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In this paper we study the receptivity of the boundary layer to suction/blowing in
marginally separated flows, like the one on the leading edge of a thin aerofoil. We assume
that the unperturbed laminar flow is two-dimensional, and investigate the response of
the boundary layer to two-dimensional as well as to three-dimensional perturbations.
In both cases, the perturbations are assumed to be weak and periodic in time. Unlike
conventional boundary layers, the marginally separated boundary layers cannot be treated
using the quasi-parallel approximation. This precludes the normal-mode representation
of the perturbations. Instead, we had to solve the linearised integro-differential equation
of the marginal separation theory, which was done numerically. For two-dimensional
perturbations, the results of the calculations show that the perturbations first grow
in the inside of the separation region, but then start to decay downstream. For
three-dimensional perturbations, instead of dealing with the integro-differential equation
of marginal separation, we found it convenient to work with the Fourier transforms
of the fluid-dynamic functions. The equations for the Fourier transforms are also
solved numerically. Our calculations show that a three-dimensional wave packet forms
downstream of the source of perturbations in the boundary layer.

Key words: boundary layer receptivity, boundary layer separation

1. Introduction

Receptivity is known to be the first stage in laminar–turbulent transition in boundary
layers. At this stage, the external perturbations are converted into instability modes of the
boundary layer. For theoretical analysis of this process, the viscous–inviscid interaction
theory proved to be fruitful; in our case the viscous–inviscid interaction we look at is also
known as the triple-deck theory. In fact, the triple-deck theory was conceived by Lin (1946)
in his analysis of boundary-layer stability. Lin was interested in linear perturbations that
may be described by the Orr–Sommerfeld equations. In his analysis, the triple-deck model
emerged when dealing with the flow behaviour near the lower branch of the neutral curve.
A full nonlinear version of the triple-deck theory was later formulated by Neiland (1969)
and Stewartson & Williams (1969) in a completely different context – the boundary-layer
separation in supersonic flow – and by Stewartson (1969) and Messiter (1970) in their
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studies of incompressible fluid flow near the trailing edge of a flat plate. A link between
Lin’s (1946) analysis and the theory of Neiland (1969) and Stewartson & Williams (1969)
was established by Smith (1979). Soon it became clear that, in addition to boundary-layer
instability and flow separation, the viscous–inviscid interaction plays a key role in many
other fluid-dynamic phenomena. A review of publications in this field may be found, for
instance, in the book by Sychev et al. (1998).

Terent’ev (1981) was the first to apply the triple-deck theory to study the receptivity
of the boundary layer. He considered an incompressible fluid flow past a flat plate,
where the steady unperturbed flow was given by the Blasius solution, and assumed that
small-amplitude perturbations are introduced in this flow by a ‘vibrator’, the role of
which was played by a short section of the plate surface performing harmonic oscillations
perpendicular to the main flow. Terent’ev’s formulation represented a simplified model
of the classical experiments conducted by Schubauer & Skramsted (1948), where the
Tollmien–Schlichting waves were generated by a vibrating ribbon installed a short distance
above the plate surface.

Ruban (1984) and Goldstein (1985) used the triple-deck theory to study the generation
of Tollmien–Schlichting waves by acoustic noise. In these works an important principle
of double resonance was formulated. According to this principle, efficient generation of
the instability modes in boundary layers is observed when both the frequency and the
wavenumber of external perturbations coincide with those in the natural oscillations of
the boundary layer. The theory of Ruban (1984) and Goldstein (1985) shows that, if the
acoustic field has a wide enough spectrum, then the receptivity process will ‘extract’
from it a harmonic whose frequency is in tune with the frequency of the corresponding
Tollmien–Schlichting wave. Of course, under this condition the wavelength of the chosen
acoustic wave appears to be much longer than the wavelength of the Tollmien–Schlichting
wave, which means that the second resonance condition, the tuning of the wavenumbers,
is not satisfied. However, if the surface of the wing is not absolutely smooth (which,
of course, is the case in all practical applications), then one also needs to look at
the perturbations produced in the boundary layer due to the wall roughnesses. These
perturbations are steady and have a short length scale necessary for the resonance. Using
the triple-deck model, Ruban (1984) and Goldstein (1985) were able to find the amplitude
of the Tollmien–Schlichting wave forming behind the roughness.

This approach was subsequently used in a number of theoretical studies of
boundary-layer receptivity. Duck, Ruban & Zhikharev (1996) developed a theory of the
generation of Tollmien–Schlichting waves by free-stream turbulence. The receptivity of
the boundary layer to vibrations of the wing surface was investigated by Ruban, Bernots
& Pryce (2013). A transonic version of the Ruban–Goldstein theory was presented by
Ruban, Bernots & Kravtsova (2016). In that paper, in addition to linear receptivity theory,
also nonlinear receptivity was studied. The latter is applicable to situations when the
boundary layer develops local separation near a surface roughness. In the above studies,
it was assumed that the body surface had a single roughness element. The theory was
extended to the case of distributed roughness by Wu (2001).

In the present paper we are concerned with the receptivity of marginally separated
boundary layers. The theory of marginal separation was developed independently by
Ruban (1981, 1982a) and Stewartson, Smith & Kaups (1982). It applies to situations when
a small separation region forms on a smooth segment of the body contour. A classical
example is the flow near the leading edge of a thin aerofoil. It is known that, for each
aerofoil shape, there exists a critical angle of attack αs. For all angles of attack α smaller
than αs, the flow over a thin aerofoil remains attached. However, when α reaches αs, a
small region of recirculating flow is observed to form on the upper surface of the aerofoil.
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It remains small even when the angle of attack α grows beyond αs, which is why it is
referred to as a short bubble. Its length does not exceed 1 % of the aerofoil chord, and,
therefore, it has an extremely weak influence on the flow field and the values of the
aerodynamic forces acting on the aerofoil. However, the short separation bubble only
exists within an interval α ∈ (αs, αc), and, when the angle of attack reaches the second
critical value αc, the bubble suddenly bursts. As a result, a transition to a new flow regime
takes place with an extended separation region. Ruban (1981, 1982a) and Stewartson et al.
(1982) deduced that the laminar, steady, two-dimensional flow in the bubble and around it
can be described by an integro-differential equation for the skin friction A(X), where X is
a coordinate measured along the aerofoil contour.

