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Townsend’s attached-eddy hypothesis (AEH) provides a theoretical description of
turbulence statistics in the logarithmic region in terms of coherent motions that
are self-similar with the wall-normal distance (y). This hypothesis was further
extended by Perry and coworkers who proposed attached-eddy models that predict the
coexistence of the logarithmic law in the mean velocity and streamwise turbulence
intensity as well as spectral scaling for the streamwise energy spectra. The AEH
can be used to predict the statistical behaviours of wall turbulence, yet revealing
such behaviours has remained an elusive task because the proposed description is
established within the limits of asymptotically high Reynolds numbers. Here, we
show the self-similar behaviour of turbulence motions contained within wall-attached
structures of streamwise velocity fluctuations using the direct numerical simulation
dataset of turbulent boundary layer, channel, and pipe flows (Reτ ≈ 1000). The physical
sizes of the identified structures are geometrically self-similar in terms of height,
and the associated turbulence intensity follows the logarithmic variation in all three
flows. Moreover, the corresponding two-dimensional energy spectra are aligned along
a linear relationship between the streamwise and spanwise wavelengths (λx and
λz, respectively) in the large-scale range (12y < λx < 3–4δ), which is reminiscent
of self-similarity. Consequently, one-dimensional spectra obtained by integrating the
two-dimensional spectra over the self-similar range show some evidence for self-similar
scaling λx ∼ λz and the possible existence of k−1

x and k−1
z scaling regions in a similar

subrange. The present results reveal that the asymptotic behaviours can be obtained by
identifying the self-similar coherent structures in canonical wall turbulence, albeit in
low-Reynolds-number flows.

Key words: turbulent boundary layers, turbulence simulation

1. Introduction

One of the distinct features of wall-bounded turbulent flows is that they are characterised
by multiple scales over a broad range. Owing to the presence of a solid wall, the
characteristic length scales in wall turbulence vary from the viscous length scale (δν) to
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the outer length scale (δ). Such a multiscale nature is described by the friction Reynolds
number (Reτ ), which is the ratio of δ and δν . At asymptotically high Reτ , there is a region
where two different length scales are valid simultaneously. In this region, the only relevant
length scale is the distance from the wall y, and the mean velocity profile follows the
logarithmic variation with respect to y (Millikan 1938); this is the so-called logarithmic
region. Townsend (1976) conjectured that energy-containing motions in the logarithmic
region are self-similar and that their sizes are proportional to y because the impermeability
of the walls restricts the size of the order of the wall-normal distance. In this respect,
Townsend described that these motions are attached to the wall, which is the so-called
attached-eddy hypothesis (AEH); see a recent review (Marusic & Monty 2019). The AEH
allows us to establish the relationship between coherent structures and turbulence statistics
at asymptotically high Reτ by conjecturing that the logarithmic region is composed of
self-similar energy-containing motions. These motions are assumed to be inviscid near
the wall; they lead to the logarithmic variation in the wall-parallel components of the
turbulence intensities and constant wall-normal turbulence intensity over the logarithmic
region.

The AEH was further extended by Perry & Chong (1982) who deduced the
attached-eddy model. They showed that the eddies are randomly distributed in a
hierarchical form with a probability density function that is inversely proportional to y
because of their self-similar nature. Based on the attached-eddy model, they expected
that the logarithmic variations occur both in the mean velocity and in the wall-parallel
components of turbulence intensity. Moreover, the model also shows that self-similar
motions contribute to a k−1

x scaling in the one-dimensional spectra of the streamwise
velocity, where kx is the streamwise wavenumber. The k−1

x region was predicted by Perry
& Abell (1977), who assumed that there is a spectral overlap region where y and δ scalings
hold simultaneously. In this sense, the k−1

x region can be a consequence of the AEH and
is deemed the spectral signature of attached eddies (Perry & Chong 1982; Perry, Henbest
& Chong 1986). However, although some studies have reported empirical evidence for
the existence of the k−1

x region (Nickels et al. 2005; Vallikivi, Ganapathisubramani &
Smits 2015), it remains unclear whether such scaling exists in a high-Reynolds-number
flow (Rosenberg et al. 2013; Ahn et al. 2015; Lee & Moser 2015; Agostini & Leschziner
2017; Chandran et al. 2017; Baars & Marusic 2020a). This leads to questions regarding
the relationship between the k−1

x region and the logarithmic variation of the streamwise
turbulence intensity because the latter is satisfied when the spectral overlap argument is
valid. Moreover, several high-Reynolds-number experiments have revealed the logarithmic
variations in the streamwise turbulence intensity (Hultmark et al. 2012; Marusic et al.
2013; Örlü et al. 2017). However, the k−1

x dependence in the same experimental data has not
been yet established, especially in premultiplied one-dimensional spectra with a semi-log
plot (Baars & Marusic 2020a).

The ambiguities in the spectral signatures of the attached eddies are related to
insufficient scale separation since the AEH requires that the Reynolds number approaches
infinity. This means that there is no region where both y and δ scalings are valid
over the same wavenumber space, even in the high-Reynolds-number experiments Re =
O(104−5) of the aforementioned studies. However, given the fact that the self-similar
energy-containing motions follow a hierarchical distribution (Perry & Chong 1982), we
may expect that self-similar motions can exist even if scale separation is insufficient.
Owing to insufficient separation of scales, self-similar motions are less statistically
dominant than other coexisting motions, which in turn leads to ambiguity of the asymptotic
behaviours in turbulent statistics. If we properly extract the contributions of self-similar
motions by filtering out coexisting motions in turbulent flows, then we may observe
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the spectral overlap region (Baars & Marusic 2020a). This conjecture is supported by
the existence of very large-scale structures (Kim & Adrian 1999) or global modes (del
Álamo et al. 2004) in internal flows and superstructures in external flows (Hutchins &
Marusic 2007). The very large scales, characterised by the outer scale δ, extend from the
outer region to the near-wall region and significantly contribute to turbulence statistics in
the logarithmic region (Guala, Hommema & Adrian 2006; Balakumar & Adrian 2007;
Lee & Sung 2011; Hwang et al. 2016b). In other words, the statistical behaviours of
self-similar motions in the logarithmic region can be contaminated by the contributions
of non-self-similar motions. Jiménez & Hoyas (2008) showed that the departure of the
streamwise turbulent intensity from the logarithmic variation is due to the contamination
by very long and wide motions (i.e. global modes). It is to be noted that other types of
coexisting motions related to smaller scales (e.g. viscous scales) also contribute to the
absence of the logarithmic law (Perry et al. 1986; Perry & Li 1990; Marusic, Uddin &
Perry 1997), but their effect on the ambiguity of the k−1

x scaling may be negligible because
such a scaling region will appear over a large scale range O( y).

Several works have shown statistical evidence for the existence of self-similar motions
in the logarithmic region. del Álamo et al. (2006) and Lozano-Durán, Flores &
Jiménez (2012) extracted three-dimensional clusters of vortices and sweeps/ejections in
instantaneous flow fields of channel flows and showed that the sizes of the wall-attached
objects are proportional to the height. In an artificial channel flow, which resolves
only a given spanwise length scale, it was found that the statistical behaviours of
energy-containing motions in the logarithmic region are characterised by the spanwise
length scale and are self-similar with respect to y (Hwang 2015). Similarly, Hellström,
Marusic & Smits (2016) reported that the azimuthal length scales of the dominant modes,
identified by a proper orthogonal decomposition analysis, are linearly proportional to y
over a decade in turbulent pipe flows. In turbulent boundary layers (TBL), Baars, Hutchins
& Marusic (2017) extracted coherent motions using a spectral coherence analysis and
showed that the corresponding motions follow a constant streamwise/wall-normal ratio.
Subsequently, a linear relationship between the streamwise and spanwise wavelengths,
which is evidence for self-similarity, was observed in the two-dimensional spectra of
streamwise velocity (Chandran et al. 2017). Agostini & Leschziner (2017) found that
the premultiplied derivative of the second-order structure function has a constant region,
which reflects the k−1

x scaling (Davidson, Nickels & Krogstad 2006). However, although
previous studies have shown the existence of self-similar coherent motions in wall
turbulence, the relationship between the identified motions and statistical behaviours (i.e.
logarithmic variation or k−1

x region) predicted by the AEH has not been established. This
is because the AEH originated from an attempt to explain the asymptotic behaviours of
turbulence statistics, and especially two-point correlations, in terms of coherent structures
in the logarithmic region. Hence, there remains a need to show whether self-similar
coherent motions extracted by a particular method can be attributed to the logarithmic
variation in the turbulence intensity or the spectral signature for the k−1

x scaling and to
reveal whether such behaviours appear in a consistent range where the identified motions
are defined.

