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Detecting Liquidity Traders

Avner Kalay and Avi Wohl∗

Abstract

We develop a measure (based on the relative slopes of the demand and supply schedules)
quantifying the asymmetric presence of liquidity traders in the market: a steeper slope of
the demand (supply) schedule indicates a concentration of liquidity traders on the demand
(supply) side. Using the opening session of the Tel Aviv Stock Exchange, we demonstrate
the predictive power of our measure. Consistent with theory, we find that the concentration
of liquidity traders on the demand (supply) side is negatively (positively) correlated with
future returns. We find that liquidity traders are likely to arrive at the market together
(commonality).

I. Introduction

The interaction between providers of liquidity and liquidity traders is a cen-
tral theme in market microstructure models. While there is no generally accepted
definition for “liquidity traders,” in many cases this term refers to investors that
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trade for reasons other than private information. As such, liquidity traders’ market
activity is assumed to push security prices temporarily away from their fundamen-
tal value. Providers of liquidity, on the other hand, are typically assumed to have
a superior ability to absorb liquidity shocks or to have better information. In this
paper we develop a measure of the liquidity pressure (buy or sell side) in call
auctions. We demonstrate the predictive power of our measure using a unique
database of all the orders submitted to the opening session at the Tel Aviv Stock
Exchange (TASE).

The noisy rational expectations equilibrium (NREE) models of Hellwig
(1980), Kyle (1989), Admati (1985), and Easley and O’Hara (2004) are suitable
for analyzing call auctions. In these one-period models, investors having differ-
ent information react to an exogenous demand/supply shock. The supply/demand
shock in these models is usually viewed as a representation of the effects of the
trading behavior of liquidity traders that do not condition their trades on market
prices. In other words their demand and supply schedules are infinitely inelastic.
In contrast, the informed traders submit a price-sensitive excess demand schedule.

As a prototype for these models, we examine Hellwig (1980). We sepa-
rate the excess demand schedules into demand and supply curves and develop
a measure of the asymmetric presence of informed traders around the equilibrium
price:

M( p) =
|D′( p)|

S′( p) + |D′( p)| .

The idea is very simple. By assumption, only the informed traders submit price-
sensitive demand and/or supply schedules. The aggregate demand (supply) sched-
ule of the informed traders is the horizontal sum of the individual demand (supply)
curves of the group. If more informed traders are on the demand (supply) side,
the aggregate demand curve of the informed investors is flatter than the aggregate
supply (demand), resulting in a larger M. At the extreme, when M = 1(0), all
the informed investors value the asset by more (less) than the price. Hence, when
M =1(0), all the informed traders are on the buy (sell) side. An equal distribution
of the informed investors between the demand and supply sides results in M=0.5.
Clearly, while M represents the asymmetric presence of informed investors in the
opening call, it reveals the inverse asymmetric presence of the liquidity traders as
well. We estimate a linear transformation of M, BP = 1 − 2M. BP (buying pres-
sure) measures the liquidity BP in the market. When BP = 1(−1), all the buyers
(sellers) are liquidity traders. Based on the above models, we expect BP to be
negatively correlated with future price changes.

It is important to emphasize that we can derive a similar measure in models,
such as Madhavan and Panchapagesan (2000), with symmetric information among
the informed traders, where the differences among them arise from differences
in initial inventories. Therefore, the liquidity providers need not have private
information. Our BP measure relies on the differences of demand elasticity
between “liquidity traders” and the other traders. The “liquidity traders” are as-
sumed to have inelastic demand/supply, while the other investors have elastic
demand/supply. Though this dichotomy, of course, takes the differences between
traders to the extreme, it is nevertheless reasonable to expect differences between

https://doi.org/10.1017/S0022109009090085  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109009090085


Kalay and Wohl 31

price sensitivity of liquidity investors and other investors (as is assumed in many
models). The difference in price sensitivity of demand/supply may arise from dif-
ferences in information accuracy, risk aversion, or hedging possibilities. In many
models, less information, more risk aversion, and less hedging possibilities are
related to less price-sensitive demand.

To examine the predictive power of our measure, we use a unique database
obtained from the TASE that includes all orders submitted to the opening ses-
sions, which, like the opening at Tokyo, Euronext, and many other exchanges, are
conducted as call auctions. Investors submit buy and sell orders to the opening
call auction between 8:30 AM and 10:00 AM. At 10:00 AM the opening price is
set at the intersection of the supply and demand schedules. Our sample consists
of the 105 most active stocks on the TASE. The period investigated is January 25,
1998, to September 28, 1998 (167 trading days).

For each stock in our sample, we run a time-series regression of its return
from open to close as a dependent variable on the stock’s BP, estimated around
the opening auction price. Consistent with our empirical implications, the coeffi-
cients of BP in each of the 105 regressions are negative. The t-statistic of the series
of the BP coefficients is −26.74 and the average adjusted R 2 of the regressions is
0.112. Our measure of the liquidity BP remains significant in explaining the next
period return when the lagged return (LR) is added to the regression as an explana-
tory variable. Moreover, we find that the equally weighted average of the BPs of
our sample stocks predicts the future return of the stock index. We document a
correlation of 0.42 between the equally weighted average BP and the stock index
future return. In contrast, we find no such predictive ability for the stock index
LRs. While many studies investigate return serial correlation, we use the call
environment to investigate additional information: the slopes of the demand and
supply curves. This is somewhat in the spirit of papers that use volume and return
as predictors of future return (see, for example, Campbell, Grossman, and Wang
(1993), Llorente, Michaely, Saar, and Wang (2002), and a literature survey there).

The assumption that liquidity traders do not condition their demand/supply
on prices is not common to all the microstructure models. For example, in Glosten
and Milgrom (1985), liquidity traders are given utility functions and can choose
not to trade. Our data enable an empirical examination of this issue. A submission
of a market order to an opening call auction is equivalent to having a completely
inelastic demand/supply. If liquidity traders submit market orders to the call auc-
tion (i.e., have completely inelastic demand/supply), we expect a larger fraction
of buy market orders than sell market orders to reveal the presence of liquid-
ity traders on the demand side and to be followed by negative returns. Note that
market orders play a completely different role in continuous trading.1 In such a
trading environment, market orders are executed immediately against the best bid
or ask. Hence, submitting a market order in the continuous trading stage is not an
indication of willingness to buy/sell at any price. In continuous trading, market
orders are executed immediately against the best bid or ask and as such they

1See, among others, Kaniel and Liu (2006), who analyze theoretically and empirically the order
type placement decision of informed traders, and Bloomfield, O’Hara, and Saar (2005), who find in
lab experiments that liquidity traders as well as informed traders use both market and limit orders.
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do not reveal the maximum (minimum) price the buyer (seller) is willing to pay
(receive). In contrast, submitters of the largest possible limit order in call auctions
(our estimate of a market order in such a trading environment) will trade at the un-
known equilibrium price, and hence reveal their willingness to trade at any price
up to the limit price.

To examine the effects of market orders submitted to a call auction, we run
a time-series regression of the returns from the opening to the closing of the day
as a dependent variable and the fraction of buy (ZD) and sell (ZS) market orders
out of the total volume as an explanatory variable for each stock in the sample.2

Consistent with the assumption of demand inelasticity of liquidity trades, we find
significantly negative (positive) coefficients for ZD (ZS). The average adjusted R 2

of these regressions, however, is 0.065—lower than the 0.112 documented when
BP is used as an explanatory variable.

