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The differential λ-calculus is a paradigmatic functional programming language endowed with

a syntactical differentiation operator that allows the application of a program to an

argument in a linear way. One of the main features of this language is that it is resource

conscious and gives the programmer suitable primitives to handle explicitly the resources

used by a program during its execution. The differential operator also allows us to write the

full Taylor expansion of a program. Through this expansion, every program can be

decomposed into an infinite sum (representing non-deterministic choice) of ‘simpler’

programs that are strictly linear.

The aim of this paper is to develop an abstract ‘model theory’ for the untyped differential

λ-calculus. In particular, we investigate what form a general categorical definition of a

denotational model for this calculus should take. Starting from the work of Blute, Cockett

and Seely on differential categories, we develop the notion of a Cartesian closed differential

category and prove that linear reflexive objects living in such categories constitute sound and

complete models of the untyped differential λ-calculus. We also give sufficient conditions for

Cartesian closed differential categories to model the Taylor expansion. This requires that

every model living in such categories equates all programs having the same full Taylor

expansion.

We then provide a concrete example of a Cartesian closed differential category modelling

the Taylor expansion, namely the category MRel of sets and relations from finite multisets to

sets. We prove that the extensional model D of λ-calculus we have recently built in MRel is

linear, and is thus also an extensional model of the untyped differential λ-calculus. In the

same category, we build a non-extensional model E and prove that it is, nevertheless,

extensional on its differential part.

Finally, we study the relationship between the differential λ-calculus and the resource

calculus, which is a functional programming language combining the ideas behind the

differential λ-calculus with those behind Boudol’s λ-calculus with multiplicities. We define

two translation maps between these two calculi and study the properties of these

translations. In particular, this analysis shows that the two calculi share the same notion of

a model, and thus that the resource calculus can be interpreted by translation into every

linear reflexive object living in a Cartesian closed differential category.

† This work was partly funded by the NWO Project 612.000.936 CALMOC (CAtegorical and ALgebraic

Models of Computation) and by Digiteo/Île-de-France Project 2009-28HD COLLODI (Complexity and

concurrency through ludics and differential linear logic).
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1. Introduction

Among the many computational formalisms that have been studied in the literature, the λ-

calculus (Barendregt 1984) plays an important role as a bridge between logic and computer

science. The λ-calculus was originally introduced by Church (Church 1932; 1941) as a
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foundation for mathematics, where functions, and not sets, were primitive. This system

turned out to be both consistent and successful as a tool for formalising all computable

functions. However, the λ-calculus is not resource sensitive since a λ-term can erase

its arguments or duplicate them an arbitrarily large number of times. This becomes

problematic when one wants to deal with programs that are executed in environments

with bounded resources (like PDA’s) or in the presence of depletable arguments (like

quantum data that cannot be duplicated for physical reasons). In these contexts, we want

to be able to express the fact that a program actually consumes its arguments. Such an

idea of ‘resource consumption’ is central to Girard’s quantitative semantics (Girard 1988).

This semantics establishes an analogy between linearity in the sense of computer science

(programs using arguments exactly once) and algebraic linearity (the commutation of sums

and products with scalars), giving a new mathematically very appealing interpretation

of resource consumption. Drawing on these insights, Ehrhard and Regnier designed a

resource sensitive paradigmatic programming language called the differential λ-calculus

(Ehrhard and Regnier 2003).

The differential λ-calculus. The differential λ-calculus is a conservative (see Ehrhard and

Regnier (2003, Proposition 19)) extension of the untyped λ-calculus with differential and

linear constructions. In this language, two different operators can be used to apply a

program to its argument: the usual application and a linear application. The latter defines

a syntactic derivative operator Ds · t, which is an excellent candidate for increasing control

over programs executed in environments with bounded resources. Indeed, the evaluation

of Ds · t (the derivative of the program s on the argument t) has a precise operational

meaning: it captures the fact that t is available for s ‘exactly once’. The corresponding

meta-operation of substitution, which replaces exactly one (linear) occurrence of x in s

by t, is called ‘differential substitution’ and is denoted by

∂s

∂x
· t.

It is worth noting that when s contains several occurrences of x, one has to choose which

occurrence should be replaced, and there are several possible choices. When s does not

contain any occurrence of x, then the differential substitution cannot be performed and

the result is 0 (corresponding to an empty program). Thus, the differential substitution

forces non-determinism in the system, which is represented by a formal sum having 0

as neutral element. In this way, the differential λ-calculus constitutes a useful framework

for studying the notions of linearity and non-determinism, and the relation between

them.

Taylor expansion. As expected, iterated differentiation yields a natural notion of linear

approximation of the ordinary application of a program to its argument. Indeed, the

syntactic derivative operator allows us to write all the derivatives of a λ-term M, so it also

allows us (in the presence of countable sums) to define its full Taylor expansion M∗. In

general, M∗ will be an infinite formal linear combination of simple terms (with coefficients
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in a field), and should satisfy, when M is the usual application NQ:

(NQ)∗ =

∞∑
n=0

1

n!

⎛⎝DnN ·

⎛⎝Q, . . . , Q︸ ︷︷ ︸
n times

⎞⎠⎞⎠ 0

where 1/n! is a numerical coefficient and DnN · (Q, . . . , Q) stands for iterated linear

application of N to n copies of Q. The precise operational meaning of the Taylor

expansion has been extensively studied in Ehrhard and Regnier (2003; 2006a; 2008).

The crucial property of such an expansion is that it gives a quantitative account to the

β-reduction of λ-calculus (in the sense of Böhm tree computation). Formal connections

between Taylor expansions and Böhm trees of ordinary λ-terms were presented in Ehrhard

and Regnier (2006a) using a decorated version of Krivine’s machine.

The resource calculus. The resource calculus is essentially a reworking of Boudol’s λ-

calculus with multiplicities (Boudol 1993; Boudol and Curien and Lavatelli) and provides

an alternative approach to the problem of modelling resource consumption within a

functional programming language. In this calculus, there is only one application operator,

while the arguments can be either linear or reusable and come in finite multisets called

‘bags’. Linear arguments must be used exactly once, while reusable ones can be used

ad libitum. Also, the evaluation of a function applied to a bag of arguments in this setting

may give rise to different possible choices, which correspond to the different possibilities

of distributing the arguments between the occurrences of the formal parameter.

The main differences between Boudol’s calculus and the resource calculus are that

the former is affine, is equipped with explicit substitution and has a lazy operational

semantics, while the latter is linear and is a true extension of the classical λ-calculus.

The current formalisation of resource calculus was proposed in Tranquilli (2009) with

the aim of defining a Curry–Howard correspondence with differential nets (Ehrhard and

Regnier 2006b).

The resource calculus has been recently studied from a syntactic point of view by

Pagani and Tranquilli (Pagani and Tranquilli 2009) for confluence results, by Pagani and

the current author (Manzonetto and Pagani 2011) for separability results, and by Pagani

and Ronchi della Rocca for results on may and must solvability (Pagani and Ronchi Della

Rocca 2010). Algebraic notions of models for the strictly linear fragment of the resource

calculus have been proposed by Carraro, Ehrhard and Salibra in Carraro et al. (2010).

Our main focus in the current paper is a study of the differential λ-calculus, but we will

also draw conclusions for the resource calculus.

Denotational semantics. Although the differential λ-calculus was born out of semantical

considerations (that is, the deep analysis of coherent spaces performed by Ehrhard and

Regnier), the analysis of its denotational semantics are just beginning. It is known that

finiteness spaces (Ehrhard 2005) and the relational semantics of linear logic (Girard 1988)

are examples of models of the simply typed differential λ-calculus, and thus have very

limited expressive power. When it comes to the untyped differential λ-calculus, it is

folklore that the relational model D introduced in Bucciarelli et al. (2007) in the relational
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semantics constitutes a concrete example of a model†. This picture is reminiscent of the

beginnings of the denotational semantics of λ-calculus, when Scott’s D∞ was the only

concrete example of a model of λ-calculus, but no general definition of a model was

known. Only when an abstract model theory for this calculus had been developed were

researchers able to provide rich semantics (such as the continuous (Scott 1972), stable

(Berry 1978) and strongly stable semantics (Bucciarelli and Ehrhard 1991)), and general

methods for building huge classes of models in these semantics.

Categorical notion of a model

The aim of the current paper is to provide a general categorical notion of a model of the

untyped differential λ-calculus. Our starting point will be the work of Blute, Cockett and

Seely on (Cartesian) differential categories (Blute et al. 2006; 2009). In these categories,

a derivative operator D(−) on morphisms is equationally axiomatised; the derivative of

a morphism f : A → B will be a morphism D(f) : A × A → B that is linear in its first

component. Blute et al. then proved that these categories are sound and complete for

modelling suitable term calculi. However, it turns out that the properties of differential

categories are too weak for modelling the full differential λ-calculus. For this reason, we

will introduce the more powerful notion of a Cartesian closed differential category. In such

categories, we can define an operator

f : C × A → B g : C → A

f � g : C × A → B
(�)

that can be seen as a categorical counterpart to differential substitution. Intuitively, the

morphism f � g is obtained by force-feeding the second argument A of f with one copy

of the result of g. However, the type is not modified because f � g may still depend on A.

The operator � allows us to interpret the differential λ-calculus in every linear reflexive

object U living in a Cartesian closed differential category C. For a reflexive object

U = (U,A, λ) ‘to be linear’ amounts to requiring that the morphisms A and λ performing

the retraction (U ⇒ U) � U are linear. We will prove that this categorical notion of

a model is sound, which means that the induced equational theory Th(U) is actually a

differential λ-theory. We will also investigate what conditions the category C should satisfy

in order to model the Taylor expansion. This means that all differential programs having

the same Taylor expansion are equated in every model living in C.

A question that arises naturally when a notion of a model of a certain calculus is

introduced is whether it is equationally complete, that is, whether all equational theories

of that calculus can be represented. For instance, in the case of the untyped λ-calculus,

Scott and Koymans proved that for every λ-theory T there is a reflexive object U in a

Cartesian closed category C such that Th(U) = T . We will prove that the notion of a linear

reflexive object in a Cartesian closed differential category is equationally complete for the

† This follows from Ehrhard and Regnier (2006b), which showed that the differential λ-calculus can be

translated into differential proofnets, plus Vaux (2007b), which proved that D is a model of such proofnets.
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differential λ-calculus, provided we only consider theories satisfying suitable properties.

The first property is that in these theories the sum is considered to be idempotent, which

amounts to saying that we only know whether a term appears in a result, not how many

times it appears; the second is that these theories are ‘extensional on linear applications’,

which means that Ds·t must have a functional behaviour. It turns out that these properties

are quite natural in the sense that they are satisfied by all models that have arisen

so far.

Relational semantics

In Bucciarelli et al. (2007), the current author built, in collaboration with Bucciarelli and

Ehrhard, an extensional model D of λ-calculus living in the category MRel of sets and

‘relations from finite multisets to sets’. This model can be viewed as a relational analogue of

Scott’s D∞ (Ehrhard 2009). By virtue of its logical nature, D can be used to model several

systems beyond the untyped λ-calculus. For instance, Bucciarelli et al. (2009) proved that

it constitutes an adequate model of a λ-calculus extended with non-deterministic choice

and parallel composition, while Vaux (2007b) showed that it is a model of differential

proof-nets.

In the current paper, we study D as a model of the untyped differential λ-calculus.

Indeed (as expected), the category MRel turns out to be an instance of the definition of a

Cartesian closed differential category, and the relational model D is easily checked to be

linear. We will then study the equational theory induced by D and prove that it equates

all terms having the same Taylor expansion. This property follows from the fact that

MRel models the Taylor expansion. As a simple consequence, we get that the relational

semantics is hugely incomplete – there is a continuum of equational theories that are not

representable by models living in MRel.

In the same category, we will also build a model E that can be seen as a relational

analogue of Engeler’s graph model (Engeler 1981). The model E provides an example of

a non-extensional model, which is, however, extensional on linear applications.

Translations

Finally, we study the inter-relationships existing between the differential λ-calculus and

the resource calculus. In fact, it is commonly believed in the scientific community that

the two calculi are essentially the same, and the choice of studying one language rather

than the other is more a matter of taste than substance. We will give a formal meaning

to this belief by defining a translation map (·)r from the differential λ-calculus to the

resource calculus, and another map (·)d in the opposite direction. We will prove that these

translations are ‘faithful’ in the sense that equivalent programs of differential λ-calculus

are mapped into equivalent resource programs, and vice versa. This shows that the two

calculi share the same notion of denotational model: in particular, the resource calculus

can be interpreted by translation in every linear reflexive object living in a Cartesian

closed differential category.
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Outline

Section 2 presents some preliminary notions and notation used in the rest of the paper.

In Section 3, we present the syntax and axioms of the differential λ-calculus, and define

the associated equational theories. In Section 4, we introduce the notion of a Cartesian

closed differential category. In section 5, we show that linear reflexive objects in such

categories are sound and complete models of the differential λ-calculus. In Section 6,

we build two relational models D and E and provide a partial characterisation of their

equational theories. In Section 7, we define the resource calculus and study its relationship

to the differential λ-calculus. Finally, in Section 8, we discuss related work, present our

conclusions and propose some further lines of research.

2. Preliminaries

To make this article more self-contained, this section summarises some definitions and

results we will use later in the paper. Our main reference for category theory is Asperti

and Longo (1991).

2.1. Sets and multisets

We use N to denote the set of natural numbers. Given n ∈ N, we write Sn for the set of

all permutations (bijective maps) of the set {1, . . . , n}.
Let A be a set. We use P(A) to denote the powerset of A. A multiset m over A can

be defined as an unordered list m = [a1, a2, . . .] with repetitions such that ai ∈ S for all

indices i. A multiset m is said to be finite if it is a finite list; we use [] to denote the

empty multiset. Given two multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .], the multi-union

of m1, m2 is defined by m1 � m2 = [a1, b1, a2, b2, . . .].

Finally, we write Mf(A) for the set of all finite multisets over A.

2.2. Cartesian (closed) categories

Let C be a Cartesian category and A,B, C be arbitrary objects of C. We write C(A,B)

for the homset of morphisms from A to B; when there is no risk of confusion, we write

f : A → B instead of f ∈ C(A,B). We usually write A × B to denote the categorical

product of A and B, and π1 : A × B → A, π2 : A × B → B for the associated projections,

and given a pair of arrows f : C → A and g : C → B, we use 〈f, g〉 : C → A × B to

denote the unique arrow such that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g. We write f × g for

the product map of f and g, which is defined by f × g = 〈f ◦π1, g ◦π2〉.
If the category C is Cartesian closed, we write A⇒B for the exponential object and

evAB : (A⇒B) × A → B for the evaluation morphism. Moreover, for any object C and

arrow f : C × A → B, we write Λ(f) : C → (A⇒B) for the (unique) morphism such that

evAB ◦ (Λ(f) × IdA) = f. Finally, 1 denotes the terminal object and !A the only morphism

in C(A,1).
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Recall that the following equalities hold in every Cartesian closed category:

〈f, g〉◦h = 〈f ◦h, g ◦h〉(pair)

ev◦〈Λ(f), g〉 = f ◦〈Id, g〉(beta-cat)

Λ(f)◦g = Λ(f ◦ (g × Id))(Curry)

Λ(ev) = Id.(Id-Curry)

Moreover, we can define the uncurry operator

Λ−(−) = ev◦ (− × Id).

From (beta-cat), (Curry) and (Id-Curry) it follows that

Λ(Λ−(f)) = f

Λ−(Λ(g)) = g.

3. The differential lambda calculus

In this section we recall the definition of the differential λ-calculus (Ehrhard and Regnier

2003), together with some standard properties of the language. We also define the

associated equational theories, namely, the differential λ-theories. The syntax we use

in the present paper is freely adapted from Vaux (2007a).

3.1. Differential lambda terms

The set Λd of differential λ-terms and the set Λs of simple terms are defined by mutual

induction as follows:

Λd : S, T ,U, V ::= s | 0 | s+ T

Λs : s, t, u, v ::= x | λx.s | sT | Ds · t.

The differential λ-term Ds · t represents the linear application of s to t. Intuitively, this

means that s is provided with exactly one copy of t. Notice that sums may also appear in

simple terms as the right-hand components of ordinary applications. Although the rule

s+ t = s will not be valid in our axiomatisation, the sum should still be thought of as a

version of non-deterministic choice where all actual choice operations are postponed.

Convention 3.1. We consider differential λ-terms up to α-conversion, and up to associativity

and commutativity of the sum. The term 0 is the neutral element of the sum, so we also

add the equation S + 0 = S .

As notation, we will write

λx1 . . . xn.s for λx1.(· · · (λxn.s) · · · )
sT1 · · ·Tk for (· · · (sT1) · · · )Tk.
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We also set

D1 s · (t1) = Ds · t1
Dn+1 s · (t, t1, . . . , tn) = Dn (Ds · t) · (t1, . . . , tn) .

When writing Dn s · (t1, . . . , tn), we assume n > 0.

Definition 3.2. The permutative equality on differential λ-terms requires

Dn s · (t1, . . . , tn) = Dn s ·
(
tσ(1), . . . , tσ(n)

)
for all permutations σ ∈ Sn.

From now on, differential λ-terms will also be considered up to permutative equality. This

is needed, for instance, to prove the Schwarz Theorem (see Section 3.2), which allows us

to speak of a differential operator. For specific λ-terms, we define

I ≡ λx.x

1 ≡ λxy.xy

∆ ≡ λx.xx

Ω ≡ ∆∆

Y ≡ λf.(λx.f(xx))(λx.f(xx))

s ≡ λnxy.nx(xy)

n ≡ λsx.sn(x), for every natural number n ∈ N,

where ≡ stands for syntactical equality up to the above mentioned equivalences on

differential λ-terms. Note that I is the identity, Y is Curry’s fixpoint combinator, n is the

nth Church numeral and s implements the successor function on Church numerals. The

term Ω denotes the usual paradigmatic unsolvable λ-term.

Definition 3.3. Let S be a differential λ-term. The set FV(S) of free variables of S is

defined inductively as follows:

FV(x) = {x}
FV(λx.s) = FV(s) − {x}
FV(sT ) = FV(s) ∪ FV(T )

FV(Ds · t) = FV(s) ∪ FV(t)

FV(0) = �

FV(s+ S) = FV(s) ∪ FV(S).

Given differential λ-terms S1, . . . , Sk , we set

FV(S1, . . . , Sk) = FV(S1) ∪ · · · ∪ FV(Sk).

We will now introduce some notation for differential λ-terms that will be particularly

useful when we define the substitution operators in the next section.
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Notation 3.4. We will often use the following abbreviations (note that these are just

syntactic sugar, not real terms):

λx.

(
k∑
i=1

si

)
=

k∑
i=1

λx.si(
k∑
i=1

si

)
T =

k∑
i=1

siT

D

(
k∑
i=1

si

)
·

⎛⎝ n∑
j=1

tj

⎞⎠ =
∑
i,j

Dsi · tj .