Recently, Srinath et al. (2018) proposed a model of the one-dimensional streamwise
energy spectrum based on wall-attached structures of streamwise velocity fluctuations (u)
identified in a streamwise–wall-normal plane. They showed that both streamwise energy
spectrum and turbulence intensity follow a power-law distribution with respect to the
streamwise length scale, and the sum of the corresponding power-law exponents is close
to −1. In particular, the exponent of the streamwise energy spectrum becomes −1 (i.e.
k−1

x scaling) over 100 < y+ < 200 (below the logarithmic region) at Reτ ≈ O(103−4).
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By extracting a spine or skeleton of contiguous volumes of the intense u regions, Solak &
Laval (2018) examined the geometrical features of u structures at Reτ ≈ 700. It was found
that the conditionally sampled streamwise intensity follows a power-law distribution with
respect to the structure length at a given y. In addition, the sum of the exponents of the
one-dimensional spectra and the intensity was observed close to −1, which supports the
model proposed by Srinath et al. (2018).

Hwang & Sung (2018) demonstrated that the wall-attached structures of u are not only
self-similar in terms of their heights, (ly) but also directly contribute to the logarithmic
variation in the streamwise turbulence intensity. In addition, they showed that the
population density of the identified structures is inversely proportional to ly , reminiscent
of the hierarchies of self-similar eddies (Townsend 1976; Perry & Chong 1982). It is
worth mentioning that the presence of the logarithmic region in the reconstructed intensity
profile was verified by an apparent plateau in the indicator function of the logarithmic
variation although there is no logarithmic behaviour in the profile of the streamwise
turbulence intensity at a low Reynolds number (Reτ ≈ 1000). Moreover, in pipe flows,
it was found that the profile of the streamwise velocity reconstructed by the superposition
of the wall-attached u structures exhibits the logarithmic variation (Hwang & Sung 2019).
In particular, the ranges of the logarithmic variation in the streamwise turbulence intensity
and in the mean velocity appear at a consistent location 3Re1/2

τ < y+ < 0.18δ+, where
the superscript + denotes viscous scaling. These findings support the supposition that the
identified u structures can be regarded as the structural basis of the logarithmic region in
the context of the AEH.

Despite evidence on the self-similarity of wall-attached u structures and their
contribution to the logarithmic behaviours, their spectral contribution and the turbulence
motions contained within the identified structures have not been revealed. The
wall-attached u structures are identified in instantaneous fluctuating velocity fields and
their length scales are measured in terms of the dimensions of the bounding box of
each object in physical space. The length and width of the wall-attached structure does
not necessarily indicate a particular length scale associated with the identified object
since each structure can contribute turbulence energy over a certain range of spectral
space (Nickels & Marusic 2001). In other words, the physical size of each structure is a
particular length scale among a range of scales contained within the individual structure;
in particular, it represents one of the large scales related to the volume of intense u.
Hence, spectral analysis is required to reveal whether the large scales contained within
the identified object can be attributed to the logarithmic variation or exhibit the spectral
overlap argument proposed by Perry and coworkers (Perry & Abell 1977; Perry & Chong
1982; Perry et al. 1986).

Given the self-similar nature of the wall-attached u structures, we may expect to see
a linear relationship between the streamwise and spanwise wavelength (λx and λz) in
the two-dimensional energy spectra of u (Chung et al. 2015; Chandran et al. 2017;
Deshpande et al. 2020). In order for there to be a k−1

x region in the one-dimensional spectra,
the two-dimensional energy spectra should be characterised by a region of constant
energy in the logarithmic region, and this region should be bounded by an identical
power-law between λx and λz (Chung et al. 2015). Chandran et al. (2017) observed
that constant-energy contours in the two-dimensional spectra are bounded by a linear
relationship (λx ∼ λz), which represents the self-similarity of turbulence motions. They
found that the linear behaviour appears at high Reτ (≈ 26 000) TBLs in the large-scale
range (λx > 10y), while only square root behaviour is observed at low Reτ (≈ 2400); this
is consistent with the work of del Álamo et al. (2004) who examined the two-dimensional
energy spectra of a turbulent channel flow at Reτ = 1900. However, there was no clear
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plateau in the premultiplied one-dimensional spectra (i.e. k−1
x region) over a similar range

of the linear behaviour in the two-dimensional spectra. As discussed, the energy spectra
of u represent the contributions of all coexisting eddies and this obscures the appearance
of self-similar behaviours since those behaviours are only achieved in the limit of infinite
Reτ . Therefore, extracting proper u motions satisfying the AEH is required to examine the
spectral-overlap arguments. Recent studies have been conducted to filter out the spectral
contribution of self-similar motions. Given the hierarchies of the attached eddies, Hu,
Yang & Zheng (2020) extracted u in the one-dimensional spectra over the range of 5.7y <

λx < 3–4δ and y+ > 100. Baars & Marusic (2020a) extracted the energy contributed
from wall-coherent motions by decomposing the streamwise turbulence intensity through
spectral coherence analysis. Using the two-point correlation of u, Deshpande et al. (2020)
obtained the two-dimensional spectra, which represent the energy distribution of the
wall-attached motions across λx and λz. Although these studies showed that the extracted
energy distributions exhibit the self-similarity (λx ∼ y or λx ∼ λz) in the logarithmic
region, the extracted signals also include contributions from tall wall-attached motions
(non-self-similar motions) that extend from the wall to the outer region (i.e. beyond the
logarithmic region). In other words, contamination by non-self-similar motions could
mask the asymptotic statistical behaviours predicted by the AEH.

The objective of the present study is to explore the spectral contribution of turbulence
motions that comprise wall-attached u clusters by computing the two-dimensional spectra
of u, in which the velocity signals contained within self-similar structures are isolated.
To do so, we examine the direct numerical simulation (DNS) data of a fully developed
turbulent channel and pipe flows, along with zero-pressure-gradient TBL at Reτ ≈ 1000,
and identify the wall-attached self-similar structures by applying universal filters in
terms of height. The wall-attached self-similar clusters, identified in the physical space,
not only exhibit similar geometrical features but also embody scales corresponding to
λx ∼ λz, which in turn contribute to the existence of the k−1

x and k−1
z scalings. A brief

description of the DNS data and the identification method for extracting self-similar
clusters in instantaneous flow fields is provided in § 2. In § 3, wall-attached u clusters
are decomposed into the buffer-layer, self-similar and non-self-similar structures in terms
of their height. Next, the wall-attached self-similar structures (WASS) are examined using
the two-dimensional energy spectra to reveal the self-similar behaviours in the logarithmic
region of all three flows. We then explore the one-dimensional streamwise and spanwise
spectra by comparing the energy contained in the spectral range where the energetic
ridges in the two-dimensional spectra follow a linear relationship between the wall-parallel
wavelengths. Finally, a summary of the main findings is provided in § 4.