Though the empirical evidence presented thus far indicates that liquidity
traders use market orders in the opening call auction, to argue that they are com-
pletely insensitive to price, one needs to demonstrate that they use only market
orders. To investigate this issue, we add the fraction of aggressive limit orders,
with a limit price 5% to 9.5% different from the previous closing price, as an ex-
planatory variable. We find that aggressive limit orders predict future returns just
as well as market orders. Thus, our evidence indicates that liquidity traders should
be modeled as somewhat price sensitive. The alternative assumptions concerning
the price sensitivity of the liquidity traders do not affect our new measure, BP,
however, as it is estimated around the equilibrium price.

We document commonality in BP: the contemporaneous BPs of individual
stocks are positively correlated. The evidence from our measurement of common-
ality in the behavior of the liquidity traders indicates that the presence of liquidity
buyers (sellers) in some stocks is correlated with the contemporaneous appear-
ance of liquidity buyers (sellers) in the other stocks.

Finally we find a contagion effect. The future return of stock i is predicted
by the equally weighted average of the BPs of all the other stocks, in addition to
its own BP. This relation is statistically significant, though it has a small effect on
the explanatory power of the regression.

The empirical evidence on the information content of the demand curve
is very limited. Kandel, Sarig, and Wohl (1999), in an analysis of 27 Israeli
IPOs conducted by non-discriminatory auction, find that a flatter demand curve
(revealed immediately after the auction) is associated with a subsequent price in-
crease. Their interpretation of this finding is similar to ours. A flat (more elastic)
demand curve conveys to market participants that the current price of the asset is
based on more precise information. In the same spirit, Liu, Wei, and Liaw (2001)
find a positive correlation between elasticity of demand and abnormal return in

2In our sample period, TASE limits the overnight return (from last closing) to |10%|. Furthermore,
a limit order with a price differing by |10%| from the previous close has priority over market orders.
Since market orders during the opening sessions are dominated by such limit orders, we rarely observe
them. Consequently, we classify a limit order at 9.5%–10% above or below the last closing as a market
order. We include limit orders with a limit differing from the last closing by as little as 9.5% because
the tick size can be as large as 0.5%.
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discriminatory IPO auctions in Taiwan. Madhavan and Panchapagesan (2000) in-
vestigate the opening sessions at the New York Stock Exchange (NYSE), where
the specialist may add orders after observing the book. In their model, there are
two sources of price noise: informed investors’ initial endowments and liquidity
shocks of other investors. By assumption, liquidity traders use market orders.
Therefore, by observing market orders, the specialist may detect price “noise”
associated with liquidity traders. The empirical evidence indicates that specialist
intervention in the market has the effect of pushing the market prices toward the
expected future price (based on previous closing price and market order imbal-
ance). This is consistent with the notion that demand and supply curves convey
information about future prices. Cornelli and Goldreich (2001), investigating the
book-building process in Britain, find that investors submitting limit orders tend
to get more favorable stock allocations than those who submit market orders.
This is consistent with the hypothesis that informed investors submit limit orders;
they are induced to reveal their private information by the favorable allocation.
Using the same database, Cornelli and Goldreich (2003) find that a concentra-
tion of orders around the equilibrium price (a more elastic demand) is positively
correlated with aftermarket returns. Biais, Hillion, and Spatt (1999), investigat-
ing the opening sessions at the Paris Bourse, find that as the opening gets closer,
the indicative prices become more informative. This is consistent with a learning
process.

Our empirical findings highlight the importance of further investigating the
effects of trading transparency,3 the potential importance of which is also evi-
denced by the recent decision of the NYSE to sell the real-time book and by the
willingness of market participants to purchase it.

The paper is organized as follows. Section II contains the theoretical back-
ground. Section III describes the market structure of the TASE and the data.
Section IV presents the predictability of future returns based on our proxies for
the asymmetric presence of liquidity traders in the market. Section V investigates
the commonality of liquidity. Section VI concludes the paper.

II. Theoretical Background

This section restates Hellwig (1980) and derives testable empirical implica-
tions.4 Hellwig’s model describes equilibrium in a market where traders possess
different pieces of information about a risky asset. There is a random component
to the supply of this risky asset that induces “noise” in its price.

3See Rindi (2008) for a theoretical analysis of the implications of pre-trade transparency and see
Boehmer, Saar, and Yu (2005) for an empirical analysis of the effects of making the NYSE limit order
book publicly available in real time. For a survey on the issue of trading transparency, see Madhavan
(2000).

4Hellwig’s (1980) model has become a significant and integral part of financial economics and has
been extended and modified in many papers. For example, Admati (1985) extends Hellwig’s model
to deal with multiple assets, Kyle (1989) extends it by relaxing the assumption of price taking and
by adding uninformed speculators, and Grundy and McNichols (1989) investigate the price revelation
through time.
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The model assumes the existence of an infinite supply of a riskless asset that
pays with certainty one unit. In addition, there is a risky asset that pays x̃. The
time lapse between trading and asset payoff is negligible. There are two types of
traders: n informed traders (denoted j = 1, . . . , n) and an unspecified number of
liquidity traders. Each informed trader observes a noisy signal of x̃:

(1) ỹj = x̃ + ε̃j.

The initial endowment of each informed trader is W0j of the riskless asset. Every
informed trader’s utility is based on Wj, the total wealth after trading,

(2) U (Wj) =−e−ρWj,

where for simplicity we assume that ρ, the coefficient of risk aversion, is equal
for all traders. The informed traders are “price takers.”

The total net supply of the liquidity traders is Z (a negative number denotes
demanded quantity). For simplicity, we assume that the expected net supply of the
liquidity traders, EZ̃, equals zero.

The random vector (x̃, Z̃, ε̃1, . . . , ε̃n) has a normal distribution with mean
(μx, 0, . . . , 0) and a variance-covariance matrix (σ2, Δ2, S2, . . . , S2) In+2, where
In+2 is the (n + 2)-dimensional identity matrix. For simplicity we assume that each
of the informed traders receives an equally precise signal.

Each investor may submit an excess demand function, Qj ( p), to the trading
mechanism. The functions specify the supplied or demanded quantity for each
possible price (negative numbers denote supplied quantities). By assumption, the
liquidity traders send orders that are not conditioned on price. The equilibrium
price, p∗, satisfies the condition of market clearing—total supply equals total
demand. Hellwig’s model does not provide the economic rationale behind the
assumption of “noisy” supply. In this paper, we interpret “noise” as the random
element added to the economy due to the supply/demand of liquidity traders.

A. The Equilibrium

The assumption of an exponential utility function creates linear net demand
functions for the informed traders. The net demand function of each informed
trader, j, is

(3) Qj ( p) =
E(x̃|yj, p)− p
ρVAR(x̃|yj, p)

.

The key point is that traders base their estimate of the value of the risky asset on
their own private signal as well as on its market price. Hellwig (1980) shows that
there is an equilibrium in which for every 1 ≤ j ≤ n,

(4) Qj ( p) = K[(1− A) μx + Ayj − p)] ,
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where A and K are parameters dependent on the values of n, ρ, σ, Δ, and s.5

The equilibrium requires
∑n

j=1 Qj( p∗)= Z̃, and therefore the equilibrium price is

(5) p∗ = (1− A)μx + A¯̃yj − 1
nK

Z̃.

