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Optimal sample sizes and allelic diversity in studies of the
genetic variability of mycobiont and photobiont populations

Silke WERTH

Abstract: Population genetic studies of lichen-forming fungi and their algae require appropriate
sampling schemes that ensure representative sampling of the genetic variability. One question is
whether mycobiont and photobiont populations require different sampling strategies. Here, I applied
rarefaction methods to a dataset containing three microsatellite loci of Lobaria pulmonaria and three
microsatellite loci of its green-algal photobiont, Dictyochloropsis reticulata. 1 analysed the sample sizes
required for 1) the number of individuals per population, 2) the number of individuals required across
a landscape and 3) the number of populations. The analyses were performed separately for the
mycobiont and photobiont loci to detect any differences in the accumulation of genetic diversity
among the symbionts that would require different sampling schemes. About 20 individuals were
sufficient at the population level; within landscapes, 300-400 samples and about 25-30 populations
covered most of the allelic diversity. The results indicated that a slightly higher sampling effort was
required for the photobiont than for the mycobiont. The optimal sampling strategy strongly depends
on the research question, the spatial scale of investigation, and the type of analysis to be performed with
the data.
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Introduction trees or rocks, within a landscape, as a ‘popu-
lation’. Often, researchers make implicit as-
sumptions about sample sizes (Dixon 2006),
but these are rarely stated, let alone tested
(but see Zoller er al. 1999; Printzen ez al.
2003; Lindblom 2009). One factor calling
for large sample sizes is the haploid nature of
most lichen-forming fungi, implying that
only one gene copy is sampled per individual,
as opposed to two gene copies in diploid
species. Population genetic statistics depend
on the number of gene copies, and thus,
haploid organisms would theoretically re-
quire a sampling scheme twice as intensive as
that of diploid organisms. However, sample
sizes are in practice limited by time, budget
and other constraining factors, and it may for
these reasons not be desirable to employ
larger sample sizes than strictly necessary.
Sample sizes vary considerably among the
existing population genetic studies of lichen-
forming fungi, for instance with respect to

Population genetic studies of lichens that
compare fungal and algal patterns are par-
ticularly interesting because they may tell us
how intimately the partners of the symbiosis
are tied together and whether their genetic
structures are truly coupled, or whether they
become uncoupled during the life history of
one partner (Piercey-Normore 2006; Yahr
etal. 2006; Werth 2010; Werth & Sork 2010;
Wornik & Grube 2010).

Population genetic analyses, and in par-
ticular those that compare the patterns of
genetic variation among symbionts, or across
populations of a single species require a sam-
pling effort assuring that a representative part
of the genetic variability has been included.
Here, I refer to the individuals sampled
within a single site, for example a group of
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the number of populations investigated: 4
(Werth & Sork 2008), 5 (Littman ez al.
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2009), 7 (Lindblom & Ekman 2006, 2007),
12 (Walser ez al. 2005), 12 and 27 (two
species investigated, Wornik & Grube 2010),
or 41 (Werth ez al. 2006, 2007); or the total
sample size: 72 (Werth & Sork 2008, 2010),
85 (Lattman et al. 2009), 225 (Lindblom &
Ekman 2006), 230 (Lindblom & Ekman
2007), 290 (Piercey-Normore 2006), 539
(Wornik & Grube 2010), 565 (Walser et al.
2005), or 889 (Werth er al. 2006, 2007).
Moreover, there are also major differences in
the number of samples analysed per popu-
lation: 7-15 (Wornik & Grube 2010), 15-18
(Lattman ez al. 2009), 18 (Werth & Sork
2008), 25-33 (Lindblom & Ekman 2006),
31-34 (Lindblom & Ekman 2007), 3-41
(Werth et al. 2006, 2007), and 32-52
(Walser ez al. 2005).

A recent study by Lindblom (2009) inves-
tigated the haplotype diversity and sample
sizes in the lichen-forming fungus Xanthoria
parieina (L.) Th. Fr. using rarefaction
methods, and found that a sample of about
30 thalli per population included a substan-
tial part of the genetic variability at the popu-
lation level. Open questions are whether this
suggested number is 1) similar for taxonomi-
cally distant lichen-forming fungi, 2) similar
for marker types other than DNA sequences,
and 3) high enough to characterize the gen-
etic variability of photobiont populations, or
if photobiont populations require a different
sampling strategy.