2. DNS data and cluster identification method

In this study, the DNS data of the zero-pressure gradient TBL (Hwang & Sung 2017;
Yoon, Hwang & Sung 2018), and the fully developed turbulent channel (Lee et al. 2014;
Lee, Ahn & Sung 2015) and pipe flows (Ahn et al. 2013, 2015) are analysed. To solve
the Navier–Stokes equations for incompressible flow, the DNS was performed using the
fractional step method proposed by Kim, Baek & Sung (2002). Table 1 provides the
parameters of the DNS data, and a detailed description of the DNS can be found in the
aforementioned studies. The friction Reynolds numbers, defined as the ratio of the outer
length scale to the viscous length scale, are matched at Reτ = uτ δ/ν ≈ 1000. Here, uτ is
the friction velocity, ν is the kinematic viscosity and δ is the flow thickness (i.e. channel
half-height, pipe radius or 99 % boundary layer thickness). Throughout the present work,
the superscript + represents viscous scaling (ν/uτ and uτ ). The friction Reynolds number
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Case Reτ (Lx , Ly, Lz) (Nx , Ny, Nz) �x+ �y+
min �y+

max �z+ �t+

TBL 980 (2300δ0, 100δ0, 100δ0) (13 313, 541, 769) 5.49 0.159 9.56 4.13 0.0504
Channel 930 (10πδ, 2δ, 3πδ) (4993, 401, 2497) 5.86 0.0287 7.31 3.51 0.0618
Pipe 930 (30δ, 2δ, 2πδ) (4097, 301, 1025) 6.84 0.166 9.24 5.73 0.246

TABLE 1. Simulation parameter. Here, Reτ is the friction Reynolds number; Li and Ni indicate
the domain size and number of grid points, respectively; grid spacings in the wall-parallel
directions are �x+ and �z+; the minimum and maximum grid sizes in the wall-normal direction
are �y+

min and �y+
max , respectively; and �t+ is the time step. In the pipe dataset, the arclength

is used to denote the spanwise direction. In the TBL, inner-normalised resolutions are taken at
Reτ ≈ 1000 and δ0 denotes the inlet boundary layer thickness.

of the TBL (Reτ = 980) is chosen at the middle of the streamwise length (Lx ≈ 11.7δ)
of the subdomain. We neglect the Reynolds number effect since Reτ varies from 913 to
1039 across the streamwise direction of the extracted flow field. In the present study,
x , y and z indicate the streamwise, wall-normal and spanwise directions, respectively.
In the pipe flow, the wall-normal direction is defined as y = δ − r, where r denotes
the radial direction. In addition, for an analogy with z in the TBL and channel flows,
the spanwise dimension of the pipe is defined as the arclength rθ , where θ denotes
the azimuthal direction. We define the streamwise velocity fluctuations u = U − Ū( y),
where U is the streamwise velocity, and the overbar denotes the ensemble average. For
the TBL, the streamwise fluctuating component is decomposed by considering the local
height of the turbulent/non-turbulent interface δi (Kwon, Hutchins & Monty 2016); that is,
ũ = U − Ũ( y, δi), where Ũ is the conditional mean velocity as a function of y and δi. The
profile of Ũ shows a significant discrepancy compared with that of Ū in the intermittent
region, whereas they collapse close to the wall (Kwon et al. 2016; Yoon et al. 2020). We
focus on coherent motions in the logarithmic region, and thus the fluctuating fields are
insensitive to the decomposition method (i.e. u ≈ ũ in TBL). In other words, the results
presented here remain qualitatively unchanged when using the Reynolds decomposition.
Hereafter, we refer to ũ as u in the TBL. However, when we examine fluctuating motions
that reach δi or reside in the intermittent region, we have to consider the oscillation of δi
in order to avoid contamination in the intermittent region of TBL.

We identify the clusters of u in the instantaneous flow fields by extracting the contiguous
points of the intense u region (Hwang & Sung 2018; Han et al. 2019; Hwang & Sung 2019;
Yoon et al. 2020). In the three-dimensional flow field, the irregular shapes of the objects
are defined as

u(x) > αurms( y) or u(x) > −αurms( y), (2.1)

where urms is the standard deviation of the streamwise velocity and α is the threshold.
Individual objects are extracted using the connectivity rule, in which nodes are labelled
among the six orthogonal neighbours of each node satisfying (2.1) in Cartesian coordinates
(Moisy & Jiménez 2004; del Álamo et al. 2006; Lozano-Durán et al. 2012; Hwang &
Sung 2018) and cylindrical coordinates (Han et al. 2019; Hwang & Sung 2019). We chose
the threshold α = 1.5 for all three flows; further discussion can be found in our previous
works (Hwang & Sung 2018; Yoon et al. 2020). In the vicinity of this value, turbulence
clusters show the percolation behaviours over a wide range of Reτ (del Álamo et al. 2006;
Lozano-Durán et al. 2012; Hwang & Sung 2019) and for different flow configurations;
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that is, pipes in Hwang & Sung (2019) and Han et al. (2019) or adverse-pressure-gradient
TBL in Yoon et al. (2020). The present identification method allows us to measure the
physical length scales of individual structures in instantaneous flow fields. Each structure
is bounded by a box of size lx × ly × lz, where the corresponding length, height and width
are denoted by lx , ly and lz. In the pipe flow, lz is computed in terms of the maximum
arclength in the plane obtained by projecting each object onto the cross-stream plane.

3. Results and discussion

As mentioned, we focus on WASS of u reported in the works of Hwang & Sung (2018)
and Hwang & Sung (2019). Here, we briefly summarise the spatial characteristics and the
physical interpretation of WASS. The u clusters (2.1) can be classified into wall-attached
and wall-detached by measuring the minimum wall-normal distance (ymin) of each object.
Wall-attached u clusters are defined as y+

min ≈ 0, meaning that each cluster has coherence
near the wall. The attached eddies proposed by Townsend do not necessarily adhere to
the wall, as the AEH considers coherent motions in asymptotically high Reτ . Hence, these
eddies are assumed inviscid, which results in non-zero wall-parallel velocity components
near the wall. Given that the AEH is an inviscid theory, we could define the wall-attached
u structures with y+

min < 20 (beyond the viscous sublayer), as in the study by del Álamo
et al. (2006) or Lozano-Durán et al. (2012). However, we found that approximately 90 % of
the wall-attached u structures extending below y+ < 20 have their minimum wall distance
close to zero (Hwang & Sung 2018) and, in particular, all of the identified structures that
extend beyond the logarithmic region have y+

min ≈ 0. Because the present study primarily
focuses on the contribution of the identified structures to the logarithmic region, the
criterion of ymin does not significantly affect our conclusions.

In addition, our use of ‘wall-attached’ and ‘wall-detached’ is to distinguish between
whether the identified clusters are physically attached to the wall or floating in a flow since
each of them contains self-similar or non-self-similar structures (Marusic & Monty 2019;
Yoon et al. 2020). This approach takes into account the description of energy-containing
motions in Jiménez & Hoyas (2008). This nomenclature may provide a better description
of coherent structures in the context of the AEH when compared with simply designating
the self-similar (i.e. dimensions are proportional to y) structures as ‘attached’. In addition,
the identified wall-attached structures, i.e. those that anchor to the wall, might contribute to
the skin friction since energy-containing motions in the logarithmic region are responsible
for the skin friction (de Giovanetti, Hwang & Choi 2016; Agostini & Leschziner 2019).

According to Hwang & Sung (2018), wall-attached u structures occupy approximately
90 % of a total volume of u clusters and carry significant turbulent energy throughout the
TBL. The length and width of the wall-attached structures are scaled with their heights
and the population density exhibits an inverse power-law with respect to ly . In addition, the
streamwise turbulence intensity contained within these structures shows the logarithmic
variation even at low Reτ (≈ 1000), suggesting that the identified structures are prime
candidates of Townsend’s AEH. Moreover, Hwang & Sung (2019) demonstrated that the
WASS identified in turbulent pipe flows contribute to the presence of the logarithmic
velocity law, and thus they may play a role as the structural basis for the inertial region.
In addition, the number of uniform momentum zones (UMZs) contained in the WASS
increases with ly and the peak magnitude of the streamwise turbulence intensity in
the near-wall region follows a log–linear increase with ly . These results support the
inference that the structural organisation of WASS can be interpreted in terms of both the
hierarchical length scale distribution and a nested hierarchy of the hairpin packet (Adrian,
Meinhart & Tomkins 2000). In this manner, the turbulence statistics carried by the WASS
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result from the collective contribution of coherent motions with heights of less than ly; for
further discussion, see § 5 in Hwang & Sung (2018).

However, the length scales of each cluster (i.e. lx and lz) correspond to the dimensions
of the bounding box defined in physical space. In other words, lx or lz is a particular length
scale among a range of scales contained within the individual structure; in particular, it
represents one of the large scales related to the volume of intense u. We will analyse
the two-dimensional energy spectrum of WASS to observe the energy distribution across
the streamwise and spanwise wavelengths (λx and λz). This analysis allows us to clarify
the wavelength scales associated with the WASS identified in the physical space and to
interpret the organisation of WASS in view of the spectral argument (Perry & Abell 1977;
Perry & Chong 1982; Perry et al. 1986).