The numerical solution of this integro-differential equation shows that the separation
bubble forms at a = as = 1.139, and it bursts at a = ac = 1.330, where a denotes the
angle-of-attack parameter.

The theory was extended to unsteady flows by Ruban (1982b) and Smith (1982). Both
authors found that the unsteady analogue of this problem leads to an integro-differential
equation for the skin friction A(X,T), where T is appropriately scaled dimensionless
time. However, when dealing with this equation, they pursued different goals. Ruban
(1982b) was interested in the linear and nonlinear stability of the marginally separated
flow. He found that the flow was subcritically unstable. He also found that, in the flow
considered, the wavelength of the Tollmien–Schlichting wave is comparable with the size
of the separation region, which precludes the use of the normal-mode representation of the
linear perturbations for the flow stability analysis, as is done with conventional boundary
layers. Smith (1982) discovered that the unsteady marginal separation equation admits
solutions that terminate at a finite-time singularity. He suggested that these solutions
describe the process of ‘bubble bursting’. Later Ryzhov & Smith (1984) discussed this
issue in more detail, and concluded that the initial value problem for A(X,T)was ill-posed,
namely, it was found that any small perturbation to the solution of the steady equation
integro-differential equation grows very fast, leading to the above-mentioned singularity.

Based on these results, one might expect an immediate laminar–turbulent transition
to take place in the separation bubble. However, this conclusion is not supported by
experimental evidence; see reviews by Ward (1963) and Tani (1964). Not only are the
short separation bubbles discovered as a result of experimental observations, but also the
experiments show that, in the majority of cases of practical interest, these bubbles are
laminar. As pointed out by Ely & Herring (1978), the reason for this is that, in the flow
near the leading edge of an aerofoil, it is not the aerofoil chord but a much smaller quantity,
the radius of the aerofoil nose r, that plays the role of the characteristic length scale. Under
conditions typical of aerodynamic applications, the Reynolds number Re = V∞r/ν is not
large enough for the attached boundary layer to become turbulent. In fact, the flow is
observed to remain laminar even after the short separation bubble is formed. However,
separated flows are known to be less stable and undergo a rather rapid transition to
turbulence before the reattachment point.

This present paper studies the behaviour of small-amplitude perturbations in a steady
marginally separated boundary layer. For simplicity, we assume that the perturbations are
produced by local suction/blowing through the body surface. Since, in flight conditions,
the perturbations interacting with the boundary layer (wing vibrations, acoustic noise,
free-stream turbulence, etc.) are periodic in time, we shall assume that the suction/blowing
is also periodic. We start in § 2 with the formulation of the problem. In § 3 we look at the
behaviour of two-dimensional perturbations. In the flow considered, neither the process
of generation of the Tollmien–Schlichting waves nor their evolution in the boundary
layer can be investigated using the concept of the quasi-parallel approximation, which
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FIGURE 1. The flow near the leading edge of a thin aerofoil.

precludes the normal-mode representation of the perturbations. Instead, we solve the
linearised integro-differential equation of the marginal separation theory, which was
done numerically. The results of the calculations show that the perturbations first grow
in the inside of the separation region, but then start to decay downstream. In § 4 we
consider the three-dimensional perturbations. In this case, instead of dealing with the
integro-differential equation of marginal separation, we found it convenient to work with
the Fourier transforms of the fluid-dynamic functions. The equations for the Fourier
transforms are also solved numerically. The results of the calculations are presented in
§ 5. They show that a three-dimensional wave packet forms downstream of the source of
perturbations in the boundary layer.

While, in this paper, when presenting the results of our study, we refer to the flow near
the leading edge of a thin aerofoil, it should be noted that the theory is also applicable to
a variety of other flows where small separation bubbles form on a smooth part of the body
surface. These include supersonic flows on a surface with large curvature (Fomina 1983),
the separation of a three-dimensional boundary layer on the surface of a paraboloid at an
angle-of-attack (Brown 1985), incipient separation in a near-wall jet (Zametaev 1986) and
in the boundary layer on the surface of a fast rotating cylinder (Negoda & Sychev 1986),
etc. For a discussion of various aspects of marginal separation theory, the interested reader
is referred to Braun & Kluwick (2004) and Braun & Scheichl (2014).

2. Problem formulation

We consider an incompressible fluid flow near the leading edge of a thin aerofoil; see
figure 1. We denote the fluid density by ρ and the dynamic viscosity coefficient by μ.
We further denote the free-stream velocity before the aerofoil by V∞, and the radius of
curvature of the aerofoil contour at its nose by r. Using these quantities, the Reynolds
number is calculated as

Re = ρV∞r
μ

. (2.1)

2.1. Inviscid flow region
If Re is large, then Prandtl’s hierarchical strategy can be used to study the flow. The first
step in this strategy is to consider the bulk of the flow where the flow is inviscid and
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is described by the Euler equations. These have to be solved with the impermeability
condition on the body surface. If the aerofoil has a parabolic nose (Y ′ = ±√

2X′), then the
solution of the inviscid problem can be found in analytic form. In particular, the tangential
velocity on the aerofoil surface is given by

Ue = Y ′ + k√
Y ′ 2 + 1

. (2.2)

Here we use Cartesian coordinates (X′,Y ′), with X′ measured along the axis of symmetry
of the parabola from the leading edge of the aerofoil. All the variables in (2.2) are
dimensionless; X′ and Y ′ are scaled with the nose radius r, and the tangential velocity
Ue is referred to the free-stream velocity V∞. The parameter k is related to the angle
of attack, and defines the position of the front stagnation point O; see figure 1. Indeed,
setting Y ′ = −k in (2.2) makes Ue zero. Away from point O, the velocity Ue first increases,
reaching its maximum value

√
1 + k2 at point M where Y ′ = 1/k, and then decreases

monotonically, tending to Ue = 1. As a result, the boundary layer that forms on the aerofoil
surface finds itself under the action of the adverse pressure gradient, and may develop a
separation.

