exponential decay curve backwards in time to
obtain the vortex decay coefficient (λ) and transition time scale (TL). Technically, the
transition time scale is defined as the moment when the fitted curve deviates from
the measured data significantly. This also represents the time for transition from
turbulent to laminar flow condition. This vortex transition time can be comparable to
the vertical viscous relaxation time estimated by 4H 2/9π2ν ∼ 16 s (Jüttner et al. 1997).
Figures 6(c) and 6(d ) and figure 7 show the compensated azimuthal velocity and
vorticity for different Reynolds number and shallowness, respectively. In the plots,
time coordinates are normalized with the transition time scale. In contrast to the
same shallowness (figures 6c and 6d ), the vortex decay is significantly different for
various shallowness especially prior to transition time scale (figure 7). In table 2, the
estimated transition time scale and exponential decay rate are presented. The physical
interpretation of the transition time scale is discussed in detail in the following
section.
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Experiment number TLv
(s) TLω

(s) λv × 10−2 (1/s) λω × 10−2 (1/s)

II 27.1 25.1 3.3 3.7
III 28.8 25.9 3.0 4.0
IV 28.9 27.0 3.6 4.5
V 27.7 24.1 4.0 5.3
VI 24.2 20.0 2.0 3.0
VII 28.4 24.8 1.6 2.4
VIII 18.1 21.6 1.4 1.2
IX 30.9 30.3 4.9 5.2

Table 2. Summary of the turbulent–laminar transition time scale (TL) and the estimated
exponential decay rate (λ). Subscripts v and ω represent the estimated values based on velocity
and vorticity, respectively.

4.3. Vortex decay model: first-order model

A simple vortex model is presented here in order to explain the dominant first-order
decay properties of the observed slowly growing system. Assuming at any instant of
time a vortex of constant radius R that is subject to bottom friction, the force balance
for a rotating fluid element at a distance, r , from the vortex centre is given by

d

dt
(rV H ) = −rτb

ρ
, (4.7)

where V is azimuthal velocity at radial distance R, τb is bottom shear stress, H is
water depth and ρ is water density. The bottom shear stress has different forms for
turbulent and laminar conditions based on the Reynolds number. For the turbulent
case, the bottom friction is given by

τb

ρ
=

cf

2
V 2, (4.8)

where cf is the quadratic law friction coefficient. For the laminar case, and assuming a
Poiseuille velocity profile in the vertical direction, the bottom friction can be expressed
as

τb

ρ
= 3ν

V

H
. (4.9)

Integration of (4.7) with the shear stress non-dimensionalization leads to

V =
1

1

V0

+
cf

2H
t

(4.10)

for turbulent conditions, and to

V = V0 exp

(
− 3ν

H 2
t

)
(4.11)

for laminar conditions, respectively.
The established vortex decay models are compared in figure 6 with the experimental

data as plotted with dotted lines. To demonstrate the goodness of the curve fit, we
calculated the correlation coefficients as 0.98 for a turbulent region and 0.91 for a
laminar region with the suggested functional relationships in the figure 6. These values
represent that the curve fits reveal the underlying physics well. Figure 6(a), which
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Figure 8. Estimated equivalent diameter of the vortex for different Reynolds numbers
(a) and shallowness (b).

is a semi-logarithmic representation of the maximum azimuthal velocity over time,
demonstrates that the initial phase of the experiments for the first 10 to 25 s follows
the turbulent spin-down result, V ∼ t−1 (see (4.10)). On the other hand, laminar spin-
down, V ∼ e−t (see (4.11)), controls the final phase of the vortex behaviour, after an
initial period of about 30 s. In figure 6(b), the maximum vorticity also decays in the
same manner with the azimuthal velocity. This is due to the fact that the maximum
azimuthal velocity can be expressed by multiplying the maximum vorticity with the
vortex radius.

