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SUMMARY
Based on the terminal constraints system (TCS) and
reciprocal screw theory, a novel method is presented to
determine the isotropic configurations of limited degree-of-
freedom (DOF) parallel manipulators. From the available
physical meaning of isotropy, the criteria to determine the
isotropic configurations can be transformed to investigate
whether the TCS acting on the moving platform works
equally well in all directions. From the TCS study, the
simplest form of constraints system matrix can be obtained.
Then the constraint condition number is defined to measure
the isotropy of spatial parallel manipulator based on the TCS.
This method not only avoids solving the Jacobian matrix for
some complex structural parallel manipulators but also points
out the physical meaning of isotropy, which indicates that the
TCS acting on the moving platform works equally well in
all directions. Three examples are employed to illustrate this
method.

KEYWORDS: Isotropic configurations; Limited DOF par-
allel manipulator; Terminal constraints system; Constraint
condition number; Reciprocal screw theory.

Nomenclature

$̂: The unit screw, which can be used to express
the position and orientation of any vector.

$r : The reciprocal screw, which is reciprocal to
the screw system. The screws and reciprocal
screws form the six bases of general spatial
space.

equiv.($r
A)B : The equivalent constraint screw transferred

from reference point A to reference point B.
SF [$r ]: The simplest form of constraints system

matrix.
κc(A): The constraint condition number, which is

used to measure the isotropy of spatial parallel
manipulator based on the TCS.

1. Introduction
With parallel manipulator near or at the isotropic
configurations, the sensitivity of a manipulator in both
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velocity and torque errors is at a minimum, and
the manipulator can be controlled equally well in all
directions.1–3 Many researchers have studied the creative
mechanical design using the isotropic condition of the
Jacobian matrix. However, the determination of all isotropic
configurations is still a rather complex problem,1 especially
for some complex structural parallel manipulators.

Up to now, most researchers2–9 have studied the isotropic
configurations using the condition number of the Jacobian
matrix, which is first used by Salisbury and Craig,10 namely,
the condition number reaches the minimum value of unity,
and can also be expressed as the rows of the Jacobian matrix
that must be mutually orthogonal and of equal Euclidean
norms. This condition number was developed by Angeles11

as a kinematic performance index of robotic mechanical
systems.

Klein and Miklos2 defined the positional isotropy,
orientational isotropy, and spatial isotropy by the full row
rank Jacobian matrix and its condition number, either
kinematically nonredundant or redundant. Zanganeh and
Angeles4 used special structures of the forward and inverse
Jacobian matrix to define a set of conditions under which a
parallel manipulator can be rendered isotropic. Gogu6–8,12

synthesized a serial of isotropic parallel manipulators
via theory of linear transformations and evolutionary
morphology based on distinguishing five types of Jacobian
matrix. Baron and Bernier13 defined the constraint manifold
of isotropic designs, i.e., those having isotropic Jacobian
matrices at their home position, through analyzing the
applied constraints. Tsai and Huang3 used a device called
isotropic generator to avoid solving the Jacobian matrix and
design 6-DOF isotropic parallel manipulator.

The aims of all these researchers were to design some
parallel manipulators with ideal kinematic and dynamic
performance. However, for some complex structural parallel
manipulator, the general Jacobian matrix is difficult to
solve. Therefore it is difficult to determine the isotropic
configurations by using the condition number of Jacobian
matrix.

In this paper, a novel method is presented to determine
the isotropic configurations based on the theory of reciprocal
screws by investigating the TCS of the whole mechanism.
First, the reciprocal screw theory is used to obtain the
reciprocal screw system of the parallel manipulator. On this
basis, we can define and obtain the constraint condition
number. Then the isotropic configurations can be determined
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Fig. 1. Transformation of reciprocal screws.

through the concrete types of the constraint condition
number. This method not only avoids solving the Jacobian
matrix for some complex structural parallel manipulator but
also points out the physical meaning of isotropy, which
indicates that the TCS acting on the moving platform works
equally well in all directions.

2. New Method for Isotropic Design

2.1. Screws transformation
The position and orientation of any vector can be expressed
by a screw, and a unit screw, $̂, is defined by a straight line
with an associated pitch,14

$̂ = [s ; so + hs]T, (1)

where s is a unit vector pointing in the direction of the screw
axis, so = r × s defines the moment of the screw axis about
the origin of a reference frame, r is the position vector of any
point on the screw axis with respect to the reference frame,
and h is the pitch of the screw.