2.2. Boundary layer
To study the behaviour of the boundary layer, it is convenient to use the body-fitted
coordinates (x, y), with x measured along the aerofoil surface from the front stagnation
point O, as shown in figure 1, and y in the normal direction. We denote the velocity
components in these coordinates as Vτ and Vn , respectively. All the variables are assumed
dimensionless. We take the radius r of the leading edge of the aerofoil as the unit of length;
the velocity components are referred to V∞. According to Prandtl (1904), in the boundary
layer, the velocity components are represented by the asymptotic expansions

Vτ = U(x,Y)+ · · · , Vn = Re−1/2V(x,Y)+ · · · , with y = Re−1/2Y. (2.3)

Here, the functions U(x,Y) and V(x,Y) obey the classical boundary-layer equations:

U
∂U
∂x

+ V
∂U
∂Y

= Ue
dUe

dx
+ ∂2U
∂Y2

,
∂U
∂x

+ ∂V
∂Y

= 0. (2.4a,b)

These have to be solved with the no-slip conditions on the aerofoil surface,

U = V = 0 at Y = 0, (2.5)

and the condition of matching with the solution in the inviscid flow region,

U = Ue(x) at Y = ∞. (2.6)

The results of the numerical solution of problem (2.4a,b)–(2.6) are shown in figure 2
in the form of the skin friction distribution along the aerofoil surface. The skin friction is
calculated as

τw = ∂2Ψ

∂Y2

∣∣∣∣
Y=0

, (2.7)

where Ψ is the streamfunction defined as

ψ = Re−1/2Ψ (x,Y)+ · · · , with y = Re−1/2Y. (2.8)
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FIGURE 2. Results of the numerical solution of problem (2.4a,b)–(2.6).

One can see that there exists a critical value of angle-of-attack parameter k = k0 =
1.1575. If k < k0, then the skin friction has a minimum at some point on the upper surface
of the aerofoil where the pressure gradient is adverse. The value of the minimum decreases
as k increases, and becomes zero at k = k0. We denote the coordinate of the point where
τw first becomes zero by x0. The calculations show that for the boundary layer on the
parabola surface x0 = 8.265. The corresponding solution of the boundary-layer equations
(2.4a,b) proves to be singular. The nature of this singularity was discussed in detail by
Ruban (1981).

2.3. Interaction region
The appearance of the singularity at point x = x0 makes Prandtl’s hierarchical approach
inapplicable for describing the flow in the vicinity of this point. Instead, one has to use
the viscous–inviscid interaction theory; see Ruban (1982a) and Stewartson et al. (1982).
According to this theory, the interaction region assumes the three-tiered structure shown
in figure 3. In the lower tier (region 1), the flow is relatively slow, and therefore very
sensitive to pressure perturbations. Being exposed to an adverse pressure gradient, this
region produces the main contribution to the displacement effect of the boundary layer.
The resulting deformation of the streamlines is then transferred through the middle tier
(region 2) to the upper tier (region 3) where it is then ‘converted’ into the perturbations
of the pressure. This process is described by the potential flow theory. As far as region
2 is concerned, it plays a passive role in the interaction process. It does not contribute to
the displacement effect of region 1. It also does not change the pressure gradient when
transferring it from region 3 to region 1.

When deriving the equations for the flow in the interaction region, we shall consider
separately the unsteady two-dimensional flow and unsteady three-dimensional flow.

3. Unsteady two-dimensional flow

3.1. Governing equation
When dealing with a two-dimensional flow, we can introduce the streamfunction ψ such
that ∂ψ/∂x = −(1 + κy)Vn and ∂ψ/∂y = Vτ , where κ(x) is the local curvature of the
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FIGURE 3. The interaction region.

aerofoil contour. The asymptotic expansion of ψ in region 1 takes the form

ψ = Re−13/20 1
6λ0Y3

∗ + Re−16/20Ψ ∗
1 (t∗, x∗,Y∗)

+ Re−19/20Ψ ∗
2 (t∗, x∗,Y∗)+ · · · , (3.1)

with the independent variables

t∗ = t
Re1/20

, x∗ = x − x0

Re−1/5
, Y∗ = y

Re−11/20
. (3.2a–c)

Here t is time made dimensionless by referring it to r/V∞.
Corresponding to (3.1), the asymptotic expansion of the pressure is written as

p = Pe0 + Re−1/5λ0x∗ + Re−1/2P∗(t∗, x∗,Y∗)+ · · · . (3.3)

Constants Pe0 and λ0 are the pressure and the pressure gradient at the ‘centre’ (x = x0) of
the interaction region. They can be easily calculated using the inviscid solution (2.2) and
the Bernoulli equation.