To understand the equilibrium equation, denote

(6) uj = (1− A) μx + Ayj.

This is a weighted average of the signal investor j received and the unconditional
expected value of x̃, μx. We refer to this variable as the “valuation of investor j.”
Therefore, the net demand function may be represented as

(7) Qj ( p) = K (uj − p) .

It can be shown that K, the slope of the function, is decreasing in the risk-aversion
coefficient, ρ, and in the variance of x (conditional on trader signal and the price).
The equilibrium price, p∗, is a weighted average between the unconditional ex-
pected value of the risky asset μx and the average of the private signals, minus the
“noise” term associated with Z (the net supply of the liquidity traders):

(8) p∗ = ūj − Z̃
nk
.

The derivation of the empirical implications requires a separation of the net de-
mand functions into their components—demand and supply. For every 1 ≤ j ≤ n,

(9) Qj( p) = Dj( p)− Sj( p),

where

(10) Dj ( p) = Max [0, K (uj − p)], Sj ( p) = Max [0, K ( p− uj)] .

Lemma 1.

A. If uj > p, then D′j ( p) = − K and S′j ( p) = 0.

B. If uj = p, then D′j ( p)− = −K, D′j ( p)+ = 0, S′j ( p)− = 0, and S′j( p)+ = K.

C. If uj < p, then D′j ( p) = 0 and S′j ( p) = K,

where D′j ( p) and S′j ( p) denote derivatives and D′j ( p)− and S′j ( p)− denote deriv-
atives for price decrease and D′j ( p)+ and S′j ( p)+ denote derivatives for price
increase.6

Proof. Directly from (10).

Similarly we separate the net supply of the liquidity traders:

(11) Z = ZS − ZD,

where ZS (ZD) is the liquidity traders’ supply (demand).

5A and K are obtained by solving the nonlinear equation set 7 in Hellwig’s model.
6D′(p)+ = lim

h→∞, h>0

D( p + h)−D( p)

h and D′( p)− = lim
h→∞, h<0

D(p + h)−D(p)

h .
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We demonstrate that the shape of the demand and supply schedules contains
information about the true value of the asset, x̃. We focus on the holding period
profit, x̃− p∗. From (5) and the definition of yj (equation (1)), it can be shown that

(12) x̃− p∗ = (1− A)(x̃− μX) + A (x̃− x̃− ¯̃εj) +
1

nK
Z̃.

Since the expected value of εj − s is zero, we get that

(13) E(x̃− p∗ |Z) = 1
nK

Z =
1

nK
(ZS − ZD) .

As nK > 0, the expected holding period return is increasing in the excess liquid-
ity supply Z = ZS − ZD. Next we construct a variable that measures the relative
number of informed traders on the “buy” side and does not require observing ZD

and ZS directly.
Let us assume for simplicity and without loss of generality that

(14) yn > · · · > y1.

Let us define D ( p) and S ( p) as the aggregate demand and supply functions,
respectively:

(15) D ( p) = ZD + D1 ( p) + · · · + Dn ( p)

and

(16) S ( p) = ZS + S1 ( p) + · · · + Sn ( p) .

Lemma 2.

A. If p > un, then D′ ( p) = 0 and S′ ( p) = nK.

B. If p < u1, then D′ ( p) =−nK and S′ ( p) = 0.

C. If uj < p < uj+1, where j = 1, . . . , n − 1, then D′ ( p) = − (n− j) K
and S′ ( p) = jK.

D. If p= uj, where j= 1, . . . , n, then

D′ ( p)− =−(n− j + 1)K, D′ ( p)+ = − (n− j)K and

S′ ( p)− = ( j− 1)K and S′ ( p)+ = jK.

Proof. See Appendix.

We can now define a measure that we use later on in the empirical investi-
gation:

(17) M( p) =
|D′( p)+|

S′( p)− + |D′( p)+| ,

where D′(p)+ denotes a derivative for price increase and S′(p)− denotes a deriva-
tive for price decrease. These derivatives are well-defined. Lemma 2 presents their
values.
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Proposition 1.

A. If p > un, then M( p) = 0.

B. If p < u1, then M( p) = 1.

C. If uj < p < uj+1, where j = 1, . . . , n− 1, then M( p) = (n− j)/n.

D. If p= uj, where j= 1, . . . , n, then M( p) = (n− j)/(n− 1).

Proof. The cases of Proposition 1 are the cases of Lemma 2. In each of the cases,
plugging the derivative values into the formula of M( p) (equation (17)) yields
M( p) values.

Corollary 1. M ( p) is a step function decreasing in p.

Corollary 2. M ( p) represents the relative number of informed investors who
value the risky asset at more than its price out of the number of investors with
a valuation (uj) that differs from the price.

The measure can be computed for any price level, but we are interested in M
at the equilibrium price p∗. Let us denote

(18) M∗ =M( p∗).

For example, M∗=1 implies an equilibrium price smaller than the valuation
of all the informed traders (u1, . . . , un). This can happen as a result of the price
pressure of a large net supply (Z) by liquidity traders. M∗ is a function of the
signals the informed investors get, yj, and the net supply, Z.

Proposition 2.

A. If Z̃ < nK(ūi − ũn), then M∗ = 0 and E( x̃− p∗) < (ūi − ũn).

B. If Z̃ > nK(ūi − ũ1), then M∗ = 1 and E( x̃− p∗) > (ūi − ũ1).

C. If nK(ūi − ũj+1) < Z̃ < nK(ūi − ũj), where j = 1, . . . , n − 1, then
M∗ = (n− j)/n and (ūi − ũj+1) < E( x̃− p∗) < (ūi − ũj).

D. If Z̃ = nK(ūi − ũj), where j = 1, . . . , n, then M∗ = (n − j)/(n − 1) and
E(x̃− p∗) = (ūi − ũj).

Proof of Proposition 2. The claims regarding E( x̃ − p∗) follow directly from
(13). Let us prove the claims regarding M∗.

From (8), if Z̃ < nK(ūi − ũn), then p∗ > ũn and according to Case A of
Proposition 1, we get M∗= 0. In the same way, using (8) and the Cases B, C, and
D of Proposition 1, we get Cases B, C, and D of Proposition 2.

Corollary 3. M∗ is weakly monotonically increasing in Z.

Corollary 4. M∗ and (x̃− p∗) are positively correlated.

In order to scale the measure such that it ranges in value between −1 and 1
and give it the interpretation of the liquidity BP, we define

BP = 1− 2M∗.

At the extreme, when BP = −1(1), the valuations of all the informed investors
are higher (lower) than the equilibrium price.

The definition of BP and Corollary 4 yield Corollary 5.
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Corollary 5. BP and (x̃− p∗) are negatively correlated.

Consequently, the model predicts a negative correlation between BP and the
holding period profit x − p∗.

The following example helps to illustrate the intuition underlying our
measures.

Example 1. Suppose there are three informed investors denoted 1, 2, and 3. Their
excess demand functions are Q3=14−p, Q2=12−p, and Q1=10−p. That is,
K = 1 and u3 = 14, u2 = 12, and u1 = 10.