Intuitively, these equalities make sense since the lambda abstraction is linear, the usual

application is linear in its left-hand component, and the linear application is a bilinear

operator. Notice, however, that

S

(
k∑
i=1

ti

)
=

k∑
i=1

Sti.

Note that in the particular case of empty sums, we get

λx.0 = 0

0T = 0

D0 · t = 0

Ds · 0 = 0.

Thus 0 annihilates any term, except when it occurs on the right of an ordinary application.

3.2. Two kinds of substitution

We now introduce two kinds of meta-operation for substitution in differential λ-terms:

the usual capture-free substitution and differential substitution. Both definitions make free

use of the abbreviations introduced in Notation 3.4.

Definition 3.5. Let S, T be differential λ-terms and x be a variable. The capture-free

substitution of T for x in S , denoted by S {T/x}, is defined by induction on S as follows:

y {T/x} =

{
T if x = y,

y otherwise,

(λy.s) {T/x} = λy.s {T/x} (where we suppose by α-conversion

that x = y and y /∈ FV(T ))

(sU) {T/x} = (s {T/x})(U {T/x}),
(Dn s · (u1, . . . , un)) {T/x} = Dn (s {T/x}) ·

(
u1 {T/x} , . . . , un {T/x}

)
,

0 {T/x} = 0

(s+ S) {T/x} = s {T/x} + S {T/x} .
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Thus, S {T/x} is the result of substituting T for all free occurrences of x in S , subject to

the usual proviso about renaming bound variables in S to avoid capture of free variables

in T . On the other hand, the differential substitution

∂S

∂x
· T

defined below denotes the result of substituting T (still avoiding capture of variables) for

exactly one – non-deterministically chosen – linear occurrence of x in S . If there is no

such occurrence in S , then the result will be 0.

Definition 3.6. Let S, T be differential λ-terms and x be a variable. The differential

substitution of T for x in S is denoted by

∂S

∂x
· T

and defined by induction on S as follows:

∂y

∂x
· T =

{
T if x = y,

0 otherwise,

∂

∂x
(sU) · T =

(
∂s

∂x
· T
)
U +

(
Ds ·

(
∂U

∂x
· T
))

U

∂

∂x
(λy.s) · T = λy.

∂s

∂x
· T (where we suppose by α-conversion

that x = y and y /∈ FV(T ))

∂

∂x
(Dn s · (u1, . . . , un)) · T = Dn

(
∂s

∂x
· T
)

· (u1, . . . , un)

+

n∑
i=1

Dn s ·
(
u1, . . . ,

∂ui

∂x
· T , . . . , un

)
∂0

∂x
· T = 0

∂

∂x
(s+U) · T =

∂s

∂x
· T +

∂U

∂x
· T .

The definition states that the differential substitution distributes over linear construc-

tions. We will now look briefly at the case of the standard application sU since it is the

most complex one. The result of

∂(sU)

∂x
· T

is the sum of two terms since the differential substitution can non-deterministically be

applied to either s or to U. In the first case, we can safely apply it to s since the standard

application is linear in its left-hand argument, so we obtain(
∂s

∂x
· T
)
U.
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However, in the other case, we cannot apply it directly to U because the standard

application is not linear in its right-hand argument, so we follow two steps:

(i) we replace sU by (Ds ·U)U;

(ii) we apply the differential substitution to the linear copy of U.

Intuitively, this works because U is essentially available infinitely many times in sU,

so when the differential substitution goes on U we ‘extract’ a linear copy of U, which

receives the substitution, and we keep the other infinitely many unchanged. This will be

much more evident in the definition of the analogous operation for the resource calculus

(cf. Definition 7.3).

Example 3.7. Recall that the simple terms ∆ and I were defined following Definition 3.2.

We have

∂∆

∂x
· I = 0 (since x does not occur free in ∆)(1)

∂x

∂x
· I = I(2)

∂(xx)

∂x
· I = Ix+ (Dx · I)x(3)

∂

∂x

(
∂(xx)

∂x
· I

)
· ∆ = (DI · ∆)x+ (D∆ · I)x+ (D (Dx · I) · ∆)x(4)

((Dx · x)x) {I/x} = (DI · I)I.(5)

The differential substitution

∂S

∂x
· T

can be thought of as the differential of S with respect to the variable x, linearly applied

to T . This may be inferred from the rule for linear application, which relates to the rule

for composition of the differential. Moreover, it is easy to check that if x /∈ FV(S) (that

is, S is constant with respect to x), then

∂S

∂x
· T = 0.

This intuition is also reinforced by the validity of the Schwarz Theorem.

Theorem 3.8 (Schwarz Theorem). Let S, T ,U be differential λ-terms. Let x and y be

variables such that x /∈ FV(U). Then

∂

∂y

(∂S
∂x

· T
)

·U =
∂

∂x

(∂S
∂y

·U
)

· T +
∂S

∂x
·
(∂T
∂y

·U
)
.

In particular, when y /∈ FV(T ), the second summand is 0 and the two differential

substitutions commute.
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Proof. The proof is by structural induction on S . Here we will just check the case

S ≡ vV .

∂

∂y

(
∂vV

∂x
· T
)

·U =
∂

∂y

((
∂v

∂x
· T
)
V +

(
Dv ·

(
∂V

∂x
· T
))

V

)
·U

=

(
∂

∂y

(
∂v

∂x
· T
)

·U
)
V

+

(
D

(
∂v

∂x
· T
)

·
(
∂V

∂y
·U

))
V

+

(
D

(
∂v

∂y
·U

)
·
(
∂V

∂x
· T
))

V

+

(
Dv ·

(
∂

∂y

(
∂V

∂x
· T
)

·U
))

V

+

(
D

(
Dv ·

(
∂V

∂x
· T
)

·
(
∂V

∂y
·U

)))
V

Applying the induction hypothesis (and the permutative equality), we then get

∂

∂y

(
∂vV

∂x
· T
)

·U =

(
∂

∂x

(
∂v

∂y
·U

)
· T
)
V

+

(
D

(
∂v

∂y
·U

)
·
(
∂V

∂x
· T
))

V

+

(
D

(
∂v

∂x
· T
)

·
(
∂V

∂y
·U

))
V

+

(
Dv ·

(
∂

∂x

(
∂V

∂y
·U

)
· T
))

V

+

(
D

(
Dv ·

(
∂V

∂y
·U

))
·
(
∂V

∂x
· T
))

V

+

(
∂v

∂x
·
(
∂T

∂y
·U

))
V

+

(
Dv ·

(
∂V

∂x
·
(
∂T

∂y
·U

)))
V

=
∂

∂x

((
∂v

∂y
·U

)
V +

(
Dv ·

(
∂V

∂y
·U

))
V

)
· T

+

(
∂v

∂x
·
(
∂T

∂y
·U

))
V +

(
Dv ·

(
∂V

∂x
·
(
∂T

∂y
·U

)))
V

=
∂

∂x

(
∂vV

∂y
·U

)
· T +

∂vV

∂x
·
(
∂T

∂y
·U

)
.

For readability, we will sometimes adopt the following notation for multiple differential

substitutions.
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Notation 3.9. We set

∂nS

∂x1, . . . , xn
· (t1, . . . , tn) =

∂

∂xn

(
· · · ∂S

∂x1
· t1 · · ·

)
· tn

where xi /∈ FV(t1, . . . , tn) for all 1 � i � n.

Remark 3.10. From Theorem 3.8 we have

∂nS

∂x1, . . . , xn
· (t1, . . . , tn) =

∂nS

∂xσ(1), . . . , xσ(n)
· (tσ(1), . . . , tσ(n)), for all σ ∈ Sn.

3.3. Differential lambda theories

In this section we introduce the axioms associated with the differential λ-calculus and

define the equational theories of this calculus, namely, the differential λ-theories.

The axioms of the differential λ-calculus are (for all s, t ∈ Λs and T ∈ Λd):

(λx.s)T = s {T/x}(β)

D(λx.s) · t = λx.
∂s

∂x
· t.(βD)

Once oriented from left to right, the (β)-conversion shows how to calculate a function λx.s

classically applied to an argument T , while the (βD)-conversion shows how to evaluate a

function λx.s linearly applied to a simple argument t.

Note that the λx does not disappear in the result of a linear application. This is because

the simple term s may still contain free occurrences of x. The only way to get rid of the

outer lambda abstraction in the term λx.s is to apply it classically to a term T , and then

use the (β)-rule; when x /∈ FV(s), a standard choice for T is 0.

The differential λ-calculus is an intensional language – there are syntactically different

programs having the same extensional behaviour. We will sometimes be interested in the

extensional version of this calculus, which is obtained by adding the following axiom (for

every s ∈ Λs):

λx.sx = s, where x /∈ FV(s).(η)

In the differential λ-calculus, we have another extensionality axiom, which is strictly

weaker than (η), that can be safely added to the system, namely (for every s, t ∈ Λs):

λx.(Ds · t)x = Ds · t, where x /∈ FV(s, t).(η∂)

The axiom (η∂) states that the calculus is only extensional in its differential part, that is,

in the presence of the linear application. Intuitively, this means that Ds · t must have a

functional behaviour, which is always true in a simply typed setting where s : A → B,

t : A and Ds · t : A → B. Interestingly enough, there are some very natural models of

untyped differential λ-calculus that satisfy (η∂) but do not satisfy (η) – see Section 6.3.1

for an example.

A λd-relation T is any set of equations between differential λ-terms (which can be

thought of as a relation on Λd × Λd).
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A λd-relation T is said to be:

— an equivalence if it is closed under the following rules (for all S, T ,U ∈ Λd):

S = S
(reflexivity)

T = S
S = T

(symmetry)

S = T T = U
S = U

(transitivity)

— compatible if it is closed under the following rules (for all S, T ,U, V , Si, Ti ∈ Λd):

S = T
λx.S = λx.T

(lambda)

S = T U = V
ST = UV

(app)

S = T U = V
DS ·U = DT · V (Lapp)

Si = Ti for all 1 � i � n∑n
i=1 Si =

∑n
i=1 Ti

(sum).

As notation, we will write T � S = T or S =T T for S = T ∈ T .

Definition 3.11. A differential λ-theory is any compatible λd-relation T that is an equival-

ence relation and includes (β) and (βD). A differential λ-theory T is said to be differentially

extensional if it contains (η∂) and extensional if it also contains (η). We say that T satisfies

sum idempotency whenever T � s+ s = s.

The differential λ-theories are naturally ordered by set-theoretical inclusion. We use

λβd to denote the minimum differential λ-theory, and λβηd∂ to denote the minimum

differentially extensional differential λ-theory, and λβηd to denote the minimum extensional

differential λ-theory.

We will now give easy examples of equalities between differential λ-terms in λβd, λβηd∂
and λβηd to assist in gaining familiarity with the operations in the calculus.

Example 3.12. Recall that ∆ ≡ λx.xx. Then

λβd � (D∆ · y)z = yz + (Dz · y)z(1)

λβd � (D2 ∆ · (x, y))0 =(Dx · y)0 + (Dy · x)0(2)

λβd � D3 ∆ · (x, y, z) = λr.(D2x · (y, z) + D2 y · (x, z)(3)

+ D2 z · (x, y) + D3 r · (x, y, z))r

λβηd∂ � D(λz.xz) · y = λz.(Dx · y)z(4)

= Dx · y
λβηd � D∆ · z = λx.zx+ λx.(Dx · z)x(5)

= z + λx.(Dx · z)x.
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Note that in this calculus (as in standard λ-calculus extended with non-deterministic

choice (Dezani-Ciancaglini et al. 1996)), a single simple term can generate an infinite sum

of terms, as in the following example.

Example 3.13. Recall (from the definitions following Definition 3.2) that Y is Curry’s

fixpoint combinator, n is the n-th Church numeral and s denotes the successor. Then:

λβd � Y(x+ y) = x(Y(x+ y)) + y(Y(x+ y)) (for all variables x, y)(1)

λβd � Y((λz.0) + s) = 0 + s(Y((λz.0) + s))(2)

= 0 + 1 + s(s(Y((λz.0) + s)))

= · · ·

3.4. A theory of Taylor expansion

One of the most interesting consequences of adding a syntactical differential operator

to the λ-calculus is that, in the presence of infinite sums, we can define the Taylor

expansion of a program. Such an expansion is classically defined in the literature only

for ordinary λ-terms (Ehrhard and Regnier 2003; Ehrhard and Regnier 2006a; Ehrhard

and Regnier 2008). In this section we will generalise this notion to differential λ-terms. To

avoid the annoying problem of handling coefficients, we will consider an idempotent sum.

Definition 3.14. Given a differential λ-term S , we define its (full) Taylor expansion S∗ by

induction on S as follows:

x∗ = x

(λx.s)∗ = λx.s∗

(Dk s · (t1, . . . , tk))
∗ = Dk s∗ ·

(
t∗1, . . . , t

∗
k

)
(sT )∗ = Σk∈N(Dk s∗ ·

(
T ∗, . . . , T ∗))0

(s+ T )∗ = s∗ + T ∗.

Thus, the ‘target language’ of the Taylor expansion is much simpler than the full

differential λ-calculus. For instance, the general application of the λ-calculus is no longer

required, and we will only need iterated linear applications and ordinary applications

to 0. We will, however, need countable sums, which are not, in general, present in the

differential λ-calculus. From now on, the target calculus of the Taylor expansion will be

denoted by Λd
∞.

We will write 	S to denote sequences of differential λ-terms S1, . . . , Sk (with k � 0).

Remark 3.15. Every term S ∈ Λd
∞ can be written as a (possibly infinite) sum of terms of

the form

λ	y.(Dn1 (· · · (Dnk s ·
(
	tk
)
)	0) · · · ·

(
	t1
)
)	0

where 	ti is a sequence of simple terms of length ni ∈ N (for 1 � i � k) and the simple

term s is either a variable or a lambda abstraction.
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We will now try to clarify what it means for two differential λ-terms S and T to ‘have

the same Taylor expansion’. Indeed, we may have that S∗ = Σi∈I si and T ∗ = Σj∈Jtj
where I, J are countable sets. In this case one might be tempted to define S∗ = T ∗ by

asking for the existence of a bijective correspondence between I and J such that each si is

λβd-equivalent to some tj . However, in the general case, this definition does not capture

the equivalence between infinite sums that we have in mind. For instance, S∗ = T ∗ might

hold because there are partitions {Ik}k∈K and {Jk}k∈K of I and J , respectively, such that

for every k ∈ K , the sets Ik, Jk are finite and Σi∈Ik si =λβd Σi∈Jk sj . The naive definition

works well when all summands of the two sums we are equating are ‘in normal form’.

Since the Λd
∞ calculus (essentially) enjoys strong normalisation, we can define the normal

form of every S ∈ Λd
∞ as follows.

Definition 3.16. Given S ∈ Λd
∞, we define the normal form of S as follows.

— If S ≡
∑

i∈I si, we set

NF(S) =
∑
i∈I

NF(si).

— If S ≡ λ	y.(Dn1 (· · · (Dnk x ·
(
	tk
)
)	0) · · · ·

(
	t1
)
)	0, we set

NF(S) = λ	y.(Dn1 (· · · (Dnk x ·
(
NF(	tk

)
))	0) · · · ·

(
NF(	t1

)
))	0.

— If S ≡ λ	y.(Dn1 (· · · (Dnk (λx.s) ·
(
	tk
)
)	0) · · · ·

(
	t1
)
)	0 with nk > 0 , we set

NF(S) =

NF

(
λ	y.

(
Dn1

(
· · ·
(

Dnk−1

((
λx.

∂nk s

∂x, . . . , x
· (	tk)

)
	0

)
·
(
	tk−1

))
	0

)
· · · ·

(
	t1
))
	0

)
.

— If S ≡ λ	y.(Dn1 (· · · (Dnk ((λx.s)0	0) ·
(
	tk
)
)	0) · · · ·

(
	t1
)
)	0, we set

NF(S) = NF
(
λ	y.(Dn1 (· · · (Dnk ((s {0/x})	0) ·

(
	tk
)
)	0) · · · ·

(
	t1
)
)	0
)
.

By Remark 3.15, this definition covers all possible cases.

We are now able to define the differential λ-theory generated by equating all differential

λ-terms having the same Taylor expansion.

Definition 3.17. Given S, T ∈ Λd, we say that NF(S∗) = NF(T ∗) whenever

NF(S∗) =
∑
i∈I

si

NF(T ∗) =
∑
j∈J

tj

and there is an isomorphism ι : I → J such that λβd � si = tι(i). We set

E = {(S, T ) ∈ Λd × Λd | NF(S∗) = NF(T ∗)}.

It is not difficult to check that E is actually a differential λ-theory.

Two standard λ-terms s, t have the same Böhm tree (Barendregt 1984, Chapter 10) if

and only if E � s = t holds. The ‘if ’ part of this equivalence is fairly straightforward, and
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the ‘only if’ part is proved in Ehrhard and Regnier (2006a). Thus, the theory E can be

seen as an extension of the theory of Böhm trees in the context of differential λ-calculus.

4. A differential model theory

In this section we will provide the categorical framework in which the models of

the differential λ-calculus live, namely, the Cartesian closed differential categories†. The

material presented in Section 4.1 is mainly borrowed from (Blute et al. 2009).

4.1. Cartesian differential categories

Differential λ-terms will be interpreted as morphisms in a suitable category C. Since in

the syntax we have sums of terms, we need a sum on the morphisms of C satisfying

the equations introduced in Notation 3.4. For this reason, we will focus our attention on

left-additive categories.

A category C is left-additive whenever each homset has the structure of a commutative

monoid (C(A,B),+AB, 0AB) and (g + h)◦f = (g ◦f) + (h◦f) and 0◦f = 0.

Definition 4.1. A morphism f in C is said to be additive if, in addition, it satisfies

f ◦ (g + h) = (f ◦g) + (f ◦h)
f ◦0 = 0.

A category is Cartesian left-additive if it is a left-additive category with products such

that all projections and pairings of additive maps are additive.

Definition 4.2. A Cartesian differential category is a Cartesian left-additive category having

an operator D(−) that maps every morphism f : A → B into a morphism D(f) : A×A → B

and satisfies the following axioms:

D(f + g) = D(f) + D(g)(D1)

D(0) = 0

D(f)◦〈h+ k, v〉 = D(f)◦〈h, v〉 + D(f)◦〈k, v〉(D2)

D(f)◦〈0, v〉 = 0

D(Id) = π1(D3)

D(π1) = π1 ◦π1

D(π2) = π2 ◦π1

D(〈f, g〉) = 〈D(f), D(g)〉(D4)

D(f ◦g) = D(f)◦〈D(g), g ◦π2〉(D5)

† These categories were introduced in Bucciarelli et al. (2010), where they were called differential λ-categories

and proposed as models of the simply typed differential λ-calculus and simply typed resource calculus.
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D(D(f))◦〈〈g, 0〉, 〈h, k〉〉 = D(f)◦〈g, k〉(D6)

D(D(f))◦〈〈0, h〉, 〈g, k〉〉 = D(D(f))◦〈〈0, g〉, 〈h, k〉〉 .(D7)

We will now provide some intuitions for these axioms:

(D1) says that the operator D(−) is linear;

(D2) says that D(−) is additive in its first coordinate;

(D3) and (D4) say that D(−) behaves coherently with the product structure;

(D5) is the usual chain rule;

(D6) requires that D(f) is linear in its first component.