Substituting (3.1) into the Navier–Stokes equations, and assuming that the
angle-of-attack parameter

k = k0 + Re−2/5k1, (3.4)

with k1 being an order-one constant, we have in the leading-order approximation the
following equation for Ψ ∗

1 (x∗,Y∗):

1
2
λ0Y2

∗
∂2Ψ ∗

1

∂x∗∂Y∗
− λ0Y∗

∂Ψ ∗
1

∂x∗
= ∂3Ψ ∗

1

∂Y3∗
. (3.5)

This equation has to be solved with the no-slip conditions on the aerofoil surface,

Ψ ∗
1 = ∂Ψ ∗

1

∂Y∗
= 0 at Y∗ = 0, (3.6)

and an additional requirement that Ψ ∗
1 does not grow exponentially as Y∗ → ∞. By direct

substitution into (3.5) and (3.6), one can easily verify that the sought solution has the form

Ψ ∗
1 = 1

2 A∗(t∗, x∗)Y2
∗ . (3.7)

At this stage, A∗(t∗, x∗) remains arbitrary. We do, however, know, from the solution
in the boundary layer before the interaction region (see §§ 5.3.3 and 5.3.4 in
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Ruban (2018)), that

A∗ = a0(−x∗)+ k1a1(−x∗)−1 + · · · as x∗ → −∞, (3.8)

where a0 and a1 are constants depending on the aerofoil shape. For an aerofoil with
parabolic leading edge, a0 = 0.0085 and a1 = −1.24. To find function A∗(t∗, x∗), one
needs to consider the second-order approximation. The equation for Ψ ∗

2 (x∗,Y∗) is
written as

1
2
λ0Y2

∗
∂2Ψ ∗

2

∂x∗∂Y∗
− λ0Y∗

∂Ψ ∗
2

∂x∗
= ∂3Ψ ∗

2

∂Y3∗
− ∂A∗
∂t∗

Y∗ − 1
2

A∗
∂A∗
∂x∗

Y2
∗ − ∂P∗

∂x∗
. (3.9)

When formulating the boundary conditions for this equation, we shall assume that the
suction/blowing is perpendicular to the aerofoil surface, and is given by

v|y=0 = Re−3/4v∗
w(t∗, x∗). (3.10)

We will then have

∂Ψ ∗
2

∂Y∗
= 0,

∂Ψ ∗
2

∂x∗
= −v∗

w(t∗, x∗) at Y∗ = 0. (3.11)

Since the pressure gradient ∂P∗/∂x∗ in (3.9) is unknown, in addition to the viscous
region 1, we also need to consider the upper tier, region 3; see figure 3. The asymptotic
expansion of the pressure in region 3 is written as

p = Pe0 + Re−1/5λ0x∗ + Re−1/2p∗(t∗, x∗, y∗)+ · · · , (3.12)

where

y∗ = y

Re−1/5
. (3.13)

Outside the boundary layer, the flow is potential and, therefore, the pressure perturbation
function p∗ satisfies the Laplace equation:

∂2p∗

∂x2∗
+ ∂2p∗

∂y2∗
= 0. (3.14)

This has to be solved with the boundary condition (for details, see § 5.4.4 in Ruban (2018))

∂p∗

∂y∗
= U2

0

λ0

∂2A∗
∂x2∗

at y∗ = 0, (3.15)

and the requirement that p∗ tends to zero as x2
∗ + y2

∗ → ∞. Constant U0 denotes the value
of the velocity (2.2) at x = x0.

Equation (3.15) provides the first link between regions 1 and 3. The second is given by

P∗(t∗, x∗) = p∗|y∗=0. (3.16)

It may be shown (see e.g. Braun & Kluwick 2004) that the solution of the
viscous–inviscid interaction problem (3.8)–(3.16), where Ψ ∗

2 does not grow exponentially
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On receptivity of marginally separated flows 907 A1-9

as Y∗ → ∞, exists if and only if function A∗(t∗, x∗) satisfies the equation

A2 − X2 + 2a = Λ

∫ ∞

X

∂2A
∂ξ 2

(T, ξ)
dξ√
ξ − X

− γ

∫ X

−∞

[
∂A
∂T
(T, ξ)+ vw(ξ)

]
dξ

(X − ξ)1/4
, (3.17)

with γ = 23/4/Γ (5/4). Parameters a0, U0 and λ0 have been eliminated from (3.17) by
means of the affine transformations

A∗ = a3/5
0 U4/5

0

λ
1/5
0

A, t∗ = λ
3/10
0

a9/10
0 U1/5

0

T, x∗ = U4/5
0

a2/5
0 λ

1/5
0

X. (3.18a–c)

The angle-of-attack parameter a is given by

a = k1
(−a1)λ

2/5
0

a1/5
0 U8/5

0

. (3.19)

In the new variables, the boundary condition (3.8) for (3.17) is written as

A(X) = (−X)− a(−X)−1 + · · · as X → −∞. (3.20)

3.2. Receptivity analysis
We shall assume that suction/blowing is weak and time-periodic, that is,

vw(T,X) = ε eiωTVw(X)+ c.c.. (3.21)

Here the amplitude of perturbations ε is assumed small, while the frequency ω is an
order-one quantity. Since vw(T,X) is a real function, the complex conjugate of ε eiωTVw(X)
is added to the right-hand side of (3.21).

The corresponding solution of (3.17) and (3.20) is sought in the form

A(T,X) = A0(X)+ {ε eiωTA1(X)+ c.c.}. (3.22)

The leading-order term A0(X) in (3.22) represents the basic unperturbed flow. It satisfies
the classical marginal separation equation:

A2
0 − X2 + 2a = Λ

∫ ∞

X

A′′
0(ξ)√
ξ − X

dξ. (3.23)

The properties of this equation have been analysed by various authors. In figure 4 we
reproduce the results of the numerical solution of (3.23) presented in chapter 5 of Ruban
(2018).