Rarefaction analyses may shed light on
these questions. They allow one to infer the
smallest sample size at which the slope of
the rarefaction curve showing a cumulative
diversity measure (e.g., the number of
alleles) reaches zero. Once the asymptote has
been reached, increasing sample sizes is
unlikely to add new alleles. Rarefaction has
previously been employed in population
genetic studies of lichen-forming fungi to
investigate the completeness of haplotype
sampling in Cavernularia hultenii Degel.
(Printzen er al. 2003), Lobaria pulmonaria
(L.) Hoffm. (Zoller ez al. 1999) and X. pari-
etina (Lindblom 2009).

Here, rarefaction analyses are performed
to evaluate the number of samples required
to characterize the allelic diversity in popula-
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tions of lichen-forming fungi and their photo-
bionts, taking advantage of an existing data set
for the epiphytic lichen Lobaria pulmonaria
(Werth er al. 2006, 2007) and its photobiont,
Dicryochloropsis reticulata (Tschermak-Woess)
Tschermak-Woess. Rarefaction analysis is
used to determine whether the required
sample sizes differ for fungal and algal popu-
lations, both with respect to the number of
samples within populations and within a
landscape, and for the number of popula-
tions. Moreover, I discuss and recommend
sample sizes for future population-level
studies of lichen-forming fungi and their
photobionts.
The questions that I explore are:

1) How many individuals should optimally
be sampled per population? Is the number
of individuals different for mycobiont and
photobiont populations? How many indi-
viduals in total should be sampled so that
genetic diversity is accurately represented
at the landscape scale?

2) How many populations should be in-
vestigated in population genetic studies
of lichen-forming fungi and their photo-
bionts?

Materials and Methods

Data set

The data has previously been published and has
been described in detail by Werth ez al. (2006, 2007).
Briefly, it consists of a total of 889 thalli of Lobaria
pulmonaria genotyped at six nuclear microsatellite loci.
The thalli were sampled from 41 sites (i.e., plots of 1 ha)
located in a pasture-woodland landscape in north-
western Switzerland. Recently, Widmer ez al. (2010)
re-evaluated the specificity of the microsatellite loci
developed for L. pulmonaria (Walser er al. 2003) and
they found that the loci LPul6, LPu20, and LPu27 were
specific to the photobiont of L. pulmonaria, Dictyochlo-
ropsis reticulata. Therefore, the existing data set offers the
unique opportunity to test whether the required sam-
pling intensities differ for mycobionts and photobionts
of L. pulmonaria.

Data analysis

First, rarefaction analyses were performed for popu-
lations of L. pulmonaria. Rarefaction curves show the
cumulative number of randomly sampled species (here,
microsatellite alleles) with an increasing sample size.
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The purpose of the rarefaction analyses was to depict the
cumulative number of alleles drawn with each sampled
individual, and thus to reveal the relationship between
genetic diversity and sample size. Once the rarefaction
curves flatten off, additional sampling is unlikely to
add new alleles. All monomorphic populations were
removed. Moreover, to enhance comparability of the
sampling among populations, populations where fewer
than three trees had been sampled were excluded;
additionally, populations with low sample size (<20
individuals) were omitted. These constraints removed a
total of 15 populations: seven monomorphic popula-
tions, seven populations with low tree-scale sampling,
and one population with only 17 samples. The popula-
tions where less than three trees had been sampled
contained few genotypes (2 genotypes in 6 populations,
3 genotypes in 1 population). In total, 26 populations
were included.

To estimate the completeness of haplotype sampling
in phylogeographic studies, a Bayesian method has been
developed which assumes random distribution of haplo-
types and equal haplotype frequencies (Dixon 2006).
These assumptions are unlikely to be met at small spatial
scales (i.e., at the landscape level or within populations)
or in the case of isolation by distance (Dixon 2006); in
these cases, rarefaction analyses are more appropriate.

As suggested by Lindblom (2009), the function
‘rarefy’ which is included in the package ‘vegan’
(Oksanen 2005) was used for these individual-based
rarefaction curves (Gotelli & Colwell 2001), where indi-
viduals were resampled separately within each of the
26 populations. The function returns the expected
species richness (here, expected number of alleles) in
random subsamples of a desired size (Hurlbert 1971).
The resampling was performed in R version 2.7.1 (R
Development Core Team 2008).