A simple model for the vortex growth is given by

σr =
√

2Et, (4.12)

where σr is the vortex radius (standard deviation of Gaussian distribution) and E is
the diffusivity and for turbulent condition is given by

E ≈ νturb ≈ u∗H ≈
√

cf

2
R0Ω0H, (4.13)

in which u∗ =
√

(cf /2)V0 is the shear velocity, given by the initial value of the
azimuthal velocity V0 = R0Ω0. When comparing to the experimental data σr (t) is
taken as one half of the equivalent vortex diameter given by

Deq(t) =
√

4Avortex/π, (4.14)

in which Avortex is the area obtained from the vorticity contours. Figure 8 shows that
the vortex growth exhibits a square root of time-dependence, σr ∼ t1/2 as given by
(4.12). The low-Reynolds-number case (Re = 7850) in figure 8(a) is the exception to
this square-root-dependence.

From the estimated equivalent vortex diameter and the measured maximum
vorticity, we can define a local depth-based vortex Reynolds number as

ReH (t) =
ωmax (t)σr (t)H

ν
(4.15)

in order to characterize the turbulent–laminar transition state of the system. A critical
value of ReH can be taken as ReHcrit

=500 as for open channel (Poiseuille) flow. The
data comparison in figure 9 shows clearly that the transition from a turbulent to a
laminar vortex state takes place typically at about t = 15–20 s for the conditions of
our experiments.
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Figure 9. Transition of vortex Reynolds number for different Reynolds numbers (a) and
shallowness (b). Symbols as in figure 8.
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Figure 10. Comparison of the three different estimates for a turbulent–laminar transition time
scale (TL) for different Reynolds numbers (a) and shallowness (b). TLv

and TLω
are defined in

table 2. TLRe
is obtained from figure 9.

From the plots, another time scale for transition from turbulent to laminar condition
can be obtained by measuring the time when the vortex Reynolds number goes below
the critical number. We have plotted these transition time scales in figure 10 together
with the transition time scales listed in table 2. The transition time scales obtained
from the different methods show similar trends. The error bars in figure 10 were
estimated from the standard deviation of the measured equivalent vortex diameter
and maximum vorticity. In general, the transition time scale TL appears to increase
with increasing initial vortex Reynolds number Re and with increasing shallowness S.
This means that vortices with stronger initial momentum remain in a turbulent state
for a longer time. Furthermore, stronger shallowness limits the radial momentum
transfer through three-dimensional horizontal diffusion and thus the spin-down to
laminar conditions becomes delayed in comparison to deeper cases.

4.4. Expansion of vortex decay model: second-order model

In this section, the previous vortex decay model is extended by including the vortex
expansion, which means that the vortex radius, R, is a function of time. Using the
local moment of momentum method for pure azimuthal flows (vr = 0) (Streeter &
Wylie 1985), the angular momentum in the small fraction of a vortex patch with a
thickness of dr and the distance of r from the vortex centre is balanced with the
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bottom friction as

d

dt
(r(2πrH dr)vθ ) = −r

(
2πr dr

τb

ρ

)
, (4.16)

where H is the water depth, vθ is the azimuthal velocity as a function of radial
distance and τb is the bottom friction. If we integrate the above angular momentum
balance over the whole vortex radius (R), we obtain∫ R

0

d

dt
(r2vθH ) dr = −

∫ R

0

r2 τb

ρ
dr. (4.17)

Keeping in mind that the vortex radius is time-dependent, we can integrate the above
equation using Leibnitz integration rule as follows:

d

dt

∫ R

0

(r2vθH ) dr − R2V H
dR

dt
= −

∫ R

0

r2 τb

ρ
dr, (4.18)

where V is the azimuthal velocity at radial distance R. We substitute the azimuthal
velocity (vθ ) in the above equation with α-profile for the case of α = 2 given by

vθ (r) =
1

2
ω0r exp

(
−

(
r

R

)2
)

, (4.19)

ω(r) = ω0

(
1 −

(
r

R

)2
)

exp

(
−

(
r

R

)2
)

, (4.20)

in which ω0 is the maximum vorticity, R is the radial distance, where the vorticity
becomes null in this case (van Heijst & Clercx 2009). The bottom shear stress has
different forms for turbulent and laminar conditions based on the Reynolds number
as indicated in (4.8) and (4.9), respectively. On the other hand, the vortex radius can
be estimated by introducing a simple model for the growth of the vortex as

dR2

dt
= E, (4.21)

where E is the diffusivity, which can be the water viscosity (ν) for the laminar case
and the turbulent diffusivity given by (4.13) for the turbulent case.