Graph A of Figure 1 depicts the aggregate demand and supply schedules
derived from these excess demand functions. It can be seen that the supply curve
is concave and the demand curve is convex, the reason being that at higher (lower)
prices, more investors sell (buy) and the supply (demand) curve becomes flatter.
The equilibrium price in this example is 12. At this price, Investor 1 buys two units
from Investor 3. Following Corollary 2, M∗ quantifies the proportion of informed
investors with a valuation that exceeds the equilibrium price. In this case, there
are two investors with valuations that differ from the equilibrium price: Investor
3 values the asset more than its price and Investor 1 values the asset less than its
price. Indeed,

M∗ =M( p∗) =
|D′( p∗)+|

S′( p∗)− + |D′( p∗)+| =
|−1|

1 + |−1| =
1
2
.

Graph B of Figure 1 shows the aggregate demand/supply schedules where
liquidity demand ZD= 2 and liquidity supply ZS= 1 are added to the economy. In
this case, the equilibrium price is pushed up to 12.33. At this price, Investor 1 buys
1.67 units from both Investors 2 and 3. Observing a less steep supply curve than
the demand curve indicates that there are more informed traders on the sell side
than on the buy side. Therefore, M∗, which represents the proportion of informed
investors who value the risky asset at more than its price, is |−1|/(2+|−1|)=1/3.
BP= 1− 2∗(1/3) = 1/3 indicates that there is liquidity BP.

Graph C of Figure 1 shows the case where ZD = 8 and ZS = 1. In this case,
the equilibrium price is 14.3333,

M∗ =
|D′(14.333)+|

S′(14.333)− + |D′(14.333)+| =
|0|

3 + |0| = 0,

and BP=1. In this case the buying liquidity pressure pushes the price higher than
14. At this level, only liquidity traders are willing to buy, and all the informed
traders are on the sell side. Figure 2 presents the relation between the equilibrium
price and M∗. The figure demonstrates the negative relation between the price
and M∗.

B. Relaxing Some of the Simplifying Assumptions

We simplify Hellwig’s model by assuming that EZ̃= 0 and that all informed
traders have the same risk aversion and signal precision. Allowing for EZ̃ /= 0
adds a risk-premium term to the price of the risky asset. However, it does not
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FIGURE 1

Demand and Supply Curve

change the results concerning the information content of the demand and supply
curves. If we allow for differences among investors in their risk aversion and their
information precision, we lose the simple interpretation of M( p). In the simple
case, M ( p) measures the relative number of informed investors who value the
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FIGURE 2

An Example of the Relation between the Price and M∗

Figure 2 is based on Example 1 and illustrates the relation between the possible prices and M∗.

risky asset by more than its price. In an economy with differential risk aversion
and signal precision, M ( p) weighs each informed investor who values the risky
asset by more than its price differently. The weight given to each informed in-
vestor is inversely related to her risk aversion and positively related to her infor-
mation precision (i.e., 1/(ρjVARj(x̃|yj, p))).

Kyle (1989) extends Hellwig’s model by relaxing the assumption of price
taking and adding uninformed speculators. The result is steeper excess demand
curves and noisier price than in the competitive case. However, the linearity of
the excess demand curves still holds. Therefore, we can relax the assumption that
the informed traders are price takers without altering our results.

In Hellwig’s model, there is information heterogeneity among informed in-
vestors. Information asymmetry is not necessary for deriving M. As stated in foot-
note 1, it is possible to use a model, such as Madhavan and Panchapagesan (2000),
where the difference among informed investors is their initial endowments. The
main ingredients needed for M to detect the asymmetric presence of liquidity
traders in the market are liquidity demand/supply that is not conditioned on price
and the linear excess demand curves of the other traders.

III. Data and the Opening Stage at the TASE

A. The Opening Stage

Trading at the TASE is conducted in three stages: an opening stage (8:30 AM–
10:00 AM), a continuous bilateral trading system (10:00 AM–3:30 PM), and a
closing session in which transactions are executed at the closing price (3:30 PM–
3:45 PM). The trading system is a computerized limit order book as in the Paris
Bourse and in many exchanges around the world.7 This paper uses data on the call
auction conducted in the opening stage. During the opening session, investors

7See Kalay, Wei, and Wohl (2002) for a detailed description of the TASE market structure during
the sample period.
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submit limit and market orders. Orders can be canceled until 9:45 AM. During
the last 15 minutes of the opening stage (9:45 AM–10:00 AM) traders cannot
cancel orders affecting the projected opening price. The opening price, deter-
mined by the intersection of the supply and demand curves, is set at 10:00 AM. If
demand and supply intersect at more than one price, the exchange chooses the
price closest to the previous day’s closing price (base price). If at the opening
price the quantity demanded does not equal the quantity supplied, execution is
carried out by price and time priority. Price changes from closing to opening are
limited to |10%|.8 Hence, a buy (sell) market order is similar to a limit order at
10% above (below) the base price. Market orders have lower execution priority
than do limit orders. Therefore, submitting a buy limit order 10% above the base
price dominates submitting a buy market order. Hence the use of market orders
is rare. Orders not filled in the opening stage are automatically transferred to the
continuous trading phase with the original time priority and price limit.

There are no hidden limit orders at the TASE, and the identity of the members
submitting orders is unknown. Unlike the continuous trading session, the opening
stage does not restrict the number of shares per order.

B. The Data

We have data for the period from January 25, 1998 to September 28, 1998
(167 trading days). Our sample includes all 105 stocks traded during the entire
period by the system described in Section III.A. Our data include all the orders
placed at the TASE during the opening session for these 105 stocks. For each
order, we have the stock ID, date, time, limit price (or an indication of market
order), quantity ordered, buy/sell indication, and an indication of cancellation
(and its timing). With these data, we can precisely construct the demand and
supply curves for each share in each opening session. In addition, we have in-
formation about opening volume, opening prices, and closing prices.

Our sample consists of 15,345 transactions executed during the opening ses-
sions. The time horizon we choose for the calculation of the future return is from
the opening to the closing of the same day. On average, there are 6.3 (7.5) exe-
cuted buy (sell) orders for each stock in an opening session. The average volume
in these 15,345 transactions is 167,240 Israeli Shekels per day-stock (in the sam-
ple period, $1 ≈ 3.75 Shekels), and the corresponding average all-day volume is
1,594,096 Israeli Shekels. Summary statistics of the variables used in our analysis
are reported in Section IV. For additional summary statistics of this sample, see
Kalay, Sade, and Wohl (2004).

IV. Predicting Future Return

A. Examination of Individual Stocks

As stated in Section II, a crucial assumption underlying our predictions is
that orders come from two sources: liquidity traders and informed traders. Since

8In our sample this limit was binding in only two cases.
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markets must clear, when more liquidity traders are on the demand (supply) side,
more informed traders are on the opposite side. Thus, determining the current
net trading activity of the liquidity traders should help predict future returns. We
expect excess demand by the liquidity traders to imply excess supply by the
informed traders and to be associated with negative future returns. The exact
opposite is true for excess supply by liquidity traders. Following the analysis
of Section II, in this section we use the terminology “liquidity traders” and “in-
formed trades.” It should be noted, as in Section I, that it is possible to derive
the same empirical implications in models where the liquidity providers do not
possess private information.