(D7) states the independence of the order of ‘partial differentiation’.

Remark 4.3. In a Cartesian differential category we obtain partial derivatives from the

full ones by ‘zeroing out’ the components for which the differentiation is not required. For

example, if we want to define the partial derivative D1(f) of f : C × A → B on its first

component, it is sufficient to set

D1(f) = D(f)◦ (〈IdC, 0A〉 × IdC×A) : C × (C × A) → B.

Similarly, we define

D2(f) = D(f)◦ (〈0C, IdA〉 × IdC×A) : A× (C × A) → B,

as the partial derivative of f with respect to its second component.

This remark follows from the fact that every differential D(f) can be reconstructed

from its partial derivatives as follows:

D(f) = D(f)◦〈〈π1 ◦π1, π2 ◦π1〉, π2〉
= D(f)◦〈〈π1 ◦π1, 0〉, π2〉 + D(f)◦〈〈0, π2 ◦π1〉, π2〉
= D(f)◦ (〈Id, 0〉 × Id)◦ (π1 × Id) + D(f)◦ (〈0, Id〉 × Id)◦ (π2 × Id)

= D1(f)◦ (π1 × Id) + D2(f)◦ (π2 × Id).

4.2. Linear morphisms

In Cartesian differential categories we are able to express the fact that a morphism is

‘linear’ by requiring that its differential is constant.

Definition 4.4. In a Cartesian differential category, a morphism f : A → B is said to be

linear if D(f) = f ◦π1.

Lemma 4.1. Every linear morphism f : A → B is additive.
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Proof. By the definition of a linear morphism, we have D(f) = f◦π1. For all g, h : C → A

we have

f ◦ (g + h) = f ◦π1 ◦〈g + h, g〉
= D(f)◦〈g + h, g〉
= D(f)◦〈g, g〉 + D(f)◦〈h, g〉
= f ◦π1 ◦〈g, g〉 + f ◦π1 ◦〈h, g〉
= f ◦g + f ◦h.

Moreover,

f ◦0 = f ◦π1 ◦〈0, 0〉
= D(f)◦〈0, 0〉
= 0,

so we can conclude that f is additive.

Lemma 4.2. The composition of two linear morphisms is linear.

Proof. Let f, g be two linear maps. We have to prove that D(f◦g) = f◦g◦π1. By (D5)

we have D(f ◦g) = D(f)◦〈D(g), g ◦π2〉. Since f, g are linear we have

D(f)◦〈D(g), g ◦π2〉 = f ◦π1 ◦〈g ◦π1, g ◦π2〉
= f ◦g ◦π1.

Thus, in fact, every Cartesian differential category has a subcategory of linear maps.

4.3. Cartesian closed differential categories

Cartesian differential categories are not enough to interpret the differential λ-calculus since

the differential operator does not automatically behave well with respect to the Cartesian

closed structure. For this reason, we will now introduce the notion of a Cartesian closed

differential category.

Definition 4.5. A category is Cartesian closed left-additive if it is a Cartesian left-additive

category that is Cartesian closed and satisfies

Λ(f + g) = Λ(f) + Λ(g)(+-curry)

Λ(0) = 0.(0-curry)

Using these properties of Λ(−), it is easy to prove that the evaluation morphism is additive

in its left component.

Lemma 4.3. In every Cartesian closed left-additive category the following axioms hold

(for all f, g : C → (A⇒B) and h : C → A):

ev◦〈f + g, h〉 = ev◦〈f, h〉 + ev◦〈g, h〉(+-eval)

ev◦〈0, h〉 = 0.(0-eval)
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Proof. Let f′ = Λ−(f) and g′ = Λ−(g). Then

ev◦〈f + g, h〉 = ev◦ ((Λ(f′) + Λ(g′)) × Id)◦〈Id, h〉 (definition of f′, g′)

= Λ−((Λ(f′) + Λ(g′))◦〈Id, h〉 (definition of Λ−)

= Λ−(Λ(f′ + g′))◦〈Id, h〉 (+-curry)

= (f′ + g′)◦〈Id, h〉 (definition of Λ−)

= f′ ◦ 〈Id, h〉 + g′ ◦ 〈Id, h〉 (left-additivity)

= Λ−(f)◦〈Id, h〉 + Λ−(g)◦〈Id, h〉 (definition of f′, g′)

= ev◦ (f × Id)◦〈Id, h〉 + ev◦ (g × Id)◦〈Id, h〉 (definition of Λ−)

= ev◦〈f, h〉 + ev◦〈g, h〉 .

Moreover, ev◦〈0, g〉 = ev◦〈Λ(0), g〉 = 0◦〈Id, g〉 = 0.

Definition 4.6. A Cartesian closed differential category is a Cartesian differential category

that is Cartesian closed left-additive and such that, for all f : C × A → B:

D(Λ(f)) = Λ(D(f)◦〈π1 × 0A, π2 × IdA〉).(D-curry)

Indeed, in a Cartesian closed differential category there are two ways to differentiate

f : C × A → B with respect to its first component: we can use the trick of Remark 4.3;

or we can ‘hide’ the component A by currying f and then differentiate Λ(f). Intuitively,

(D-curry) requires that these two methods are equivalent.

Lemma 4.4. In every Cartesian closed differential category, the following axiom holds

(for all h : C → (A⇒B) and g : C → A):

D(ev◦〈h, g〉) = ev◦〈D(h), g ◦π2〉 + D(Λ−(h))◦〈〈0C, D(g)〉, 〈π2, g ◦π2〉〉 .(D-eval)

Proof. Let h′ = Λ−(h) : C × A → B. Then

D(ev◦〈h, g〉) = D(ev◦〈Λ(h′), g〉) (definition of h′)

= D(h′ ◦ 〈IdC, g〉) (beta-cat)

= D(h′)◦〈D(〈IdC, g〉), 〈IdC, g〉◦π2〉 (D5)

= D(h′)◦〈〈π1, D(g)〉, 〈π2, g ◦π2〉〉 (D4+D3)

= D(h′)◦〈〈π1, 0A〉 + 〈0C, D(g)〉, 〈π2, g ◦π2〉〉 (pairing is additive)

= D(h′)◦〈〈π1, 0A〉, 〈π2, g ◦π2〉〉
+ D(h′)◦〈〈0C, D(g)〉, 〈π2, g ◦π2〉〉 (D2)

= D(h′)◦〈π1 × 0A, π2 × IdA〉◦〈IdC×C, g ◦π2〉
+ D(h′)◦〈〈0C, D(g)〉, 〈π2, g ◦π2〉〉

= ev◦〈Λ(D(h′)◦〈π1 × 0A, π2 × IdA〉), g ◦π2〉
+ D(h′)◦〈〈0C, D(g)〉, 〈π2, g ◦π2〉〉 (beta-cat)
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= ev◦〈D(Λ(h′)), g ◦π2〉
+ D(Λ−(Λ(h′)))◦〈〈0C, D(g)〉, 〈π2, g ◦π2〉〉 (D-curry)

= ev◦〈D(h), g ◦π2〉
+ D(Λ−(h))◦〈〈0C, D(g)〉, 〈π2, g ◦π2〉〉 . (definition of h′)

The axiom (D-eval) can be viewed as a chain rule for denotations of differential λ-terms

(cf. Lemma 4.8(i)).

In Cartesian closed differential categories, we are able to define a binary operator � on

morphisms, which can be viewed as the semantic counterpart of differential substitution.

The idea behind f � g is to derive the map f : A → B and then apply the argument g : A

in its linear component. However, differential λ-terms are interpreted in a certain context,

so we need to handle the context C and consider maps f : C × A → A and g : C → A.

Definition 4.7. The operator

f : C × A → B g : C → A

f � g : C × A → B
(�)

is defined by f � g = D(f)◦
〈〈

0C×A
C , g ◦π1

〉
, IdC×A

〉
.

The morphism f � g is obtained by differentiating f in its second component (partial

differentiation), and applying g in that component. The precise correspondence between

� and the differential substitution is given in Theorem 5.7.

Remark 4.8. In fact, the operators D(−) and � are mutually definable. To define D(−) in

terms of �, we just set D(f) = (f ◦π2) � Id. To check that this definition is meaningful, we

show that it holds in every Cartesian differential category: indeed, by Definition 4.7,

(f ◦π2) � Id = D(f ◦π2)◦〈〈0, π1〉, Id〉
= D(f)◦〈π2 ◦π1, π2 ◦π2〉◦〈〈0, π1〉, Id〉
= D(f).

Thus, we could formulate the whole theory of Cartesian closed differential categories by

axiomatising the behaviour of � instead of that of D(−). In the current work we prefer

to use D(−) because it is a more basic operation, which has already been studied in the

literature, and the complexities of the two approaches are comparable.

Linear morphisms can be characterised in terms of the operator � as follows.

Lemma 4.5. A morphism f : A → B is linear if and only if for all g : C → A, we have

(f ◦π2) � g = (f ◦g)◦π1 : C × A → B.

Proof.

(⇒) Suppose f is linear. By the definition of �, we have

(f ◦π2) � g = D(f ◦π2)◦〈〈0C, g ◦π1〉, IdC×A〉 .
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By applying (D5) and (D3), this is equal to

D(f)◦〈π2 ◦π1, π2 ◦π2〉◦〈〈0C, g ◦π1〉, IdC×A〉 = D(f)◦〈g ◦π1, π2〉 .

Since f is linear, we have D(f) = f ◦π1, so

D(f)◦〈g ◦π1, π2〉 = f ◦g ◦π1.

(⇐) Suppose (f◦π2)�g = (f◦g)◦π1 for all g : C → A. In particular, this is true for C = A

and g = IdA. Thus we have (f ◦π2) � IdA = f ◦π1. We can now conclude since

(f ◦π2) � IdA = D(f ◦π2)◦〈〈0A, π1〉, IdA×A〉 (definition of �)

= D(f)◦〈π2 ◦π1, π2 ◦π2〉◦〈〈0A, π1〉, IdA×A〉 (D5+D3)

= D(f)◦〈π1, π2〉
= D(f).

The operator � enjoys the following commutation property.

Lemma 4.6. Let f : C × A → B and g, h : C → A. Then (f � g) � h = (f � h) � g.

Proof. We set ϕg = 〈〈0C, g ◦π1〉, IdC×A〉 and ϕh = 〈〈0C, h◦π1〉, IdC×A〉. We have

(f � g) � h

= D(D(f)◦〈〈0C, g ◦π1〉, IdC×A〉)◦ϕh
= D(D(f))◦〈D(〈〈0C, g ◦π1〉, Id〉), 〈〈0C, g ◦π1〉, Id〉◦π2〉◦ϕh (D5)

= D(D(f))◦〈〈〈0C, D(g ◦π1)〉, π1〉, 〈〈0C, g ◦π1〉, Id〉◦π2〉◦ϕh (D4)

= D(D(f))◦〈〈〈0C, D(g)◦〈π1 ◦π1, π1 ◦π2〉〉, π1〉, 〈〈0C, g ◦π1〉, Id〉◦π2〉◦ϕh (D5)

= D(D(f))◦〈〈〈0C, D(g)◦〈0C, π1〉〉, 〈0C, h◦π1〉〉, 〈〈0C, g ◦π1〉, Id〉〉
= D(D(f))◦〈〈0C×A, 〈0C, h◦π1〉〉, 〈〈0C, g ◦π1〉, Id〉〉 (D2)

= D(D(f))◦〈〈0C×A, 〈0C, g ◦π1〉〉, 〈〈0C, h◦π1〉, Id〉〉 (D7)

= D(D(f))◦〈〈〈0C, D(h)◦〈0C, π1〉〉, 〈0C, g ◦π1〉〉, 〈〈0C, h◦π1〉, Id〉〉 (D2)

= D(D(f))◦〈〈〈0C, D(h)◦〈π1 ◦π1, π1 ◦π2〉〉, π1〉, 〈〈0C, h◦π1〉, Id〉◦π2〉◦ϕg
= D(D(f))◦〈〈〈0C, D(h◦π1)〉, π1〉, 〈〈0C, h◦π1〉, Id〉◦π2〉◦ϕg (D5)

= D(D(f))◦〈D(〈〈0C, h◦π1〉, IdCA〉), 〈〈0C, h◦π1〉, Id〉◦π2〉◦ϕg (D4)

= D(D(f)◦〈〈0C, h◦π1〉, Id〉)◦ϕg (D5)

= (f � h) � g.

Definition 4.9. Let swABC = 〈〈π1 ◦π1, π2〉, π2 ◦π1〉 : (A× B) × C → (A× C) × B.

Remark 4.10. We have

sw◦ sw = Id(A×B)×C

sw◦〈〈f, g〉, h〉 = 〈〈f, h〉, g〉
D(sw) = sw◦π1.
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The following two technical lemmas will be used in Section 5.3 to show the soundness

of the categorical models of the differential λ-calculus – complete proofs are given in

Appendix A.

Lemma 4.7. Let f : (C × A) × D → B and g : C → A, h : C → B′. Then:

(i) π2 � g = g ◦π1.

(ii) (h◦π1) � g = 0.

(iii) Λ(f) � g = Λ(((f ◦ sw) � (g ◦π1))◦ sw).

Outline of proof.

(i) This part follows by applying (D3).

(ii) This part follows by applying (D2), (D3) and (D5).

(iii) This part follows from (Curry), (D-curry) and (D2), (D3) and (D5).

Lemma 4.8. Let f : C × A → (D⇒B) and g : C → A, h : C × A → D. Then:

(i) (ev◦〈f, h〉) � g = ev◦〈f � g + Λ(Λ−(f) � (h � g)), h〉.
(ii) Λ(Λ−(f) � h) � g = Λ(Λ−(f � g) � h) + Λ(Λ−(f) � (h � g)).

(iii) Λ(Λ−(f) � h)◦〈IdC, g〉 = Λ(Λ−(f ◦〈IdC, g〉) � (h◦〈IdC, g〉)).

Outline of proof.

(i) This part follows by applying (D-eval) and (beta-cat).

(ii) This equation can be simplified by using the axioms of Cartesian closed left-additive

categories. Indeed, the right-hand side can be written as

Λ((Λ−(f � g) � h) + Λ−(f) � (h � g)).

By taking a morphism f′ such that f = Λ(f′) and applying Lemma 4.7 (iii), part (ii)

becomes equivalent to

((f′ � h)◦ sw) � (g ◦π1)◦ sw = (((f′ ◦ sw) � (g ◦π1))◦ sw) � h+ f′ � (h � g),

which follows by (Curry) and (D2–7).

(iii) This part follows by (Curry) and (D2–5).

5. Categorical models of the differential lambda calculus

We proved in Bucciarelli et al. (2010) that Cartesian closed differential categories constitute

sound models of the simply typed differential λ-calculus. In this section we will show that

all reflexive objects living in these categories and satisfying a linearity condition are sound

models of the untyped version of this calculus.

5.1. Linear reflexive objects in Cartesian closed differential categories

In a category C, an object A is a retract of an object B, written A � B, if there are

morphisms f : A → B and g : B → A such that g ◦f = IdA. When f ◦g = IdB also holds,

we say that A and B are isomorphic, written A ∼= B, and that f, g are isomorphisms.
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In a Cartesian closed category C, we expect a reflexive object U to be a triple (U,A, λ)
where U is an object of C and A : U → (U⇒U) and λ : (U⇒U) → U are two morphisms

performing the retraction (U⇒U) � U. When (U⇒U) ∼= U we say that U is extensional.

Definition 5.1. A reflexive object U = (U,A, λ) in a Cartesian closed differential category

is linear if both A and λ are linear morphisms.

We are now able to provide our definition of a model of the untyped differential

λ-calculus.

Definition 5.2. A categorical model U of the differential λ-calculus is a linear reflexive

object in a Cartesian closed differential category. The model U is said to be differentially

extensional (respectively, extensional) if its equational theory is.

It is routine to check that U is an extensional model (that is, Th(U) ⊇ λβηd) if and only

if it is extensional as a reflexive object (that is, (U⇒U) ∼= U).

The following lemma is useful for proving that a reflexive object in a Cartesian closed

differential category is linear.

Lemma 5.1. Let U be a reflexive object.

(i) If A and λ◦A are linear, then U is linear.

(ii) If U is extensional and either A or λ is linear, then U is linear.

Proof.

(i) Suppose A and λ◦A are linear morphisms. We will show that λ is linear too. Indeed,

we have

D(λ) = D(λ)◦ (A × A)◦ (λ× λ)

= D(λ)◦〈A◦π1,A◦π2〉◦ (λ× λ)

= D(λ)◦〈D(A),A◦π2〉◦ (λ× λ) (A linear)

= D(λ◦A)◦ (λ× λ)

= λ◦A◦π1 ◦〈λ◦π1, λ◦π2〉 (λ◦A linear)

= λ◦A◦λ◦π1

= λ◦π1.

(ii) If A is linear, part (ii) follows directly from part (i) since λ◦A = IdU and the identity

is linear. If λ is linear, calculations analogous to those made for Part (i) show that A
is too.

Notice that, in general, there may be extensional reflexive objects that are not linear.

However, in the concrete example of Cartesian closed differential category we will describe

in Section 6, every extensional reflexive object will be linear (see Corollary 6.5).
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Lemma 5.2. Let U be a linear reflexive object and let

f : Un+1 → (U⇒U)

h : Un+1 → U

g : Un → U.

Then:

(i) λ◦ (f � g) = (λ◦f) � g.
(ii) A◦ (h � g) = (A◦h) � g.

Proof.

(i) By the definition of �, we have

(λ◦f) � g = D(λ◦f)◦〈〈0Un , g ◦π1〉, IdUn+1〉 .

By (D5), we have

D(λ◦f) = D(λ)◦〈D(f), f ◦π2〉 .

Since λ is linear, we have D(λ) = λ◦π1, so

D(λ)◦〈D(f), f ◦π2〉 = λ◦π1 ◦〈D(f), f ◦π2〉
= λ◦D(f).

Hence,

D(λ◦f)◦〈〈0Un , g ◦π1〉, IdUn+1〉 = λ◦D(f)◦〈〈0Un , g ◦π1〉, IdUn+1〉
= λ◦ (f � g).

(ii) The proof for this part is analogous to the proof of part (i).

5.2. Defining the interpretation

Let 	x = x1, . . . , xn be an ordered sequence of variables without repetitions. We say that

	x is adequate for S1, . . . , Sk ∈ Λd if FV(S1, . . . , Sk) ⊆ {x1, . . . , xn}. Given an object U, we

write U	x for the {x1, . . . , xn}-indexed categorical product of n copies of U (when n = 0,

we consider U	x = 1). Moreover, we define the ith projection π	xi : U	x → U by

π	xi =

{
π2 if i = n

π
x1 ,...,xn−1

i ◦π1 otherwise.