3.1. Decomposition of wall-attached structures
First, we decompose the wall-attached structures of u in order to extract the self-similar
structures. Figure 1 shows the isosurfaces of wall-attached structures (y+

min ≈ 0) identified
in all three flows. Here, light to dark shading indicates an increase in the wall-normal
location. As seen, we can observe the coexisting streaky structures over a wide range
of ly distributed over the surface. A noteworthy feature is that very tall structures with
heights approaching δ are more evident in internal flows (figure 1b,c) compared with TBL
(figure 1a). These large structures meander in the spanwise direction (Hutchins & Marusic
2007) and appear with the streamwise length over 10δ in internal flows (Monty et al.
2007, 2009). Such a difference in very long structures may imply that we need to filter out
those structures to examine the self-similar features of energy-containing motions in the
logarithmic region.

To quantify the geometrical features of wall-attached structures, the joint probability
density functions of the sizes of the identified structures are plotted in figure 2. Here,
the shaded, red line and blue line contours denote the datasets of the TBL, channel and
pipe flows, respectively. In general, the length (lx ) and width (lz) of the structures increase
with increasing heights (ly) in all three flows. Interestingly, the distributions of lx and lz
show a reasonably good collapse over a wide range of ly except for ly ≈ O(δ). This result
indicates that the geometric features of the wall-attached u structures in the inner region
are presumably universal in canonical wall turbulence. On the other hand, there are very
large-scale structures with ly ≈ O(δ), and some with ly ≈ 2δ, in internal flows (red and
blue line contours), which is consistent with the largest clusters of ejections or sweeps in
channel flows (Lozano-Durán et al. 2012). The sizes of these structures are analogous to
those of very large-scale motions (Kim & Adrian 1999) or global modes (del Álamo et al.
2004) reported in internal flows. In TBL, very tall structures (ly ≈ O(δ)) are associated
with superstructures (Hutchins & Marusic 2007) because lx extends over 6δ (see figure 1a)
and they are physically attached to the wall (i.e. footprints in the near-wall region). Recent
studies (Hwang & Sung 2018; Baars & Marusic 2020a; Yoon et al. 2020) have reported
that tall wall-attached structures are non-geometrically similar (or non-self-similar). In
other words, this may reflect the fact that the statistical characteristics of these motions are
non-universal and can be directly affected by the flow geometry. Hence, we need to filter
out tall wall-attached structures in order to analyse the existence of self-similar features in
the logarithmic layer (Hwang & Sung 2018; Baars & Marusic 2020a).

Figure 3 presents the variation of the mean streamwise length 〈lx〉 and the mean
spanwise width 〈lz〉 at a given ly . The growth rates of 〈lx〉 and 〈lz〉 with respect to ly are
comparable in all three flows. In figure 3(b), we can see the linear relationship 〈lz〉 ∼ ly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.733


Statistical behaviour of self-similar structures 905 A6-9

(a)

(b)

(c)

0

1.5

3.0
0

2
4

6

y / δ 

z / δ 
8

10

0 1

12

0

1.5

3.0
0

2
4

6

z / δ 
8

10
12

0
2

4
6

x / δ 

8
10

12

FIGURE 1. Isosurfaces of wall-attached structures in an instantaneous flow field: (a) TBL;
(b) channel; and (c) pipe. Red and blue isosurfaces indicate positive and negative streamwise
velocity fluctuations, respectively. Light to dark shading indicates an increase in y/δ.
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FIGURE 2. (a,b) Joint probability density functions of the logarithms of the streamwise length
(lx ) and spanwise width (lz) of wall-attached structures with respect to their wall-normal heights
(ly). Here, the shaded, red line and blue line contours indicate the datasets of the TBL, channel
and pipe, respectively. Contour levels are logarithmically distributed.

over l+y > 3Re1/2
τ . In contrast, 〈lx〉 shows a power-law behaviour (i.e. 〈lx〉 ∼ l0.74

y ) over
3Re1/2

τ < ly
+ < 0.6δ+ (figure 3a) in all three flows. For l+y ≥ 0.6δ+, the distribution of

〈lx〉 starts to deviate away from the power law (〈lx〉 ∼ l0.74
y ). Although there is no linear

relationship for the wall-attached u structures over 3Re1/2
τ ≤ l+y < 0.6δ+ in figure 3(a),
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FIGURE 3. Mean length (〈lx 〉) and width (〈lz〉) of wall-attached structures as a function of ly .
In panel (a), the dashed line is 〈lx 〉 ∼ l0.74

y (Hwang & Sung 2018). In panel (b), the solid line
corresponds to 〈lz〉 ≈ ly .

the sizes of the structures are scaled with ly and show a good agreement regardless of
flow geometry. This result supports the supposition that the wall-attached structures in
this range may share similar features. Moreover, the mean length 〈lx〉 is approximately
3δ at the upper limit l+y = 0.6δ+, which is consistent with the criteria to distinguish
between large-scale and very large-scale motions (Guala et al. 2006; Balakumar & Adrian
2007; Wu, Baltzer & Adrian 2012; Hwang, Lee & Sung 2016a; Hwang et al. 2016b).
This limit also corresponds to the criteria that distinguish self-similar structures from
non-self-similar ones in an adverse-pressure-gradient TBL (Yoon et al. 2020). Notably,
l+y = 0.6δ+ is larger than the wall-normal location of the outer peak in the one-dimensional
premultiplied spectra of u, which characterises very large-scale motions or superstructures.
Given that ly is measured from the bounding box of each structure, the wall-parallel area of
each structure is close to zero as y approaches ly , and they have the maximum wall-parallel
area at y < ly .

Hence, the wall-attached u structures can be classified into three components in terms
of ly: buffer-layer, self-similar and non-self-similar structures defined as l+y < 3Re1/2

τ ,
3Re1/2

τ ≤ l+y < 0.6δ+ and 0.6δ ≤ l+y , respectively. Here, the lower bound (= 3Re1/2
τ of

self-similar structures corresponds to that of the logarithmic region in Marusic et al. (2013)
and Hwang & Sung (2019), which is a mesolayer scaling (Afzal 1982; Wei et al. 2005).
Given that the viscous effect may affect the coherent motions in the logarithmic region
(Hwang 2016), the bound 3Re1/2

τ is used in the present study. The present Reynolds number
is Reτ ≈ 1000 in which, in turn, the lower bound is approximately 100 wall units (i.e.
3Re1/2

τ ≈ 100), that is, a classical scaling for the lower bound of the logarithmic region
(Perry & Chong 1982). Since we focus on the logarithmic region where y+ > 100, the
variation of the lower bounds does not have a major impact on our conclusions.

The power law (〈lx〉 ∼ l0.74
y ) for the WASS could be attributed to the low Reynolds

number of the present data. At Reτ ≈ 3000, the linear relationship (〈lx〉 ∼ ly) was
observed for l+y > 400 in a turbulent pipe flow (Hwang & Sung 2019). Given 〈lz〉 ∼ ly ,
the wall-attached structures with 3Re1/2

τ ≤ l+y < 0.6δ+ follow 〈lx〉ly ∼ 〈lz〉1.74, which is
roughly quadratic. This behaviour is consistent with the scaling of the two-dimensional
spectra of u at Reτ < 2000 (del Álamo et al. 2004) in which the energetic ridges of the
spectra are aligned along λx y ∼ λ2

z in the logarithmic region. Chandran et al. (2017)
reported that the two-dimensional spectra at low Reynolds number follow λx y ∼ λ2

z
whereas the larger scales tend to exhibit the linear law (λx ∼ λz) at high Reynolds numbers
(Reτ = 26 000). Although we defined the length scales of wall-attached structures based
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Statistical behaviour of self-similar structures 905 A6-11

on the sizes (lx , ly and lz) of the bounding box of each structure, this result supports
the inference that lx , ly and lz can be used to describe the characteristic length scales of
the energetic motions in the logarithmic region. It should be noted that these scales are
measured from the physically connected volumes of intense u, which consist of the energy
contributions from a wide range of scales (or wavelengths). In § 3.2, the two-dimensional
energy spectra are examined to elucidate the wavelength scales contained within the
WASS.

