Robotica (1998) volume 16, pp. 159~170. Printed in the United Kingdom © 1998 Cambridge University Press

Autonomous vehicle parallel parking design using function

fitting approaches

Yongji Wang* and M.P. Cartmellf}

(Received in Final Form: June 9, 1997)

SUMMARY

One of the most fundamental problems in the
development of an intelligent highway system or an
autonomous mobile robot system for factory use is to
find the necessary input control variables for smooth and
safe movement of the vehicle, or robot, between any two
configurations. In this paper it is demonstrated that this
problem can be converted into one of finding a fitting
function which satisfies the boundary conditions. Three
curves, a quintic polynomial, a cubic polynomial and a
triangular function are developed to perform the paraliel
transfer manoeuvre which forms the basis of several
important manoeuvres such as reverse parking, moving
off, negotiating a stationary obstacle, overtaking a
moving vehicle, and changing lane. A detailed discussion
of the effect of the vehicle’s steering angle limit on the
feasibility of these manoeuvres is presented. Simulation
results using three typical vehicles, a long commercial
vehicle, an ordinary car, and a small laboratory robot,
travelling along three curves are also presented and
discussed. Based on the comparative study, some
suggestions for further work are made. Compared with
other methods, this approach is simple and provides
excellent simulation of human driver techniques. The
paper concludes with a focused discussion about the
intergration of these techniques with satellite based GPS
systems for automated vehicle guidance on highways.

KEYWORDS: Intelligent highway systems; Mobile robots;
Autonomous vehicle; Trajectory generation; Collision avoid-
ance; GPS system.

1. INTRODUCTION

It is generally accepted that a mobile robot, or steered
vehicle, is a typical example of a nonholonomic system,
and that all such applications are inherently difficult to
work with.'™ In recent years, a considerable amount of
work on the nonholonomic motion planning problem has
been carried out and reported in the literature.>*'*"?
This problem can be described as one in which two
arbitrary configurations of a system with nonholonomic
constraints are given and the requirement is therefore to
find the input control variables which satisfy the
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nonholonomic constraints so that the system can be
driven from one configuration to the other. This problem
is also referred to as one dealing with the controllability
of the nonholonomic system.”>*' Fuzzy logic concepts
have also been used successfully in the simulation of the
control of the reversing of trailer-truck vehicles.?>%
Different mathematical tools have been used for solving
the nonholonomic motion problem, and nonholonomic
motion planning for a disk rolling on a plane was first
studied by Li & Canny'? using Stroke’s theorem, and
then later it was studied by Mukherjee & Anderson®
using a surface integral approach. In Bushnell, Murray &
Sastry, and Tilbury*®* the system is first converted into
a chained form and then non-linear control theory and
Lie algebra is used. Bushnell® give a comprehensive
review of the work carried out using these methods.
Recently the general property of the differential flatness
of a system has been investigated and used,'*?>-%%
however in this paper a different method is developed
using the function fitting approach. In the
approaches®>*** the forms of the input variables are
initially assumed as sinusoidal, polynomial, or piecewise
constant functions in the time domain which are then
integrated as a chained-form system to determine the
unknown coefficients. The principal disadvantages of
such an approach are that the shape of the generated
path is difficult to control and it is difficult to control the
relative position of the robot with respect to potential
obstacles for collision avoidance. In addition this strategy
is necessarily more complicated compared with the
method presented in this paper.

The principal concept behind the method discussed in
this paper is the attempted planning of a geometrical
path y =f(x) which satisfies boundary requirements.
This is achievable because the requirements of the
orientation angle and steering angle of the robot vehicle
at initial and final configurations can be converted into
the requirements of the first and second derivatives of
the curve y =f(x). The fact that the inputs may be
expressed as functions of this path means that the
method is simple and straightforward, and does not
require that the motion from the initial configuraion to
the final one must be completed in a pre-specified time
T. This is not realistic in most cases anyway. The speed
of the robot vehicle can be adjusted according to the
prevailing road conditions, a feature consistent with
human driver behaviour, and one which will be of
particular importance for planned future integration of
this work with global journey control concepts.
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In the case of a car-like robot moving on a plane its
spatial location can be represented by three parameters,
i.e. the two dimensional position of a reference point and
an orientation angle. The required behaviour of the
robot is to move from one specified global position and
orientation (configuration) to another. This paper
illustrates how the definitive nonholonomic motion
planning problem for this scenario can be converted into
a function fitting problem consistent with the trajectory
generation problem for manipulators. The generated
curves have geometrically simple, closed-form, expres-
sions that precisely match the boundary conditions at the
initial and final configurations on the paths. Another
advantage of taking this approach is the wealth of
appropriate tools available for the sort of numerical
analysis required,” with the attendant advantage that
clear physical insight into the problem is easily achieved.

One of the most obvious applications of wheeled robot
motion control is in the development of an intelligent
automated control system for highway vehicles, and a
very considerable literature is devoted to this particular
application area.”””’