Definition 5.3. Let U be a categorical model, S be a differential λ-term and 	x = x1, . . . , xn
be adequate for S . The interpretation of S in U (with respect to 	x) will be a morphism
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[S]	x : U	x → U defined by induction as follows:

[xi]	x = π	xi

[sT ]	x = ev◦〈A◦ [s]	x, [T ]	x〉
[λz.s]	x = λ◦Λ([s]	x,z) (where by α-conversion we assume

that z does not occur in 	x)

[D1 s · (t) ]	x = λ◦Λ(Λ−(A◦ [s]	x) � [t]	x)
[Dn+1 s · (t1, . . . , tn, tn+1) ]	x = λ◦Λ(Λ−(A◦ [Dn s · (t1, . . . , tn) ]	x) � [tn+1]	x)

[0]	x = 0U
	x

U

[s+ S]	x = [s]	x + [S]	x.

Remark 5.4. Easy calculations give

[Dn s · (t1, . . . , tn) ]	x = λ◦Λ((· · · (Λ−(A◦ [s]	x) � [t1]	x) · · · ) � [tn]	x).

Lemma 4.6 means that this interpretation does not depend on the chosen representative

of the permutative equivalence class. In other words, we have

[Dn s · (t1, . . . , tn) ]	x = [Dn s ·
(
tσ(1), . . . , tσ(n)

)
]	x

for every permutation σ ∈ Sn.

5.3. Soundness

Given a categorical model U, we can define the equational theory of U as follows:

Th(U) = {S = T | [S]	x = [T ]	x for some 	x adequate for S, T }.

The aim of this section is to prove that the interpretation we have defined is sound, that

is, that Th(U) is a differential λ-theory for every model U.

The following convention allows us to simplify the statements of our theorems.

Convention 5.5. For the rest of this section we consider a fixed (but arbitrary) linear

reflexive object U living in a Cartesian closed differential category C. Moreover, whenever

we write [S]	x, we suppose that 	x is an adequate sequence for S .

The proof of the next lemma is easy, and is left as an exercise. Recall that the morphism

sw was introduced in Definition 4.9.

Lemma 5.3. Let S ∈ Λd.

(i) If z /∈ FV(S), then [S]	x;z = [S]	x ◦π1, where z does not occur in 	x.

(ii) [S]	x;y;z = [S]	x;z;y ◦ sw, where z and y do not occur in 	x.

Theorem 5.6 (Classic Substitution Theorem). Let S, T ∈ Λd, 	x = x1, . . . , xn and y not

occurring in 	x. Then

[S {T/y} ]	x = [S]	x;y ◦〈Id, [T ]	x〉 .
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Proof. The proof is by induction on S . The only interesting case is

S ≡ Dn s · (u1, . . . , un) ,

which we treat by cases on n:

— Case n = 1:

By the definition of substitution, we have

[(Ds · u1) {T/y} ]	x = [Ds {T/y} · u1 {T/y} ]	x.

By the definition of [ − ], this is equal to

λ◦Λ(Λ−(A◦ [s {T/y} ]	x) � [u1 {T/y} ]	x).

By the induction hypothesis, we then get

λ◦Λ(Λ−(A◦ [s]	x;y ◦〈Id, [T ]	x〉) � ([u1]	x;y ◦〈Id, [T ]	x〉)).

Applying Lemma 4.8 (iii), this is equal to

λ◦Λ(Λ−(A◦ [s]	x;y) � [u1]	x;y)◦〈Id, [T ]	x〉 = [Ds · u1]	x;y ◦〈Id, [T ]	x〉 .

— Case n > 1:

By the definition of substitution, we have

[(Dn s · (u1, . . . , un)) {T/y} ]	x = [(Dn s {T/y} ·
(
u1 {T/y} , . . . , un {T/y}

)
)]	x.

Applying the definition of [ − ], this is equal to

λ◦Λ(Λ−(A◦ [Dn−1 s {T/y} ·
(
u1 {T/y} , . . . , un−1 {T/y}

)
]	x) � [un {T/y} ]	x).

By the definition of substitution, this is

λ◦Λ(Λ−(A◦ [(Dn−1 s · (u1, . . . , un−1)) {T/y} ]	x) � [un {T/y} ]	x).

Applying the induction hypothesis twice, we get

λ◦Λ(Λ−(A◦ [(Dn−1 s · (u1, . . . , un−1) ]	x,y ◦〈Id, [T ]	x〉) � ([un]	x,y ◦〈Id, [T ]	x〉)).

By Lemma 4.8 (iii), this is equal to

λ◦Λ(Λ−(A◦ [Dn−1 s · (u1, . . . , un−1) ]	x,y) � [un]	x,y)◦〈Id, [T ]	x〉 ,

which equals

[(Dn s · (u1, . . . , un))]	x;y ◦〈Id, [T ]	x〉 .

Theorem 5.7 (Differential Substitution Theorem). Let S, T ∈ Λd, 	x = x1, . . . , xn and y not

occurring in 	x. Then [[
∂S

∂y
· T
]]
	x;y

= [S]	x;y � [T ]	x.

Proof. We use structural induction on S .
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— Case S ≡ y:

We have [[
∂y

∂y
· T
]]
	x,y

= [T ]	x,y = [T ]	x ◦π1 = π2 � [T ]	x = [y]	x,y � [T ]	x

by Lemma 4.7 (i).

— Case S ≡ xi = y:

We have [[
∂xi

∂y
· T
]]
	x,y

= [0]	x,y = 0.

By Lemma 4.7 (ii), we have

0 = ([xi]	x ◦π1) � [T ]	x = [xi]	x,y � [T ]	x.

— Case S ≡ λz.v:

By the definition of differential substitution, we have[[
∂λz.v

∂y
· T
]]
	x,y

=

[[
λz.

∂v

∂y
· T
]]
	x,y

= λ◦Λ

([[
∂v

∂y
· T
]]
	x,y,z

)
.

Applying Lemma 5.3 (ii), this is equal to

λ◦Λ

([[
∂v

∂y
· T
]]
	x,z,y

◦ sw

)
.

By the induction hypothesis, we then get

λ◦Λ(([v]	x,z,y � [T ]	x,z)◦ sw).

Supposing, without loss of generality, that z /∈ FV(T ), we have, by Lemma 5.3 (i),

[T ]	x,z = [T ]	x ◦π1. Thus, applying Lemma 4.7 (iii), we have

λ◦Λ(([v]	x,z,y � ([T ]	x ◦π1))◦ sw) = λ◦ (Λ([v]	x,z,y ◦ sw) � [T ]	x),

which is equal to λ ◦ (Λ([v]	x,y,z) � [T ]	x) by Lemma 5.3 (ii). Since U is linear, we can

apply Lemma 5.2 (i) and get

λ◦ (Λ([v]	x,y,z) � [T ]	x) = (λ◦Λ([v]	x,y,z)) � [T ]	x

= [λz.v]	x,y � [T ]	x.

— Case S ≡ sU:

By the definition of differential substitution, we have[[
∂sU

∂y
· T
]]
	x,y

=

[[(
∂s

∂y
· T
)
U

]]
	x,y

+

[[(
Ds ·

(
∂U

∂y
· T
))

U

]]
	x,y

.

We consider the two summands separately. For the first we have[[(
∂s

∂y
· T
)
U

]]
	x,y

= ev◦
〈
A◦

[[
∂s

∂y
· T
]]
	x,y

, [U]	x,y

〉
,
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which is equal by the induction hypothesis to

ev◦
〈
A◦ ([s]	x,y � [T ]	x), [U]	x,y

〉
.

By Lemma 5.2 (ii), this is equal to ev◦〈(A◦ [s]	x,y) � [T ]	x, [U]	x,y〉.
For the second summand we have, using A◦λ = IdU ⇒U ,[[(

Ds ·
(
∂U

∂y
· T
))

U

]]
	x,y

= ev◦
〈

Λ

(
Λ−(A◦ [s]	x,y) �

[[
∂U

∂y
· T
]]
	x,y

)
, [U]	x,y

〉
.

By the induction hypothesis, this is equal to

ev◦
〈
Λ(Λ−(A◦ [s]	x,y) � ([U]	x,y � [T ]	x)), [T ]	x,y

〉
.

Applying Lemma 4.3, we can rewrite the sum of this two summands as follows:

ev◦
〈
(A◦ [s]	x,y) � [T ]	x + Λ(Λ−(A◦ [s]	x,y) � ([U]	x,y � [T ]	x)), [U]	x,y

〉
.

By Lemma 4.8 (i), this is(
ev◦

〈
A◦ [s]	x,y, [U]	x,y

〉)
� [T ]	x = [sU]	x,y � [T ]	x.

— Case S ≡ Dn v · (u1, . . . , un):

We consider subcases on n:

– Subcase n = 1:

By the definition of differential substitution, we have[[
∂

∂y
(Dv · u1) · T

]]
	x,y

=

[[
D

(
∂v

∂y
· T
)

· u1

]]
	x,y

+

[[
Dv ·

(
∂u1

∂y
· T
)]]

	x,y

.

We consider the two summands separately. For the first, we have[[
D

(
∂v

∂y
· T
)

· u1

]]
	x,y

= λ◦Λ

(
Λ−

(
A◦

[[
∂v

∂y
· T
]]
	x,y

)
� [u1]	x,y

)
.

By the induction hypothesis, this is equal to

λ◦Λ(Λ−(A◦ ([v]	x,y � [T ]	x)) � [u1]	x,y),

which is equal to

λ◦Λ(Λ−((A◦ [v]	x,y) � [T ]	x) � [u1]	x,y)

by Lemma 5.2 (ii).

For the second summand, we have[[
Dv ·

(
∂u1

∂y
· T
)]]

	x,y

= λ◦Λ

(
Λ−(A◦ [v]	x,y) �

[[
∂u1

∂y
· T
]]
	x,y

)
.

By the induction hypothesis, this is

λ◦Λ(Λ−(A◦ [v]	x,y) � ([u1]	x,y � [T ]	x)).
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Since λ is linear, we can apply Lemma 4.5 and write the sum of the two morphisms

as

λ◦
(
Λ(Λ−((A◦ [v]	x,y) � [T ]	x) � [u1]	x,y) + Λ(Λ−(A◦ [v]	x,y) � ([u1]	x,y � [T ]	x))

)
.

Applying Lemma 4.8 (ii), we obtain

λ◦ (Λ(Λ−(A◦ [v]	x,y) � [u1]	x,y) � [T ]	x),

which is equal to [Dv · u1]	x,y � [T ]	x.

– Subcase n > 1:

Easy calculations give[[
∂

∂y
(Dn v · (u1, . . . , un)) · T

]]
	x;y

=[[
D

(
∂

∂y

(
Dn−1 v · (u1, . . . , un−1)

)
· T
)

· un
]]
	x;y

+(1) [[
D
(
Dn−1 v · (u1, . . . , un−1)

)
·
(
∂un

∂y
· T
)]]

	x;y

.(2)

We consider the two summands separately:

• Summand(1):

By the induction hypothesis,

λ◦Λ

(
Λ−

(
A◦

[[
∂

∂y

(
Dn−1 v · (u1, . . . , un−1)

)
· T
]]
	x,y

)
� [un]	x,y

)
equals

λ◦Λ
(
Λ−

(
A◦

(
[Dn−1 v · (u1, . . . , un−1) ]	x,y � [T ]	x

))
� [un]	x,y

)
,

which, by Lemma 5.2 (ii), equals

λ◦Λ
(
Λ−

((
A◦ [Dn−1 v · (u1, . . . , un−1) ]	x,y

)
� [T ]	x

)
� [un]	x,y

)
.

• Summand(2):

By the induction hypothesis,

λ◦Λ

(
Λ−

(
A◦ [Dn−1 v · (u1, . . . , un−1) ]	x,y

)
�

[[
∂un

∂y
· T
]]
	x,y

)
= λ◦Λ

(
Λ−

(
A◦ [Dn−1 v · (u1, . . . , un−1) ]	x,y

)
�
(
[un]	x,y � [T ]	x

))
.

Since λ is linear, we have (1) + (2) is equal to

λ ◦
(
Λ(Λ−((A◦ [Dn−1 v · (u1, . . . , un−1) ]	x,y) � [T ]	x) � [un]	x,y) +

Λ(Λ−(A◦ [Dn−1 v · (u1, . . . , un−1) ]	x,y) � ([un]	x,y � [T ]	x))
)
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By Lemma 4.8 (ii), we then get

λ◦ (Λ(Λ−(A◦ [Dn−1 v · (u1, . . . , un−1) ]	x,y) � [un]	x) � [T ]	x),

which, by Lemma 5.2 (i), is equal to

λ◦Λ(Λ−(A◦ [Dn−1 v · (u1, . . . , un−1) ]	x,y) � [un]	x) � [T ]	x,

in other words,

[Dn v · (u1, . . . , un) ]	x;y � [T ]	x.

— Case S ≡ 0:

This case is straightforward.

— Case S ≡ s+U:

This case is straightforward.

We are now able to state the main result of this section.

Theorem 5.8 (Soundness). Every linear reflexive object U in a Cartesian closed differential

category C is a sound model of the differential λ-calculus.

Proof. It is easy to check that the categorical interpretation is contextual. We now prove

that Th(U) is closed under the rules (β) and (βD):

— Rule (β):

Let

[(λy.s)T ]	x = ev◦〈A◦λ◦Λ([s]	x,y), [T ]	x〉.
Since A◦λ = Id, this is equal to

ev◦〈Λ([s]	x,y), [T ]	x〉.

On the other side, we have

[s {T/y} ]	x = [s]	x,y ◦〈Id, [T ]	x〉

by Theorem 5.6, and by (beta-cat),

[s]	x,y ◦〈Id, [T ]	x〉 = ev◦
〈
Λ([s]	x,y), [T ]	x

〉
.

— Rule (βD):

Let

[D (λy.s) · t]	x = λ◦Λ(Λ−(A◦λ◦Λ([s]	x,y)) � [t]	x).

Since A◦λ = Id, this is equal to

λ◦Λ(Λ−(Λ([s]	x,y)) � [t]	x) = λ◦Λ([s]	x,y � [t]	x).

Applying Theorem 5.7, this is equal to

λ◦Λ

([[
∂s

∂y
· t
]]
	x,y

)
=

[[
λy.

∂s

∂y
· t
]]
	x

.

We can then conclude that Th(U) is a differential λ-theory.
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The above theorem shows that linear reflexive objects in Cartesian closed differential

categories are sound models of the untyped differential λ-calculus.

Proposition 5.9. If U is extensional, then Th(U) is extensional.

Proof. As in the case of ordinary λ-calculus, easy calculations show that

[λx.sx]	x = λ◦Λ(ev)◦A◦ [s]	x,

which is equal to [s]	x since Λ(ev) = Id and λ◦A = Id.

5.4. Equational completeness

An important result in the ordinary λ-calculus is the equational completeness theorem

proved in Scott (1980) and subsequently refined in Koymans (1982). This theorem states

that every λ-theory is the theory of a reflexive object in a Cartesian closed category. In this

section we discuss whether the categorical notion of a model of the differential λ-calculus

presented in Section 5 is also complete. In other words, we investigate the question of

whether for every differential λ-theory T there is a linear reflexive object UT living in a

suitable Cartesian closed differential category CT such that Th(UT ) = T . We will be able

to answer yes to this question, provided T is differentially extensional and satisfies sum

idempotency. This restriction is quite reasonable since all known models that have arisen

so far do satisfy these properties (see Sections 6.1.1 and 6.3.1). However, these conditions

arise from some technical choices we have to make, and it is not yet known whether other

choices might lead to a more general theorem.

Before going further, we will outline the proof of the classic Scott–Koymans’ result,

which is achieved in two steps:

(i) Given a λ-theory T , one proves that the set of λ-terms modulo T together with the

application operator defined between equivalence classes constitutes a λ-model† MT
(called the term model of T ) having as theory exactly T .

(ii) By applying a construction called the Karoubi envelope (Karoubi 1978) to MT , one

builds a (very syntactic) Cartesian closed category CT in which the identity I is a

reflexive object such that Th(I) = T .

Summing up, the idea of the proof is to find suitable λ-terms to encode the structure of

the category (pairing, currying, evaluation, and the like), and then prove that they actually

define a category with such a structure.

In our context, the categorical operator D(−) can be easily defined in terms of the linear

application. Intuitively, the term representing D(f) takes in input a pair and applies the first

component linearly and the second in the usual way, in accordance with the categorical

axiomatisation of D(−). The main problem we need to solve is that the encoding of

the categorical pairing 〈f, g〉 used by Scott is not additive. Indeed, such a pairing is

† A ‘λ-model’ is a combinatory algebra satisfying the five axioms of Curry and the Meyer–Scott axiom – see

Barendregt (1984, Chapter 5) for more details.
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defined from Church’s encoding of the pair in λ-calculus given by 〈〈f, g〉〉 ≡ λx.xfg with

projections

p1 = λz.z(λxy.x)

p2 = λz.z(λxy.y).

Obviously, with this definition we have

〈〈f1 + f2, g1 + g2〉〉 = 〈〈f1, g1〉〉 + 〈〈f2, g2〉〉

since the sums do not occur in linear position. We will see that the encoding of an additive

pairing can be obtained using the linear application and the sum in the differential λ-

calculus.

Notation 5.10. Given a differential λ-theory T , we write Λd
T for Λd/T .

From now until the end of the section, we set A◦B ≡ λx.A(Bx). We say that A ∈ Λd
T is

idempotent if A◦A = A and additive if A(x+ y) = Ax+ Ay.

Definition 5.11. Let T be a differential λ-theory. The category CT associated with T is

defined as follows:

Objects: {A ∈ Λd
T | A is idempotent and additive}

Arrows: CT (A,B) = {f ∈ Λd
T | B ◦f ◦A = f}

Identities: IdA = A

Composition: f ◦g.

It is easy to verify that CT is indeed a category.

We now encode the ordered pair 〈〈S, T 〉〉 in the differential λ-calculus as follows – we

will use this notion in the definition of categorical pairing.

Definition 5.12. The encoding of the pair into the differential λ-calculus is given by

〈〈S, T 〉〉 ≡ λy.(S + Dy · T ), for some y /∈ FV(S, T )

with projections

p1 ≡ λx.x0

p2 ≡ λx.(Dx · I)00.

It is immediate that

pi〈〈S1, S2〉〉 = Si (for i = 1, 2)

and that

〈〈S1 + S2, T1 + T2〉〉 = 〈〈S1, T1〉〉 + 〈〈S2, T2〉〉.
This encoding is inspired by the set-theoretical definition of the ordered pair: the pair of

S, T is essentially the set containing S, T (the sum being the union) slightly modified to

make them distinguishable. Such a distinction consists of the number of linear resources

they can receive (zero for the first component; one for the second).
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Given this encoding, we can endow CT with the structure of a differential Cartesian

closed category, under the assumption that the sum is idempotent (like set-theoretical

union).

Theorem 5.13. For all differential λ-theories T satisfying sum idempotency:

(i) CT is differential Cartesian closed.

(ii) The triple (I, 1, 1) is a linear reflexive object.