To test the reliability of the present decomposition, we compute the streamwise
turbulence intensity distributed among the three components of wall-attached u structures.
The streamwise velocity fluctuations associated with each component (ui) can be
conditionally sampled based on the bounded volume of each object,

ub(x) =
{

u(x), if x ∈ Ωb,

0, otherwise,

uws(x) =
{

u(x), if x ∈ Ωws,

0, otherwise,

uwn(x) =
{

u(x), if x ∈ Ωws,

0, otherwise,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where Ωi denotes the positions of all contiguous points of each object. The subscripts i
b, ws and wn refer to wall-attached buffer-layer (l+y < 3Re1/2

τ ), self-similar (3Re1/2
τ ≤ l+y <

0.6δ+) and non-self-similar structures (0.6δ ≤ l+y ), respectively. This classification yields a
computation of the streamwise turbulence intensity corresponding to the specific structure.
For example, the streamwise turbulence intensity carried by WASS 〈uu〉ws can be obtained
through the ensemble average of uwsuws at a given wall-normal position.

Figure 4 shows the wall-normal distributions of the streamwise turbulence intensity
carried by the specific motion. Notably, we can observe the presence of the near-wall
peak in all streamwise turbulence intensities because the identified structures physically
adhere to the wall. Hence, the near-wall part (or footprint) of each object is related to
the near-wall streaks (Kline et al. 1967), reflecting that the identified structures could
be responsible for the near-wall turbulence. However, this is beyond the scope of the
present work, which focuses on the logarithmic region. The total streamwise turbulence
intensity (〈uu〉w) contained within all three components is shown in figure 4(a). Here,
〈uu〉w is obtained using the streamwise velocity fluctuations within the wall-attached
structures (= ub + uws + uwn). As seen, there is a complete collapse of the wall-normal
profiles of 〈uu〉w in internal flows across the wall-normal direction. In contrast, the 〈uu〉w
of TBL shows a discrepancy above the logarithmic region (y+ > 100). This discrepancy
occurs at a lower wall-normal location compared with the results of Monty et al. (2009),
who reported that the difference in 〈uu〉 between internal and external flows appears at
y > 0.5δ. Given that 〈uu〉w represents the collective contributions of the wall-attached
structures, the deviation in figure 4(a) is due to the structures with l+y > 100, which
include WASS and wall-attached non-self-similar structures (WANS). The weak-u region
(|u| < urms) also significantly contributes to the total streamwise turbulence intensity
because this region has a larger area fraction than the intense u region (2.1). The area
fraction of the wall-attached u structures is only 6–7 % in the logarithmic region. However,
the contribution of the wall-attached u structures to the total turbulence intensity is
approximately 40 %, which is comparable to that of the weak-u region. This may lead
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FIGURE 4. Wall-normal profiles of streamwise turbulence intensity carried by wall-attached
structures: (a) 〈uu〉+w ; (b) 〈uu〉+ws; (c) 〈uu〉+b ; and (d) 〈uu〉+wn . In panel (b), the solid line denotes a
logarithmic variation corresponding to 〈uu〉+ws = 0.4 − 0.37 ln( y/δ).

to the absence of the logarithmic variation in the total streamwise turbulence intensity at
the present Reτ (Hwang & Sung 2018).

Figure 4(b) displays the streamwise turbulence intensity carried by the WASS (〈uu〉ws).
In all three flows, the profiles of 〈uu〉ws show good agreement (figure 4b), indicating
that the WASS are independent of the flow geometry (Perry et al. 1986). In addition,
there is a logarithmic variation of up to y = 0.3δ in all three flows, reminiscent of
Townsend’s attached eddies. In figure 4(c), the streamwise turbulence intensity of the
buffer-layer structures 〈uu〉b also exhibits a reasonable match in all three flows. Hence, the
similarity in the streamwise turbulence intensity in all three flows (figure 4b,c) suggests
that geometrical differences are negligible in the near-wall region.

In contrast, figure 4(d) shows that the 〈uu〉wn of internal flows appears to be larger than
that of TBL in the outer region. This supports that the discrepancy in 〈uu〉w over the
logarithmic region (figure 4a) originates from the non-self-similar nature of very tall
structures (i.e. WANS), which extend from the near-wall region to the core region of
internal flows. In addition, comparing pipe and channel data, 〈uu〉wn of the channel flow
is larger than that of the pipe flow in the logarithmic region. This might be attributable to
a larger population of very long u streaks in the channel flow (Lee et al. 2015). Owing to
pipe curvature, the sizes of very large structures could be restricted in pipe flows; this leads
to the dominant contributions of large scales in the channel flow (Hwang et al. 2016a; Han
et al. 2019).

It is worth mentioning that the magnitude of the slope of the logarithmic variation in
figure 4(b) is 0.37, which is lower than the Townsend–Perry constant reported in previous
studies (1.26 by Marusic et al. (2013), 0.98 by Baars & Marusic (2020b) and 0.8–1.0 by Hu
et al. (2020)). This is due to the decomposition method used here in which uws is zero at the
outside of the identified structures (3.1). As a result, the magnitude of 〈uu〉ws decreases,
which leads to a lower slope of the logarithmic variation. However, we primarily focus
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Statistical behaviour of self-similar structures 905 A6-13

on the presence of the logarithmic variation in streamwise turbulence intensity and the
collapse of the corresponding profiles in all three flows obtained from the classification
of wall-attached u structures in terms of height. The presence of the logarithmic variation
could be a consequence of the spatial organisation (self-similarity and distributions) of
WASS in the context of the AEH.

The present decomposition method filters wall-attached structures that are geometrically
self-similar. By filtering out the contributions of WANS in the logarithmic region, we
can analyse the spectral signature of self-similar coherent motions. In the next section,
the two-dimensional energy spectra of uws are examined by focusing on the self-similar
scaling laws proposed by Perry and coworkers (Perry & Abell 1977; Perry & Chong 1982;
Perry et al. 1986), and on the energy distribution across the streamwise and spanwise
wavelengths (λx and λz) in the logarithmic region.

3.2. Two-dimensional spectra of WASS
The contribution of coherent motions ingrained within WASS to the streamwise
variance is explored by computing the two-dimensional spectrum. The premultiplied
two-dimensional spectrum of uws, Φ2D, is defined as

Φ2D(kx , kz, y) = kx kz〈ûws(kx , kz, y)û∗
ws(kx , kz, y)〉, (3.2)

where kx(= 2π/λx) and kz(= 2π/λz) are the streamwise and spanwise wavenumbers, ûws
indicates the Fourier coefficient of uws and the asterisk denotes a complex conjugate.
The streamwise variance of WASS (〈uu〉ws) is the integral of the corresponding
two-dimensional spectrum over the wall-parallel wavenumbers. Notably, lx and lz of the
identified structures, measured from the bounding box, do not necessarily represent the
characteristic scales at a given wall-parallel plane (y < ly) because the structures are
inclined with respect to the wall and meander in the spanwise direction. Given that
uws represents the conditionally sampled u which are contained within the WASS with
y ≤ ly < 0.6δ, Φ2D could provide the energy distributions from the collective contribution
of WASS. In other words, although the ranges of the corresponding physical length
and width are 5–6y < 〈lx〉 < 2δ and y < 〈lz〉 < 0.6δ (figure 3), the energy in Φ2D is
distributed across a wide range of wavelengths. This also supports the inference that the
structures identified in the physical space consist of a broad range of turbulent motions
related to the concept of nested hierarchies (Hwang & Sung 2018). Here, the energy
contained in the very long and wide wavelengths (λx > 6δ and λz > δ), which correspond
to global modes (del Álamo et al. 2004; Jiménez & Hoyas 2008), is negligible because
the velocity fluctuations associated with WANS are subtracted. Hence, we can expect
that the energy distribution demonstrates the spectral signature of self-similar coherent
motions. The effect of the threshold α was examined and the results reported in this section
remained qualitatively unchanged (see the Appendix).