If the pitch of a screw is equal to zero, the unit screw is
reduced to

$̂o = [s ; so]T. (2)

Here the screw (2) denotes the motion of revolute joint or
pure force, whereas s is the axis of revolute joint or the action
line of the denoted force.

If the pitch of a screw is infinite, the unit screw is reduced
to

$̂∞ = [0 ; s]T. (3)

Here the screw (3) denotes the motion of prismatic joint
or pure couple, where s is the axis of prismatic joint or the
action line of the denoted couple.

In order to analyze the motion constrained by the constraint
screws system, we should transform all the constraint screws
to the target coordinate system with respect to the same
reference point,15,16 namely, we need do some equivalent
transformations on the constraint screws system. Assume, a
reciprocal screw acted on point A at a rigid body, which is
show in Fig. 1, and has the form as given below:

$r
A = [s ; sAo + hs]T, (4)

where sAo = rA × s, denotes the moment of vector s with
respect to point A.

When the constraint screw $r
A is transferred from

reference point A to reference point B, the equivalent screw,
equiv. ($r

A)B , of this constraint screw $r
A can be obtained as

follows:

equiv.($r
A)B = [s ; sAo − rBA × s + hs]T, (5)

where rBA = rA − rB .
Two screws, $ and $r , are said to be reciprocal if they

satisfy the condition17

$T $r = 0, (6)

where the transpose of a screw is defined as $T =
[S4 S5 S6; S1 S2 S3]T , such that

$T $r = S4Sr1 + S5Sr2 + S6Sr3 + S1Sr4 + S2Sr5 + S3Sr6,

(7)
and where Si denotes the ith coordinate of the screw $,
and Sri denotes the ith coordinate of the reciprocal screw
$r . The screws and reciprocal screws form the six bases of
general spatial space. When the n linear independent screws
are obtained, we could gain the other 6-n reciprocal screws
by Eq. (6), and vice-versa.

2.2. New method
The concept of isotropy is often defined through the condition
number of Jacobian matrix. And the parallel manipulator
is referred to as isotropic configuration when the condition
number reaches the minimum value of unity.10

The physical meaning of the above isotropy definition is
that the TCS acted on the moving platform equally well in all
directions. Therefore the criteria to determine the isotropic
configurations can be transformed to investigate whether the
TCS acting on the moving platform works equally well in all
directions.

If the reciprocal screws applied on the moving platform
do not meet at one point, we should transform them to
one reference point, namely, the equivalent constraint screw
system, which can be obtained by Eq. (5) of equivalent
transformation, and then we could examine whether the
equivalent constraint screw system is isotropic. If the
equivalent constraint screw system is isotropic at one
moment, then we call this the parallel manipulator isotropy.

Here we make a clear redefinition of isotropy based on the
following discussed physical meaning:

1. If the moving platform can well proportionately translate
in all directions under the equivalent TCS, then this
configuration is called the positional isotropy (PI), and the
relationship between the equivalent TCS and the isotropic
translations can be expressed as shown in Fig. 2.

2. If the moving platform can well proportionately revolve
about all directional axes under the equivalent TCS, then
this configuration is called the oriented isotropy (OI),
and the relationship between the equivalent TCS and the
isotropic orientations can be expressed as shown in Fig. 3.

3. If the moving platform possesses a combined well-
proportioned position and orientation, which can be
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Fig. 2. Relationship between the equivalent TCS and isotropic
translations.

Fig. 3. Relationship between the equivalent TCS and isotropic
orientations.

expressed as r-PI & k-OI isotropic system, where r
denotes the number of translational DOFs, and k denotes
the number of rotational DOFs, then this configuration is
called the combined isotropy (CI).

In this section, a novel method is presented to determine
the isotropic configurations based on the physical meaning of
isotropy and the theory of reciprocal screws by investigating
the TCS of the whole mechanism. Comparing with the
works6,18 of the former scholars, the distinct merit of
the method addressed here is that there is no need to
construct the general Jacobian matrix, which is a complex
process for some complex structural parallel manipulator.
Therefore, it is a direct method to determine the isotropic
configurations by investigating the TCS of the whole
mechanism.