Proof.

(i) We have

— Terminal object:

This is 1 ≡ λxy.y. Note that f : A → 1 if and only if f ≡ !A ≡ λxy.y.

— Products:

Given two objects A1, A2, the object

A1 × A2 ≡ λz.〈〈A1(p1z), A2(p2z)〉〉

is the Cartesian product of A1 and A2:

– Projections:

We have

π1 : A1 × A2 → A1, π
A1 ,A2

1 ≡ A1 ◦p1

π2 : A1 × A2 → A2, π
A1 ,A2

2 ≡ A2 ◦p2.

– Pairing:

Let f : A → B and g : A → C . Then

〈f, g〉 ≡ λz.〈〈fz, gz〉〉.

— Exponents:

Given two objects A,B, the object A⇒B ≡ λz.B ◦ z ◦A is the exponential object

internalising CT (A,B). The evaluation morphism ev : (A⇒B) × A → B is defined

by

ev ≡ λz.B((p1z)(A(p2z)))

and the curry of a morphism f : A× B → C is given by

Λ(f) ≡ λxy.f〈〈x, y〉〉.

— Differential operator:

Given a morphism f : A → B, we define

D(f) ≡ λz.B
(
(Df · (A(p1z)))(A(p2z))

)
— Left-additive structure:

We interpret the sum in the category as the sum on Λd
T .

The calculations showing that everything works are straightforward but very

lengthy. As a simple example, we will just prove that categorical pairing is indeed
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additive:

〈f1 + f2, g1 + g2〉 = λz.〈〈f1z + f2z, g1z + g2z〉〉
= λy.(f1z + f2z) + λy.Dy · (g1z + g2z)

= λy.f1z + λy.f2z + λy.Dy · (g1z) + λy.Dy · (g2z)

= 〈f1, g1〉 + 〈f2, g2〉 .

(ii) Note that (I ⇒ I) = 1. Then I is a reflexive object since 1 : 1 → I, 1 : I → 1 and

1◦1 = Id1. Moreover, I is linear as a reflexive object:

D(1) = λz.(D1 · (p1z))(p2z)

= λz.(λxy.p1zy)(p2z)

= λzy.p1zy

= 1◦π1.

In the above proof, the idempotency of the sum is required, for instance, to prove the

axiom (D-curry). The task of finding an encoding of the additive pairing that does not

require the idempotency of the sum is left for future work.

In order to provide a characterisation of the interpretation of a differential λ-term S ,

we need the following definition.

Definition 5.14. The full η∂-expansion Ŝ of a differential λ-term S ∈ Λd is defined by

induction (where y is a fresh variable):

x̂ ≡ x

λ̂x.s ≡ λx.̂s

ŝT ≡ ŝT̂

D̂s · t ≡ λy.(D ŝ · t̂)y∑̂
i si ≡

∑
i ŝi.

Roughly speaking, the term Ŝ is obtained from S by performing one η∂-expansion in all

its subterms of shape Ds · t. The adjective full refers to the fact that the η∂-expansion is

carried out inductively on the structure of S .

Remark 5.15. It is obvious that if T is differentially extensional, then T � S = Ŝ for all

S ∈ Λd.

Proposition 5.16. In the model I living in CT , the following holds (for some z /∈ FV(S)):

[S]	x = λz.Ŝ
{
π	xx1
z/x1

}
· · ·
{
π	xxnz/xn

}
: I	x → I.
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Proof. The proof is by induction on the structure of S . There are only two non-trivial

cases:

— Case S ≡ λy.T :

We have

[λxn+1.T ]	x = 1◦Λ([T ]	x,xn+1
) (definition of [ · ]	x)

= 1◦ (λy1y2.[T ]	x,xn+1
〈〈y1, y2〉〉) (definition of Λ(·))

= λy1y2.
(
λz.T̂

{
π	x,xn+1
x1

z/x1

}
· · ·
{
π	x,xn+1
xn+1

z/xn+1

})
〈〈y1, y2〉〉

(induction hypothesis)

= λy1y2.T̂
{
π	xx1
y1/x1

}
· · ·
{
π	xxny1/xn

}
{y2/xn+1} (β-reduction)

= λz.(λxn+1.T̂ )
{
π	xx1
z/x1

}
· · ·
{
π	xxnz/xn

}
. (α-conversion)

— Case S ≡ DT ·U.

[DT ·U]	x
= λzy.(D ([T ]	xz) · ([U]	xz))y

= λzy.
(
D
((
λz.T

{
π	xx1
z/x1

}
· · ·
{
π	xxnz/xn

})
z
)

·((
λz.S

{
π	xx1
z/x1

}
· · ·
{
π	xxnz/xn

})
z
))

y

= λzy.(D (T
{
π	xx1
z/x1

}
· · ·
{
π	xxnz/xn

}
) · (S

{
π	xx1
/x1

}
· · ·
{
π	xxnz/xn

}
))y.

Therefore, in the theory of the model I, equations of the form

Ds · t = λy.(Ds · t)y

might be added. No equation can be added when the theory T is already differentially

extensional.

Theorem 5.17 (Equational Completeness). Every differentially extensional differential λ-

theory T satisfying sum idempotency is the theory of a linear reflexive object in a

differential Cartesian closed category.

Proof. For all closed terms S, T ∈ Λd, we have, by Proposition 5.16, that [S]	x = [T ]	x
entails T � λz.Ŝ = λz.T̂ and, by Remark 5.15, that T � λz.S = λz.T . Since T is

a differential λ-theory, we also have T � (λz.S)0 = (λz.T )0. Since z /∈ FV(S, T ) and

λβd ⊆ T , we get T � S = T , so Th(I) = T .

We will show in Section 7.3.1 that an analogous theorem holds for the resource calculus,

but without the restriction to theories that are differentially extensional.

Remark 5.18. Theorem 5.17 does not mean that the theory of every model in a dif-

ferential Cartesian closed category must satisfy sum-idempotency and the differential

extensional axiom. These are just technical conditions arising from the specific proof of

the completeness theorem given here. However, no more general proof is currently known.
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The completeness theorem constitutes an important result and suggests that the notion

of a model we have chosen for the differential λ-calculus is actually correct.

On the other hand, denotational models are usually introduced because they allow us to

study a calculus by means of more abstract mathematical structures for which a broader

range of tools and proof techniques are available. In this respect, the categorical models

living in CT are unsatisfactory because they are very syntactical, and proving operational

properties of differential λ-terms using these models does not make it any easier than

working directly with the syntax.

For this reason, it would be interesting to find meaningful classes of models (semantics)

that are complete in the sense that they allow us to represent all differential λ-theories.

However, even in the case of the ordinary λ-calculus, it is well known that the main

examples of semantics, that is, the continuous, the stable and the strongly stable semantics,

are all hugely incomplete – there is a continuum of λ-theories that cannot be represented by

models living in such semantics (Salibra 2001). We will show in Section 6.3 that a similar

result holds for the relational semantics of the differential λ-calculus (Corollary 6.10).

The problem of finding a complete semantics of the (differential) λ-calculus is open and

quite difficult.

5.5. Comparison with the categorical models of the untyped lambda calculus

The definition of a categorical model of the differential λ-calculus proposed in this paper

seems to be a straightforward generalisation of the classical definition of a model of the

λ-calculus, that is, the notion of a reflexive object in a Cartesian closed category. However,

while this notion is by far the best-known categorical definition of a model of λ-calculus,

it is not the most general one. Indeed, as pointed out in Martini (1992), there is one

axiom of Cartesian closed categories that is never used in the proof of soundness for

categorical models (Barendregt 1984, Proposition 5.5.5), namely, the axiom (Id-Curry),

which is equivalent to requiring the unicity of the operator Λ(−) in the category (and this

entails Λ(Λ−(f)) = f).

For this reason, Martini proposed reflexive objects living in weak Cartesian closed

categories as a more general notion of a model of λ-calculus. In these categories, there is

just a retraction (not an isomorphism) between the homsets C(C × A,B) � C(C,A⇒B).

So A⇒B is no longer an object representing C(A,B) exactly – there are other objects that

can equally well accomplish the job. Recently, de Carvalho (2007) successfully used this

notion to build concrete models living in very natural weak Cartesian closed categories

inspired by the semantics of linear logic.

However, this generalisation cannot be applied in our differential framework because

the proof of soundness relies on the fact that Λ(Λ−(f)) = f. This is actually required

in order to give a meaningful interpretation of the linear application Ds · t. Hence, the

definition of a categorical model of the differential λ-calculus we have presented here is

more different from the corresponding one for the ordinary λ-calculus than one might

think at first glance.

5.6. Modelling the Taylor expansion

In this section we provide sufficient conditions for models living in Cartesian closed

differential categories to equate all differential λ-terms having the same Taylor expansion.
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As an interesting fact, this happens to be a property of the category rather than of

the reflexive objects. Therefore, all models living in a category ‘modelling the Taylor

expansion’ have an equational theory including E .

Since the definition of the Taylor expansion requires infinite sums, we need to consider

Cartesian closed differential categories C where it is possible to sum infinitely many

morphisms. Formally, we require that for every countable set I and every family {fi}i∈I
of morphisms fi : A → B, we have

∑
i∈I fi ∈ C(A,B). In this case we say that C has

countable sums. To avoid the tedious problem of handling coefficients, we assume that the

sum on the morphisms is idempotent.

Definition 5.19. A Cartesian closed differential category models the Taylor Expansion if

it has countable sums and the following axiom holds (for every f : C × A → B and

g : C → A):

ev◦〈f, g〉 =
∑
k∈N

((· · · (Λ−(f) �g) · · · ) � g︸ ︷︷ ︸
k times

)◦〈Id, 0〉 .(Taylor)

Recall that the Taylor expansion S∗ of a differential λ-term S was defined in Section 3.4.

Given a model U of the differential λ-calculus living in a Cartesian closed differential

category having countable sums, we can extend the interpretation given in Definition 5.3

to terms in Λd
∞ by setting [Σi∈I si]	x =

∑
i∈I [si]	x, for every countable set I .

Theorem 5.20. Let S be a differential λ-term and U be a model living in a Cartesian

closed differential category having countable sums and modelling the Taylor Expansion.

Then:

[S]	x = [S∗]	x.

Proof. We use structural induction on S – the only interesting case is S ≡ sT :

[sT ]	x = ev◦〈A◦ [s]	x, [T ]	x〉 (definition of [ − ]	x)

=
∑
k∈N

((· · · (Λ−(A◦ [s]	x) �[T ]	x) · · · ) � [T ]	x︸ ︷︷ ︸
k times

)◦〈Id, 0〉 (Taylor)

=
∑
k∈N

ev◦
〈

Λ((· · · (Λ−([s]	x �[T ]	x) · · · ) � [T ]	x︸ ︷︷ ︸
k times

), 0

〉
(beta-cat)

=
∑
k∈N

ev◦
〈
A◦λ◦Λ((· · · (Λ−([s]	x �[T ]	x) · · · ) � [T ]	x︸ ︷︷ ︸

k times

), 0

〉
(A◦λ = Id)

=
∑
k∈N

ev◦
〈
A◦ [Dk s · (T , . . . , T ) ]	x, 0

〉
(definition of [ − ]	x)

= [Σk∈N(Dk s · (T , . . . , T ))0]	x (definition of [ − ]	x)

= [(sT )∗]	x (definition of (·)∗)

By adapting the proof of Theorem 5.8, we can then prove that [S∗]	x = [NF(S∗)]	x for

every differential λ-term S . From this fact and Theorem 5.20, we get the following result.
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Corollary 5.21. Every model U living in a Cartesian closed differential category that

models the Taylor expansion satisfies E ⊆ Th(U).

6. A relational model of the differential lambda calculus

In this section we discuss the main example of a Cartesian closed differential category

known in the literature; viz. the category MRel (Girard 1988; Bucciarelli et al. 2007),

which is the co-Kleisli category of the functor Mf(−) over the �-autonomous category

Rel of sets and relations. We will also show that the reflexive object D living in MRel that

was built in Bucciarelli et al. (2007) to model the ordinary λ-calculus is linear, and then

that it constitutes a model of the untyped differential λ-calculus. We will then provide a

partial characterisation of its equational theory showing that it contains λβηd and E (this

follows from the fact that MRel models the Taylor expansion).

Remark 6.1. Bucciarelli et al. (2010) also provided another example of a Cartesian closed

differential category: the category MFin, which is the co-Kleisli of the functor Mf(−)

over the �-autonomous category of finiteness spaces and finitary relations (Ehrhard 2005).

However, we will not discuss the category MFin in the current paper since it does not

contain any reflexive object (Ehrhard 2005; Vaux 2009) and thus cannot be used as a

semantics of the untyped differential λ-calculus. Other examples of semantics useful for

modelling the untyped differential λ-calculus (including semantics that do not model the

Taylor expansion) will be discussed in Section 8.2.

6.1. Relational semantics

Recall that we introduced the definitions and notation for multisets in Section 2.1. We

will now provide a direct definition of the category MRel:

— The objects of MRel are all the sets.

— A morphism from A to B is a relation from Mf(A) to B; in other words,

MRel(A,B) = P(Mf(A) × B).

— The identity of A is the relation

IdA = {([α], α) | α ∈ A} ∈ MRel(A,A).

— The composition of s ∈ MRel(A,B) and t ∈ MRel(B,C) is defined by

t◦ s = {(m, γ) | ∃k ∈ N, ∃(m1, β1), . . . , (mk, βk) ∈ s such that

m = m1 � . . . � mk and ([β1, . . . , βk], γ) ∈ t }.

Given two sets A1, A2, we use A1&A2 to denote their disjoint union

({1} × A1) ∪ ({2} × A2).

From now on, we will adopt the following convention.
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Convention 6.2. We consider the canonical bijection between Mf(A1) × Mf(A2) and

Mf(A1 &A2) as an equality. Therefore, we will continue to use (m1, m2) to denote the

corresponding element of Mf(A1&A2).

Theorem 6.3. The category MRel is a Cartesian closed category.

Proof. The terminal object 1 is the empty set �, and the unique element of MRel(A,�)

is the empty relation.

Given two sets A1 and A2, their categorical product in MRel is their disjoint union

A1&A2 and the projections π1, π2 are given by

πi = {([(i, a)], a) | a ∈ Ai} ∈ MRel(A1&A2, Ai), for i = 1, 2.

It is easy to check that this is actually the categorical product of A1 and A2 in MRel; given

s ∈ MRel(B,A1) and t ∈ MRel(B,A2), the corresponding morphism 〈s, t〉 ∈ MRel(B,A1 &

A2) is given by

〈s, t〉 = {(m, (1, a)) | (m, a) ∈ s} ∪ {(m, (2, b)) | (m, b) ∈ t} .

Given two objects A and B, the exponential object A⇒B is Mf(A)×B and the evaluation

morphism is given by

evAB = {(([(m, b)], m), b) | m ∈ Mf(A) and b ∈ B} ∈ MRel((A⇒B)&A,B) .

It is again easy to check that we have defined an exponentiation in this way. Indeed,

given any set C and any morphism s ∈ MRel(C&A,B), there is exactly one morphism

Λ(s) ∈ MRel(C,A⇒B) such that

evAB ◦ (Λ(s) × IdS ) = s,

and this morphism is Λ(s) = {(p, (m, b)) | ((p, m), b) ∈ s}.

Theorem 6.4. The category MRel is a Cartesian closed differential category.

Proof. By Theorem 6.3, MRel is Cartesian closed. Moreover, it is Cartesian closed

left-additive since every homset MRel(A,B) can be endowed with the additive structure

(MRel(A,B),∪,�).

Finally, given f ∈ MRel(A,B), we can define its derivative as follows:

D(f) = {(([α], m), β) | (m � [α], β) ∈ f} ∈ MRel(A&A,B).

It is not difficult to check that D(−) satisfies (D1–7). We will now show that (D-Curry)

also holds. Let f ⊆ (Mf(C) × Mf(A)) × B. On one side we have

D(Λ(f)) = {(([γ], m1), (m2, β)) | ((m1 � [γ], m2), β) ∈ f}.

And on the other side we have D(f) = f1 ∪ f2, where

f1 = {((([γ], []), (m1, m2)), β) | ((m1 � [γ], m2), β) ∈ f}
f2 = {((([], [α]), (m1, m2)), β) | ((m1, m2 � [α]), β) ∈ f}.

Since MRel is left-additive, we have

(f1 ∪ f2)◦〈π1 × 0, π2 × Id〉 = (f1 ◦〈π1 × 0, π2 × Id〉) ∪ (f2 ◦〈π1 × 0, π2 × Id〉).
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Easy calculations then give

f1 ◦〈π1 × 0, π2 × Id〉 = {((([γ], m1), m2), β)) | ((m1 � [γ], m2), β) ∈ f}
f2 ◦〈π1 × 0, π2 × Id〉 = �.

We then get

Λ(D(f)◦〈π1 × 0, π2 × Id〉) = Λ(f1 ◦〈π1 × 0, π2 × Id〉)
= D(Λ(f)).

The operator � can be defined directly in MRel as follows:

f � g = {((m1 � m2, m), β) | (m1, α) ∈ g, ((m2, m � [α]), β) ∈ f} ∈ MRel(C&A,B).

We now provide a characterisation of the linear morphisms of MRel.

Lemma 6.1. A morphism f ∈ MRel(A,B) is linear if and only if for all (m, β) ∈ f, we

have that m is a singleton.

Proof. Easy calculations give f ◦π1 = {((m, []), β) | (m, β) ∈ f}. This is equal to D(f) if

and only if m is a singleton.

Corollary 6.5. In MRel every isomorphism is linear.

Proof. Let f ∈ MRel(B,A) and g ∈ MRel(A,B) be such that f◦g = IdA and g◦f = IdB .

Notice that f does not contain any pair ([], α) since otherwise such a pair would also

appear in f ◦ g, and this is impossible since f ◦ g = Id. Similarly, g cannot contain any

pair ([], β). Hence,

f ◦g = {([α], α) | ∃β ∈ B ([α], β) ∈ g and ([β], α) ∈ f}.

Since by hypothesis f ◦g = {([α], α) | α ∈ A}, we have that for all α ∈ A there is a β ∈ B

such that ([β], α) ∈ f. Suppose now, in order to show a contradiction, that there is a

([α1, . . . , αk], β) ∈ g such that k > 1. From the property above there are β1, . . . , βk ∈ B

such that ([βi], αi) ∈ f for 1 � i � k, so we would have ([β1, . . . , βk], β) ∈ f ◦ g = IdB ,

which is impossible. We can then conclude by Lemma 6.1 that g is linear. Analogous

considerations show that f is linear too.

6.1.1. An extensional relational model. In this section we build a reflexive object D in

MRel that is extensional by construction, and hence linear by Corollary 6.5. We first give

some preliminary definitions.

Recall that N denotes the set of natural numbers. An N-indexed sequence σ =

(m1, m2, . . .) of multisets is quasi-finite if mi = [] for all but a finite number of indices

i. If A is a set, we use Mf(A)(ω) to denote the set of all quasi-finite N-indexed sequences

https://doi.org/10.1017/S0960129511000594 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000594


What is a categorical model of the differential and the resource λ-calculi? 493

of finite multisets over A. Notice that the only inhabitant of Mf(�)(ω) is the sequence

([], [], [], . . .).