Figure 5 shows the contours of Φ2D at various wall-normal positions located in the
logarithmic region (y+ = 100, 110, 120 and 130) for all three flows. Here, Φ2D as a
function of the wavelengths scaled with y and δ is plotted in panels (a,c,e) and (b,d,f ),
respectively. In general, all three flows show that Φ2D scales reasonably well with y in
the range y < λx < 10y (figure 5a,c,e) and with δ in the range λx > δ (figure 5b,d,f ). To
further examine the spectral behaviour, the bounds of the constant energy distribution are
denoted by the green lines. Here, the dashed and solid lines represent a square root λx ∼ λ2

z
and linear relationship λx ∼ λz, respectively. The contours of Φ2D in figure 5(a,c,e) are
bounded by λx ∼ λ2

z over the range y < λx < 10y. This is consistent with the results of the
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FIGURE 5. Premultiplied two-dimensional energy spectra Φ2D across the logarithmic region
(y+ = 100, 110, 120 and 130): (a,b) TBL; (c,d) channel; and (e,f ) pipe. Light to dark shading
indicates an increase in y. The contour level is 0.4 times each of the maxima. Here Φ2D is plotted
as a function of the wall-parallel wavelengths (λx and λz) normalised by y (a,c,e) and δ (b,d, f ).
The green dashed and solid lines denote λx ∼ λ2

z and λx ∼ λz, respectively. The vertical dashed
line indicates λx = 12y.

two-dimensional spectra of u, which include all coexisting motions, at low Reτ ≈ O(103)

in the works of del Álamo et al. (2004) and Chandran et al. (2017). According to del
Álamo et al. (2004) and Chandran et al. (2017), the linear relationship was absent in the
large-scale range at low Reτ . In the large-scale range (λx > 12y), however, Φ2D are roughly
aligned along λx ∼ λz (solid lines), which is an indicator of self-similarity. Moreover, the
contour lines of Φ2D collapse reasonably well along the lower bound λx = 10λz with both
y and δ scaling in this large-scale range, reflecting the overlap arguments of self-similar
energy-containing motions (Perry & Abell 1977; Perry & Chong 1982; Perry et al. 1986).
This result also supports the existence of Townsend’s attached eddies, even in low Reτ

(Hwang & Sung 2018), and further reveals that the WASS, defined in physical space, is
tightly connected to the spectral signatures of the AEH in the framework used by Perry
and coworkers.

It is worth noting that the linear relationship of the upper bound in the large-scale
range (λx ≈ 2–3λz) seems to appear over a small range owing to low Reτ . At high
Reτ = O(104), the upper and lower bounds of the two-dimensional spectra follow the
linear relationship in the large-scale range (Chandran et al. 2017; Deshpande et al. 2020).
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Statistical behaviour of self-similar structures 905 A6-15

As shown in figure 5(b,d,f ), the contour lines of Φ2D in the large scale range are aligned
along the horizontal line λz ≈ 0.8δ. Given that the growth of energy-containing motions
can be restricted as their heights reach δ, there may not be enough space to maintain
large-scale self-similar motions at the present Reynolds number. According to the AEH,
self-similar energy-containing motions fill in the scale separation between ν/uτ and δ. At
high Reynolds numbers, it can be conjectured that the contours of Φ2D in the outer scaling
would move to the bottom left-hand corner and lead to a clear upper bound that follows
the linear behaviour. This upper bound may lie below λx = λz (i.e. a higher slope than
unity) due to the inclination nature of wall-attached u structures (figures 1 and 3a). In
other words, it may imply that self-similar behaviour can be observed when large-scale
energy-containing motions have a high aspect ratio λx/λz (Chandran et al. 2017).

As discussed, the linear behaviour of the lower bound (λx = 10λz) is observed in the
large-scale range where λx > 12y (denoted by vertical dashed lines in figure 5a,c,e).
Such a feature is found in all three flows indicative of the universality of the self-similar
nature of the large scales contained within WASS. In addition, λx > 12y is consistent
with the lower limit of the k−1

x region in channel flows (Hwang 2015), and is close to the
inner-scaling limit (λx = 14y) of self-similar motions in TBLs over a wide range of Reτ

(Baars et al. 2017). A recent study by Deshpande et al. (2020) also found the existence
of linear behaviour in two-dimensional cross-spectra of wall-coherent u motions over a
similar range (i.e. λx > 15y). This shows that the WASS identified in the present study
is directly related to the self-similar behaviour in the wavenumber space. In § 3.3, the
one-dimensional spectra of WASS are examined to observe the presence of the k−1

x region
over a similar large-scale range (λx > 12y), which was absent in the aforementioned study.

It is worth mentioning that uws could demarcate the rapid change in the raw u.
Wall-attached u structures are composed of multiple UMZs (Hwang & Sung 2018). Given
that the UMZs are demarcated by a thin shear layer or large velocity gradient (Meinhart &
Adrian 1995; Adrian et al. 2000), the boundaries of the identified structures may be one
of the internal shear layers where the streamwise momentum exhibits a sharp change in
the velocity. We can observe a rapid variation of the raw velocity signals near the edges
of the identified structure; see figure 9 in Hwang & Sung (2018). This result supports the
inference that uws can retain the spectral characteristics of the raw u signals even if we
artificially impose zero velocity outside of the identified structures. Srinath et al. (2018)
also reported that binary representation of the negative-u structures could preserve the
spectral information of raw u because of large changes in u at the edges of the identified
structures.

To further explore the energy contribution from self-similar motions, the spectral ridge
of Φ2D is plotted in figure 6. Here, the spectral ridge is determined by identifying λz
corresponding to the maximum value of Φ2D at a given λx . Hence, figure 6 represents
the length scale (λx and λz) relationship of the energetic motions. All of the spectral
ridges are found to agree reasonably well over a wide range of scales. We can observe
two growth rates: one with the power-law behaviour λx ∼ λ2

z (dashed green line), and
one with the linear relationship λx ∼ λz (solid green line) at relatively large scales. In
addition, the transition of the ridges from the power law to the linear law appears at
λx = 12y. This result is consistent with the variation of the lower and upper bounds of
Φ2D found in figure 5 and reflects that the dimensions of the energetic motions behave in
an analogous manner to the wavelength relationship of the bounds (i.e. self-similarity).
It is noted that the spectral ridges flatten for λx > 3–4δ because at this very long λx the
spanwise wavelength λz reaches δ, and the growth of λz is restricted. A similar spectral
trend was observed in Chandran et al. (2017) and Deshpande et al. (2020). Given that the
wall-attached u structures follow 〈lz〉 ≈ ly (figure 3b), it may reflect the saturation in their
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FIGURE 6. Energetic ridges of the premultiplied two-dimensional energy spectra Φ2D at y+ =
120. Here, the positions of the ridges are obtained by identifying λz of the maximum Φ at a
given λx . The dashed and solid green lines represent the power-law (λx = (4λz)

2) and linear
relationships (λx = 4λz), respectively. In panel (a), the inset shows the lin–lin plot of the ridge
scale ratio λx/λz for the TBL and channel data. The horizontal dashed line denotes a constant
ratio λx/λz ≈ 4..

spanwise growth. Although the motions related to these scales are non-self-similar, the
energy contribution from the range λx > 3–4δ and λz > 0.8δ is negligible, as shown in
figure 5, since Φ2D is obtained from uws (3.1).

In figure 6, the linear behaviour seems to follow λx ≈ 4λz over the range 12y < λx <

3–4δ. Here, the inset shows the ridge scale ratio λx/λz for the TBL and channel data. The
data over this range are not very far from the dashed line (λx/λz ≈ 4). Hence, the range of
the self-similar energetic motions ingrained in WASS can be expressed by

12y < λx < 3–4δ, (3.3a)

3y < λz < 0.8–1δ. (3.3b)

Here, the upper limit for the streamwise wavelength in (3.3a) is 3–4δ, similar to that of the
criteria that distinguishes large-scale motions and very large-scale motions (Guala et al.
2006; Balakumar & Adrian 2007; Wu et al. 2012; Hwang et al. 2016a). In particular,
the upper limit of the TBL (≈ 3δ) is relatively smaller than that of the internal flows
(≈ 4δ), which may be related to the dominant contribution of very long scales in internal
flows (Monty et al. 2009). Given that the contours of Φ2D are restricted to below λx ≈
3–4δ in figure 5, this result also supports that Φ2D is composed of the contribution from
the turbulence motions that include large-scale motions and relatively smaller motions.