When analysing these results, one needs to remember that A(X) is proportional to the
skin friction. Indeed, using (3.7) in (3.1), we can write the two-term asymptotic expansion
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FIGURE 4. Solutions of equation (3.23) for a = −0.5 (curve 1), a = 0.0 (2), a = 0.5 (3),
a = 1.0 (4), a = as = 1.139 (5) and a = ac = 1.330 (6).

of the streamfunction in region 1 as

ψ = Re−13/20 1
6λ0Y3

∗ + Re−16/20 1
2 A∗(x∗)Y2

∗ + · · · , y = Re−11/20Y∗. (3.24a,b)

Consequently, the dimensionless skin friction is calculated as

τw = 1√
Re

∂2ψ

∂y2

∣∣∣∣
y=0

= Re−1/5A∗(x∗) = Re−1/5 a3/5
0 U4/5

0

λ
1/5
0

A0(X). (3.25)

Curve 2 in figure 4 is plotted for a = 0, which corresponds to the critical value of
the angle-of-attack, as estimated based on the classical boundary-layer theory. When the
viscous–inviscid interaction is ignored, the Prandtl equations yield a singular solution for
a = 0, which correspond to k = k0; see figure 2. The interaction acts to smooth out the
singularity. The minimal skin friction is lifted, and τw appears to be positive for all values
of X ∈ (−∞,∞). For curve 5, the parameter a has been adjusted in such a way that the
minimal skin friction returns back to zero to capture the incipience of the separation. This
happens at point X = 0.406 when the parameter a reaches the value as = 1.139. Curve 6 is
plotted for the critical value of the parameter ac = 1.330. It shows a region of negative A
between X = −0.566 and X = 1.605, which is occupied by the separation bubble. The
solution does not exist beyond a = ac. This result is in agreement with experimental
observations, which show that, when the angle-of-attack α reaches a critical value αc, a
local separation bubble can no longer exist. It is destroyed in the process known as bubble
bursting.

Now we turn our attention to the perturbations. Substituting (3.22) and (3.21) into (3.17),
and working with O(ε) terms, we find that function A1(X) satisfies the equation

2A0(X)A1(X) = Λ

∫ ∞

X

A′′
1(ξ)√
ξ − X

dξ − iωγ
∫ X

−∞

A1(ξ)

(X − ξ)1/4
dξ

− γ

∫ X

−∞

Vw(ξ)

(X − ξ)1/4
dξ. (3.26)
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FIGURE 5. The real and imaginary parts of A1(X) for different values of the frequency: ω = 1
(blue), ω = 5 (red) and ω = 10 (black). The angle-of-attack parameter a = 0.

This should be solved with the boundary conditions

A1 → 0 as X → ±∞, (3.27)

which are obtained by substituting (3.22) into (3.20).
For the numerical solution of (3.26), we adopted the numerical scheme developed by

Scheichl, Braun & Kluwick (2008). By applying the transformations

X(s) = X0 + B tan
(πs

2

)
, T(τ ) = tan

(πτ

2

)
, (3.28a,b)

the variables X,T ∈ (−∞,∞) are mapped to s, τ ∈ [−1, 1]. The transformed spatial
domain was meshed equidistantly with cell size Δs = 2/(n + 1). Here n is the number
of unknowns and the quantity X0 allows for shifting the region of maximum spatial
resolution to a point of particular interest. The resulting integrals were then approximated
using the piecewise linear representation. Our calculations were performed for the
suction/blowing distribution function Vw = e−X2 . The results of the calculations are
displayed in figures 5–11.

Figure 5 shows how the real and imaginary parts of the function A1(X) change with
the frequency ω; the angle-of-attack parameter a is kept constant (a = 0). We see that, as
ω grows, the number of oscillations of the perturbation function A1(X) increases. This is
accompanied with a decrease of the amplitude of the perturbations. Figures 6–9, where
the absolute value of A1(X) (for different angle-of-attack parameters) is displayed, show
two peaks in the amplitude of the oscillations. The first one is centred at the position of
suction/blowing, while the second corresponds to the maximum perturbations in the wave
packet. Remember that A0 (see figure 4) increases with the distance from the source of the
perturbations. In these conditions, the Tollmien–Schlichting wave first grows, but then it
becomes neutral and starts to decay further downstream. We found that the position of the
neutral oscillations agrees rather well with the theoretical prediction of Ruban (1982b).
According to Ruban’s (1982b) theory, for large enough A0, the neutral frequency is given
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FIGURE 6. The absolute value of A1(X) for the values of the frequency: ω = 5 (blue), ω = 7
(red) and ω = 10 (black). Here the angle-of-attack parameter a = 0 and the green point on each
curve represents the theoretical position of neutral oscillations.
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FIGURE 7. The absolute value of A1(X) for the values of the frequency: (a) ω = 3 (blue), ω = 7
(red) and ω = 9 (black); and (b) ω = 10 (blue), ω = 12 (red) and ω = 15 (black). Here the
angle-of-attack parameter a = −2 and the green point on each curve represents the theoretical
position of neutral oscillations.

by the equation

ω = 4
π1/4

cos
(π

8

) [
Γ (5/4)
Γ (3/4)

]3/2

A3/2
0 . (3.29)

Using this equation one can easily find the value of A0, and hence the position X where
the perturbations become neutral. Notice that this usually happens downstream of the
reattachment point (see figure 9). It is important to note, however, that the reattachment
point can only be calculated for angle-of-attack parameters as = 1.139 and ac = 1.330,
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FIGURE 8. The absolute value of A1(X) for the values of the frequency: (a) ω = 3 (blue), ω = 7
(red) and ω = 9 (black); and (b) ω = 10 (blue), ω = 12 (red) and ω = 15 (black). Here the
angle-of-attack parameter a = −1 and the green point on each curve represents the theoretical
position of neutral oscillations.
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FIGURE 9. The absolute value of A1(X) for the values of the frequency: (a) ω = 3 (blue), ω = 7
(red) and ω = 9 (black); and (b) ω = 10 (blue), ω = 12 (red) and ω = 15 (black). Here the
angle-of-attack parameter a = 1.139 and the green point on each curve represents the theoretical
position of neutral oscillations and the pink point represents the point of reattachment.

since for the other values of the angle of attack the basic unperturbed flow A0(X) has no
region of separation.