We assume (see Section II) that liquidity traders’ orders are not contingent on
prices (market orders). The opening session during our sample period, however,
limits the overnight return (from last closing) to |10%|. Furthermore, a limit order
with a price differing by |10%| from the previous close has priority over market
orders. Since market orders during the opening sessions are dominated by such
limit orders, we rarely observe them. Consequently, we classify a limit order at
9.5%–10% above or below the last closing as a market order. We include limit
orders with a limit differing from the last closing by as little as 9.5% because the
tick size can be as large as 0.5%. With a tick size of 0.5%, the highest limit a buy
order can have is in the range 9.5%–10%.

We denote the volume-adjusted demand of the liquidity traders as ZD =
(the quantities in buy “market orders”)/(total volume), and the volume-adjusted
supply of the liquidity traders as ZS = (the quantities in sell “market orders”)/(total
volume).9

We find a mean ZD of 0.123 and a mean ZS of 0.232,10 indicating that our
sample is characterized by more liquidity-motivated sells than liquidity-motivated
buys.11 Our proxy of the future stock return (denoted R) is the realized return
between the opening and the closing during the same trading day.12

We expect a negative correlation between BP and future return, as it re-
presents the liquidity BP in the market. We estimate BP by defining DIFD =
the difference between the demanded quantity 0.5% below the equilibrium and
the demanded quantity 0.5% above the equilibrium; and DIFS = the difference
between the supplied quantity 0.5% above the equilibrium and the supplied
quantity 0.5% below the equilibrium. Thus, BP= 1−2×(DIFD/(DIFD+DIFS)).13

Our a priori conjecture is symmetry between buyers and sellers, implying
BP = 0 on average. We find a mean BP of −0.108, which indicates that in our

9In the few cases in which these variables are greater than 1 (in which there is partial execution
in the opening price), we limit the values to 1.

10We replicate the experiment using nonstandardized quantities of market orders. The results
obtained are qualitatively similar.

11This evidence is consistent with the findings of Kalay et al. (2004).
12The results are qualitatively similar when we use returns measured from open to open and when

we use longer horizons of two and three days.
13We use an interval of 0.5% so it includes at least one tick size from each size. We checked that

the main results of the paper described in Table 1 do not change qualitatively where BP is computed
using ±1% or ±2%.
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sample the demand curves are flatter than the supply curves. In 12.0% (16.7%) of
the cases, it has an extreme value: 1 (−1).14

We use an additional explanatory variable that has been shown to affect
future returns, namely LR, the return from the previous closing to the opening.
Transitory price changes induce negative autocorrelation in returns because they
tend to reverse (see Grossman and Miller (1988) for a theoretical model that pre-
dicts negative return autocorrelation due to liquidity shocks and see among others
Roll (1984) and Amihud and Mendelson (1987) for empirical evidence of nega-
tive autocorrelation in daily returns). Consequently, LR should predict the future
return (with negative sign). Table 1 presents summary statistics on the variables
and Table 2 presents simple correlations between the explanatory variables.

TABLE 1

Summary Statistics

Table 1 presents summary statistics of the dependent and explanatory variables of regressions (19) and (20). R is the
percentage open-to-close return. LR is the percentage return from the previous closing price to the opening price. ZD
(ZS) is the fraction of orders with price limits that are higher (lower) than the previous close by at least 9.5% out of the
opening volume. AGGRESSIVED (AGGRESSIVES) is the fraction of orders with price limits that are higher (lower) than the
previous close by at least 5% and no more than 9.5% out of the opening volume. XD = ZD + AGGRESSIVED, XS = ZS +
AGGRESSIVES. BP= 1− 2(DIFD/(DIFD + DIFS)), where DIFD (DIFS) is the difference between the quantity demanded
(supplied) at a price 0.5% below the equilibrium and the quantity demanded at a price 0.5% above the equilibrium. Our
sample consists of 15,435 observations. The sample period is 1/25/98–9/27/98 (a total of 166 days).

Mean Median Std. Dev.

R 0.697 0.161 2.322
LR −0.689 0 2.449
ZD 0.123 0 0.240
ZS 0.232 0.084 0.315
BP −0.108 −0.171 0.712
AGGRESSIVED 0.057 0 0.175
AGGRESSIVES 0.089 0 0.214
XD 0.180 0 0.293
XS 0.321 0.169 0.360

For each stock in our sample, we estimate seven versions of the following
time-series regression:

(19) Rit = αi + β1iZDit + β2iZSit + β3iBPit + β4iLRit + εit,

where stock i = 1, 2, . . . , 105 and t is day t.
Since Breusch-Godfrey tests show autocorrelated errors in some of the stocks,

we estimate the model using maximum likelihood (Yule-Walker) with five lags.15

The results are reported in Table 3.16 Regression 1 tests the predictive power of BP.

14For each of our 105 sample stocks, we compute the correlation between ZD and BP as well
as ZS and BP using the 166 trading days. As expected, the average correlation between ZD and BP
is negative (−0.263) with a t-value of −25.5. Only four out of the 105 computed correlations are
positive. The average correlation between ZS and BP is 0.335 with a t-value of 31.18. Out of the 105
correlations, 104 are positive.

15The results using regular OLS are qualitatively similar.
16While the returns of different stocks on each day are likely to be dependent, the coefficients

estimated by a separate time-series regression for each stock are in all likelihood independent. As a
robustness check, we examined a pooled regression with dummy variables for the days and dummy
variables for the stocks (see Greene (1990) for a two-way fixed effects model). The results are quali-
tatively similar to those described in Table 1.
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TABLE 2

The Correlation between the Explanatory Variables

For each of the 105 stocks in our sample, we calculate correlation coefficients between the explanatory variables of
regressions (19) and (20). Table 2 presents the averages of these series. The number of positive coefficients (out of
105) appears below the average correlations in bold font. Critical values for the binomial sign test (positive vs. negative)
are 41 and 64 (the p-value is 0.03 for the two-sided test). The t-statistics (not reported) are all greater in absolute value
than 2, except for the correlation between ZD and ZS , which is −1.38. The sample period is 1/25/98–9/27/98 (a total of
166 days).

ZS BP LR AGGRESSIVED AGGRESSIVES

ZD −0.014 0.258 0.206 −0.018 −0.035
41 101 100 35 31

ZS −0.329 −0.319 −0.076 −0.096
1 0 14 19

BP 0.319 0.193 −0.154
103 104 3

LR 0.210 −0.199
103 4

AGGRESSIVED −0.026
30

Consistent with the model, we find BP to be significantly negatively related to
future returns. The mean beta is −1.07 with a t-statistic of −26.74. Moreover, all
of the 105 estimated betas are negative.

TABLE 3

Predicting Future Returns

We estimate time-series regressions for each of the 105 stocks in our sample. The dependent variable is Rit = the return
(in percentage) of stock i measured from the opening session of trading day t to its close. The explanatory variables
are ZDit,ZSit ,BPit, and LRit (the lagged return). The estimation uses maximum likelihood (Yule-Walker) with five lags. The
numbers presented are the average coefficients across the 105 time-series regressions. The t-statistics are presented
below them in parentheses. The number of positive coefficients (out of 105) appears below the t-statistics. Critical values
for the binomial sign test (positive vs. negative) are 41 and 64 (the p-value is 0.03 for the two-sided test). The significant
values are in bold font. The sample period is 1/25/98–9/27/98 (a total of 166 days).