Second, to evaluate whether the sampling of individ-
uals was complete at the landscape level, that is across
the entire set of 41 populations collected within a single
forested landscape with a maximum distance of 3-7 km,
‘species accumulation curves’ (Gotelli & Colwell 2001)
were calculated using EstimateS version 7.5.1 with 500
runs, randomly sampling from the 889 L. pulmonaria
individuals across the landscape without replacement.
Sops Was the cumulative number of alleles, averaged
across the 500 runs.

Third, species accumulation curves were also utilized
to determine the number of populations to reach satu-
ration of allelic diversity. In this case, all 41 populations
of L. pulmonaria were sampled randomly; the cumula-
tive number of alleles (S.,,) was counted and averaged
over 500 runs. S, and the individual-based resampling
curves measured the richness of a subsample of the pooled
total richness, based on all alleles discovered; non-
sampled alleles were not considered in these analyses.

When using rarefaction methods, the expected
number of species is calculated through the resampling
of a data set with a finite number of species. The maxi-
mum value of a rarefaction curve thus equals the
observed number of species, and is reached once all
samples have been drawn in the random sampling
process. In contrast, statistical parametric and nonpara-
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metric estimators of richness seek to estimate total
species richness, including species (here, alleles) which
have not been sampled. I calculated two nonparametric
estimators of ‘species’ (i.e., allelic) richness, the classical
richness estimator Chaol and the abundance-based
coverage estimator ACE using the software EstimateS.
The Chaol richness estimator quantifies richness based
on the assumption that rare species inform about miss-
ing ones. Species observed once or twice are used to
estimate the number of missing species (Chao 1984).
The ACE estimates species richness using a sample-
coverage estimate (Chao & Lee 1992). In the calculation
of ACE, ‘rare’ (<10 occurrences) and ‘abundant’
species are separated. For the abundant species,
presence/absence information is used because they
would be detected no matter what. The number of
missing species is based on the exact frequencies of rare
species (Chao 2005).

Results

All rarefaction analyses indicated that the
genetic variability of algal and fungal popula-
tions was of a comparable magnitude, that is
there were no major differences in allelic
diversities among photobiont and mycobiont
microsatellite loci (Figs 1-3). Four individ-
ual loci showed a particularly high variability,
for example, the mycobiont locus LLPu09 or
the photobiont locus LPu20. The diversities
of two other loci was particularly low
(LPu03, mycobiont; LLPu27, photobiont)
(Figs 2 & 3). For the two loci with the lowest
variability, the curve reached an asymptote at
comparatively low sample sizes (15-20 indi-
viduals per population; 50-100 individuals
sampled all across the landscape; c¢. 5-7
populations). For the fungal locus LPu09,
saturation was reached within about 20
samples for the majority of populations.
However, the two algal loci LPul6 and
LPu20 and the fungal locus LPul5 did not
reach saturation for the majority of popula-
tions, indicating that increased sampling
effort could potentially have revealed a sub-
stantial number of alleles.

Indeed, for the fungal locus LPul5 and
the photobiont loci LPul6 and LLPu20, in-
creased sampling effort might add 2-5-3-0%,
1-9-8-9% and 18-7-41-3% new alleles, re-
spectively, as revealed by the nonparametric
estimators of total richness ACE and Chaol
(Table 1). For the remaining loci, increased
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F1G. 1. Rarefaction curves for microsatellite alleles from 26 populations of Lobaria pulmonaria. A — C, fungal loci
LPu03, LPu09, and LPul5; D —F, algal loci LPul6, LLPu20, and LPu27. The analysis was performed by rarefaction

of alleles within populations. Algal loci (-++++*- ); fungal loci

sampling effort was unlikely to detect new
alleles.

At the landscape level, loci reached satura-
tion after about 400 individuals, with the
exception of the high diversity locus LPu20
(Fig. 2). However, when resampling popula-
tions, only the two loci with the lowest diver-
sity (i.e., LPu03, LPu27) reached saturation,
while all other loci showed a more or less
continuous increase in allelic numbers with
the number of populations, implying that

).

more than 41 populations would be required
for a complete sampling of the allelic diver-
sity of photobionts and mycobionts in the
studied landscape (Fig. 3).