Figure 10 shows how the solution changes with changing the angle-of-attack parameter
a. Interestingly enough, the closer a is to the critical value ac, the smaller ω needs to
be to generate a well-developed Tollmien–Schlichting wave packet. Further evidence of
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FIGURE 10. The absolute value of A1(X) for two frequencies (a) ω = 3 and (b) ω = 10. In both
cases, the angle-of-attack parameter assumes the three values: a = 0 (blue), a = 1.139 (red) and
a = 1.330 (black).
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FIGURE 11. Amplitude for the Tollmien–Schlichting wave packet for increasing values of ω.
The angle-of-attack parameters a = −1 (blue), a = 0 (red), a = 1 (black), a = 1.139 (green)
and a = 1.330 (purple).

this point is given by figure 11. Here we can see that, for values of a closer to ac,
Tollmien–Schlichting wave packets of significant amplitude can be generated at lower
frequencies.

The above results show that the non-parallelism of the basic flow in the boundary
layer on the leading edge of an aerofoil has a strong influence on the development of
the Tollmien–Schlichting waves. These first grow downstream of the suction/blowing slot,
then reach a maximum close to the neutral point (or sometimes at the neutral point), after
which they start to decay. Of course, the analysis presented above is linear. In real flows
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the nonlinearity leads to very fast laminar–turbulent transition when the amplitude of the
perturbations reaches a certain level, which happens behind the reattachment point.

4. Three-dimensional wave packets

Now we shall consider a three-dimensional version of the problem. We shall assume
that the suction/blowing is localised not only in the longitudinal direction, but also in the
spanwise direction, in which case (3.10) assumes the form

v|y=0 = Re−3/4v∗
w(t∗, x∗, z∗), (4.1)

with

t∗ = t
Re1/20

, x∗ = x − x0

Re−1/5
, z∗ = z

Re−1/5
. (4.2a–c)

In these conditions, the perturbations produced in the flow are described by the
three-dimensional version of the marginal separation theory. In the framework of this
theory, one can deduce a three-dimensional version of (3.17) (see e.g. Braun & Kluwick
2004), and then the flow analysis can be conducted in the same way as done in the previous
section. However, we found it more convenient to work in the Fourier space.

4.1. Governing equations
We start with the viscous sublayer (region 1 in figure 3). The tangential, normal and
spanwise velocity components are represented in this region by the asymptotic expansions:

Vτ = Re−1/10 1
2λ0Y2

∗ + Re−1/4U∗
1(t∗, x∗,Y∗, z∗)

+ Re−2/5U∗
2(t∗, x∗,Y∗, z∗)+ · · · ,

Vn = Re−3/5V∗
1 (t∗, x∗,Y∗, z∗)+ Re−3/4V∗

2 (t∗, x∗,Y∗, z∗)+ · · · ,
Vz = Re−2/5W∗

2 (t∗, x∗,Y∗, z∗)+ · · · ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.3)

where

Y∗ = y

Re−11/20
. (4.4)

The asymptotic expansion for the pressure is written as

p = Pe0 + Re−1/5λ0x∗ + Re−1/2P∗(t∗, x∗,Y∗, z∗)+ · · · , (4.5)

Substitution of (4.3) and (4.5) into the Navier–Stokes equations shows that functions U∗
1

and V∗
1 satisfy the quasi-steady two-dimensional equations

1
2
λ0Y2

∗
∂U∗

1

∂x∗
+ λ0Y∗V∗

1 = ∂2U∗
1

∂Y2∗
,

∂U∗
1

∂x∗
+ ∂V∗

1

∂Y∗
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)

Their solution satisfying the no-slip conditions on the body surface

U∗
1 = V∗

1 = 0 at Y∗ = 0 (4.7)
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is written as

U∗
1 = A∗(t∗, x∗, z∗)Y∗, V∗

1 = −1
2
∂A∗
∂x∗

Y2
∗ , (4.8a,b)

where A∗(t∗, x∗, z∗) is an arbitrary function. To find this function, one has to consider the
next-order equations:

1
2
λ0Y2

∗
∂U∗

2

∂x∗
+ λ0Y∗V∗

2 = ∂2U∗
2

∂Y2∗
− ∂P∗

∂x∗
− ∂A∗
∂t∗

Y∗ − 1
2

A∗
∂A∗
∂x∗

Y2
∗ , (4.9a)

∂P∗

∂Y∗
= 0, (4.9b)

1
2
λ0Y2

∗
∂W∗

2

∂x∗
= −∂P∗

∂z∗
+ ∂2W∗

2

∂Y2∗
, (4.9c)

∂U∗
2

∂x∗
+ ∂V∗

2

∂Y∗
+ ∂W∗

2

∂z∗
= 0. (4.9d)

These have to be solved with the following conditions on the body surface:

U∗
2 = W∗

2 = 0, V∗
2 = v∗

w(t∗, x∗, z∗) at Y∗ = 0, (4.10)

and the requirement that U∗
2 , V∗

2 and W∗
2 do not grow exponentially as Y∗ → ∞.