The theme of the Intelligent Vehicle Highway System
(IVHS) unites and integrates all the disparate research in
this field, and particular attention has been paid by many
of the researchers noted above to the sub-area of
Automated Highway System (AHS). One of the most
notable AHS projects has been the PATH programme
based at the University of California at Berkeley.

This programme was motivated by the perceived need
for increased highway capacity, and also by the general
trend towards safety related practices (for example, a
pertinent statistic according to Hedrick et al.” states that
human error has been found to account for 90% of road
accidents, thus strongly implying that robust and
intelligent sensing and control systems could improve this
situation considerably). The PATH programme con-
sidered multiple vehicle ‘platoons’ and identified three
principal control tasks, (1) the assignation of a path for
each vehicle, (2) the safe manocuvring of the platoon
formation, and (3) the implementation of these
manoeuvres via feedback laws controlling throttle,
braking, and steering actuators in each individual vehicle.
Control strategies appear to have been predominantly
analytical and have included the use of bespoke
(smoothed) sliding mode control for the platoon
formations as well as relatively simple classical
compensators. At the end of this current paper an
alternative overall strategy for sensing and control is
overviewed. It should also be stated at this point that, in
fact, relatively little attention has been paid to the
problem of detailed planning of typical everyday vehicle
manoeuvres (noting, however, the work done in*™™'),
and that therefore this paper is primarily reporting on an
attempt to develop an entirely new and practical
algorithm for path planning taking the physical
limitations of the vehicle into account and the intentional
simulation of a human driver’s behaviour. As an example
of the proposed function fitting approaches, a detailed
discussion of the crucial parallel transfer manocuver is
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examined in detail, and this is then followed by a more
general discussion of proposals for the integration of
function fitting planning procedures within a new global
and local sensing and control strategy.

2. CONVERTING NONHOLONOMIC MOTION

PLANNING INTO FUNCTION FITTING

In the following development the case when a variable,

say y, is differentially expressed in terms of time ¢ is
2

represented by y and § to denote % and %t—)z]; and

when it is differentially expressed in terms of x, the

following representations are used, y’ and y” denoting

dy 4 d’y el

dx an e respectively.

For a car-like robot as shown in Figure 1 (described
henceforth as a ‘robot’, but on the understanding that it
has the physical characteristics of a wheeled road
vehicle), the nonholonomic kinematic constraint can be
described as*

Xcosf—ysin@=0 (1)

where (x, y, 8) represent the positon of the middle point
of the rear axle, and the orientation angle of the robot
body with respect to the horizontal, respectively. The
configuration of the car-like robot is described by
(x,y, 0, ¢), where ¢ is the steering angle with respect to
the robot body. The control inputs which drive the robot
between configurations are chosen as the velocity of the
middle point of the rear axle, u,, and the steering
velocity of the front steering wheel, 4, = ¢. In this case,
the purpose of the nonholonomic motion planning is to
find u, and u,, which satisfy the constraint of equation
(1) and which can automatically drive the car-like robot
from any arbitrary initial configuration x;, y;, 8;, ¢; to a
given final configuraion x;, y, 6, ¢
Equation (1) can be rewritten as
’ZQZ)—f:tanG (2)
dx X

From Figure 1, it can be seen that the steering angle can
be expressed as

¢ = arctan (L/R) 3)

Fig. 1. A car-like robot. The configuration is represented by
the position (x, y) of the midpoint of the rear axle and the
orientation angle 8 of the robot.
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where L is the wheelbase of the robot; and R represents
the radius of the instantaneous rotation of middle point
of the rear axle and can be expressed by a geometric
curve in the form of y = f(x) or by a parametric curve in
the form of x = x(z), y = y(1).

_ (l + y72)3/2 _ (x~2 + y2)3/2

R ; 4)
y Xy —yx
From equations (3) and (4), we can obtain
t
" a]Ing(l +y12)3/2 (5)

Obviously, from equations (2) and (5) we can see that
the initial and final configuration requirements are
equivalent to the following boundary conditions for a
geometric curve y = f(x)

, t 0 " tan @; ¢
=y, y/=tan@;,, Yy =——-— atx=ux,
y Yi Y Y L(COS 9[)3
(6)
=, ' =tan O, {f:M at x = x,
Yy=Yp Y (I L(cos 6,)° !

In this case, the nonholonomic motion planning
problem can be converted into the problem of finding a
curve y = f(x) which satisfies equation (1) and the
boundary conditions in equations (6).

Once a reference path y = f(x) has been generated it
can be followed by a robot at different speeds according
to the traffic congestion on the road. Adjusting speed is
equivalent to adjusting x =x(r). If x =x(r) is known,
then it follows that

x=x(1)
y=fx())

Because both of the two control inputs u, = Vi* + y*
and u, = ¢ are functions of x(¢) and y(¢), they can be
calculated from equations (3), (4) and (7) above.