Discussion

The main purpose of this work was to
estimate whether the sampling intensities
required to characterize allelic diversity dif-
fered among mycobiont and photobiont
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F1G. 2. Allelic accumulation curves, analogous to “species accumulation curves” sensu Gotelli & Colwell (2001),

showing the mean cumulative number of alleles (S,.,) of Lobaria pulmonaria or its photobiont from 500 replicate

runs, relative to the number of individuals sampled across the landscape. Algal loci (broken lines); fungal loci (solid
lines).
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F1G. 3. Allelic accumulation curves, analogous to “species accumulation curves” sensu Gotelli & Colwell (2001),
showing the mean cumulative number of alleles (S,,,) of Lobaria pulmonaria or its photobiont from 500 replicate
runs, relative to the number of sampled populations. Algal loci (broken lines); fungal loci (solid lines).

populations, using the example of the epi-
phytic lichen Lobaria pulmonaria. 1 found
that while overall diversity patterns were
similar among photobiont and mycobiont, it
appeared that the photobiont required a
slightly higher sampling intensity than the
mycobiont with respect to sampling within
populations.

The sampling underestimated the total
number of alleles in particular in the photo-
biont. Due to the high polymorphism of two
photobiont loci (LPul6, LPu20), additional
sampling might have revealed a substantial
increase in the number of alleles, highlighting
that photobionts of L. pulmonaria exhibited a
higher genetic diversity than the mycobiont.
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TABLE 1. Number of alleles observed (Nr. alleles) and nonparametric estimators of allelic diversity (ACE, Chaol) in
microsatellite loct of Lobaria pulmonaria (LPu03, LPu09, LPul5) and its photobiont (LPul6, LPu20, LPu27)

Locus Nr. alleles ACE* Miss_ACEft Chaol* Miss_Chaolf
LPu03 4 4-0 0 4-0 0
LPu09 20 20-0 0 20-0 0
LPul5 16 16-4 2:5 16-5 3-0
LPulé6 13 14-3 89 133 1-9
LPu20 27 332 18-7 46-0 41-3
LPu27 6 6-0 0 6-0 0

“ACE and Chaol give the estimated total number of alleles.
TMiss_ACE and Miss_Chaol give the percentage of alleles for the ACE and Chaol estimators which might be

revealed with additional sampling.

In contrast, in the loci with low variability,
the resampling curves flattened off early due
to the lack of rare alleles. If the aim of a study
were to recover as many alleles in a popu-
lation as possible, then the sampling effort
required to achieve this would need to be
higher for the photobiont than for its myco-
biont partner. To infer the pattern of genetic
differentiation among populations situated
within a landscape or a region, about 25-30
populations should be a large enough
number to characterize a substantial part of
the genetic variability of both fungal and algal
populations. However, for most of the highly
variable microsatellite loci, for an exhaustive
sampling of alleles, a far larger number of
populations would be required (i.e., >40),
similar for algal and fungal loci. At the land-
scape scale, 300—-400 individuals seem to be
sufficient to sample the majority of alleles in
L. pulmonaria and its photobiont. Within
populations, photobiont populations require
a slightly larger sampling effort (at least 30
individuals) than fungal populations (about
20 samples). Interestingly, the number in-
ferred for the fungi does not seem to depend
on the marker type. Zoller ez al. (1999) con-
ducted resampling of DNA-sequence haplo-
types of the combined ITS and LSU regions
for samples collected from my study area
(Marchairuz); within 22 thalli, an asymptote
had been reached in this population, a
number which is similar to that found for the
far more variable microsatellite markers in
the present study. Moreover, the required
number is of a comparable magnitude rela-

tive to that of about 30 individuals per popu-
lation recommended by Lindblom (2009) for
populations of Xanthoria parietina, deter-
mined using DNA-sequence haplotypes. My
overall recommendation is therefore to use at
least 30 individuals per photobiont popu-
lation, and at least 20 individuals per fungal
population, whenever funding and time per-
mit. From the study of Printzen ez al. (2003),
who used DNA sequence haplotypes, it be-
comes obvious that far more individuals are
required to resolve regional-scale haplotype
diversities. For instance, in the Pacific
Northwest, even after sampling 200 samples,
the inclusion of additional individuals con-
tinued to add new haplotypes.