The set of equations (4.9) can be reduced to the following equation:

1
2
λ0Y2

∗
∂2V∗

2

∂x∗∂Y∗
− λ0Y∗

∂V∗
2

∂x∗

= ∂3V∗
2

∂Y3∗
+ ∂2P∗

∂x2∗
+ ∂2P∗

∂z2∗
+ ∂2A∗
∂t∗∂x∗

Y∗ + ∂2

∂x2∗

(
A2

∗
4

)
Y2

∗ . (4.11)

This is obtained by differentiating (4.9a) with respect to x∗ and (4.9c) with respect to z∗.
The resulting equations are then added together, and U∗

2 and W∗
2 are eliminated with the

help of the continuity equation (4.9d). The boundary conditions for (4.11) are

V∗
2 = v∗

w(t∗, x∗, z∗),
∂V∗

2

∂Y∗
= 0 at Y∗ = 0. (4.12)

The first condition serves to describe the suction/blowing through the body surface. The
second condition follows directly from the continuity equation (4.9d) and the fact that U∗

2
and W∗

2 satisfy the no-slip conditions (4.10).
The following two observations can be made at this stage of the analysis. Firstly, it is

easily seen that to any solution V∗
2 of (4.11) and (4.12) one can add 1

2 B∗(t∗, x∗, z∗)Y2
∗ with

arbitrary function B∗(t∗, x∗, z∗). To find this function, one needs to consider the next-order
approximation. Secondly, all the coefficients in (4.11) are functions of Y∗ only. This allows
us to perform the Fourier transforms of (4.11) with respect to x∗ and z∗. Of course, the
Fourier transforms are only applicable to functions that decay as x∗ and z∗ tend to infinity.
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To satisfy this requirement, we introduce a new function V2 defined as

V∗
2 = V2 + 1

2
B∗(t∗, x∗, z∗)Y2

∗ − a2
0

5!
Y5

∗ − ∂G∗
∂x∗

Y∗, (4.13)

where

G∗(t∗, x∗, z∗) = A2
∗ − a2

0x2
∗ − 2k1a0a1

2λ0
. (4.14)

Then we use affine transformations

V2 = a3/2
0 U0

λ
3/2
0

V, A∗ = a3/5
0 U4/5

0

λ
1/5
0

A, P∗ = a0U2
0

λ0
P,

G∗ = a6/5
0 U8/5

0

λ
7/5
0

G, t∗ = λ
3/10
0

a9/10
0 U1/5

0

T, x∗ = U4/5
0

a2/5
0 λ

1/5
0

X,

Y∗ = U1/5
0

a1/10
0 λ

3/10
0

Y, z∗ = U4/5
0

a2/5
0 λ

1/5
0

Z, v∗
w = a3/2

0 U0

λ
3/2
0

vw,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.15)

and introduce Fourier transforms of functions V , P, A and vw. In particular, the Fourier
transform of V is defined as

V̆(T, α,Y, β) =
∫ ∞

−∞
dX

∫ ∞

−∞
V(T,X,Y,Z) exp(−iαX − iβZ) dZ. (4.16)

This turns (4.11) and (4.12) into

1
2

iαY2 ∂V̆
∂Y

− iαYV̆ = ∂3V̆
∂Y3

− (α2 + β2)P̆ + iα
∂Ă
∂T

Y, (4.17a)

V̆ = v̆w,
∂V̆
∂Y

= iαĞ at Y = 0. (4.17b)

Here Ğ is the Fourier transform of function G, now written as

G = 1
2(A

2 − X2 + 2a), (4.18)

with parameter a given again by (3.19).
It may be shown (see e.g. Braun & Kluwick 2004) that the solution of boundary value

problem (4.17), where V̆ does not grow exponentially as Y∗ → ∞, exists if and only if

21/4Γ (5/4)
Γ (3/4)

(iα)3/4Ğ −
√

π

25/4

α2 + β2

(iα)3/4
P̆ + ∂Ă

∂T
+ v̆w = 0. (4.19)

Equation (4.19) establishes the first link between function A and the pressure P.
To obtain the second one, we need to consider the upper tier (region 3 in figure 3).

The asymptotic expansions of the velocity components and the pressure in this region are
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written as
Vτ = U0 + · · · + Re−1/2u∗(t∗, x∗, y∗, z∗)+ · · · ,

Vn = · · · + Re−1/2v∗(t∗, x∗, y∗, z∗)+ · · · ,
Vz = · · · + Re−1/2w∗(t∗, x∗, y∗, z∗)+ · · · ,

p = Pe0 + · · · + Re−1/2p∗(t∗, x∗, y∗, z∗)+ · · · ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.20)

where t∗, x∗ and z∗ are given by (4.2a–c) and

y∗ = y

Re−1/5
. (4.21)

Substituting (4.20) into the Navier–Stokes equations, one can deduce that the pressure p∗

satisfies the Laplace equation:

∂2p∗

∂x2∗
+ ∂2p∗

∂y2∗
+ ∂2p∗

∂z2∗
= 0. (4.22)

This has to be solved with the boundary condition

∂p∗

∂y∗
= U2

0

λ0

∂2A∗
∂x2∗

at y∗ = 0, (4.23)

and the requirement that p∗ tend to zero as x2
∗ + y2

∗ + z2
∗ → ∞. Condition (4.23) is

obtained in the usual way by matching with the solution in the boundary layer.
Affine transformations

p∗ = a0U2
0

λ0
p, A∗ = a3/5

0 U4/5
0

λ
1/5
0

A,

x∗ = U4/5
0

a2/5
0 λ

1/5
0

X, y∗ = U4/5
0

a2/5
0 λ

1/5
0

ȳ, z∗ = U4/5
0

a2/5
0 λ

1/5
0

Z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.24)

turn (4.22) and (4.23) into

∂2p
∂X2

+ ∂2p
∂ ȳ2

+ ∂2p
∂Z2

= 0, (4.25a)

∂p
∂ ȳ

= ∂2A
∂X2

at ȳ = 0. (4.25b)

These are written in terms of the Fourier transforms as

∂2p̆
∂ ȳ2

− (α2 + β2)p̆ = 0, (4.26a)

∂ p̆
∂ ȳ

= −α2Ă at ȳ = 0. (4.26b)

The solution of (4.26), satisfying the attenuation condition

p̆ → 0 as ȳ → ∞, (4.27)
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is written as

p̆ = α2Ă√
α2 + β2

exp
(
−

√
α2 + β2 ȳ

)
. (4.28)

The Fourier transform of the pressure inside the boundary layer can now be found by
setting ȳ = 0 in (4.28):

P̆ = α2Ă√
α2 + β2

. (4.29)

It remains to substitute (4.29) into (4.19), and we will have the following equation for
function A:

21/4Γ (5/4)
Γ (3/4)

(iα)3/4Ğ −
√

π

25/4

√
α2 + β2

(iα)3/4
α2Ă + ∂Ă

∂T
+ v̆w = 0. (4.30)

Remember that Ğ is the Fourier transform of 1
2(A

2 − X2 + 2a).