After integrating (4.18) and substituting the azimuthal velocity (4.19), the governing
equations for the laminar case are given by

dω0

dt
=

[
− 1

1 − 2/e

(
4

(
1 − 5

2e

)
ν

R2
+ 3

ν

H 2

)]
ω0, (4.22)

dR

dt
=

ν

R
, (4.23)

where e is the exponential. For the laminar case, the governing equations for the
vortex decay can be solved by simple integration of (4.22) and (4.23). The value inside
the square bracket on the right-hand side of (4.22) is comparable to the vortex decay
rates (λv and λω) from the previous section. For example, the vortex decay rate for
the experiment II condition is estimated as 0.033 s−1 (table 2) and the value in the
bracket is 0.032 s−1.
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Figure 11. Comparison of the second-order vortex decay model and experimental results for
maximum vorticity (a) and radial distance of peak velocity (b): �, measured results (experiment
II). The solid and dotted lines are for the turbulent and laminar cases, respectively. Error bars
represent the standard deviation in ensemble-averaging.

For the turbulent case using (4.13), the governing equations are given by

dω0

dt
=

[
− 1

e − 2

(
(2e − 5)β

√
cf

2

H

R
+

2e

5
cf

R

H

)]
ω0

2, (4.24)

dR

dt
= β

√
cf

2
ω0H. (4.25)

The results of the numerical integration of (4.22)–(4.25) are plotted in figure 11.
The initial conditions for the numerical integration are taken from the experiment II
case. The results for the laminar case are adjusted to match the measured maximum
vorticity for the data after 25 s, where the laminar decay prevails (figure 11a). The
slope of the numerical results for the laminar case appears to be reasonable within the
standard deviation, though the radial distance of the peak velocity is much smaller
than measured (figure 11b). For the turbulent case, the constant β has been calibrated
with the measured radial distance of maximum azimuthal velocity, Rvmax

, as shown
in figure 11(b). Then, by taking the vortex radius into consideration, the maximum
vorticities are obtained from the numerical integration with the fourth-order Runge–
Kutta methods. The numerical integration results show a slight overestimation from
the measured data. This seems to be related to the overestimation of the vortex radius,
since the central vortex in the experiments undergoes significant deformations from
circular to ellipsoidal shapes, as shown in figures 4 and 5.

5. Azimuthally averaged flow properties
5.1. Mean flow profiles

The azimuthally averaged flow properties of the vortex system evolving from the
initial instability phase to its final tripolar form has been studied by means of
the ensemble-averaging procedure. The velocity and vorticity profiles as a function
of radial distance are plotted in figures 12 and 13. Figure 12 depicts the profiles
for different Reynolds numbers at the initial stage (t = 3.7 s) for the same cylinder
diameter (D = 10 cm) and water depth (H = 2 cm). In the plots, the radial distance
is normalized with Rvmax

, where the maximum azimuthal velocity is observed. The
magnitudes of velocity and vorticity were also normalized with their maximum
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Figure 12. The non-dimensionalized profiles for measured azimuthal velocity (a) and vorticity
(b) for the same shallowness (S = 5) at the initial stage t = 3.7 s. �, Re = 7850; �, Re = 14 000;
�, Re = 20 000; �, Re = 28 000. Solid line, α =2 (Gaussian vortex); dash-dotted line, α = 3.
Error bars represent the uncertainties of the measurements.
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Figure 13. The non-dimensionalized profiles for measured azimuthal velocity (a–c) and
vorticity (d–f ) for different shallowness with the same Reynolds number (Re = 14 000) and for
different time steps. Error bars represent the uncertainties of the measurements.