It is important to note that if the aim of
a study is a comparison of photobiont and
mycobiont genetic structures or diversities,
it is most appropriate to sample the same
number of individuals, and use the exact
same thalli for genetic sampling of photo-
bionts and mycobionts. In this particular
case, analysis of photobionts and mycobionts
from 30 thalli is recommended. Tied fungal-
algal allelic data are optimal because they
allow the exclusion of any differences
found that are merely due to dissimilar or
unbalanced sampling in space. It is unlikely
that the sample sizes recommended above
would be sufficient for areas which host a
larger genetic diversity than the Central
European biota investigated in the present
data set that still exhibit strong signs of the
depauperating effects of the Quaternary gla-
ciations (Hewitt 1996, 2000). More studies
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should be performed to test whether the
sample sizes recommended here also hold for
other geographic regions.

While I intended to give some recommen-
dations for future studies on the approximate
number of samples required to depict accu-
rately allelic variability in populations of
lichen-forming fungi and their photobionts,
I would like to emphasize that sample sizes
for population genetic studies ultimately
depend on the aim of the study, the research
question, the spatial scale of interest, and on
the type of analysis to be applied to the data.

For instance, the analysis of fine-scale
spatial genetic patterns requires particularly
large sample sizes at the population level
(Wagner ez al. 2005; Werth ez al. 2006). If the
aim of a study is to resolve the fine-scale
probability of clonal identity (e.g., among
branches of a tree), or fine-scale gene diver-
sity, then the sample size recommended
above might be on the lower end. In these
cases, it would be desirable to considerably
increase the number of individuals sampled
within a population, and sample fewer popu-
lations. For instance, studies of fine-scale
genetic structure typically sample more than
100 individuals from one or very few popu-
lations for plants (Chung ez al. 2005; Dutech
et al. 2005; Jones ez al. 2006; Yamagishi er al.
2007) or fungi (Linde er al. 2002). The re-
quired sampling effort critically depends on
the spatial scale of interest. Thus, if a com-
parison among forest patches colonized by a
lichen is intended, a different (and spatially
less exhaustive) sampling scheme will be
necessary than if subpopulations of a lichen
occupying different branches within a tree
are to be compared. If the aim is to resolve
the rangewide patterns of genetic differentia-
tion in a species, few individuals per popu-
lation would suffice (e.g., 3—10), but many
populations should be sampled across the
entire range.

Allele-frequency based statistics such as
classic F-statistics that measure genetic dif-
ferentiation among populations do not re-
quire all alleles in a population to be sampled.
Instead, they require a random sample drawn
from the population, large enough to be rep-
resentative of the allele frequency (Balding
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etal. 2007). Under an allele frequency frame-
work, within-population sample sizes may be
smaller than recommended above, but it
needs to be considered that larger sample
sizes increase the statistical power to detect
significant differentiation.

It is also noteworthy that for hierarchical
analyses of molecular variance (AMOVA),
a widely used technique to partition the
genetic variance across various hierarchical
levels, it is generally advisable to increase the
number of populations sampled per group,
relative to the number of individuals sampled
per population (Fitzpatrick 2009). The aim
of a hierarchical AMOVA is usually to test for
differentiation among several groups of
populations. Due to the nature of the permu-
tation process used to test for statistical sig-
nificance, sampling more individuals per
population does not increase the statistical
power of a hierarchical AMOVA at the group
level (Fitzpatrick 2009). Fitzpatrick (2009)
presents an R script to determine the power
of AMOVA for any hierarchical sampling
scheme, which might be very useful for study
design.

Also analyses that are based on the coales-
cent do not require complete sampling of
alleles. On the contrary, in many situations it
may not be advisable to use a large number of
samples per population for such analyses;
few samples per population but many loci are
often a far better choice (Nordborg 2001).
Also, most coalescent-based methods do not
advise the employment of a large number of
populations, as the analyses may become
increasingly computationally intensive, while
adding little information (Nordborg 2001).
For instance, to estimate the number of
migrants with the software MIGRATE-n
(Beerli & Felsenstein 2001), it is not advis-
able to use more than about 8 populations,
and 30-50 individuals per population are
usually sufficient (P. Beerli, personal com-
munication).

Nested Clade Analysis (Templeton 1998),
a method that has been widely used in
phylogeographic studies, is sensitive to
sample size and the completeness of haplo-
type sampling. Here, large (at best range-
wide) geographic areas and as many
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populations as possible should be sampled to
increase statistical power, whereas sample
sizes within populations do not need to be
large (Templeton 1998, 2004).

Ultimately, the optimal sample sizes for
population-genetic analyses of photobionts
and mycobionts depend on the research
question in mind and on the analytical frame-
work to be applied to the data.
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discussions. The project was funded by the Swiss
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