4.2. Weak periodic suction/blowing
In what follows we assume that

vw(T,X,Z) = ε eiωTVw(X,Z)+ c.c.. (4.31)

If ε = 0, then the flow is unperturbed, and is described by (3.23). If ε is non-zero but
small, then the solution for A(T,X,Z) should be sought in the form

A(T,X,Z) = A0(X)+ {ε eiωTA1(X,Z)+ c.c.}. (4.32)

Substituting (4.32) and (4.31) into (4.30), and working with the O(ε) terms, we find that
function A1 satisfies the equation

21/4Γ (5/4)
Γ (3/4)

(iα)−1/4H̆ +
√

π

25/4

√
α2 + β2

(iα)3/4
Q̆ + iωĂ + V̆w = 0. (4.33)

Here H̆ and Q are the Fourier transforms of

H = A0
∂A1

∂X
+ dA0

dX
A1 and Q = ∂2A1

∂X2
, (4.34a,b)

respectively.

4.3. Numerical results
The numerical solution of (4.33) was obtained using Newtonian iteration. The calculations
were performed for

Vw(X,Z) = exp(−(X − X0)
2 − Z2). (4.35)

The results are displayed in figures 12–15.
We first take the angle-of-attack parameter to be a = 0, and shift the centre of

suction/blowing upstream to X0 = 2. Figure 12 displays the contours of the constant real
part of A1(X,Z) (the imaginary part of A1(X,Z) was found to behave in a similar way).
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FIGURE 12. Contour plots for the real part of A1(X,Z) for angle-of-attack parameter a = 0 and
different frequencies: (a) ω = 1, (b) ω = 4, (c) ω = 7 and (d) ω = 10. The green point represents
the theoretical position of neutral oscillations.

One can see that with ω = 1.0 the flow displays a ‘passive response’ to suction/blowing,
but when ω increases, the flow becomes unstable, and the perturbations start to grow
downstream of suction/blowing, taking the form of a three-dimensional wave packet.
The latter is bounded in space due to the fact that the basic flow, given by A0(X), is
non-parallel. We found that the position of the maximum of the amplitude of pulsations
can still be predicted with the help of equation (3.29) (see the green point plotted in
figures 12–15). It is clear from figure 12 that, with increasing frequency ω, the position
of the maximum amplitude of the perturbations moves downstream and the number
of oscillations increases. As a result, the wave packet stretches downstream. It also
widens, but not significantly. Furthermore, one can see that, for different angle-of-attack
parameters, the solutions behave in a similar manner (see figures 13 and 14).
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FIGURE 13. Contour plots for the real part of A1(X,Z) for angle-of-attack parameter a = 1 and
different frequencies: (a) ω = 1, (b) ω = 4, (c) ω = 7 and (d) ω = 10. The green point represents
the theoretical position of neutral oscillations.

Figure 15 shows how the solution changes as the angle of attack increases. The
calculations were performed for ω = 10. We see that the wave packet extends in both the
longitudinal and spanwise directions as a increases from a = 1.139 to a = 1.330. Also we
observe an increase in the amplitude of the oscillations, which means that at a = 1.330
the boundary layer is more prone to laminar–turbulent transition.

5. Summary

In this paper we investigated the receptivity of a marginally separated boundary layer
with respect to periodic suction/blowing. The problem considered was intended to explain
well-known experimental observations where the flow in the short separation bubble
remains laminar except near the reattachment point. Our calculations clearly show that,
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FIGURE 14. Contour plots for the real part of A1(X,Z) for angle-of-attack parameter a = 1.139
and different frequencies: (a) ω = 1, (b) ω = 4, (c) ω = 7 and (d) ω = 10. The green point
represents the theoretical position of neutral oscillations.

for large enough frequency ω, the perturbations assume the form of a wave packet with
maximum amplitude of perturbation reached downstream of the reattachment point.

The main difference between this work and previous studies of receptivity is that
the marginally separated flows are non-parallel with respect to the Tollmien–Schlichting
waves. The analysis of such flows requires special numerical techniques. In this paper
we used both finite-difference and pseudo-spectral methods. The latter proved to be
very efficient for the case of three-dimensional perturbations, allowing us to accurately
resolve multiple oscillations in the flow. It should be noted that, due to the assumption
of periodicity of the solution, no singularity of the type described by Smith (1982) and
Scheichl et al. (2008) was observed in the flow field.

The results presented in this paper show that the non-parallelism of the basic flow
in the boundary layer on the leading edge of an aerofoil has a strong influence on the
development of the Tollmien–Schlichting waves. These first grow downstream of the
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FIGURE 15. Contour plots for the real part of A1(X,Z), where ω = 10: (a) a = 1.139 and
(b) a = 1.330. The green point represents the theoretical position of neutral oscillations.

suction/blowing slot, then reach a maximum close to the neutral point, or even at the
neutral point, after which they start to decay. Both two-dimensional and three-dimensional
wave packets decay with the increase in frequency ω of perturbations. They also grow with
the angle-of-attack parameter a, especially when a approaches its critical value a = 1.139.
Of course, the analysis presented above is linear. In real flows the nonlinearity leads to very
fast laminar–turbulent transition when the amplitude of the perturbations reaches a certain
level, which happens behind the reattachment point.

There are a number of possible extensions of the work presented in this paper. These
include receptivity to acoustic noise and free-stream turbulence. Also of interest would be
an extension of the analysis to nonlinear perturbations.
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