There is also an alternative way of dealing with the
initial and final steering angle reqirements. When a robot
is moving, steering angle continuity along a path is
always required for a smooth transition. However, if the
robot does not move, the steering angle may be
discontinuous, and this is a special case. This special case
is considered by supposing that the steering angle of the
robot can be manipulated without changing its initial and
final positions and orientation angles (just like the
reverse parking manoeuvring required by a car in a
narrow space), then the configuration of the robot is
represented by (x,y, 8) rather than (x,y, 8, ¢). The
initial and final configuration requirements are equiv-
alent to the following boundary conditions

(7

y=y, and y/=tan@; atx=x;

Y=JYr

(8)

and y/=tan6, atx=ux,

A curve that satisfies equation (8) is sufficient for use
as a path for driving the robot from the initial
configuration to the final configuration. The extra
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requirement is that the steering angles at both terminals
must be adjusted according to equation (3) without
moving.

The following remarks are intended to assist in
understanding this conversion and also the significance of
designing a curve of the form y =f(x). A geometric
curve y = f(x) in the plane is called a path. A trajectory
is defined as the time course along such a path.
Corresponding to the path, there exist different time
courses.

If there is no velocity requirement at the initial and
final configurations, then any trajectory along a planned
path is satisfied. This means that x =x(f) can be
arbitrarily specified. Otherwise, we can adjust x = x(¢) to
meet the velocity and acceleration requirements.
Highway design is based on specifying a path rather than
a trajectory as shown in Wang et al,> Wang,'" and Wang
& Linnett.*! The speed of the vehicle is adjusted
according to road congestion rather than at the road
design stage.

3. FITTING FUNCTIONS

There are a number of curves which can be used for
generating a path between two configurations. However,
a satisfactory curve should meet some special require-
ments. Generally speaking, it should be

» computationally simple

* casy to satisfy the steering angle limit

* reasonably short

* able to demonstrate few undesirable oscillations.

In this section, three fitting curves are developed. All
of them have closed form expressions that match
precisely a priori the boundary conditions and also meet
the above specifications.

3.1 Quintic polynomial

For satisfying the boundary conditions of equations (6), a
curve with six undetermined parameters is requried.
Obviously, a quintic polynomial can be used for this
purpose, and the general expression for a quintic
polynomial satisfying the constraints of equations (6) can
be written in the form

y=2 e ©)

j=0

The coefficients of ¢; can be expressed as the following
matrix form

C=T"4 (10)

where C=[cy ¢; ¢; ¢35 ¢4 CS]T: A=y yr yi y_/'/ yi Y/",]T
and

1 x;, x? x} X! x 7]
Ly g o0 w
0 1 2x 3x} 4x) 5xf
T = 2 3 4
0 1 2x, 3x; 4x; Sxy
0 0 2 6x;, 12x2 20x}
|0 0 2 6x 12x.% 20x7» 1
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It is obvious that when the condition x; = x, holds the
matrix T becomes singular for any parameterisation. This
problem arises from the choice of the reference frame
but can be easily overcome by a proper rotational

transformation of the co-ordinate frame if y,#*y,

(meaning that the two points are not the same). In the
case of y; =y, (meaning that the two points coincide), a
third configuration away from the initial and final ones
must be chosen as a transitional configuration. The
nonholonomic motion planning can be achieved by first
driving the robot from the initial configuration to the
transitional configuration, and then from the transitional
configuration to the final configuration.

3.2 Cubic polynomial

If the boundary conditions are represented in the form of
equations (8), then a curve with four undetermined
parameters is needed. A cubic polynomial can be used
for this purpose and the cubic polynomial satisfying the
constraints of equations (8) can be written in the
following form

Y = y,c2(c = xp)[1+ 2c(x — x;)]
+ yrc?(x = x)[1 = 2¢(x — x7)]
+y/cP(x —x)(x = X )+ Y./"Cz(x —x;)*(x — xp)  (11)

where ¢ =1/(x; — x;).

The advantage of the latter strategy (equation (11))
over the former (defined in equation (9)) is that it has
the potential for avoiding undesirable oscillations caused
by the extra boundary conditions introduced by the
steering angle requirement. However, its disadvantage is
that the steering angle needed at each of the both
configurations may be discontinuous.

3.3 Triangular function
A triangular function has the following general form

y=a-cos(wt+y)+b (12)

where a, b, , and ¢ are four undetermined parameters.
If it is used to fit two configurations, only the boundary
requirements of the position and the first order
derivative for the curve can be specified at both ends.
Therefore, similar to the cubic polynomial function, it
is only suitable for special manoeuvres where the
steering angle at both the initial and final configuraions
can be adjusted without changing the orientation of the
robot. This curve is used later for performing the reverse

/ —_
-

Fig. 2. llustration of a parallel transfer manoeuvre.
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parallel parking manoeuvre and its performance is
compared with that of the other two curves.