values. The measured profiles are compared with proposed α-profile as in (4.19)
and (4.20). This family of profiles has been used to study the stability of isolated
circular vortices by adding small perturbations (Carton et al. 1989; Orlandi & van
Heijst 1992; Carnevale & Kloosterziel 1994; Flór & van Heijst 1996). It has been
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found in their studies that the profile becomes unstable for α > 1.85 so that the
instability behaviour depends on the shape of the initial vorticity distribution. For
comparison, the Gaussian vortex (α = 2) and steeper profile (α = 3) (Carnevale &
Kloosterziel 1994) have been plotted. The least-squares fit of (4.19) and (4.20) to the
measured profile data yields α = 1.8 ∼ 3.4. This means that the individually generated
monopolar vortex is strongly unstable and transforms into multipolar vortices. It is
noteworthy that the steepness of the profile increases with Reynolds number. This
means that a shallow vortex with higher Reynolds number will be more sensitive to
small perturbations than those with small Reynolds number.

Figure 13 shows the effects of different shallowness: figure 13(a–c) shows the velocity
profiles for different shallowness over increasing time (4, 10, 20 s); figure 13(d–f )
represents the vorticity profile for the same conditions. For the strong shallowness
case (figures 13a and 13d ), the initial profiles show a very steep slope and become
quickly flatter with increasing time. However, changes in profile are small for the
weaker shallowness case (figures 13c and 13f ). This contradicts a previous study
on the radial velocity/vorticity profiles (Satijn et al. 2001), where the secondary
circulation increases deformation of the radial profile with water depth. As shown in
figure 5(p), however, the outside positive vortex patches do not aggregate together to
form a large-scale structure but rather diffuse gradually in the deep-water case. When
these patches are azimuthally averaged, the annular vorticity patches are smoothed
out leading to gradual profile transition. In addition, as claimed by Lin et al. (2003),
the shallowness accelerates the vorticity decay so that it is reasonable to see rapid
adjustment in the profile in the strong shallowness case.

5.2. Turbulence properties: turbulence intensity and Reynolds stress

As described in the previous section, the initial stage of the shallow vortex flow is
dominated by turbulence. To learn more about the turbulent properties generated by
the single-vortex generation, the turbulent intensity and turbulent momentum flux are
computed from the measured velocity fields.

The turbulence intensities plotted in figure 14 are defined as the root-mean-square
(r.m.s.) values of velocity fluctuations, which are obtained from v′

r (t) = vr − 〈vr〉
and v′

θ (t) = vθ − 〈vθ〉, respectively. Here, 〈vr〉 and 〈vθ〉 are the azimuthally ensemble-
averaged velocity components for radial and azimuthal directions respectively, as
defined in § 2.4. For small Reynolds number (figure 14a) and weak shallowness
(figure 14d ), the turbulent intensity profiles tend to decay while maintaining the
shape of its profile in the radial direction. At the same time, the location of maximum
turbulence intensity appears to remain near the vortex centre over time. On the
contrary, the location of maximum turbulence intensity for large-Reynolds-number
(figure 14b) and strong-shallowness (figure 14c) cases are moving outwards in the
radial direction with increasing time. It is also interesting to observe a hump outside
the central vortex. This hump appears to be related to the satellite vortex formation
for the given experimental conditions.

With the simultaneous measurement of radial and azimuthal velocity components,
one can obtain the Reynolds stresses as shown in figure 15. These stresses are
responsible for transporting energy from the mean flow to the fluctuating turbulent
flow (Dolzhanskii, Krymov & Manin 1992). A study of these characteristics is
important for understanding the mechanism of turbulent energy transfer. For the
strong shallowness case (figure 15a), the radius of the maximum azimuthal velocity
consistently is overlapped with the inflection points of the Reynolds stress profile.
However, for the weaker shallowness case (figure 15b), it is difficult to observe
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Figure 14. Turbulent intensity profiles for different vortex Reynolds numbers of 7850 (a) and
14 000 (b) with the same shallowness (S = 5) and for different shallowness of 10(c) and 2(d )
for the same initial angular velocity (Ω0 = 6.28 s−1) at different times. Note that transition
time scale TL is based on the azimuthal velocity. Error bars represent the uncertainties of the
measurements.
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Figure 15. Reynolds stress distribution as a function of radial distance for the cases of
Re = 14 000 with S = 5 (a) and Re = 14 000 at S = 2 (b).