This new method can be presented in the following two
steps:

Step 1: Investigate the TCS.
Each limb provides certain reciprocal screws on the

moving platform, and these reciprocal screws form the TCS
of the manipulator. These reciprocal screws can be easily
gained through studying the types of kinematic screws and
the algebra operation of the reciprocal product.17

As the elementary matrix transformation does not change
the rank of matrix, we can obtain the simplest form of
constraints system matrix ($r ) after the TCS gain. And then
the analysis of the TCS can be transformed to investigate the
simplest form (SF) of constraints system matrix, A, which
can be expressed as given in Eq. (8),

Am × n = SF [$r ]. (8)

Step 2: Define and check the constraint condition number.
With the gained simplest form of constraints system

matrix, we can define the constraint condition number, κc(A),
to measure the isotropy of spatial parallel manipulator based

Fig. 4. The architecture of a spatial parallel manipulator.

on the TCS, similarly,

κc(A) =
{
norm(A).norm(A−1) m = n, unsingular

norm(A).norm(A+) m �= n

(9)
where A−1 is the inverse matrix and A+ = (AT A)−1AT is
the pseudo-inverse of A, and when the constraint condition
number is equal to one, this configuration is called isotropy.

However, some researchers19 pointed that the matrix
involved in the condition number calculation is not
homogeneous in terms of units for a robot having both
translation and orientation DOFs. Hence, in this research
the problem of constraint condition number needs further
research.

3. Application and Discussion

3.1. A fully isotropic parallel manipulator
In this section, we take a fully isotropic parallel manipulator
configuration, which is proposed by Gogu7 based on the
theory of linear transformations, as an example to illustrate
this new method. Here we carry out modeling and analysis
of this fully isotropic configuration, as shown in Fig. 4.
This manipulator consists of three identical limbs, which are
made up of one prismatic joint (P) and three revolute joints
(R), and are denoted by PRRR kinematic chains; and this
parallel manipulator has three translational DOFs at ordinary
positions.

In order to obtain the TCS of this parallel manipulator, we
need to analyze the reciprocal screws of each limb applied
to the moving platform.17 As each limb is identical, we can
take one limb of all the limbs as an example to study and
create an absolute coordinates system o-xyz as shown in
Fig. 5. The center of the moving platform is H and we assume
that the length of the leading screw is L.
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Fig. 5. Screw analysis of selected limb.

The screws of the selected limb can be obtained, and with
the coordinate system, the Plücker coordinates of each joint
are

$1 = [0 0 0 ; 1 0 0]T ,

$2 = [S2 ; S2
0 ]T ,

$3 = [S3 ; S3
0 ]T ,

$4 = [S4 ; S4
0 ]T ,

⎫⎪⎪⎬
⎪⎪⎭ (10)

where S2 = S3 = S4 = (1 0 0), S2
0 = rA1 × S2

0 = (0 a1 0),

S3
0 = rB1 × S3

0 = (0 a1 + b1sθ1 − b1cθ), and

S4
0 = rC1 × S4

0 = (0 a1 + b1sθ1 + c1s(θ1 + ϕ1)

− b1cθ1 − c1c(θ1 + ϕ1)).

Here a1, b1, and c1 are the link lengths of the selected
limb, θ1 is the angle from y-axis positive direction to link
vector A1B1, and ϕ1 is the angle from link vector A1B1 to
link vector B1C1.

Therefore, the kinematic screws of the selected limb can
be expressed as

$A1B1C1 = [$1 $2 $3 $4]T . (11)

The reciprocal screws of the kinematic chain A1B1C1

can be obtained using the algebra operation of reciprocal
product.14,17

$r1
A1B1C1

= [0 0 0 ; 0 0 1]T ,

$r2
A1B1C1

= [0 0 0 ; 0 1 0]T
.

}
(12)

According to the physical meaning of the reciprocal
screws, the reciprocal screws $r1

A1B1C1
and $r2

A1B1C1
denote

Fig. 6. The TCS.

pure moment of couples, which are shown in Fig. 5.
And the movement constrained by $r1

A1B1C1
and $r2

A1B1C1
are

[0 0 1 ; 0 0 0]T and [0 1 0 ; 0 0 0]T , respectively.
Therefore, the manipulator shall not execute the rotation
around the axis (0 0 1 ) and (0 1 0 ).