4. MOTION ANALYSIS OF TYPICAL
MANOEUVRES

4.1 Parallel transfer manoeuvres

Curves that produce a transition between parallel lines in
the same direction are usually called dog-leg or parallel
transfer manoeuvres, as shown in Figure 2. For
simplicity, and without losing generality, the origin of the
co-ordinate frame is chosen at the start point, with the
positive x-axis being in the direction of the manoeuvre.
A curve with this feature is of considerable use in
performing a number of crucially important and
fundamental manocuvres such as moving off from behind
a parked car, pulling up at the side of the road, changing
lanes, reverse parking into a space between two parked
cars, moving out to pass a stationary obstacle, overtaking
a moving obstacle (a car or a truck), and parallel parking
for adjusting a car’s lateral position. All of these
manoeuvres can be achieved using the basic parallel
transfer manoecuvre, or alternatively a combiantion of
two parallel transfers. In this section the three
aforementioned fitting curves are used to plan the
execution of the manoeuvre.

The requirements of the initial and final configurations
for the manoeuvre are that at both ends the heading
alignments of the robot are parallel to the x axis and the
required steering angles are zero. From equations (6) it
can be seen that these requirements are equivalent to

yv,=0, y =0, y'=0 atx;=0

_ 0 e _ (13)
=Y, y =0, y/=0 atx, =X

where X and Y are the length and width of the
manoeuvre respectively, as shown in Figure 2.

A single quintic polynomial fitting can be used for
fitting. From equations (9) and (10) the quintic
polynomial curve satisfying equation (13) has only three
nonzero coefficients and can be written in the form

y = Y[10(x/X)’ = 15(x/X)* + 6(x/ X )] (14)

If there is no steering angle requirement at both
terminals, then the initial and final configurations can be
described as

=0, y/=0 atx,=0
Y Y (15)
y/:(), y/:O at xI =X
in this case, the cubic polynomial satisfying equations
(15) can be written as

y =YBx/X) = 2(x/XY] (16)

If the triangular function is used for generating the
curve satisfying equations (15), it has the following form

Y
y=5[1 —cos;(n] amn

Typical curves for simulating the transfer manoeuvres
with X =6 and Y = 2.4 are shown in Figure 3 and are all
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Fig. 3. Three curves for performing the parallel transfer
manoeuvre. X =6 and Y =2.4.

smooth and symmetric. In this case the curves for the
cubic polynomial and the triangular function are
indistinguishable from each other, however it is shown
later that the latter is actually better than the former for
this manoeuvre. The heading change of the robot versus
the passed x is plotted in Figure 4 showing smooth
characteristics in all three cases. The corresponding
steering angles needed for a car with L =2.4 to travel
along them are plotted in Figure 5.

4.2 Steering angle limit and the minimum transfer length
X min

Steering angle limit is an intrinsic feature of a car-like
robot and it determines the critical conditions for
distinguishing a feasible motion from an unfeasible one.
The limited steering angle can be expressed by the
following inequality constraint

—‘(PITIHX S (p S (pmax (18)

where @m.c 1S @ positive constant and represents the
maximum deviation of the steering wheel from the
heading of the robot. Due to the existence of the steering
angle limit not every curve which satisfies the boundary

40 y T T T T
351
.30 Ll T TN
L
g 4 -
2257 p
2 / o ' N
@20 ra - Quintic Polynomial N 1
£ / - Cubic Polynomial '\.\
% 151 / . Triangular Function \
5 r \
10 £ \
! \
5t/ \
! \
00 1 2 3 4 5 6
x (m)

Fig. 4. Heading change of a robot travelling along the three
curves given in Figure 3, X =6 and Y =2.4.
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Fig. 5. The steering angles needed for a car with L =24 to
travel along the three curves given in Figure 3, X =6 and
Y =24

conditions is therefore actually feasible. If the maximum
steering angle of Figure 5 (as a case in point) exceeds the
steering angle limit, then the curve is clearly unfeasible.
Further, if a curve is unfeasible changing speed will have
no effect on its feasibility. This is an intrinsic feature
caused by the nonholonomic constraint. In such
circumstances the remedy is to search for another curve
which is feasible. In the remainder of this section the
effect of steering angle limit on both X and Y is discussed
in order to determine the minimum X corresponding to
the maximum steering angle for a given Y.

In the following analysis, three hypothetical ‘typical’
vehicles are used, as shown in Figure 6. The first is a
commercial vehicle representing the long vehicle type.
The second is an ordinary car defining the medium sized
vehicle, and the third is a small robot intended for
laboratory use. Their dimensions are given in Table I.
The steering angle limit used for each of them is 40°.

For a curve y = f(x), equation (3) indicates that the
maximum steering angle corresponds to the minimum
radius of the instantaneous rotation, R, which occurs
when dR/dx =0, ie. when the following condition is
satisfied

ym(1 +yi2)_3y/y112:0 (19)
Differentiating the quintic polynomial given in
equation (14) to obtain both y’ and y”, and then

W
TF
L
B
(@ ) ©

Fig. 6. Three typical vehicles: (a) a commercial rigid vehicle
(b) an ordinary car (c) a laboratory robot.
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Table I. Dimensions of the three typical vehicles and the R ., Xpins Ax1ax, AX200 and Ax3,,

corresponding to the given Y and maximum steering angle ¢, for three different fitting

curves: quintic polynomial,” cubic polynomial,® triangular function. (a) A commercial rigid
vehicle (b) an ordinary car (c¢) a laboratory robot.