any distinguished inflection points from the measured Reynolds stress profile.
Furthermore, the Reynolds stresses tend to vanish quickly with increasing radial
distance. Thus, the shallow vortex system maintains itself relatively longer than the
corresponding deep-water case.
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5.3. Instability of the shallow vortex

In this section, the causes of the formation of large-scale coherent structures in the
shallow vortex flow are analysed. As observed, the vortex system for strong shallowness
and high Re converges to a tripolar system. In order to analyse the background
physics on this tripole formation, we assume that the complex vortex system can
be approximated by the sum of harmonic functions with different wavenumbers k

(Kloosterziel & Carnevale 1999). As we observe in dye visualization tests (not shown
here), there is strong vertical and horizontal mixing around the central vortex when
the cylinder is lifted vertically, and it can be postulated that the small perturbation
from this initial turbulent stage leads to the development of an azimuthal wavenumber
2 mode. Previous studies indicate that the wavenumber 2 mode is the fastest-
growing perturbation mode for a steep vorticity profile (Carnevale & Kloosterziel
1994).

To quantitatively investigate this assumption, the mean instability amplitude of an
instantaneous vorticity field is evaluated by averaging the mode amplitudes of the
ensemble-averaged vorticity data sets. Following Kloosterziel & Carnevale (1999), we
assume that the vorticity field can be expressed as

∑∞
k=0 ωk , where

ωk = fk(r; t) Re
(
eikθ+iφk (r;t)

)
, (5.1)

in which Re(·) denotes the real part and φk =0 for k = 0. The fk(r; t) and the phase
factors can be determined numerically using Ck = fk cos(φk), Sk = fk sin(φk) with

{Ck(r; k), Sk(r; k)} =
1

π

∫ 2π

0

ω(r, θ; t){cos(kθ), sin(kθ)} dθ. (5.2)

This gives a decomposition of the vorticity distribution in the azimuthal direction.
For any given time, the amplitude of the azimuthal vorticity for each wavenumber
can be obtained as

Ak(t) =

(∫ 2π

0

∫ ∞

0

ω2
k(r, θ; t)r dr dθ

)1/2

. (5.3)

Figure 16 shows the temporal evolution of the perturbation spectra for the same
Reynolds number and different shallowness. Note that the amplitudes of each
wavenumber were normalized with A0, which is the wave amplitude of the mean flow.
For the shallow-water case (figure 16(a)–(d )), it is apparent that the most unstable
mode wavenumber k =2 grows exponentially. The amplitude of the perturbation
wavenumber k =4 is also growing, but remains smaller than A2 by around 30 %. For
the deep-water case (figure 16(e)–(h)), the increasing rate of A2 is much slower, which
means that the tripole formation is much less pronounced than for a shallow water
vortex.

In figure 17, the amplitude growth rates of the perturbation wavenumber 2 are
plotted for different Reynolds numbers and shallowness. To evaluate this growth
rate, we selected the exponentially growing regime of the wave amplitude. It can be
observed that the perturbation wave amplitude grows in an exponential manner until
it saturates (Carton & Legras 1994; Kloosterziel & Carnevale 1999). The growth
rates were determined by fitting on exponential curve, exp (σ t), to the A2 values from
figure 16. For comparison, we also plotted the growth rates estimated from figure 1(b)
in Kloosterziel & Carnevale (1999) using the coefficient α from the measured initial
velocity profile. For the α values less than 2, which is outside the data they provided,
we extrapolated from their data points. It can be observed that both increasing
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Figure 16. Perturbation spectra for Re = 14 000 for the shallow case S = 5 (a–d ), and for the
deep case S = 2 (e–h) at different times.
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Figure 17. The growth rates for azimuthal perturbation wavemode number 2 as a function
of Reynolds number (a) and shallowness (b). Empty circles are the measured data and filled
circles the estimated growth rate from Kloosterziel & Carnevale (1999) using α based on the
initial radial velocity profile. Error bars represent standard deviations from different data sets.

shallowness and increasing Reynolds number contribute to the development of an
azimuthal wavenumber k = 2 regime. As pointed out in Satijn et al. (2001), the
evolution of a shallow vortex depends not only on the shallowness but also on
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the dynamical effect represented by the Reynolds number, which results in a strong
secondary vertical flow.