It is worth mentioning that a similar linear relationship of wall-attached u structures
was found by Hwang & Sung (2019), who showed that the physical length and width of
WASS exhibit 〈lx〉 = 4〈lz〉 in a higher Reynolds number pipe flow (Reτ ≈ 3000). This
result may reflect that, although there is no linear behaviour in the physical length (〈lx〉)
of WASS (figure 2), the large-scale motions ingrained in WASS are self-similar at a lower
Reτ . In addition, these motions become prominent in the physical space when there is
enough space in the logarithmic region caused by the length scale separation. According
to Deshpande et al. (2020), the two-dimensional spectra of wall-coherent motions at
Reτ ≈ 15 000 are aligned along a linear ridge λx = 7λz, which is slightly steeper compared
with the proportionality λx = 4λz found in the present work. However, the spectra reported
by Deshpande et al. (2020) include the contributions from both wall-attached self-similar
and non-self-similar motions. Given that very large scales can contaminate self-similar
behaviours of turbulent motions (Jiménez & Hoyas 2008; Hwang & Sung 2018;
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Han et al. 2019), it would be instructive in future efforts to examine the energetic ridges
of Φ2D over a wide range of Reτ .

The two distinct ridges might reflect a bimodal behaviour of self-similar
energy-containing motions. In turbulent channel flows, Hwang (2015) found that the
energy-containing motions consist of two distinct motions, of which one is related to long
streaky motions (λx ≈ 10λz) and the other is associated with packets or clusters of vortical
motions (λx ≈ 2–3λz). The aspect ratio (λx/λz) of the latter motion carrying all velocity
components of the turbulent kinetic energy is approximately similar to that of the WASS in
the present work. This also agrees with the dimensions of tall vortex clusters (del Álamo
et al. 2006) and tall ejection/sweep clusters (Lozano-Durán et al. 2012); here, the use
of ‘tall’ denotes structures that extend beyond the logarithmic region. Owing to low Reτ

in the present work, the growth of self-similar motions was restricted by (3.3), which
in turn leads to a lower contribution of self-similar motions with a high aspect ratio in
the logarithmic region. As shown in figure 5, the lower bound of Φ2D is aligned along
λx = 10λz and presents the y and δ scalings simultaneously. The high aspect ratio motions
are dominantly ingrained in WANS at the present Reτ and thus we may not observe the
self-similarity of the high aspect ratio motions (λx/λz = 7) in the range (3.3a).

3.3. One-dimensional spectra of WASS
In this section, we examine the one-dimensional spectra to further analyse the self-similar
scaling observed in the two-dimensional spectra. According to Perry and coworkers
(Perry & Abell 1977; Perry & Chong 1982; Perry et al. 1986), the k−1

x scaling in the
one-dimensional spectra of u can serve as a spectral signature of energy-containing
motions satisfying the AEH. Although Nickels et al. (2005) reported the presence of the
k−1

x region, such a scaling has remained ambiguous at extremely high Reτ (Rosenberg et al.
2013). It seems that the k−1

x region may exist when the one-dimensional spectra are plotted
in the log–log form (Vallikivi et al. 2015), but the log–log plot of the one-dimensional
spectra without premultiplication exaggerates the k−1

x scaling (Baars & Marusic 2020a).
The ambiguity of such a scaling law is also related to the aliasing in the one-dimensional
spectra because the one-dimensional streamwise spectra are a measure of average energy
distribution without including the spanwise information; thus, the energy carried by
smaller wavenumbers (i.e. large scales) can be contaminated (Tennekes & Lumley 1972;
Davidson et al. 2006). Given the fact that self-similar behaviours appear at large scales,
this supports the claim that the k−1

x law is relatively hard to observe even when we
can observe the logarithmic variation in the streamwise turbulence intensity (Hultmark
et al. 2012; Marusic et al. 2013). It is worth noting that Srinath et al. (2018) showed
the relation between the wall-attached u structures and one-dimensional spectra, i.e. the
one-dimensional spectra follow a k−1−p

x scaling in which the exponent p is related to
the streamwise turbulence intensity within the identified structures. Although they found
that the exponent p becomes zero (i.e. k−1

x scaling) over y+ = 100–200, it has not been
revealed whether this spectral behaviour is associated with the self-similar scaling in the
two-dimensional spectra.

The analysis of the two-dimensional spectra can avoid the aliasing issue. By analysing
the two-dimensional spectra, Chandran et al. (2017) and Deshpande et al. (2020)
successfully showed the existence of self-similar turbulent motions in the logarithmic
region. However, there is no clear k−1

x region over the range where the self-similarity
appears in the two-dimensional spectra, although Deshpande et al. (2020) obtained the
spectra of wall-coherent motions of u. The absence of the k−1

x region presumably originates
from coexisting scales that are non-self-similar (Baars & Marusic 2020a; Yoon et al.
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2020). According to our previous work (Hwang & Sung 2018, 2019; Yoon et al. 2020), it is
necessary to identify self-similar structures in order to reveal the asymptotic behaviours of
wall turbulence predicted by the AEH because of the multiscale nature of turbulence. As
shown in § 3.2, the large scales (λx > 12y) contained in WASS exhibit self-similarity,
and in particular the spectral ridges follow λx = 4λz over the range (3.3). Hence, the
one-dimensional streamwise and spanwise spectra of WASS are computed over the range
of (3.3), and the corresponding premultiplied spectra are defined as

Φ1D(kx , y) =
∫ 0.8−1δ

3y
Φ2D(kx , kz, y)

dλz

λz
, (3.4a)

Φ1D(kz, y) =
∫ 3−4δ

12y
Φ2D(kx , kz, y)

dλx

λx
. (3.4b)

Here, the upper ends of the TBL and the internal flows are λx = 3δ and λx = 4δ,
respectively, as discussed in § 3.2. The corresponding upper ends of the spanwise
wavelength are λz = 0.8δ and λx = δ according to the linear relationship λx = 4λz of the
spectral ridge.

Figure 7 displays Φ1D(kx) (panels a,c,e) and Φ1D(kz) (panels b,d,f ) normalised by the
energy of the fluctuations at a given y obtained by integrating each Φ1D. In the TBL
and channel data, we can see a plateau region in both Φ1D(kx) and Φ1D(kz), implying
the possible k−1

x and k−1
z scaling. The lower limits of these regions are located at λx =

12y and λz = 3y (denoted by vertical dashed lines), consistent with those of the linear
behaviour in the energetic ridges in (3.3). The plateau appears from λx = 12y to λx =
20y in figure 7(a,c). Given y+ ≈ 100 and Reτ ≈ 1000, the upper limit of the k−1

x region
in the outer unit is λx ≈ 2δ. Similarly, the k−1

z region is bounded by 3y < λz < 0.5δ in
figure 7(b,d). Interestingly, the range of the k−1

x spectra (12y < λx < 2δ) is consistent
with the bound suggested by Hwang (2015) who examined an artificial channel flow that
only resolves turbulent structures at a given spanwise length scale. This result supports
the conjecture that the identification of self-similar motions is required in order to observe
the k−1

x scaling region. Furthermore, such a scaling can be observed even for a low Reτ if
one extracts energy-containing motions properly. This claim also reflects the hierarchical
nature of self-similar motions in the context of the AEH (Perry & Chong 1982; Hwang
& Sung 2018). Notably, Baars & Marusic (2020a) also investigated the range of the k−1

x
region based on the spectral filter obtained from spectral coherent analysis. Their filter
depends on the Reynolds number leading to the dependence of the k−1

x region with Reτ and
they predicted that such a scaling region can appear for Reτ > 60 000 at y+ = 100. Srinath
et al. (2018) also reported the appearance of the k−1

x region at y+ = 100. These results give
some evidence to support that Re1/2

τ scaling may not be appropriate for representing the
lower bound of the attached eddies (Baars & Marusic 2020a).