Dimensions (meter) (a) (b) (c)
W (body width) 2.5 1.6 1.5
TF (front overhand) 1.3 0.6 0.2
L (wheelbase) 6.2 2.4 1.1
TB (rear overhang) 2.5 0.8 0.2
TL (total length) 10 38 1.5
o 40° 40° 40°
min 7.39 2.38 1.31
35 2.4 2.0
X wuin 11.86,* 12.46," 11.37° 6.00,“ 6.42,” 5.82¢ 3.58,3.97,” 3.60°

AxT 1.41,72.14,7 1.32¢
Ax2,.., 12.95,“12.82,” 12.55¢
Ax3,,., 2.9542.82,%2.55¢

1.27,1.72," 1.31°
5.53,%5.50,” 5.31°
1.73,“ 1.70, 1.51¢

0.80, 0.96,” 0.79°
2.98,3.21,” 3.01°
1.48,“ 1.71,” 1.51¢

substituting them into equation (19), and simplifying,
leads to

300 - ki Y2 k3V18kT — 18k, + 5
2 Vok? = 6k, + 1

where k, =x/X and k, = X/Y.

Equation (20) effectively indicates that when k, is
fixed, the minimum value of R occurs at a fixed k,. The
relationship between &, and k, is plitted in Figure 7 and
it can be seen that k; always falls into the range
0=k, =0.211 or 0.789=k,;=1. In the range 0=k, =
(.211, the bigger the k,, the smaller the k,, however in
the range 0.789 < k, =1, the bigger the k,, the bigger the
k,. This indicates that for performing this manoeuvre,
the front wheel must be steered very quickly to reach its
maximum steering angle.

In a practical implementation of the transfer
manoeuvre for an autonomous robot, Y can be measured
using sensors (e.g. an ultrasonic, vision, or fused system).
For example, for a lane change manoeuvre, Y is
determined by the width of the lane and usually chosen
to be equal to the width of one lane (from the centre of
one lane to that of the next lane) and X determines the
maximum steering angle needed. The longer the X, the

(20)

40
35r
301
25F

$20r

15} 1

10}

0 0.2 0.4 0.6 0.8 1
k1

Fig. 7. Hlustration of the relationship between k, and k..
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smaller the steering angle. Corresponding to the
maximum steering angle ¢,,.., there is a minimum X
which must also satisfy equation (3).

Differentiating the quintic polynomial of equation (14)
to obtain both y’ and y”, and then substituting them into
equation (3) leads to

Ly _ 60k k3(1 — 3K3K3)
[1+900k1k3(1 — 2k, + 2k3)*]*?

tan .« 1)
In this case equations (20) and (21) can be solved
simultaneously to obtain the minimum X.
To summarise, for a given robot, L and ¢, are
known, and therefore the general procedure for solving
for the minimum X is as follows:

(1) Equation (20) is substituted into equation (21) to get
an equation for ;.

(2) This equation is solved for k,.

(3) Equation (20) is used to obtain k, and then minimum
X = Yk,.

For the cubic polynomial given in equation (16), it can
be proven that for any given X and Y, the maximum
steering angle needed to follow this path occurs at both
ends, i.e. x =0 and x = X, and the relationship between
the maximum steering and the X, for a given Y is

6LY

Koin = A | ———
e tan (pm'(lX

(22)

For the triangular function given in equation (17) it is
also straightforward to prove that corresponding to any
X and Y the maximum steering angle needed to follow
this path occurs at both ends, i.e. at x =0 and at x = X,
and the relationship between the maximum steering and
the X, for a given Y is therefore

[ LY
Xmin =T ~.
2 ta’n @“]ﬂx

The proof leading to equations (22) and (23) is omitted
here for the sake of space, but it should be noted that
these equations indicate that the bigger the width of the
parked distance Y, or the effective wheelbase L, the

(23)
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bigger the X, and the bigger the steering angle limit,
the smaller the X, This corresponds well to human
driving experience. By comparing equations (22) and
(23) it can be observed that for given Y, L and ¢,,,, the
Xmin for the triangular function is always smaller than
that for the cubic polynomial. This means the triangular
function is better than the cubic polynomial for
manoeuvring in a narrow space. The simulation results
for the X, using the three vehicles for the three
curves, are given in Table 1.

4.3 Reverse parking and moving off

A familiar example of the manoeuvring required by a
robot or a human driver is parallel reverse parking,
which is a special case of the parallel transfer manocuvre
discussed previously and shown in Figure 8. The goal is
to move the robot into the space between two parked
cars 1 and 2 (they may be two other obstacles). For a
human driver, the strategy adopted for parallel reverse
parking is to stop at the start position, and then to
perform the following manipulations: to turn the steering
wheels to the left limit, to reverse, straightening the
wheels, to continue to reverse, turning the wheels to the
other limit (still reversing), and then to straighten the
wheels (noting that several iterations may be needed by a
unskilled driver). When the reverse parking is complete,
the robot adjusts its longitudinal position so as to be
somewhere between the two parked vehicles.