We now define a family of sets {Dn}n∈N as follows:

D0 = �

Dn+1 = Mf(Dn)
(ω)

Since the operation A �→ Mf(A)(ω) is monotonic on sets, and since D0 ⊆ D1, we have

Dn ⊆ Dn+1 for all n ∈ N. Finally, we set D = ∪n∈NDn.

So we have D0 = � and D1 = {([], [], . . . )}. The elements of D2 are quasi-finite

sequences of multisets over a singleton, that is, quasi-finite sequences of natural numbers.

More generally, an element of D can be represented as a finite tree that alternates two

kinds of layers:

— ordered nodes (the quasi-finite sequences), where immediate subtrees are indexed by

distinct natural numbers;

— unordered nodes where subtrees are organised in a non-empty multiset.

In order to define an isomorphism in MRel between D and (D⇒D) = Mf(D) × D, it

is enough to note that every element σ = (σ0, σ1, σ2 . . .) ∈ D is canonically associated

with the pair (σ0, (σ1, σ2, . . .)) and vice versa. Given σ ∈ D and m ∈ Mf(D), we write

m :: σ for the element τ = (τ1, τ2, . . .) ∈ D such that τ1 = m and τi+1 = σi. This

defines a bijection between Mf(D) × D and D, and hence an isomorphism in MRel as

follows.

Proposition 6.6. The triple D = (D,A, λ) where:

λ = {([(m, σ)], m :: σ) | m ∈ Mf(D), σ ∈ D} ∈ MRel(D⇒D,D)

A = {([m :: σ], (m, σ)) | m ∈ Mf(D), σ ∈ D} ∈ MRel(D,D⇒D)

is an extensional categorical model of differential λ-calculus.

Proof. It is trivial that λ ◦ A = IdD and A ◦ λ = IdD⇒D . We can then conclude by

Corollary 6.5.

6.2. Interpreting the differential lambda calculus in D

In Section 5, we defined the interpretation of a differential λ-term in any linear reflexive

object of a Cartesian closed differential category. We will now give the result of the

corresponding computation when it is performed in D.

Given a differential λ-term S and a sequence 	x = x1, . . . , xn adequate for S , the

interpretation [S]	x is an element of MRel(D	x, D), that is, [S]	x ⊆ Mf(D)n × D. The
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interpretation [S]	x is defined by structural induction on S as follows:

[xi]	x = {(([], . . . , [], [σ], [], . . . , []), σ) | σ ∈ D} (where the only

non-empty multiset occurs in the ith position)

[sT ]	x = {((m1, . . . , mn), σ) |
∃k ∈ N,

∃(mj1, . . . , m
j
n) ∈ Mf(D)n, for j = 0, . . . , k,

∃σ1, . . . , σk ∈ D

such that

mi = m0
i � . . . � mki , for i = 1, . . . , n,

((m0
1, . . . , m

0
n), [σ1, . . . , σk] :: σ) ∈ [s]	x,

((mj1, . . . , m
j
n), σj) ∈ [T ]	x, for j = 1, . . . , k}

[λz.s]	x = {((m1, . . . , mn), m :: σ) | ((m1, . . . , mn, m), σ) ∈ [s]	x,z}
(where we assume that z does not occur in 	x)

[D1 s · (t) ]	x = {((m1 � m′
1, . . . , mn � m′

n), m :: β) |
∃α ∈ D ((m1, . . . , mn), α) ∈ [t]	x
and

((m′
1, . . . , m

′
n), m � [α] :: β) ∈ [s]	x},

[Dn+1 s · (t1, . . . , tn+1) ]	x = {((m1 � m′
1, . . . , mn � m′

n), m :: β) |
∃α ∈ D ((m1, . . . , mn), α) ∈ [tn+1]	x
and

((m′
1, . . . , m

′
n), m � [α] :: β) ∈ [Dn s · (t1, . . . , tn) ]	x}

[0]	x = �

[s+ S]	x = [s]	x ∪ [S]	x.

Note that if S is a closed differential λ-term, then [S] ⊆ D. Moreover, it is easy to check

that [Ω] = � (in fact, we know from Manzonetto (2009) that the interpretation of all

unsolvable standard λ-terms is empty). In the next section we will prove some general

properties of Th(D).

6.3. An extensional model of Taylor expansion

Manzonetto (2009) characterised the equational theory of D, viewed as a model of the

untyped λ-calculus. More precisely, we proved that Th(D) = H�, the theory equating

two λ-terms M,N whenever they behave in the same way in every context. This is not

surprising since Ehrhard (2009) proved that the continuous semantics (Scott 1972) can be

seen as the extensional collapse of the category MRel and that D corresponds to Scott’s

D∞ under this collapse.

In this section we give a partial characterisation of the theory of D viewed as a model

of the differential λ-calculus.
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Remark 6.7. Given an arbitrary set I and an I-indexed family of relations {fi}i∈I from

Mf(A) to B, we have ∪i∈Ifi ⊆ Mf(A) × B. In particular, MRel has countable sums.

Proposition 6.8. MRel models the Taylor expansion.

Proof. Let f ⊆ Mf(C) × (Mf(A) × B) and g ⊆ Mf(C) × A. Easy calculations give

ev◦〈f, g〉 = {(m, γ) | ∃k ∈ N,

∃mj ∈ Mf(C), for j = 0, . . . , k,

∃α1, . . . , αk ∈ A

such that

m = m0 � . . . � mk, for i = 1, . . . , n,

(m0, ([α1, . . . , αk], γ)) ∈ f,

(mj, αj) ∈ g, for j = 1, . . . , k}

=
⋃
k∈N{(m, γ) | ∃mj ∈ Mf(C), for j = 0, . . . , k,

∃α1, . . . , αk ∈ A

such that

m = m0 � . . . � mk, for i = 1, . . . , n,

(m0, ([α1, . . . , αk], γ)) ∈ f,

(mj, αj) ∈ g, for j = 1, . . . , k}

=
∑

k∈N((· · · (Λ−(f) �g) · · · ) � g︸ ︷︷ ︸
k times

)◦〈IdA,�〉 .

Corollary 6.9. Every categorical model U of the differential λ-calculus living in MRel

satisfies E ⊆ Th(U).

Another easy corollary is that the relational semantics is incomplete. Recall that a

semantics C is said to be complete if for all differential λ-theories T there is a model U
living in C such that Th(U) = T . As we know that in MRel only theories including E are

representable, it follows that no non-trivial recursively enumerable† differential λ-theory

is representable in MRel, and since there exists a continuum of recursively enumerable

differential λ-theories, we get the following result.

Corollary 6.10. The relational semantics is hugely incomplete: there are 2ℵ0 differential

λ-theories that are not representable in MRel.

From Corollary 6.9 we get the following (partial) characterisation of Th(D).

Corollary 6.11. The theory of D includes both λβηd and E .

These preliminary results and the work in Bucciarelli et al. (2011) lead us to the

following conjecture.

† A differential λ-theory T is recursively enumerable if the T -equivalence class of every differential λ-term is;

it is said to be trivial if it equates all differential λ-terms.
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Conjecture 1. We conjecture that

Th(D) = {(S, T ) ∈ Λd × Λd | for all contexts C(·), C(S) is solvable iff C(T ) is solvable},

where a context is a differential λ-term with a hole denoted by (·), and C(S) denotes the

result of substituting S (possibly with capture of variables) for the hole in C . ‘Solvable’

here is to be understood as may-solvable† (that is, a sum of terms converges if at least

one of its components converges).

A complete syntactical characterisation of the theory of D is difficult to provide, and is

reserved for future work.

6.3.1. A differentially extensional but non-extensional relational model. In this section we

briefly present an example of a model E in the category MRel satisfying the axiom (η∂)

but not the axiom (η). This model, whose construction is similar to that of D, was first

introduced in Hyland et al. (2006) and was studied by de Carvalho in his Ph.D. thesis,

where it was presented as a type system called System R (de Carvalho 2007, §6.3.3).

We fix a non-empty set A of ‘atoms’ that does not contain any pairs, and define a

family of sets {En}n∈N as follows:

E0 = �

En+1 = (Mf(En) × En) ∪ A.

Finally, we set E = ∪n∈NEn and E = (E,A, λ) where A, λ are the obvious morphisms

performing the retraction (E⇒E) � E.

Remark 6.12. It is easy to verify that E is linear, and thus a model of the differential

λ-calculus, and it is non-extensional because the atoms in A ⊆ E cannot be sent injectively

into Mf(E) × E.

As remarked in Hyland et al. (2006), the model E is a relational analogue of Engeler’s

graph-model (Engeler 1981) in much the same way as D is the analogue of Scott’s D∞.

The interpretation of a differential λ-term S in E is defined as usual and gives, up to

isomorphism, a subset [S]	x ⊆ Mf(E)n × E.

Lemma 6.2. The model E is differentially extensional.

Proof. In E the interpretation of the linear application does not contain any atoms, in

the sense that (	m, α) ∈ [DS ·T ]	x entails α = (m′, β). Presenting the model as a type system,

(m′, β) would be an arrow type m′ → β. This guarantees that the η∂-expansion does not

modify the interpretation.

† May and must solvability were investigated in Pagani and Ronchi Della Rocca (2010) in the context of the

resource calculus.

https://doi.org/10.1017/S0960129511000594 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000594


What is a categorical model of the differential and the resource λ-calculi? 497

7. The resource calculus

In this section we present the resource calculus (Boudol 1993; Boudol and Curien and

Lavatelli), using the formalisation à la Tranquilli given in Pagani and Tranquilli (2009),

and show that every model of the differential λ-calculus is also a model of the resource

calculus. We then discuss the (tight) relationship existing between the differential λ-calculus

and the resource calculus.

7.1. Syntax

The resource calculus has three syntactical categories: resource λ-terms (Λr), which are in

functional position; bags (Λb), which are in argument position and represent multisets of

resources; and sums, which represent the possible results of a computation. A resource

(Λ(!)) can be linear or reusable, and in the latter case it is written with a ! superscript. An

expression (Λe) is either a term or a bag.

Formally, we have the following grammar:

Λr : M,N,L ::= x | λx.M | MP (resource λ-terms)

Λ(!) : M(!), N(!) ::= M | M! (resources)

Λb : P ,Q, R ::= [M(!)
1 , . . . ,M

(!)
n ] (bags)

Λe : A,B ::= M | P (expressions)

From now on, resource λ-terms are considered up to α-conversion and permutation of

the resources in the bags. Intuitively, linear resources are available exactly once, while

reusable resources can be used zero or many times.

Definition 7.1. Given an expression A ∈ Λe, the set FV(A) of free variables of A is defined

by induction on A as follows:

FV(x) = {x}
FV(λx.M) = FV(M) − {x}
FV(MP ) = FV(M) ∪ FV(P )

FV([]) = �

FV([M(!)] � P ) = FV(M) ∪ FV(P ).

Given expressions A1, . . . , Ak , we set

FV(A1, . . . , Ak) = FV(A1) ∪ · · · ∪ FV(Ak).

For sums, we use N〈Λr〉 (respectively, N〈Λb〉) to denote the set of finite formal sums

of terms (respectively, bags). As usual, we suppose that the sum is commutative and

associative, and that 0 is its neutral element.

M,N ∈ N〈Λr〉 P,Q ∈ N〈Λb〉 A,B,C ∈ N〈Λe〉 = N〈Λr〉 ∪ N〈Λb〉 (sums)

Note that in writing N〈Λe〉 we are abusing the notation as it does not denote the N-

module generated over Λe = Λr ∪ Λb but rather the union of the two N-modules. In other

words, sums must only be taken in the same sort.
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The definition of FV(·) is extended to elements of N〈Λe〉 in the obvious way.

Sums do not appear in the grammar for resource λ-terms, bags and expressions –

indeed they may only arise on the ‘surface’ in this calculus (while in the differential

λ-calculus, sums may appear in the right-hand argument of an application). Nevertheless,

as a syntactic sugar and not as actual syntax, we extend all the constructors to sums as

follows.

Notation 7.2. We use the following abbreviations with N〈Λe〉:

λx.

k∑
i=1

Mi =

k∑
i=1

λx.Mi

(
k∑
i=1

Mi

)⎛⎝ n∑
j=1

Pj

⎞⎠ =

⎛⎝∑
i,j

MiPj

⎞⎠
[(

k∑
i=1

Mi

)]
� P =

k∑
i=1

[Mi] � P⎡⎣( k∑
i=1

Mi

)!
⎤⎦ � P = [M!

1, . . . ,M
!
k] � P .

These equalities make sense since all constructors, apart from (·)!, are linear. Note

the difference between these rules and the analogous ones for the differential λ-calculus

introduced in Notation 3.4. In the differential λ-calculus, the application operator is only

linear in its left component, while here it is bilinear.

The 0-ary version of the above equalities give us

λx.0 = 0

M0 = 0

0P = 0

[0] � P = 0

[0!] � P = P

0 � P = 0,

so 0 annihilates everything except when it lies under a (·)!.

Definition 7.3. Let A be an expression and N be a resource λ-term.

— A {N/x} is the usual substitution of N for x in A. It is extended to sums as in A {N/x}
by linearity† in A, and using Notation 7.2 for N.

† A unary operator F(·) is extended by linearity by setting F(ΣiAi) = ΣiF(Ai).
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— A 〈N/x〉 is the linear substitution defined inductively as follows:

y 〈N/x〉 =

{
N if x = y

0 otherwise

[M] 〈N/x〉 = [M 〈N/x〉]
[M!] 〈N/x〉 = [M 〈N/x〉 ,M!]

(λy.M) 〈N/x〉 = λy.M 〈N/x〉
(MP ) 〈N/x〉 = M 〈N/x〉P +M(P 〈N/x〉)

[] 〈N/x〉 = 0

(P � R) 〈N/x〉 = P 〈N/x〉 � R + P � R 〈N/x〉

This is extended to A 〈N/x〉 by bilinearity† in both A and N.

The operation M 〈N/x〉 on resource λ-terms is roughly equivalent to the operation

∂S

∂x
· T

on differential λ-terms (cf. Lemma 7.1). Notice that in defining [M!] 〈N/x〉, we essentially

extract a linear copy of M from the infinitely many represented by M!, which then receives

the substitution, and leave the others unchanged.

Example 7.4.

x 〈M/x〉 = M(1)

y 〈M/x〉 = 0.

(x[x]) 〈M +N/x〉 = (M +N)[x] + x[M +N](2)

= M[x] +N[x] + x[M] + x[N].

(x[x!]) 〈M +N/x〉 = (M +N)[x!] + x[(M +N), x!](3)

= M[x!] +N[x!] + x[M,x!] + x[N, x!].

(x[x!]) {M +N/x} = (M +N)[(M +N)!](4)

= M[M!, N!] +N[M!, N!].

As notation, we will write 	L for L1, . . . , Lk and 	N! for N!
1, . . . , N

!
n. We will also abbreviate

M 〈L1/x〉 · · · 〈Lk/x〉 as M
〈
	L/x

〉
. Moreover, given a sequence 	L and an index 1 � i � k,

we will write 	L−i for L1, . . . , Li−1, Li+1, . . . , Lk .

Remark 7.5. Every applicative resource λ-term MP can be written in a unique way as

M[	L, 	N!].

† A binary operator F(·, ·) is extended by bilinearity by setting F(ΣiAi,ΣjBj ) = Σi,jF(Ai, Bj ).
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7.2. Resource lambda theories

We now define the equational theories of the resource calculus, namely the resource

λ-theories. To begin, we will present the main axiom associated with this calculus (for
	L = L1, . . . , Lk and 	N = N1, . . . , Nn):

(λx.M)[	L, 	N!] = M
〈
	L/x

〉
{Σni=1Ni/x}(βr)

Note that when n = 0, this rule becomes (λx.M)[	L] = M
〈
	L/x

〉
{0/x}. Once oriented

from left to right, the (βr)-conversion expresses how to calculate a function λx.M applied

to a bag containing linear resources 	L and reusable resources 	N.

Remark 7.6. The left-to-right oriented version of (βr) corresponds to giant-step reduction

in the terminology of Pagani and Tranquilli (2009). In the same paper, the authors also

consider a baby-step reduction rule. They prove that both reductions are confluent and

that every giant-step can be emulated by several baby-steps. For our purposes we can

consider the rule (βr) without loss of generality because both reductions generate the

same equational theory.

In the resource calculus, the axiom equating all resource λ-terms having the same

extensional behaviour has the form

λx.M[x!] = M, where x /∈ FV(M).(ηr)

In this context, the axiom (η∂) of the differential λ-calculus has no analogue since the

application of a resource λ-term to a bag essentially corresponds to a sequence of

linear applications always followed by a classic application (see Definition 7.10, below).

Therefore, the linear application where (η∂) should act is hidden.

The resource calculus can be seen as a proper extension of the classical λ-calculus.

Remark 7.7. The classical λ-calculus can be easily injected within the resource calculus.

Indeed, given an ordinary λ-term M, it is sufficient to translate every subterm of M of

the form PQ into P [Q!]. In this restricted system, the rules (βr) and (ηr) are completely

equivalent to the classic (β) and (η)-conversions, respectively.

We can now define the equational theories associated with this calculus, namely, the

resource λ-theories.

A λr-relation R is any set of equations between sums of resource λ-terms (or bags).

Thus R can be thought of as a binary relation on N〈Λe〉.
A λr-relation R is said to be:

— an equivalence if it is closed under the following rules (for all A,B,C ∈ N〈Λe〉):

A = A
(reflexivity)

B = A
A = B

(symmetry)

A = B B = C
A = C

(transitivity)
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— compatible if it is closed under the following structural rules (for all M,N,Mi,Ni ∈ N〈Λr〉
and P,Q ∈ N〈Λb〉):

M = N
λx.M = λx.N

(lambda)

M = N Q = P
MP = NQ

(app)

M = N P = Q

[M(!)] � P = [N(!)] � Q
(bag)

Mi = Ni for all 1 � i � n∑n
i=1 Mi =

∑n
i=1 Ni

(sum)

As notation, we will write R � M = N or M =R N for M = N ∈ R.

Definition 7.8. A resource λ-theory is any compatible λr-relation R that is an equivalence

relation and includes (βr). R is said to be extensional if it also contains (ηr). We say that

R satisfies sum idempotency whenever R � M +M = M.

We use λβr (respectively, λβηr) to denote the minimum resource λ-theory (respectively,

the minimum extensional resource λ-theory).

Example 7.9.

λβr � (λx.x[x])[I] = 0(1)

λβr � (λx.x[x])[I, I] = I

λβr � (λx.x[x])[I, I, I] = 0.

λβr � (λx.x[x])[M,N] = M[N] +N[M].(2)

λβr � (λx.x[x, x])[(λy.y[y!])!] = (λx.x[x!])[λy.y[y!], λz.z[z!]](3)

= 2(λy.y[y!])[(λz.z[z!])!].