1 2 3 4 5 6 7

Intercept 0.640 0.485 0.472 0.484 0.369 0.365 0.458
(13.50) (12.18) (11.61) (15.96) (11.27) (10.59) (13.93)

ZD — −0.862 −0.196 — −0.329 0.124 —
(−7.28) (−1.79) (−3.16) (1.25)

15 38 36 58

ZS — 1.497 0.805 — 0.802 0.345 —
(15.01) (8.23) (9.63) (3.93)

100 87 85 72

BP −1.070 — −0.899 — — −0.700 −0.747
(−26.74) (−24.60) (−19.05) (−20.66)

0 1 1 3

LR — — — −0.301 −0.261 −0.223 −0.231
(−19.49) (−17.51) (−15.54) (−15.20)

2 4 4 3

R2 0.119 0.079 0.152 0.145 0.173 0.222 0.205
Adjusted R2 0.112 0.065 0.132 0.139 0.154 0.198 0.193

Regression 2 examines the effects of ZD and ZS. As expected, we find a
statistically significant negative coefficient for ZD and a positive coefficient for ZS.
The evidence indicates that market orders are more likely to be placed by liquidity
traders than by aggressive informed traders. Indirect supportive evidence for this
conclusion can be found in the order sizes. For each stock, we look at the average
size of the “market” orders versus the average size of all executed orders. The
average ratio is 0.59, and in only five out the 105 cases is the ratio greater than 1.
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That is, “market orders” tend to be “small orders.” Interestingly, liquidity traders
seem to constitute a larger fraction of those placing sell market orders than buys.
We find the absolute values of the coefficients on ZD and ZS to differ significantly.
The mean β2i is 1.497, while the mean β1i is only −0.862.17 Limitations on short
sales can explain the observed asymmetry. The higher costs of short sales make
it more difficult to act on negative information. Therefore, buy market orders are
more likely to be information-motivated than sell orders.18

Regression 3 examines the effects of the three variables (ZD, ZS, and BP)
together. Similarly to the previous regressions, the coefficient of ZS is signifi-
cantly positive and the coefficients of ZD and BP are significantly negative (ZD is
marginally significant using a t-test, but the p-value of a double sided binomial
test is 0.6%). In Regression 4, we test the explanatory power of LR, finding (as
in previous studies) that it is significantly negative. Regression 5 examines the
effect of adding LR to ZD and ZS. Regression 6 examines the effect of adding BP
to the model’s other explanatory variables (ZD, ZS, and LR). LR, BP, and ZS

remain highly significant, while ZD does not. Eliminating ZD and ZS (Regres-
sion 7) has a trivial effect on the mean adjusted R 2 (0.193 instead of 0.198).
Adding the average LR of all the other stocks to BP and LR as an additional
explanatory variable has almost no effect on the estimated coefficients and the
regression’s adjusted R 2.

For a more intuitive perspective on the predictive power of BP and LR, we
divide our sample of 15,345 (future) returns measured from the open to the close
into four subsamples. We separate the observations based on their magnitude be-
ing smaller or larger than the median BP estimated at the open, and based on LR
being smaller or larger than the median LR. Figure 3 depicts the fraction of the
returns in each subgroup that are larger than the median return of the total sample
(0.161%). The negative correlations of future returns with LRs and with BP are
apparent.

Dividing the stock sample into four subsamples according to their average
trading volume (in dollars), we obtain results that are qualitatively similar to those
reported in Table 3 for each of the subsamples. We find a slightly lower explana-
tory power (R 2 is 9.8%) for the most liquid stocks (the top quartile).

We find that the fraction of market orders (buys and sells), when added to
BP and LR, results in a very modest increase in the explanatory power of the
regression. Perhaps liquidity traders tend to submit aggressive orders, but not
necessarily market orders.

To test this hypothesis, we classify a buy (sell) limit order, in the range of
5%–9.5% above (below) the previous closing price, as “aggressive.” Denoting
the volume-adjusted “aggressive” demand as AGGRESSIVED [(the quantities
in “aggressive” buy orders)/(total volume)], and the volume-adjusted supply of

17To test whether these betas are significantly different,we construct 105 differences between β2i
and −1∗β1i. The t-statistic is 4.34, and in 69 out of the 105 stocks the difference is positive ( p-value
of 0.0017 in a binomial test). In 14 out of these 69 stocks, the F-test for equality of coefficients is
rejected at the 0.05 significance level.

18For the differences between buyers and sellers, see Saar (2001). For related evidence and a
discussion of this explanation, see Kalay et al. (2004).
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FIGURE 3

The Effects of BP and LR on Returns

Figure 3 show the percentage of returns higher than their median (0.161%) conditional on buying pressure (BP) and lag
of return (LR) being below or above their median.

the liquidity traders as AGGRESSIVES [(the quantities in “aggressive” sell
orders)/(total volume)], we find a mean AGGRESSIVED of 0.057 and a mean
AGGRESSIVES of 0.089 for the 105 stocks.19 For each stock in our sample, we
estimate the regression:

(20) Rit=αi +β1iZDit +β2iAGGRESSIVEDit +β3iZSit +β4iAGGRESSIVESit +εit,

where stock i = 1, 2, . . . , 105 and t is day t.
The results, reported in Table 4, are inconsistent with the hypothesis that

liquidity traders use only market orders. The mean betas are (−0.854, −0.847,
1.560, and 1.253) for betas 1 to 4, with t-statistics (−7.20, −7.05, 14.961, and
10.96), respectively. There are 15 positive β1s, 18 positive β2s, 100 positive β3s,
and 90 positive β4s. β1 and β2 are significantly negative, and β3 and β4 are signifi-
cantly positive. These results indicate that liquidity traders use aggressive limit or-
ders in addition to market orders. If anything, liquidity traders tend to use market
orders more than they use aggressive limit orders. The average of β1 (β3) is more
negative (positive) than the average of β2 (β4), but the differences are small.20

The evidence suggests that liquidity traders use both market orders and
aggressive limit orders. Perhaps one lesson to be learned from this is that the
modeling of liquidity traders should allow for some demand/supply elasticity.

19In the few cases in which these variables are greater than 1 (when there is partial execution in
the opening price), we limit the values to 1.

20The difference between β3 and β4 is significant: The t-statistic of the series of differences is
2.38, and there are 62 positive numbers out of 105 ( p-value ≈ 0.08 in a two-sided binomial test).
However, only in 5 out of these 62 stocks is the F-test for equality of coefficients rejected at the 0.05
significance level.
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TABLE 4

Predicting Future Returns with Market Orders and Aggressive Limit Orders

We estimate time-series regressions for each of the 105 stocks in our sample. The dependent variable is Rit = the return
(in percentage) of stock i measured from the opening session of trading day t to its close. The explanatory variables
are ZDit,ZSit ,AGGRESSIVEDit , and AGGRESSIVESit . The estimation uses maximum likelihood (Yule-Walker) with five lags.
The numbers presented are the average coefficients across the 105 time-series regressions. The t-statistics are presented
below them in parentheses. The number of positive coefficients (out of 105) appears below the t-statistics in bold font.
Critical values for the binomial sign test (positive vs. negative) are 41 and 64 (the p-value is 0.03 for the two-sided test).
The significant values are in bold font. The sample period is 1/25/98–9/27/98 (a total of 166 days).