All of the three curves can be used for this manoeuvre.
The main potential problem is that collision between the
moving robot vehicle and the parked cars may occur, and
therefore two questions must be answered before
implementing the three curves. The first is to determine
the start position of the moving car relative to the parked
car 1, and the second is to determine whether the length
between the two parked cars is long enough to
accommodate the moving car. Two parameters, Ax1 and
Ax2, are introduced to describe the relative position of
the start location of the moving car to the parked car 1
and that of the parked car 1 to car 2, respectively. Ax1 is
defined as the offset of the origin of the co-ordinate
frame Oxy from the rear edge of the car 1; and Ax2 is
defined as the distance from the rear edge of the car 1 to
the front edge of the car 2, as shown in Figure 8. Ax2 is
the length of the space for parking the moving car. For a
collision-free reverse manocuvre it is obvious that there
exists a maximum Ax1 and a minimum Ax2, denoted as
Ax1,., and Ax2.;. respectively. It is important to

Ax1 Ax2
Curb y =Il Curb

P s— —

Parked car 2

Parked car 1Y] >
s— Q

— L L B

Xmin

Start position

Fig. 8. Illustration of a reverse parking manoeuvre.
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determine these two parameters because they describe
the critical conditions for a successful reverse man-
oeuvre. As a curve is followed, Ax1,,, corresponds to
the case where the front right corner P of the moving car
just grazes the rear left corner Q of the parked car 1
(noting that Ax1,,, is the biggest distance allowable for
collision free parking). In the following analysis simple
geometry is used to establish a critical condition for
determining Ax1,,,, and Ax2,,.

If the path of the middle point of the rear axle is
described in the form of y = f(x), then the path travelled
by P is geometrically related to the path y = f(x) as
follows
x,=—(TF+ L)cos 8 —0.5W sin 8 + x 4
v,=—(TF+L)sin0+0.5Wcos8+y, xe(0X) @9

where (x,, y,) are the co-ordinates of P, and TF and W
represent the front overhang and the width o the moving
vehicle respectively (see Figure 8).
The co-ordinates of point Q are represented by (refer
again to Figure 8)
x,=Ax1 and y,=Y-05W (25)

The critical conditions for a collision-free manocuvre
between the moving car and car 1 are

Yo=Yy (26)

in this case Axl = Axl,.. So from equations (24) and
(25) we have

Y —~05W=—(TF+ L)sin @ +0.5Wcos8+y (27)
Axlpax= —(TF+ L)cos 0 —0.5Wsin 0 +x  (28)

xq = X,,,

Note that y and @ are functions of x, so equation (27)
contains only one unknown, x. Therefore, the procedure
for solving Ax1,,,, involves two steps:

(1) First solve equation (27) for x.
(2) Then substitute x into equation (28) to get Ax1,,...

In practice, the suggested start position Ax1g,, is
Axlslarl = AX1 max 0'05 (29)

where 0.05 is the minimum practically acceptable
clearance between P and Q.

The distance, Ax2, between the two parked cars 1 and
2 should satisfy the following relation

AX2> Xpun + TB — Ax1 (30)

Corresponding to Axly,, the minimum distance
between the two parked cars for a collision free reverse
parking should be

Ax2 0 = Xin + TB — Ax 1, — 0.05 (31)

Axl,.. and Ax2,, for the three typical vehicles
travelling along the three curves on a reverse parking
manoeuvre are also shown in Table 1.

From Table I we can conclude that from the viewpoint
of the shortest Ax2,,, and the shortest X,,, the
triangular function is the best choice for long and
medium size vehicles for reverse parking. For the small
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Parked car 1
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Parked car 1
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Parallel parking
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Parked car 1 |
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x (m)

Fig. 9. Simulation results for reverse parking of an ordinary
car. The common parameters used are: Y =24, @, =40°
TF =0.6, L=24,TB =08 W =16, Ax]1 =12, and Ax2=6.2.
(a) Quintic polynomial, X =6.0, (b) cubic polynomial, X =
6.42, (c) triangular function, X = 5.82.
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Fig. 10. Simulation results for reverse parking of a commercial
vehicle. The common parameters used are: Y = 3.5, ¢,,.. = 40°,
TF=13, L=62 TB=25 W=25, Ax1=1.0, and Ax2=
16.0. (a) Quintic polynomial, X =11.86, (b) cubic polynomial,
X =12.46, (c) triangular function, X = 11.37.
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robot, the quintic polynomial is suggested because of its
shortest Ax2., and shortest X, as well as its
continuous steering angle at both ends.