Similarly, we can obtain the reciprocal screws applied to
the moving platform of the other two limbs,

$r1
A2B2C2

= [0 0 0 ; 0 0 1]T ,

$r2
A2B2C2

= [0 0 0 ; 1 0 0]T ,

$r1
A3B3C3

= [0 0 0 ; 0 1 0]T ,

$r2
A3B3C3

= [0 0 0 ; 1 0 0]T .

⎫⎪⎪⎬
⎪⎪⎭ (13)

The reciprocal screws applied to the moving platform are
six pure moment of couples, which form the TCS. However,
they are in linear correlation, as shown in Fig. 6.

Therefore, the terminal constraints screw system can be
written as follows:

$r = [
$r1

A1B1C1
$r2

A1B1C1
$r1

A2B2C2
$r2

A2B2C2
$r1

A3B3C3
$r2

A3B3C3

]T
.

(14)

At ordinary position, the rank of the terminal constraints
screw system, $r , is

Rank($r ) = 3 (constrain three rotational DOFs). (15)

So according to refs. [16] and [20], the DOF of the
manipulator at ordinary position is

F = 6 − Rank($r ) = 6 − 3 = 3, (16)

namely, this parallel manipulator possesses three transla-
tional DOFs.

From studying the constraints screw system in Eq. (14),
we can easily obtain the simplest form of constraints system
matrix, A, while the moving platform is at ordinary position,

A = SF ($r ) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ . (17)

According to the redefinition of isotropy, we found that
the constraint condition number, κc, is always equal to one,
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Fig. 7. The 3-PV PH S parallel manipulator and the applied constraint
system.

and can be expressed as

κc(A) = 1. (18)

Namely, the moving platform of this parallel manipulator
can well proportionately translate in all directions under the
TCS, and this parallel manipulator is positional isotropy.

Compared with the general isotropic determination, we
could find that the constraint condition number of SF
and the condition numbers of Jacobian matrix are all
equal to one for the above-mentioned parallel manipulator.
However, these represent different information. The Jacobian
matrix21 expresses the one-to-one correspondence between
the actuated joint space and the operational space of the
moving platform, while the SF denotes the TCS of the moving
platform and explains the isotropic determination from the
perspective isotropic determination of constraint force.

3.2. Isotropic determination for 3-[PP]S type of parallel
manipulator
A 3-[PP]S type of parallel mechanism, such as 3-PV PH S
parallel manipulator (the subscripts V and H indicating
that the direction of the P joint is vertical or horizontal,
and the joint symbol with underline means the joint is
active), is employed to illustrate the isotropic determinations,
which has been described by Liu and Bonev22 for
articulated tool head, as shown in Fig. 7. With three
identical and symmetrically configured kinematic limbs,
this parallel manipulator possesses two rotational DOFs
and one translational DOF. Here, we create an absolute
coordinate system o-xyz and set the parameters of this parallel
manipulator as shown in Fig. 7.

With the absolute coordinate system, we could obtain the
Plücker coordinates of each joint in the first kinematic limb,

as follows:

$11 = [0 0 0 ; 0 0 1]T ,

$12 = [0 0 0 ; 1 0 0]T ,

$13 = [1 0 0 ; 0 l11 0]T ,

$14 = [0 1 0 ; −l11 0 L − l12]T ,

$15 = [0 0 1 ; 0 L − l12 0]T .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(19)

The reciprocal screws applied on the moving platform of
the first kinematic limb can be obtained by using the algebra
operation of the reciprocal product,14,17

$r
1 = [0 1 0 ; −l11 0 l12 − L]T . (20)

Similarly, we can obtain the reciprocal screws applied on
the moving platform of the other two kinematic limbs,

$r
2 = [

√
3 1 0 ; −l21

√
3l21 2(L − l22)]T ,

$r
3 = [−√

3 1 0 ; −l31 − √
3l31 2(L − l32)]T .

}
(21)

Therefore, the terminal constraints screw system can be
written as follows:

$r={$r
1, $r

2, $r
3}. (22)

And the SF of this parallel manipulator is obtained,

SF =
⎡
⎣ 0 1 −l11 0 l12 − L√

3 1 −l21

√
3l21 2(L − l22)

−√
3 1 −l31 −√

3l31 2(L − l32)

⎤
⎦ . (23)

In this section, the 2-norm is employed to perform the
analysis of the constraint condition number. In order to
facilitate the calculation, we assume that all the parameters
in SF are nondimensional parameters and set the length,
L, is one parameter. As the three kinematic limbs are
symmetrically configured relative to the fixed base, the
spatial and contour atlases of constraint condition number
can be obtained with the appointed inputs, l11 = 1, l21 = 1.5,
l31 = 1, and the set values of some variables, as illustrated in
Figs. 8 and 9 when l12 = 1.