1 2

Intercept 0.485 0.405
(12.18) (10.35)

ZD −0.862 −0.854
(−7.28) (−7.20)

15 15

AGGRESSIVED −0.847
(−7.05)

18

ZS 1.497 1.560
(15.01) (14.96)

100 100

AGGRESSIVES — 1.253
(10.96)

90

R2 0.079 0.114
Adjusted R2 0.065 0.087

Aggressive orders, for example, in all likelihood are used by both liquidity traders
and informed traders. This can result in the classification of orders submitted by
informed traders as orders submitted by liquidity traders. The classification of
orders as those placed by liquidity traders when submitted by informed traders
(and vice versa) can reduce the explanatory power of ZD,ZS, AGGRESSIVED,
and AGGRESSIVES. The reduction in the explanatory power of these variables
is potentially the explanation for the superior predicting power of BP. BP is mea-
sured around the equilibrium price, and as such it is less sensitive to the classifica-
tion of orders placed by the informed traders as orders placed by liquidity traders.

Including AGGRESSIVED and AGGRESSIVES in regressions that use BP
does not contribute much to the explanatory power. We define XD = ZD+
AGGRESSIVED, XS = ZS + AGGRESSIVES, and estimate the following regres-
sion for each stock:

(21) Rit = αi + β1iXDit + β2iXSit + β3iBPit + β4iLRit + εit.

Indeed, the averages of R 2 and adjusted R 2 (0.222 and 0.198, respectively)
are not materially different from the R 2 and adjusted R2 documented in regres-
sions that use only BP and LR (0.205 and 0.193, respectively). In order to obtain
an estimate of the sensitivity of the return to the explanatory variables, we run
regression (21) with standardized variables (each variable is divided by its esti-
mated standard deviation). The averages of the estimates of the betas are 0.045,
0.127, −0.490, and −0.602.

B. Predicting Portfolio Returns

The prediction of portfolio returns demonstrates the power of using our mea-
sures of liquidity trading (BP, ZD, and ZS). According to Amihud and Mendelson
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(1989), two effects can affect the serial autocorrelation of returns: i) the potential
partial adjustment to new information (caused by information asymmetry, gradual
reaction to information, etc.) induces positive autocorrelation; and ii) price noises
(caused by temporal liquidity pressures, random errors, etc.) induce negative auto-
correlation. Consequently, assuming that price noises are not correlated across
stocks, the noise diminishes at the portfolio level, increasing the potential impor-
tance of the partial adjustment to new information.

Consistent with the effect of noise on individual stocks, in Table 3
(Regression 4) we report negative autocorrelations at the individual stock level.
The effects of diversifying the noise are shown in Table 5. In Regression 1, we
find that current portfolio daily returns (computed using only those stocks out of
our sample of 105 that have a positive volume at the opening) are not correlated
with the respective LRs, LR. In contrast, the mean BP has predictive power. In
Regression 2, we find that the mean BP is negatively correlated with the next
period portfolio returns and the relation is economically significant (an average
adjusted R 2 of 0.174). The two effects (noise and partial adjustment) are docu-
mented in Regression 3. When LRs, LR, are added to the mean BP (BP) as an
explanatory variable, they have a significantly positive effect. BP seems to cap-
ture the effects of the noise associated with the liquidity pressures, and the LRs
measure the effects of partial adjustment to new information.

TABLE 5

Predicting Portfolio Returns

For each of the trading days, we form the equally weighted averages of stock returns from open to close (including only
stocks with opening volume in our sample of 105), Rt , and the corresponding averages of BP and LR (lagged return). We
estimate regressions where the dependent variable is Rt and the explanatory variables are LRt and BPt. The t-statistics
are presented below them in parentheses. The sample period is 1/25/98–9/27/98 (a total of 166 days).

1 2 3

Intercept 0.677 0.468 0.481
(10.86) (7.27) (7.57)

LRt −0.016 — 0.089
(−0.47) (2.53)

BP — −2.069 −2.518
(−5.97) (−6.55)

R2 0.001 0.179 0.209
Adjusted R2 −0.005 0.174 0.200

V. Commonality in the Arrival of Liquidity Traders

Thus far, the paper has provided estimates of the effects of liquidity traders in
the market: Large ZD, AGGRESSIVED, and BP (ZS and AGGRESSIVES) are re-
lated to liquidity buy (sell) pressures. One may ask, then, if liquidity traders come
to the market at the same time. In other words, is there a commonality in liquidity
pressures? To test this, we estimate the following regressions for each stock:

XDit = αi + β1iX̄
−i

Dt + β2iX̄
−i

St + εit,(22)

XSit = αi + β1iX̄
−i

Dt + β2iX̄
−i

St + εit,(23)
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BPit = αi + β1iBP
−i
t + εit, and(24)

(XD − XS)it = αi + β1i(XD − XS)
−i

t + εit,(25)

where X̄−i
Dt , X̄−i

St , and BP
−i
t are averages excluding stock i.

The results in Table 6 indicate significant commonality: The XDs (XSs) of
each stock are positively correlated with the XDs (XSs) in the other stocks and
negatively correlated with the other XSs (XDs). The BPs of the individual stocks
are also correlated with each other. We find a positive contemporaneous correla-
tion between the total liquidity trading in stock i and the total liquidity trading
in other stocks. The mean adjusted R 2 of the regressions of (XD − XS) is 0.09.

TABLE 6

Commonality of Liquidity Pressures

For each of the 105 stocks, we estimated the following regressions:

(22) XDit = αi + β1i X̄
−i
Dt + β2i X̄

−i
St + εit,

(23) XSit = αi + β1i X̄
−i
Dt + β2i X̄

−i
St + εit,

(24) BPit = αi + β1iBP
−i
t + εit, and

(25) (XD − XS)it = αi + β1i(XD − XS)
−i
t + εit,

where X̄−i
Dt , X̄−i

St , and BP
−i
t are averages excluding stock i. The numbers presented are the average coefficients across

the 105 time-series regressions. The t-statistics are presented below them in parentheses. The number of positive coeffi-
cients (out of 105) appears below the t-statistics. Critical values for the binomial sign test (positive vs. negative) are 41 and
64 (the p-value is 0.03 for the two-sided test). The significant values are in bold font. The sample period is 1/25/98–9/27/98
(a total of 166 days).

Regression

(22) (23) (24) (25)
XDi XSi BPi (XD − XS)i

Intercept 0.055 0.078 −0.029 −0.022

X̄−i
D 0.795 −0.088 —

(15.99) (−1.97)
95 41

X̄−i
S −0.061 0.817 —

(−2.11) (20.91)
44 100

BP
−i

— — 0.743
(15.87)

96

(XD − XS)
−i 0.881

(28.8)
104

R2 0.079 0.071 0.040 0.097
Adjusted R2 0.065 0.064 0.033 0.090

Examining the commonality of (ZD − ZS) by principal component analysis
we find that the cumulative proportions of explanation by the first five factors
are 0.102, 0.148, 0.189, 0.226, and 0.259. It seems liquidity traders arrive at the
market not completely independently of others.
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A. The Contagion Effect of Liquidity Trading

Liquidity pressure in one stock may have an indirect effect on other stocks.
This may happen for two reasons:

i) The substitution effect. If the price of a stock rises, then the demand for
other stocks rises as well, resulting in an increase in their price.

ii) Prices of stocks convey information about their respective payoffs. Since
stock payoffs are correlated, investors can derive information about the pay-
offs of stock i from the price of stock j (see the multi-asset NREE model of
Admati (1985)).