Simulation results for a reverse parking manoeuvre for
the ordinary car using the three curves are shown in
Figure 9(a), (b), and (c), respectively. The common
parameters used for the simulation are: Y =2.4,
Omax =40°, TF=0.6, L=2.4, TB=0.8, W =16, Ax1=
1.2, and Ax2 = 6.2. The X values used in Figure 9(a), (b),
and (c) are 6, 6.42, and 5.82, respectively. In each Figure,
the locus of six points (the middle point of the rear axle,
the contact point of the right rear wheel with the ground,
and the four corners of the vehicle) is plotted.

By comparing Figures 9(a), 9(b), and 9(c), it can be
observed that the parking distance Ax2,,;, needed for the
triangular function is the shortest; that the distance swept
out by the front left corner of the moving vehicle in the
y-direction for the quintic polynomial is the biggest; and
finally that the cubic polynomial has the biggest start
position Ax1,,,.

Figures 10(a), 10(b), and 10(c) illustrate simulation
results for the long commercial vehicle travelling along
the three curves respectively. For this kind of vehicle it
can be seen that the triangular function gives the shortest
parking distance Ax2,,; that the cubic polynomial
generates the shortest distance in the y-direction, and the
quintic polynomial develops both the longest Ax2,;, and
the longest distance in the y-direction.

In Figures 11(a), 11(b), and 11(c) simulation results
are depicted for the small laboratory robot travelling
along the three curves respectively. From the Figures we
can see that because the distance swept by the curves in
the y-direction is almost the same, the quintic polynomial
is the best choice because of its shortest Ax2,.,;, as well as
for reasons of steering angle continuity.

The start position for different kinds of vehicles and
different kinds of curves is different in each case, and it is
important that attention is paid to this issue, noting that
the position is determined by equation (31). Perusal of
Figures 9, 10, and 11, and Table I clearly illustrates the
point.

In the case of a vehicle parked behind another vehicle,
moving off is a typical manoeuvre for which the
manipulation is just the reverse of the reverse parking
procedure. The co-ordinate frame is chosen like that
shown in Figure 12. In this case because of the
requirement for continuous post-start motion only the
quintic polynomial is suggested as being appropriate. The
minimum distance between the two cars, Ax3,,,, can be
solved using a similar procedure to that for the reverse
parking.

In fact, Ax3,,, is equal to

AX3min = szmin —-TL (32)

where TL is the total length of the moving vehicle.
Ax3,., for each of the three vehicles travelling
along the three curves respectively is also given in
Table 1.
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2} |Parked car 1 Parked car 3

N

4

x (m)

2} [Parkedcar 1 Parked car 3]

x (m)

2} |Parked car 1 Parked car 2

-1 0 1 2 3 4 5 6
x {m)

Fig. 11. Simulation results for reverse parking of a small
laboratory robot. The common parameters used are: Y =2.0,
Cux =40°, TF=02, L=11, TB=02, W=15, Ax1=0.6,
and Ax2=23.9. (a) Quintic polynomial, X =3.58, (b) cubic
polynomial, X =3.97, (c) triangular function, X = 3.60.

4.4 Lane change, obstacle avoidance and parallel parking
manoeuvres

The Lane Change manoeuvre is the simplest of all the
parallel transfer manoeuvres, and is illustrated in Figure
2. In this case the road ahead is assumed to be clear, and


https://doi.org/10.1017/S0263574798000496

168

Kemin —

Ax3

Fig. 12. Illustration of moving off from behind a parked
vehicle.

obstacles. The only problem is to choose a proper length
of X, according to the speed of the vehicle, in order to
maintain a reasonably large minimum instantaneous
radius R for the vehicle so that radial forces are kept to a
minimum. Clearly, the higher the speed of the vehicle
the smaller the corresponding value of X.

Figure 13 illustrates another common manoeuvre in
the form of a moving vehicle pulling out to pass a
stationary obstacle, or to overtake another moving
vehicle, and in this paper both manocuvres are generally
regarded as obstacle avoidance manoeuvres.

If two parallel transfers are connected by a straight
line, with the second parallel transfer curve being a
reversed version of the first, then the vehicle can be
made to transfer from one line to a parallel track, move
forward for a while, and then return to the original line.
Because passing, or overtraking, a vehicle occurs when
the vehicle concerned is in motion, the steering angle
must not be too large. Generally speaking, ¢ does not
exceed 15°. Therefore the appropriate X value is
generally long enough to avoid a collision between the
vehicles during the first parallel transfer, and also to
avoid cutting-in during the second parallel transfer.

The procedure for dealing with this manoeuvre is to
use the suggested maximum steering angle (for example,
15°) and Y, L as known parameters in equations (20) and
(21), then to determine X as the distance between the
start position of the manoeuvre to the rear edge of the
obstacle (stationary or moving vehicle) where the start
point of the straight line is located. The length of the
straight line may be chosen as that of the obstacle, so as
a result of this the front edge of the obstacle is the start
position and X is the length requied for the second
transfer manoeuvre.