From these spatial and contour atlases of constraint
condition number we can obtain the useful isotropic
information about this 3-[PP]S type of parallel manipulator
and find the isotropic configurations. And according to the
definition of the constraint condition number, the manipulator
will possess the same performance capability in a certain area
with the same value of the constraint condition number.

3.3. Isotropic determination for a 4-DOF parallel
manipulator
Here, we take a 4-DOF parallel manipulator23 as a further
example, which possesses 4 DOFs, as shown in ref. [23]
Fig. 1, to illustrate the isotropic determination. The spatial
parallel manipulator possesses four kinematic chains with
two parallel sideways.

Through the analysis of the reciprocal screws of
each kinematic chains, the TCS23 could be obtained as
in Eq. (24),

$r= {
$r

P1B1
, $r

P1B1
, $r

P1B1
, $r

P1B1

}
, (24)
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Fig. 8. The spatial atlas of constraint condition number when
l12 = 1.

Fig. 9. The contour atlas of constraint condition number when
l12 = 1.

where

$r
P1B1

= (0 0 0 ; cos α1 sin α1 0)
$r

P1B1
= (0 0 0 ; cos α2 sin α2 0)

$r
P1B1

= (0 0 0 ; cos α3 sin α3 0)
$r

P1B1
= (0 0 0 ; cos α4 sin α4 0)

and αi (i = 1, 2, 3, 4) denotes the angle from x-axis to line
OB1P , see Figure in ref. [23], Section 5.3.

Then we can obtain the SF of this parallel manipulator, as

A = SF ($r ) =
[

sin α1 sin α2 sin α3 sin α4

cos α1 cos α2 cos α3 cos α4

]
. (25)

We use the two-norm to perform the analysis of the
constraint condition number. The spatial and contour atlases
of constraint condition number can be obtained when the

Fig. 10. The spatial atlas of constraint condition number when
α1 = 18◦ and α4 = 36◦.

Fig. 11. The contour atlas of constraint condition number when
α1 = 18◦, and α4 = 36◦.

values of two angles, as illustrated in Figs. 10 and 11, are set:
α1 = 18◦ and α4 = 36◦.

From these spatial and contour atlases of constraint
condition number, certain area with the same value of
the constraint condition number could be determined. In
this area, the parallel manipulator will possess the same
performance capability. However, as the parameters become
greater than three, the spatial atlas could not be expressed in
three dimensions until set the values of some parameters.

3.4. Discussion
The isotropic results and the atlases of the constraint
condition number provide further support for the proposed
new method that we can make an analysis on the isotropic
condition of spatial parallel manipulator based on the TCS
and reciprocal screw system. As we can avoid solving
the Jacobian matrix through the analysis of the reciprocal

https://doi.org/10.1017/S0263574710000470 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000470


A new method for isotropic analysis of limited-DOF parallel manipulators with terminal constraints 569

screws, especially for some complex structural parallel
manipulators, the calculation process of constraint condition
number becomes more simplified. In this paper we use the
iterative search strategy to find the isotropic configurations
of the given spatial parallel manipulators and obtain the
atlases of constraint condition number, as the analytic form
of constraint condition number is still complex for some
complex structural parallel manipulators.

4. Conclusion
A novel method is presented to determine the isotropic
configuration of spatial parallel manipulator in this paper.
The major work and conclusions of this paper are drawn as
follows:

1. The isotropic configuration of spatial parallel manipulator
can be obtained through analyzing the TCS. Based on
this viewpoint, the novel method can avoid solving the
general Jacobian matrix, and according to the reciprocal
screw theory, the physical meaning of isotropy is pointed
out, which indicates that the TCS acting on the moving
platform works equally well in all directions.

2. The constraint condition number is defined to measure
the isotropy of spatial parallel manipulator based on the
TCS. From the obtained spatial and contour atlases of
constraint condition number, we can obtain the useful
isotropic information about the parallel manipulators and
find the isotropic configurations area.
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