According to Chandran et al. (2017), the ratio of the peaks (or plateaus) in the
one-dimensional streamwise and spanwise spectra corresponds to the power of the
functions that characterise the lower and upper bounds in the two-dimensional spectra.
In other words, the ratio (m) is unity when the energy distribution in the two-dimensional
spectra is bounded by the linear relationship, and thus the same magnitudes of the plateaus
in the one-dimensional spectra indicate the existence of self-similar motions (Chandran
et al. 2017; Deshpande et al. 2020). In figure 7, the plateau magnitudes of Φ1D(kx) and
Φ1D(kz) are approximately 0.4 in the TBL and in the channel flow, which also supports
the self-similarity in the large-scale region. In contrast to the TBL and channel data, there
is no clear plateau in the pipe data (figure 7e,f ). However, the magnitude of the peak is
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FIGURE 7. Premultiplied one-dimensional streamwise (a,c,e) and spanwise (b,d,f ) spectra Φ1D

obtained over the range (3.3) at y+ = 100 (solid), 110 (dashed) and 120 (dashed-dot): (a,b) TBL;
(c,d) channel; and (e,f ) pipe. Here, each spectrum is normalised by the energy of the fluctuations
at a given y, obtained by integrating Φ1D. The horizontal dashed lines represent the plateaus or
peaks of the respective spectra. The vertical lines denote λx = 12y (a,c) and λz = 3y (b,d).

approximately 0.5 in Φ1D(kx) and Φ1D(kz), indicating that the turbulent motions over the
range (3.3) are responsible for the self-similar behaviour in the pipe flow. The absence of
the k−1 scaling in pipe flows may be a consequence of a difference in the flow geometry
in which there is less space for wall-attached structures in the pipe flows with increasing
y when compared with the TBL or channel flows (Chung et al. 2015). Given m ≈ 1.0 in
all three flows (figure 7), the present work solely extracts large-scale self-similar motions
(3.3) contained in WASS.

The one-dimensional spectrum Φ1D shown in the present study was obtained by
integrating Φ2D over (3.3), where some evidence for self-similar scaling (λx ∼ λz) is
observed. Although the range of the k−1 scaling region is relatively narrow owing to
the low Reτ of our data, the present study shows that such a region appears in a similar
subrange of the self-similar scaling in Φ2D. Moreover, the ratio between the magnitudes
of the plateau in the one-dimensional streamwise and spanwise spectra is close to unity,
supporting that Φ2D over (3.3) is characterised by λx ∼ λz. Even at high Reτ (≈ 26 000),
this ratio was found to be 0.79 by Chandran et al. (2017) and 0.85 by Deshpande et al.
(2020).
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Given that Φ1D was computed over (3.3), and not the entire range of wavelengths, the
integration of Φ1D does not correspond to the streamwise turbulence intensity 〈uu〉ws in
figure 4(b). Hence, the magnitude of the plateau in Φ1D does not match with the slope
in figure 4(b). However, the results support the inference that only the energy contained
within (3.3) contribute to the k−1 scaling and the energy contributions from other motions
(i.e. the scales that are out of the range (3.3)) can contaminate the presence of the k−1

region. This contamination could ultimately lead to the absence of the k−1 region even
when the turbulence intensity appears to follow the logarithmic variation in experiments
with a high Reynolds number. This conclusion aligns with the work of Davidson et al.
(2006) who argued the aliasing problem in the one-dimensional spectra was due to the
shifting of energy to a longer wavelength Tennekes & Lumley (1972). In other words,
one-dimensional spectra can be contaminated when the spectra are measured over all the
wavelengths; e.g. the energy contribution from short λz (λz < 3y) is included at relatively
long λx (3.3a) in the one-dimensional streamwise spectra.

4. Conclusions

We have demonstrated that the WASS of streamwise velocity fluctuations (u) exhibit
self-similar behaviour in the context of Townsend’s AEH, with special focus on the
spectral contribution of turbulence motions contained within the identified structures.
We extract the wall-attached structures of u in the DNS data of a zero-pressure-gradient
turbulent boundary layer, and turbulent channel and pipe flows at Reτ ≈ 1000 by
identifying the clusters of intense fluctuating regions in the instantaneous flow fields.
The wall-attached structures of u are decomposed into buffer-layer, self-similar and
non-self-similar structures in terms of their height (ly); particular attention is paid to
the turbulent statistics contained within the self-similar structures. The variations in the
physical sizes of WASS not only show a good agreement in all three flows but also
scale with ly . In addition, the streamwise turbulence intensity carried by WASS exhibits
a logarithmic variation with a similar slope across the logarithmic region. On the other
hand, the sizes of the tall wall-attached structures (ly > 0.6δ) are characterised by δ
(i.e. non-self-similar) and the corresponding turbulence intensity shows a discrepancy
among all three flows with an absence of the logarithmic variation. We also examine
the two-dimensional spectra of u within WASS to explore the spectral signatures of
self-similarity proposed by Perry and coworkers. Across the logarithmic region, the lower
and upper bounds of the two-dimensional spectra follow a linear relationship λx ∼ λz in
the large-scale range (λx > 12y). Moreover, the spectral ridges exhibit λx ≈ 4λz over the
range 12y < λx < 3–4δ, indicating that only the large-scale motions contained in WASS
are self-similar. Based on this spectral band, the one-dimensional streamwise and spanwise
spectra are obtained by integrating the two-dimensional spectra. They show some evidence
for the existence of the k−1

x and k−1
z scaling in a similar subrange identified in the

two-dimensional spectra. Although the range of such scalings is narrow due to low Reτ ,
the magnitudes of the plateau (or peak) in the streamwise and spanwise spectra are close
to each other, representing λx ∼ λz. Our results support that the asymptotic behaviours
of turbulent statistics, predicted by the AEH, can be captured when we adequately
filter out contributions from coexisting non-self-similar motions. It is shown that the
logarithmic variation in the streamwise turbulence intensity, the self-similar scaling in the
two-dimensional spectra, and the possible k−1 scaling can be observed simultaneously in
the case of instantaneous flow structures extracted by applying the same filter in canonical
wall turbulence. Given the hierarchical distributions of attached eddies, the self-similar
motions can exist even at low Reτ although they are not statistically dominant owing
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FIGURE 8. Premultiplied two-dimensional energy spectra Φ2D at y+ = 120 in TBL with α =
1.3, 1.4, 1.5, 1.6 and 1.7. The green dashed and solid lines are consistent with those in figure 5.
The vertical dashed line indicates λx = 12y.

to insufficient space in the logarithmic region. In this respect, the identified WASS are
representative energy-containing motions satisfying the AEH and serve as a structural
basis for explaining the asymptotic behaviours of wall turbulence. However, further study
is required to conclude a definite bound and wall-normal location of the spectral overlap
argument and to associate constants (e.g. Townsend–Perry constant) by exploring a wider
range of Reτ .
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Appendix. Effect of the structure-identification threshold

The wall-attached u structures defined in the present study (2.1) depend on the threshold
value α because the structures are identified by extracting the physically connected
volumes of intense fluctuations. However, it does not mean that we can use any arbitrary
value of α to examine coherent structures. As α decreases, new structures arise, or some of
the previously identified objects become connected. The maximum number of structures
occurs in the vicinity of α = 1.5, indicating that the former behaviour is dominant near
α = 1.5; see figure 2 in Hwang & Sung (2018). In addition, the maximum volume of
the identified object changes significantly near α ≈ 1.5, which represents the occurrence
of the percolation crisis (Moisy & Jiménez 2004; del Álamo et al. 2006; Lozano-Durán
et al. 2012; Hwang & Sung 2018). In other words, α ≈ 1.5 effectively captures the intense
u structures. Hence, we examined the influence of the threshold value over a certain
range in the vicinity of α ≈ 1.5. The threshold effect on the population density and the
sizes of the bounding box was reported in Hwang & Sung (2018). In this section, the
influence of the threshold on the premultiplied two-dimensional spectra (Φ2D) is shown
in figure 8. The value of α varies from 1.4 to 1.7 in the vicinity of the region where the
percolation transition occurs (Hwang & Sung 2018). Notably, the maximum volume of
the wall-attached structures decreases two times from α = 1.4 to α = 1.7 and the total
number of the identified structures varies 10 % over this range. To avoid any repetition,
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we plot Φ2D for TBL only. For comparison, we plot the green solid and dashed lines
consistent with those in figure 5. We can see that all the contours collapse reasonably well.
In particular, the linear relationship (λx λz) appears at λx > 12y, and the lower bounds
align along λx = 10λz regardless of the threshold. This supports the inference that the
conditionally sampled flow field uws can represent a continuous range of scales related
to the energy-containing motions in the logarithmic region. Hence, the results remain
qualitatively unchanged over the percolation transition region.
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