λβηr � (λxz.y[y][z!])[] = λz.y[y][z!](4)

= y[y].

7.3. From the resource to the differential lambda calculus. . .

In this section we show that every linear reflexive object living in a Cartesian closed

differential category is also a sound model of the untyped resource calculus. This result is

achieved by first translating the resource calculus in the differential λ-calculus, and then

applying the machinery of Section 5.
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Definition 7.10. The resource calculus can be easily translated into the differential λ-

calculus as follows:

xd = x

(λx.M)d = λx.Md

(
M
[
L1, . . . , Lk, N

!
1, . . . , N

!
n

])d
=
(
DkMd ·

(
Ld1, . . . , L

d
k

))( n∑
i=1

Nd
i

)
.

The translation is then extended to elements in N〈Λr〉 by setting(
n∑
i=1

Mi

)d

=

n∑
i=1

Md
i .

The next lemma shows that this translation behaves well with respect to the differential

and the usual substitution.

Lemma 7.1. Let M,N ∈ Λr and x be a variable. Then:

(i) (M 〈N/x〉)d =
∂Md

∂x
·Nd.

(ii) (M {N/x})d = Md
{
Nd/x

}
.

Proof.

(i) We use structural induction on M. The only difficult case is M ≡ M ′
[
	L, 	N!

]
. By the

definitions of (−)d and linear substitution, we have((
M ′

[
	L, 	N!

])
〈N/x〉

)d
=
(
M ′ 〈N/x〉

[
	L, 	N!

])d
+
(
M ′

([
	L, 	N!

]
〈N/x〉

))d
=
(
M ′ 〈N/x〉

[
	L, 	N!

])d
+(a) ⎛⎝ k∑

j=1

M ′
[
Lj 〈N/x〉 ,	L−j , 	N

!
]⎞⎠d

+(b)

(
n∑
i=1

M ′
[
Ni 〈N/x〉 ,	L, 	N!

])d

.(c)

We consider the three summands separately.

(a) By the definition of (−)d, we have(
M ′ 〈N/x〉

[
	L, 	N!

])d
=
(
Dk (M ′ 〈N/x〉)d ·

(
	Ld
))( n∑

i=1

Nd
i

)
.
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Applying the induction hypothesis, this is equal to(
Dk

(
∂(M ′)d

∂x
·Nd

)
·
(
	Ld
))( n∑

i=1

Nd
i

)
.

(b) By the definition of the translation map (−)d, we have⎛⎝ k∑
j=1

M ′
[
Lj 〈N/x〉 ,	L−j , 	N

!
]⎞⎠d

=

k∑
j=1

(
Dk−1

(
D
(
M ′)d ·

(
Lj 〈N/x〉

)d) ·
(
	Ld−j

))( n∑
i=1

Nd
i

)
.

Applying the induction hypothesis, this is equal to

k∑
j=1

(
Dk−1

(
D
(
M ′)d ·

(
∂Ldj

∂x
·Nd

))
·
(
	Ld−j

))( n∑
i=1

Nd
i

)
.

(c) By the definition of (−)d, we have⎛⎝ n∑
j=1

M ′
[
Nj 〈N/x〉 ,	L, 	N!

]⎞⎠d

=

n∑
j=1

(
M ′

[
Nj 〈N/x〉 ,	L, 	N!

])d
=

n∑
j=1

(
Dk

(
D
(
M ′)d ·

(
Nj 〈N/x〉

)d) ·
(
	Ld
))( n∑

i=1

Nd
i

)
.

Applying the induction hypothesis, this is equal to

n∑
j=1

(
Dk

(
D
(
M ′)d ·

(
∂Nd

j

∂x
·Nd

))
·
(
	Ld
))( n∑

i=1

Nd
i

)
,

and by permutative equality, this is equal to

n∑
j=1

(
D
(
Dk

(
M ′)d ·

(
	Ld
))

·
(
∂Nd

j

∂x
·Nd

))(
n∑
i=1

Nd
i

)
.

To conclude the proof it is sufficient to verify that

∂

∂x

((
Dk

(
M ′)d ·

(
	Ld
))( n∑

i=1

Nd
i

))
·Nd

is equal to the sum of (a), (b) and (c).

(ii) This part follows by a straightforward induction on M.

The translation (·)d is ‘faithful’ in the sense expressed by the next proposition.
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Proposition 7.11. For all M ∈ Λr , we have λβr � M = N implies λβd � Md = Nd.

Proof. It is easy to check that the proposition holds for the contextual rules.

Suppose then that λβr � M = N because

M ≡ (λx.M ′)
[
	L, 	N!

]
N ≡ M ′

〈
	L/x

〉{ n∑
i=1

Ni/x

}
.

By definition of the map (−)d, we have((
λx.M ′) [	L, 	N!

])d
=
(
Dk

(
λx.(M ′)d

)
·
(
	Ld
))( n∑

i=1

Nd
i

)

=λβd

(
λx.

∂k
(
M ′)d

∂x, . . . , x
· (	Ld)

)(
n∑
i=1

Nd
i

)

=λβd

(
∂k(M ′)d

∂x, . . . , x
· (	Ld)

){ n∑
i=1

Nd
i /x

}
,

which is equal to Nd by Lemma 7.1.

Remark 7.12. The two results above generalise straightforwardly to sums of resource

λ-terms (that is, to elements M ∈ N〈Λr〉).

7.3.1. Interpreting the resource calculus by translation. Given a linear reflexive object U
living in a Cartesian closed differential category C, it is possible to interpret resource

λ-terms trough their translation (−)d. Indeed, it is sufficient to set

[M]	x = [Md]	x : Un → U.

From this fact, and Proposition 7.11 and Remark 7.12, it follows that U is a sound model

of the untyped resource calculus.

Remark 7.13. If U is an extensional model of the differential λ-calculus, then it is also an

extensional model of the resource calculus. Indeed

[(λx.M[x!])d]	x = [λx.Mdx]	x = [Md]	x.

We can prove a completeness result for the resource calculus that is stronger than the

one for the differential λ-calculus. More precisely, we can get rid of the hypothesis that the

theory is differentially extensional. Indeed, for every resource λ-theory R, the differential

λ-theory T generated† by

{S = T | ∃M,N ∈ N〈Λr〉 S = Md,T = Nd,R � M = N}

† The differential λ-theory generated by a set E of equations is the smallest differential λ-theory including E.
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is such that R � M = N if and only if T � Md = Nd. When R satisfies sum idempotency, T
also does, so we can apply the construction described in Section 5.4 and get a Cartesian

closed differential category CT where I is a linear reflexive object. Then one can prove the

following lemma, which is similar to Proposition 5.16 except that the axiom (η∂) no longer

plays a role since in the translation of the resource calculus, the linear application is always

followed by a regular application, so the η∂-expansion disappears by (βr)-conversion.

Lemma 7.2. For every M ∈ N〈Λr〉, we have (for some z /∈ FV(M))

[M]	x = λz.Md
{
π	xx1
z/x1

}
· · ·
{
π	xxnz/xn

}
: I	x → I.

Proof. The only interesting case is M = M[	L, 	N!]. In the following, we use σr to denote

the sequence of substitutions
{
π	xx1
r/x1

}
· · ·
{
π	xxnr/xn

}
. We have

[M[	L, 	N!]]	x =

[[(
DkMd ·

(
	Ld
)) (

ΣiN
d
i

) ]]
	x

(definition of (·)d))

= ev◦
〈
1◦
[[ (

DkMd ·
(
	Ld
) ]]

	x

)
, [ΣiN

d
i ]	x

〉
(definition of [ · ]	x)

= ev◦
〈
λry.

(
Dk

(
[Md]	xr

)
·
(
[	L]	xr

))
y,Σi[N

d
i ]	x

〉
(calculations)

= ev◦
〈
λry.

(
Dk

(
MdΣr

)
·
(
	LdΣr

))
y,Σiλr.N

d
i Σr

〉
(induction hypothesis)

= λz.
((
λry.

(
Dk

(
MdΣr

)
·
(
	LdΣr

))
y
)
z
) (

Σi
(
λr.Nd

i Σr
)
z
)

(calculations)

= λz.
(
λy.

(
Dk

(
MdΣz

)
·
(
	LdΣz

))
y
) (

ΣiN
d
i Σz

)
((βr)-conversion)

= λz.
(
Dk

(
MdΣz

)
·
(
	LdΣz

)) (
ΣiN

d
i Σz

)
((βr)-conversion)

= λz.
(
M[	L, 	N!]

)d {
π	xx1
z/x1

}
· · ·
{
π	xxnz/xn

}
. (definition of (·)d)

As a corollary, we get equational completeness for the resource calculus.

Corollary 7.14 (Equational Completeness). Every resource λ-theory R satisfying sum idem-

potency is the theory of a linear reflexive object in a differential Cartesian closed category.

7.4. And back. . .

In this section we define a translation from the differential to the resource calculus. This

translation is more tricky because in the differential λ-calculus the result of the linear

application D (λx.s) · t mantains the lambda abstraction (since it waits for other arguments

that may substitute the remaining occurrences of x in s), but the naively corresponding

resource λ-term (λx.M)[N] erases it (since all other free occurrences of x in M are

substituted by 0).
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Definition 7.15. The differential λ-calculus can be translated into the resource calculus as

follows:

xr = x

(λx.s)r = λx.sr

(sT )r = sr[(Tr)!]

(Dk s · (t1, . . . , tk))
r = λy.sr[tr1, . . . , t

r
k, y

!] (where y is a fresh variable)

(s+ S)r = sr + Sr.

Notice that while the shape of the term λy.sr[tr1, . . . , t
r
k, y

!] looks similar to an (ηr)-

expansion of sr[tr1, . . . , t
r
k], it is not†! Indeed, in the (ηr)-axiom, y! is supposed to be in a

singleton bag.

Lemma 7.3. Let S, T ∈ Λd and x be a variable. Then:

(i)
(
∂S

∂x
· T
)r

= Sr 〈Tr/x〉 .

(ii) (S {T/x})r = Sr {Tr/x} .

Proof.

(i) We use structural induction on S . If S is a variable, a lambda abstraction or a sum,

the lemma follows directly from the induction hypothesis.

— Case S ≡ Dk s · (t1, . . . , tk):

We have(
∂

∂x
(Dk s · (t1, . . . , tk)) · T

)r
=

k∑
i=1

((
Dk s ·

(
t1, . . . ,

∂ti

∂x
· T , . . . , tk

)))r
+

((
Dk

(
∂s

∂x
· T
)

· (t1, . . . , tk)

))r (
definition of

∂(·)
∂x

· T
)

=

k∑
i=1

λy.sr
[
tr1, . . . ,

(
∂ti

∂x
· T
)r
, . . . , trk, y

!

]
+ λy.

(
∂s

∂x
· T
)r

[tr1, . . . , t
r
k, y

!] (definition of (·)r)

=

k∑
i=1

λy.sr[tr1, . . . , t
r
i 〈Tr/x〉 , . . . , trk, y!]

+ λy.(sr 〈Tr/x〉)[tr1, . . . , trk, y!] (induction hypothesis)

= (λy.sr[tr1, . . . , t
r
k, y

!]) 〈Tr/x〉 (definition of 〈Tr/x〉)
= (Dk s · (t1, . . . , tk))

r 〈Tr/x〉 . (definition of (·)r)

† However, a connection with (η∂)-conversion can be found in Proposition 7.17(iii).
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— Case S ≡ sU:

By definition, we have(
∂(sU)

∂x
· T
)r

=

((
∂s

∂x
· T
)
U +

(
Ds ·

(
∂U

∂x
· T
))

U

)r
=

((
∂s

∂x
· T
)
U

)r
+

((
Ds ·

(
∂U

∂x
· T
))

U

)r
=

(
∂s

∂x
· T
)r

[(Ur)!] +

(
λy.sr

[(
∂U

∂x
· T
)r
, y!

])
[(Ur)!].

By the induction hypothesis, this is equal to

(sr 〈Tr/x〉)[(Ur)!] + (λy.sr[Ur 〈Tr/x〉 , y!])[(Ur)!].

By β-conversion, this is equal to

(sr 〈Tr/x〉)[(Ur)!] + sr[Ur 〈Tr/x〉 , (Ur)!].

Then, by the definition of linear substitution, this is

(sr[(Ur)!]) 〈Tr/x〉 = (sU)r 〈Tr/x〉 .

(ii) This part follows from a straightforward induction on S .

The next proposition shows that the translation (·)r is faithful too.

Proposition 7.16. For all S, T ∈ Λd, we have λβd � S = T implies λβr � Sr = Tr .

Proof. It is easy to check that the proposition holds for the contextual rules.

Suppose λβd � S = T holds because

S ≡ Dk (λx.s) · (u1, . . . , uk)

T ≡ λx.
∂ks

∂x, . . . , x
· (u1, . . . , uk).

Then we have

Sr = λy.(λx.sr)[ur1, . . . , u
r
k, y

!] (definition of (·)r)
=λβr λy.s

r 〈ur1/x〉 · · · 〈urk/x〉 {y/x} (βr-conversion)

≡ λx.sr 〈ur1/x〉 · · · 〈urk/x〉 (α-conversion)

= λx.

(
∂ks

∂x, . . . , x
· (u1, . . . , uk)

)r
(Lemma 7.3(i))

= Tr. (definition of (·)r)

The two translations (·)d and (·)r are not exactly the inverses of each other. The next

proposition presents the properties that they do satisfy, which are summarised in Figure 1

in terms of retractions and isomorphisms between the two calculi.

Proposition 7.17. The translations (·)d and (·)r enjoy the following properties:

(i) For all ordinary λ-terms s,

(sr)d ≡ s.
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The differential λ-calculus The resource calculus

with =λβηd
∂

� with =λβr

with =λβd � with =λβr

with =λβηd
∼= with =λβηr

Fig. 1. Relationships between the differential and resource calculus.

(ii) For some S ∈ Λd and M ∈ N〈Λr〉,

(Sr)d ≡ S

(Md)r ≡ M.

(iii) For all S ∈ Λd,

λβηd∂ � (Sr)d = S.

(iv) For all M ∈ N〈Λr〉,
λβr � (Md)r = M.

Proof.

(i) This part follows from a straightforward induction on the structure of s.

(ii) For instance

((Dx · x)r)d = (λy.x[x, y!])d

= λy.(Dx · x)y
≡ Dx · x.

On the other hand, we have

((x[L])d)r = ((Dx · y)0)r

= (λz.x[y, z!])0 ≡ x[L].

(iii) We use induction on the structure of S:

— Case S ≡ Dk s · (t1, . . . , tk):

By the definition of (·)r , we have

((Dk s · (t1, . . . , tk))
r)d = (λy.sr[tr1, · · · , trk, y!])d

= λy.(Dk (sr)d ·
(
(tr1)

d, · · · , (trk)d
)
)y.

By the induction hypothesis, we have

(sr)d =λβηd
∂
s

(tri )
d =λβηd

∂
ti

for all 1 � i � k. Therefore, we get

λy.(Dk (sr)d ·
(
(tr1)

d, · · · , (trk)d
)
)y =λβηd

∂
λy.(Dk s · (t1, . . . , tk))y

=λβηd
∂
Dk s · (t1, . . . , tk) .
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— Case S ≡ sT :

We have

((sT )r)d = (sr[(Tr)!])d = (sr)d(Tr)d.

By the induction hypothesis, we know that

(sr)d =λβηd
∂
s

(Tr)d =λβηd
∂
T ,

so we can conclude

(sr)d(Tr)d =λβηd
∂
sT .

— All other cases are trivial.

(iv) We use induction on the structure of M – the only interesting case is M ≡ M[	L, 	N!].

We have

((M[	L, 	N!])d)r =

((
DkMd ·

(
	Ld
))( n∑

i=1

Nd
i

))r

= (λy.(Md)r[(	Ld)r, y!])[((	Nd)r)!].

By the induction hypothesis, we know that

(Md)r =λβr M

(Ldj )
r =λβr Lj

(Nd
i )
r =λβr Ni,

so

(λy.(Md)r[(	Ld)r, y!])[((	Nd)r)!] =λβr (λy.M[	L, y!])[(	N)!].

Then, since y /∈ FV(M,	L), we have

(λy.M[	L, y!])[(	N)!] =λβr M[	L, 	N!].

8. Discussion, and related and further work

In this paper we have proposed a general categorical definition of models of the untyped

differential λ-calculus, namely the notion of a linear reflexive object living in a Cartesian

closed differential category. We have proved that this notion of a model is:

(i) Sound – in other words, the equational theory induced by a model is actually a

differential λ-theory;

(ii) Inhabited – indeed we have given concrete examples of such a definition in the form

of the models D and E living in MRel and all the syntactic models built trough the

revised Scott–Koymans’ construction;

(iii) Equationally complete – provided we restrict consideration to differentially extensional

differential λ-theories satisfying sum idempotency.
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Finally, we have shown that the equational theories of the differential λ-calculus

and of the resource calculus are tightly connected. Formally, we have provided faithful

translations between the two calculi, thus showing that they share the same notion

of a model. In particular, this shows that linear reflexive objects in Cartesian closed

differential categories are also sound models of the untyped resource calculus. For the

resource calculus, we have been able to prove an even stronger equational completeness

theorem, in the sense that it holds for all resource λ-theories satisfying sum idempotency.

8.1. Related work

This paper is in spirit a continuation of the work on (Cartesian) differential categories

done in Blute et al. (2006; 2009) and can be considered as a long version of Bucciarelli

et al. (2010). Note, however, that all the calculi considered in those papers were simply

typed. Moreover, our aim here has been to find a suitable notion of semantics for Ehrhard

and Regnier’s differential λ-calculus (so we have assumed the calculus as given), while

in Blute et al. (2006; 2009) the goal was to provide a categorical axiomatisation of a

differential operator and then find a calculus (namely, the term logic) that suits the

categories under consideration. In particular, the differential calculus presented in Blute

et al. (2009) was slightly different from Ehrhard and Regnier’s differential λ-calculus in

some key ways.

On the one hand, the calculus defined in Blute et al. (2009) has no λ-abstraction,

so it is not an extension of λ-calculus, but, on the other hand, it does have explicit

substitutions and constructors for the pairing, the projections and every n-ary function.

Also, the treatment of differentiation is different – in the Leibniz-style approach of Blute

et al. (2009), the notation for differentiation becomes

Γ, x : A � t : B Γ � s : A Γ � u : A

Γ � dt
dx

(s) · u : B
(∂)

where the variable x is bound in t. Hence, differential terms are built using the binder

d(·)
dx

.

Intuitively,

dt

dx
(s)

denotes the derivative of t at s† and determines a linear transformation, so that it could

be typed as

dt

dx
(s) : A � B,

while u is the point where the derivative is calculated. The lack of λ-abstraction in this

system is not a true difference because λ-terms could be added without problems. In

† In other words, the Jacobian matrix.
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addition to the usual equations from λ-calculus, one should just add

λx.(s+ t) = λx.s+ λx.t

d(λy.s)

dx
(t) · u = λy.

ds

dx
(t) · u

and the resulting system is conjectured to have linear reflexive objects living in Cartesian

closed differential categories as sound and complete models. To understand this better,

we can sketch the translation from the differential λ-calculus into this system as follows:

(Ds · t)◦ = λx0.