6. Conclusions
The evolution and decay of shallow-water vortices were investigated with laboratory

experiments without background rotation. Emphasis was placed on the effects of the
initial vortex Reynolds number and the shallowness, the ratio of the horizontal length
scale of a vortex to the water depth. A single vortex was generated by spinning a water
mass using a bottomless cylinder with internal sectors. From the estimated vorticity
fields, it was found that strong shallowness and high Reynolds number contribute to
the formation of large-scale coherent structures in the form of a tripolar vortex. The
following major results of the present study can be stated as conclusions.

(i) The investigation on the measured vorticity maps clearly exhibited that there
is Reynolds-invariant behaviour of the shallow water vortices. Qualitative and
quantitative measurements have shown that the generated single vortices converge to
a tripolar system for high Reynolds numbers (Re � 14 000) and strong shallowness
(S � 4). This property of the shallow vortex leads to formation of a tripolar vortex
for strong shallowness conditions. For weak shallowness conditions, it appears that
the horizontal turbulent diffusion of momentum inhibits the formation of large-scale
coherent structures.

(ii) It was shown that the shallow-water vortices with high initial Reynolds numbers
experience the transition from turbulent to laminar regimes in their decay process.
Based on the angular momentum balance between rotational momentum and bottom
friction, the proposed first-order vortex decay model predicts that a shallow-water
vortex decays as t−1 for the turbulent case and as e−t for the laminar case. The
experimental data are in good agreement with this vortex decay model, in which
horizontal diffusion and bottom friction are principal causes of the vortex decay as
we found in the scale analysis. The estimated transition time scale from turbulent to
laminar regime has been found to increase with increasing initial vortex Reynolds
number and with increasing shallowness. This can be attributed to the fact that
vortices with stronger initial momentum remain in a turbulent state for a longer time.
Furthermore, the vortex expansion effect has been included in the second-order model,
where the overestimation of vortex radius results in a slightly higher magnitude of
vorticity than the measured one.

(iii) The ensemble statistics obtained by averaging over the azimuthal direction of
the measured velocity/vorticity data elucidated effects of the vortex instabilities and
of turbulent energy transfer on the formation of large-scale coherent flow structure.
The estimated turbulence intensity and Reynolds stress showed that turbulent energy
is transferred to the satellite vortices under strong shallowness and high-Reynolds-
number conditions.

(iv) Normal mode analysis of the generated vortex systems demonstrated that the
shallowness and the Reynolds number are the important factors in forming two-
dimensional large-scale coherent structures. As previous theoretical and numerical
studies have found, the perturbation wavenumber 2 mode is the fastest-growing
instability in shallow-water conditions. This analysis clearly shows that increasing the
water depth results in a suppression of the quasi-two-dimensional flow features.

Further experiments are in progress in order to investigate the detailed vertical
structure of shallow-water vortices. Even at small water depths, three-dimensional
effects play an important role in the vortex dynamics as shown by Akkermans et al.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

39
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003915


298 D.-G. Seol and G. H. Jirka

(2008). Research is required to understand the effects of three-dimensional instabilities
on the large-scale dynamics of predominantly two-dimensional flow.

The first author dedicates this paper to Dr G. H. Jirka, who passed away during
the preparation of this paper. The authors thank Dr S. A. Socolofsky for his helpful
discussions on the paper. Project support by the German Research Foundation (DFG)
grant no. Ji 18/14-1 is gratefully acknowledged.
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