The consequence of both effects is that liquidity pressure would appear to have a
contagion effect. To test this hypothesis, we estimate three versions of the follow-
ing time-series regression:

(26) Rit = αi + β1iBPit + β2iBP
−i
t + β4iLRit + εit,

where stock i = 1, 2, . . . , 105 and t is day t.
As in estimating (19), we estimate the model using maximum likelihood

(Yule-Walker) with five lags.21 The results are reported in Table 7. The empirical
evidence (Regression 2) indicates that the equally weighted average BP of all the
other stocks has a significant impact on the future return of stock i. The explana-
tory power is small, however. The effect of the BPs of all other stocks on the
future return of stock i remains significant after controlling for its own stock’s
BP and LR (Regression 3).22 That is, noise in the price of stock A affects the

price of stock B. It should be noted that eliminating BP
−i
t from the regression has

only trivial effect on the average adjusted R 2 (0.193 vs. 0.198).
Contagion can create commonality in liquidity measures even if the liquidity

traders arrive at the market independently.23 In periods where liquidity traders ar-
rive mostly on one side of the market (BP in most of the stocks is either positive or
negative), the price impact on each stock they trade is increased by the effect of the
price impact on other stocks. The result is a larger price impact due to liquidity
trading. In periods where liquidity traders arrive at the market on both sides (in
about half of the stocks BP is positive and in about half it is negative), the price
impacts of other stocks have a mitigating effect. The result is a lower price impact.
Hence, contagion may create time variation in measures of liquidity such as price
impact.

21The results using regular OLS are qualitatively similar.
22Adding the average LR of all the other stocks to BP and LR as an additional explanatory variable

has almost no effect on the estimated coefficients and the regression’s adjusted R 2.
23For evidence on commonality in liquidity measures, see Chordia, Roll, and Subrahmanyam

(2000) and Hasbrouck and Seppi (2001).
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TABLE 7

The Contagion Effect

We estimate time-series regressions for each of the 105 stocks in our sample. The dependent variable is Rit = the return
(in percentage) of stock i measured from the opening session of trading day t to its close. The explanatory variables are
BPit, BP

−i
, and LRit (the lag of return). The estimation uses maximum likelihood (Yule-Walker) with five lags. The numbers

presented are the average coefficients across the 105 time-series regressions. The t-statistics are presented below them in
parentheses. The number of positive coefficients (out of 105) appears below the t-statistics. Critical values for the binomial
sign test (positive vs. negative) are 41 and 64 (the p-value is 0.03 for the two-sided test). The significant values are in bold
font. The sample period is 1/25/98–9/27/98 (a total of 166 days).

1 2 3

Intercept 0.458 0.558 0.390
(13.93) (10.24) (10.16)

BP −0.747 — −0.723
(−20.66) (−19.77)

3 2

BP
−i

— −1.817 −0.680
(−12.32) (−5.00)

11 26

LR −0.231 — −0.222
(−15.20) (−14.45)

3 5

R2 0.205 0.029 0.215
Adjusted R2 0.193 0.022 0.198

VI. Conclusions

This paper constructs a new variable in the opening call auction, enabling
the detection of the presence of liquidity traders in the demand or supply side of
the market. The new measure is based on the key assumption made in some mi-
crostructure models that the demand and supply of liquidity traders is not sensitive
to prices. The implication of this assumption is that in a call auction, liquidity
traders use market orders. A large fraction of such orders (not contingent on
prices) leads to a market demand (or supply) schedule with a more negative slope
around the equilibrium price. A steeper supply (demand) curve at the opening rep-
resents a downward (upward) temporary price pressure that should be followed by
a price increase (decrease). We show that the liquidity BP can be quantified by the
following measure (calculated around the equilibrium price):

BP= 1− 2∗ |D′( p∗)+|
S′( p∗)− + |D′( p∗)+| .

In our model, when BP = 1(−1), only liquidity traders are willing to buy (sell).
Therefore, this measure is negatively correlated with future returns.

We use a unique database of all orders submitted during the opening ses-
sions at the TASE for the 105 most liquid stocks. Overall, we find strong evidence
to support the model. As predicted, we find a significant negative correlation be-
tween BP and future returns that remains significant after adding LR as an ad-
ditional explanatory variable to the regressions. The explanatory power of these
two variables is quite high (an average adjusted R 2 of 0.193). We conclude that,
consistent with the model, the shapes of the demand and the supply curves convey
information about future returns. Thus, we show that the information content of
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the supply and demand curve is significant, highlighting the importance of theo-
retical and empirical investigation of pre-trade transparency.

Not all market microstructure models are based on the assumption that liq-
uidity traders are totally price insensitive. In Glosten and Milgrom (1985), for
example, liquidity traders have utility functions and based on maximizing behav-
ior can choose not to trade. That is, they are not totally price insensitive. We find
evidence consistent with the hypothesis that liquidity traders use aggressive limit
orders as well as market orders. On the basis of the evidence we document, we
conclude that liquidity traders have inelastic demand/supply but are somewhat
price sensitive.

We find commonality in our measures of liquidity trades. Liquidity sells are
positively (negatively) correlated with contemporaneous liquidity sells (buys) in
other stocks. Similarly, the equally weighted average BP in all the other stocks
is positively correlated with the contemporaneous BP of stock i. This evidence is
consistent with the hypothesis that liquidity traders tend to arrive together and at
the same side of the market.

Appendix

Proof of Lemma 2. From (15) and (16), we get that

D′( p) = D′1( p) + · · · + D′n( p),(A-1)

D′( p)+ = D′1( p)+ + · · · + D′n( p)+,(A-2)

D′( p)− = D′1( p)− + · · · + D′n( p)−,(A-3)

S′( p) = S′1( p) + · · · + S′n( p),(A-4)

S′( p)+ = S′1( p)+ + · · · + S′n( p)+, and(A-5)

S′( p)− = S′1( p)− + · · · + S′n( p)−.(A-6)

Proof of Claim A. We assume without loss of generality

(14) yn > · · · > y1.

From (14) and (6) it can be seen also that

(A-7) un > · · · > u1.

From (A-7) we get that if p > un, then for every j = 1, . . . , n, p > uj. Therefore from
Claim C in Lemma 1 it can be seen that for every j= 1, . . . , n,

D′j ( p) = 0 and S′j ( p) = K.

Therefore from (A-1) it can be seen that D′ ( p) = 0 and from (A-4) it can be seen that
S′ ( p) = nK.

Claims B and C of Lemma 2 can be shown in the same way.
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Proof of Claim D. Let us recall (A-3):

D′( p)− = D′1( p)− + · · · + D′n( p)−.

Since uj= p, then according to Claim B of Lemma 1, D′j ( p)−= −K. From (A-7) we get
that where i > j, ui > uj = p and according to Claim A of Lemma 1, D′i ( p)− = − K.
Therefore for all i = j, . . . , n, D′i ( p)−= −K and, therefore, D′ ( p)−= − (n− j + 1)K.
In the same way it can be shown that

D′ ( p)+ = − (n− j)K, S′ ( p)− = ( j− 1)K, and S′ ( p)+ = jK.
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