Figure 14 illustrates the sort of parallel parking
manoeuvre which may be encountered in a parking lot,

Obstacle

Fig. 13. Illustration of an obstacle avoidance manoeuvre. It
includes moving out to pass a stationary vehicle or to overtake
a moving vehicle.
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Location 2

Location 3

Location 1 —

X

Fig. 14. Tllustration of a parallel parking manoeuvre.

and it should be noted that it differs somewhat from the
reverse parking manoeuvre. The vehicle is to be moved
from location 1 to location 2, and it is certainly intuitively
obvious that it is impossible to move directly from
location 1 to location 2. This fact can also be proved
using the nonholonomic constraint equation (1). A third
location 3 must be chosen (noting that it may be in front
of, or behind, the vehicle, depending on where there is a
clear space). Obviously, the strategy used by a human
driver in this case is that a forward parallel transfer is
performed and then followed by a backward parallel
transfer if the front space is clear. Note that these two
manoeuvres may be not symmetric, and in some cases
the backward manoeuvre may in fact simply be a straight
line. Given L, Y, and ¢, the X ;, may be determined
and used to assess whether there is enough space for this
manoeuvre.

5. A SATELLITE GPS APPROACH TO

VEHICLE GUIDANCE AND CONTROL

One of the distinct advantages of using satellite GPS
receivers for fixing a moving location is that global
coverage is wide and reliability is quite high (i.e. despite
inevitable ‘lost’ signals modern GPS receivers can re-fix
and re-calculate quickly enough to ensure a high
continuity of information). The cost of a GPS receiver is
closely linked to its performance with base-line fix
accuracy down to around 300-100 m for basic equipment
using degraded signals from the US Standard Positioning
System, to sub-centimetre accuracy for Differential
Carrier Phase systems. In the vehicle navigation
application it is proposed that GPS navigation could be
used to identify the optimal (ie shortest course)
progression of a vehicle along a pre-determined
electronically defined route. The pre-planned route is
intended to be such that all the necessary map-dictated
manoevre decision points are identified in advance. This
part of the vehicle navigation problem is called the global
part, and is intended to work in tandem with the local
sensing and control strategy based on on-board sensors
driving a function fitting local planner for direct control
of the vehicle’s actuators. This approach does not utilise
the platooning concept since the local sensing required
for the function fitting planner and controller would
provide all the data needed to ensure that safe distances
are continuously maintained. It is of course important to
recognise that there have been many AHS projects and
that considerable technology already exists to implement
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many of them (refer to Hedrick et al* for a
comprehensive review of the California PATH prog-
ramme, Kawashima® for a resume of the Japanese
AMTICS and RACS experiments, and Catling &
McQueen® for a discussion of various European
demonstrator ~ programmes  such as  DRIVE,
PROMETHEUS, Autoguide (UK), and a selection of
specific navigation and route guidance systems.

These systems mostly concentrate on roadside beacons
or cellular radio for information retrieval or Road
Transport Informatics (RTI)). Many of the results from
the above projects in the areas of digital mapping and
road databases are directly relevant to the current and
future work overviewed here, and it is noted that satellite
techniques did form part of one of the seven theme
groups in the DRIVE project. However the integration
of state of the art in differential carrier phase GPS with
the function fitting techniques discussed in previous
sections of this paper will continue to form the basis for
original on-going research, and will exploit many of the
findinngs of Cartmell et al* in parallel work on the
control of mobile cranes.

6. CONCLUSIONS

In this paper, it has been shown that the so-called
nonholonomic motion planning problem, ie. the
problem of finding the inputs needed to control a robot
vehicle from a given initial configuration to a final
configuration may be converted into that of finding a
fitting function which satisfies the boundary conditions.
Theoretically, any constructed curve that satisfies the
boundary requirements is feasible. The difficulty is in
finding a good curve which is able to simulate
satisfactorily a human driver’s behaviour, and meanwhile
to meet the requirement of the steering angle limit. To
this end three curves have been developed (a quintic
polynomial, a cubic polynomial and a triangular
function) for performing the parallel transfer manoeuvre
which, as shown, is further used as the basis for reverse
parking, overtaking, and other manoeuvres. A detailed
discussion of the effect of the steering angle limit on the
minimum length X, on the choice of the start position
of reverse parking, and on the minimum distance
between two parked cars allowed for parking another
vehicle has been presented, and the procedure for
solving them has been given. The simulation results
indicate that the approach is efficient and that the
generated path is quite consistent with that followed by a
practical vehicle used on modern roads. for the three
proposed curves the following conclusions are suggested
for different manoeuvres:

(1) To perform reverse parking the triangular function
should be used for ordinary cars and long vehicles,
and the quintic polynomial should be used for small
robots.

(2) To perform other manoeuvres which require
continuous steering control, the quintic polynomial
can be successfully used for all three types of vehicle.

Immediate developments will focus on building up a
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library of simulation modules for all basic manoeuvres
(including right turn, left turn, three point turn, and so
on). The ultimate aim is to develop a practical function
fitting based navigation system for intelligent highway
systems integrated with current satellite GPS technol-
ogies for global navigation. Parallel developments using
in-factory sonar and IR beacons for intelligent control of
autonomous robots are also envisaged.
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