(
d (s◦x)

dx
(x0) · t◦

)
,(

∂s

∂x
· t
)◦

=
ds◦

dx
(x) · t◦.

where x0 is some fresh variable. This calculus is certainly more standard from a

mathematical point of view, while we think the differential and resource calculi are

more standard from a computer scientist point of view. We believe that the language in

Blute et al. (2009) would be a more promising option for getting a completeness result

in the simply typed setting; on the other hand, in the untyped case, the language would

suffer the same problems we encountered in Theorem 5.17, namely, the completeness only

applies for differentially extensional theories satisfying sum idempotency. Finally, once the

calculus is stripped of types and constructors (since in this paper we are interested in the

pure untyped setting), it becomes quite similar to the differential λ-calculus. For all these

reasons, we decided not to analyse the calculus of Blute et al. (2009) any further.

8.2. Other examples of Cartesian closed differential categories

In Section 6 we presented MRel (and mentioned MFin in Remark 6.1) as an instance of

the definition of a Cartesian closed differential category. We will briefly discuss here some

other examples of such categories that have been recently defined in the literature.

In fact, game semantics is an inexhaustible source of differential categories, indeed,

resource usage is represented rather explicitly in games and strategies. In collaboration

with Laird and McCusker, we showed in Laird et al. (2011) that the games model G⊗

of Idealised Algol with non-determinism introduced in Harmer and McCusker (1999)

contains a (definable) differential operator giving it the structure of a Cartesian closed

differential category. The category G⊗ is cpo-enriched, has arenas as objects and suitable

non-deterministic strategies as morphisms. Intuitively, this category is additive since non-

deterministic strategies are closed under union and the linearity of a strategy on a certain

component is captured by the fact that the strategy plays exactly once in that component.

Moreover, Laird et al. (2011) provided a general categorical construction for building

differential categories. Its key step takes a symmetric monoidal category with countable

biproducts, embeds it in its Karoubi envelope and then constructs the cofree cocommutative

comonoid on this category (following the recipe in Melliès et al. (2009)) and a differential

operator on the Kleisli category of the corresponding comonad. Since biproducts may be

added to any category by free constructions, this gives a way to embed any symmetric
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monoidal (closed) category in a Cartesian (closed) differential category. This construction

allows us to recover both the category MRel, starting from the terminal symmetric

monoidal closed category (one object, one morphism), and G⊗, starting from a symmetric

monoidal category of exhausting games.

The category G⊗, just like MRel, models the Taylor expansion. Natural examples of

differential Cartesian closed categories that do not model the Taylor expansion have

been recently defined in Carraro et al. (2010) by introducing new exponential operations

on Rel. The intuition behind this construction is rather simple: the authors replace

the set of natural numbers (which are used for counting multiplicities of elements in

multisets) with more general semi-rings containing elements ω such that ω + 1 = ω (that

is, elements that are essentially infinite). In these models with infinite multiplicities, all

differential constructions are available, but the Taylor formula does not hold. Indeed, in

these categories it is possible to find a morphism f = 0 such that, for all n ∈ N, the nth

derivative of f evaluated on 0 is equal to 0: the Taylor expansion of such an f is the 0

map, and hence the morphism is different from its Taylor expansion. In particular, the

authors exhibit models where the interpretation of Ω is different from 0.

8.3. Algebraic approach

Another interesting line of research would be to provide an algebraic definition of a

model of the differential λ-calculus. In other words, we would like to introduce a class

of algebras modelling the differential λ-calculus in the same way as combinatory algebras

model the regular one. This would open the way to generalising the powerful techniques

developed in Lusin and Salibra (2004), Manzonetto and Salibra (2010) and Salibra (2000)

for analysing combinatory algebras. For instance, we have proved in collaboration with

Salibra that combinatory algebras satisfy good algebraic properties, such as a Stone

representation theorem stating that every combinatory algebra is decomposable in a

weak Boolean product of non-decomposable algebras (Manzonetto and Salibra 2010).

This allowed us, among other things, to give a uniform proof of incompleteness for

the main semantics of λ-calculus (that is, the continuous, stable and strongly stable

semantics).

A first attempt at providing algebraic models of the resource calculus was recently

presented in Carraro et al. (2010), where the authors introduced the notion of ‘resource

λ-models’ and showed that they are suitable for modelling the finite resource calculus

(that is, the promotion-free fragment). However, at least at the moment, a generalisation

allowing to model the full fragment of resource calculus (or, equivalently, the differential

λ-calculus) does not seem easy, and is reserved for future work.

Appendix A. Technical appendix

This technical appendix gives the full proofs of the two main lemmas in Section 4.3

(Lemmas 4.7 and 4.8). The proofs are not particularly difficult, but quite long and require

some preliminary notation.
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Notation A.1. We will adopt the following notation:

— Given a sequence of indices	i = i1, . . . , ik with ij ∈ {1, 2}, we write π	i for πi1 ◦ · · · ◦πik .
Thus π1,2 = π1 ◦π2.

— For brevity, when writing a Cartesian product of objects as subscript of 0 or Id,

we will replace the operator × by simple juxtaposition. For instance, the morphism

Id(A×B)×(C×D) will be written Id(AB)(CD).

We will write ‘(proj)’ to refer to the rules

π1 ◦〈f, g〉 = f

π2 ◦〈f, g〉 = g

that hold in every Cartesian category. Recall that

swABC = 〈〈π1,1, π2〉, π2,1〉 : (A× B) × C → (A× C) × B.

Lemma 4.7. Let f : (C × A) × D → B, g : C → A, h : C → B′.

(i) π2 � g = g ◦π1.

(ii) (h◦π1) � g = 0.

(iii) Λ(f) � g = Λ(((f ◦ sw) � (g ◦π1))◦ sw).

Proof.

(i) We have

π2 � g = D(π2)◦〈〈0C, g ◦π1〉, IdCA〉 (definition of �)

= π2 ◦π1 ◦〈〈0C, g ◦π1〉, IdCA〉 (D3)

= π2 ◦〈0C, g ◦π1〉 (proj)

= g ◦π1. (proj)

(ii) We have

(h◦π1) � g = D(h◦π1)◦〈〈0C, g ◦π1〉, IdCA〉 (definition of �)

= D(h)◦〈D(π1), π1,2〉 〈〈0C, g ◦π1〉, IdCA〉 (D5)

= D(h)◦〈π1 ◦π1, π1,2〉◦〈〈0C, g ◦π1〉, IdC×A〉 (D3)

= D(h)◦〈0C, π1〉 . (proj)

= 0. (D2)

(iii) We first prove the following claim.
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Claim A.2. Let g : C → A. Then the following diagram commutes:

(C×A)×D

〈π1×IdD,sw〉

��

〈π1 ,IdC×A〉×IdD �� (C×(C×A))×D

(〈0C ,g〉×IdC×A)×IdD

��
(C×D)×((C×D)×A)

〈0C×D,g◦π1〉×Id(C×D)×A

��

((C×A)×(C×A))×D

〈π1×0D,π2×IdD〉

��
((C×D)×A)×((C×D)×A)

〈D(sw),sw◦π2〉 �� ((C×A)×D)×((C×A))×D)

Proof of Claim A.2. We have

〈π1 × 0D, π2 × IdD〉◦ ((〈0C, g〉 × IdCA) × IdD)◦ (〈π1, IdCA〉 × IdD)

= 〈〈〈0C, g ◦π1,1〉, 0D〉, 〈π2,1, π2〉〉◦〈〈π1, 〈π1, π2〉〉◦π1, π2〉
= 〈〈〈0C, g ◦π1,1〉, 0D〉, 〈π2,1, π2〉〉◦〈〈π1,1, 〈π1,1, π2,1〉〉, π2〉
= 〈〈〈0C, g ◦π1,1〉, 0D〉, 〈〈π1,1, π2,1〉, π2〉〉
= 〈〈〈0C, g ◦π1,1〉, 0D〉, 〈〈π1,1,2, π2,2〉, π2,1,2〉〉◦〈π1×IdD, sw〉
= 〈〈〈π1,1,1, π2,1〉, π2,1,1〉, 〈〈π1,1,2, π2,2〉, π2,1,2〉〉◦

〈〈0CD, g ◦π1,1〉, π2〉◦〈π1 × IdD, sw〉
= 〈D(sw), sw◦π2〉◦ (〈0CD, g ◦π1〉 × Id(CD)A)◦〈π1 × IdD, sw〉 .

We can now conclude the proof of part (iii) of Lemma 4.7 as follows:

Λ(f) � g = D(Λ(f))◦〈〈0C, g ◦π1〉, IdCA〉 (definition of �)

= Λ(D(f)◦〈π1 × 0D, π2 × IdD〉)◦〈〈0C, g ◦π1〉, IdCA〉 (D-curry)

= Λ(D(f)◦〈π1 × 0D, π2 × IdD〉◦ ((〈〈0C, g ◦π1〉, IdCA〉) × IdD)) (Curry)

= Λ(D(f)◦〈D(sw), sw◦π2〉
◦ (〈0CD, g ◦π1〉 × Id(CD)A)◦〈π1 × IdD, sw〉) (Claim A.2)

= Λ(D(f ◦ sw)◦ (〈0CD, g ◦π1〉 × Id(CD)A)◦〈π1, Id〉◦ sw) (D5)

= Λ(((f ◦ sw) � (g ◦π1))◦ sw). (definition of �)

Lemma 4.8. Let

f : C × A → (D⇒B)

g : C → A

h : C × A → D.

Then:

(i) (ev◦〈f, h〉) � g = ev◦〈f � g + Λ(Λ−(f) � (h � g)), h〉
(ii) Λ(Λ−(f) � h) � g = Λ(Λ−(f � g) � h) + Λ(Λ−(f) � (h � g))

(iii) Λ(Λ−(f) � h)◦〈IdC, g〉 = Λ(Λ−(f ◦〈IdC, g〉) � (h◦〈IdC, g〉))
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Proof.

(i) Let ϕ ≡ 〈〈0C, g ◦π1〉, IdCA〉. Then

(ev◦〈f, h〉) � g
= D(ev◦〈f, h〉)◦ϕ (definition of �)

= (ev◦〈D(f), h◦π2〉 + D(Λ−(f))◦〈〈0CA, D(h)〉, 〈π2, h◦π2〉〉)◦ϕ (D-eval)

= ev◦〈D(f), h◦π2〉◦ϕ
+ D(Λ−(f))◦〈〈0CA, D(h)◦ϕ〉, 〈IdCA, h〉〉 (Definition 4.2)

= ev◦〈D(f)◦ϕ, h〉
+ D(Λ−(f))◦〈〈0CA, (h � g)◦π1〉, Id(CA)D〉◦〈IdCA, h〉 (definition of �)

= ev◦〈f � g, h〉 + (Λ−(f) � (h � g))◦〈Id, h〉 (definition of �)

= ev◦〈f � g, h〉 + ev◦〈Λ(Λ−(f) � (h � g)), h〉 (beta-cat)

= ev◦〈f � g + Λ(Λ−(f) � (h � g)), h〉 (Lemma 4.3)

(ii) We first simplify the equation

Λ(Λ−(f) � h) � g = Λ(Λ−(f � g) � h) + Λ(Λ−(f) � (h � g))

to get rid of the Cartesian closed structure. The right-hand side can be rewritten as

Λ((Λ−(f � g) � h) + Λ−(f) � (h � g)).

Taking a morphism f′ : (C × A) × D → B such that f = Λ(f′) and applying

Lemma 4.7 (iii), we then discover that proving part (ii) is equivalent to showing that:

((f′ � h)◦ sw) � (g ◦π1)◦ sw = (((f′ ◦ sw) � (g ◦π1))◦ sw) � h+ f′ � (h � g).

By the definition of �, we have

((f′ � h)◦ sw) � (g ◦π1)◦ sw = D(D(f′)◦〈〈0CA, h◦〈π1,1, π2〉〉, sw〉)◦〈〈0CD, g ◦π1,1〉, sw〉 .

Writing ϕ ≡ 〈〈0CD, g ◦π1,1〉, sw〉 and D2(f) for D(D(f)). Then

D2(f′)◦〈〈0CA, h◦〈π1,1, π2〉〉, sw〉)◦ϕ
= D2(f′)◦〈D(〈〈0CA, h◦〈π1,1, π2〉〉, sw〉), 〈〈0CA, h◦〈π1,1, π2〉〉, sw〉◦π2〉◦ϕ (D5)

= D2(f′)◦〈D(〈〈0CA, h◦〈π1,1, π2〉〉, sw〉)◦ϕ,
〈〈0CA, h◦〈π1,1, π2〉〉, sw〉◦π2 ◦ϕ〉 (pair)

= D2(f′)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ,D(sw)◦ϕ〉,
〈〈0CA, h◦〈π1,1, π2〉〉, sw〉◦ sw〉 (D4)

= D2(f′)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ,D(sw)◦ϕ〉,
〈〈0CA, h◦π1〉, Id(CA)D〉〉. (Remark 4.10)

Since

〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ,D(sw)◦ϕ〉
= 〈0, D(sw)◦ϕ〉 + 〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ, 0〉,
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we can apply D2 and rewrite the expression above as a sum of two morphisms:

D2(f′)◦〈〈0(CA)D, D(sw)◦ϕ〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 +(1)

D2(f′)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉(2)

We now show that (1) = (((f′ ◦ sw) � (g ◦π1))◦ sw) � h. Indeed, we have

D2(f′)◦〈〈0(CA)D, D(sw)◦ϕ〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉
= D2(f′)◦〈〈0(CA)D, sw◦π1 ◦ϕ〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 (Remark 4.10)

= D2(f′)◦〈〈0(CA)D, sw◦〈0CD, g ◦π1,1〉〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 (proj)

= D2(f′)◦〈〈0(CA)D, 〈〈0C, g ◦π1,1〉, 0D〉〉,
〈〈0CA, h◦π1〉, Id(CA)D〉〉 (Remark 4.10)

= D2(f′)◦〈〈〈〈0C, 0A〉, 0D〉, 〈0CA, h◦π1〉〉,
〈〈〈0C, g ◦π1,1〉, 0D〉, Id(CA)D〉〉 (D7)

= D2(f′)◦〈〈〈〈0C, D(g)◦〈0C, π1,1〉〉, 0D〉, 〈0CA, h◦π1〉〉
〈〈〈0C, g ◦π1,1〉, 0D〉, Id(CA)D〉〉. (D2)

Letting ψ ≡ 〈〈0CA, h◦π1〉, Id(CA)D〉, we then have

D(D(f))◦〈〈〈〈0C, D(g)◦〈0C, π1,1〉〉, 0D〉, 〈0CA, h◦π1〉〉, 〈〈〈0C, g ◦π1,1〉, 0D〉, Id(CA)D〉〉
= D(D(f))◦〈〈〈〈0C, D(g)◦〈π1,1,1, π1,1,2〉〉, 0D〉, π1〉,

〈〈〈0C, g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ (proj)

= D(D(f))◦〈〈〈〈0C, D(g)◦〈D(π1,1), π1,1,2〉〉, 0D〉, π1〉,
〈〈〈0C, g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ (D3)

= D(D(f))◦〈〈〈〈0C, D(g ◦π1,1)〉, 0D〉, π1〉, 〈〈〈0C, g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ (D5)

= D(D(f))◦〈〈〈〈D(0C), D(g ◦π1,1)〉, D(0D)〉, D(Id(CA)D)〉,
〈〈〈0C, g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ (D1)

= D(D(f))◦〈D(〈〈〈0C, g ◦π1,1〉, 0D〉, Id(CA)D〉),
〈〈〈0C, g ◦π1,1〉, 0D〉, Id(CA)D〉◦π2〉◦ψ (D4)

= D(D(f)◦〈〈〈0C, g ◦π1,1〉, 0D〉, Id(CA)D〉)◦ψ (D5)

= D(D(f)◦〈sw◦〈0CD, g ◦π1,1〉, sw◦ sw〉)◦ψ (Remark 4.10)

= D(D(f)◦〈sw◦π1, sw◦π2〉◦〈〈0CD, g ◦π1,1〉, sw〉)◦ψ (proj)

= D(D(f)◦〈D(sw), sw◦π2〉◦〈〈0CD, g ◦π1,1〉, sw〉)◦ψ (Remark 4.10)

= D(D(f ◦ sw)◦〈〈0CD, g ◦π1,1〉, Id(CD)A〉◦ sw)◦〈〈0CA, h◦π1〉, Id(CA)D〉 (D5)

= (((f ◦ sw) � (g ◦π1))◦ sw) � h. (definition of �)
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We will now show that (2) = f � (h � g), which will conclude the proof of part (ii).

D2(f)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉
= D2(f)◦〈〈〈0CA, D(h◦〈π1,1, π2〉)〉◦ϕ, 0(CA)D〉,

〈〈0CA, h◦π1〉, Id(CA)D〉〉 (D1+D4)

= D2(f)◦〈〈〈0CA, D(h)◦〈D(〈π1,1, π2〉), 〈π1,1,2, π2,2〉〉〉◦ϕ, 0(CA)D〉,
〈〈0CA, h◦π1〉, Id(CA)D〉〉 (D5)

= D2(f)◦〈〈〈0CA, D(h)◦〈〈D(π1,1), D(π2)〉, 〈π1,1,2, π2,2〉〉〉◦ϕ, 0(CA)D〉,
〈〈0CA, h◦π1〉, Id(CA)D〉〉 (D4+D3)

= D2(f)◦〈〈〈0CA, D(h)◦〈〈π1,1,1, π2,1〉, 〈π1,1,2, π2,2〉〉〉◦ϕ, 0(CA)D〉,
〈〈0CA, h◦π1〉, Id(CA)D〉〉 (D5+D3)

= D2(f)◦〈〈〈0CA, D(h)◦〈〈0C, g ◦π1,1〉, π1〉〉, 0(CA)D〉,
〈〈0CA, h◦π1〉, Id(CA)D〉〉 (proj)

= D(f)◦〈〈0CA, D(h)◦〈〈0C, g ◦π1,1〉, π1〉〉, Id(CA)D〉 (D6)

= D(f)◦〈〈0CA, D(h)◦〈〈0C, g ◦π1〉, IdCA〉◦π1〉, Id(CA)D〉 (proj)

= f � (h � g) (definition of �)

(iii) By (Curry), we have

Λ(Λ−(f) � h)◦〈IdC, g〉 = Λ((Λ−(f) � h)◦ (〈IdC, g〉 × IdD)),

so if we can show that

(Λ−(f) � h)◦ (〈IdC, g〉 × IdD) = Λ−(f ◦〈IdC, g〉) � (h◦〈IdC, g〉),

we are done.

So we proceed as follows:

(Λ−(f) � h)◦ (〈IdC, g〉 × IdD)

= D(Λ−(f))◦〈〈0CA, h◦π1〉, Id(CA)D〉◦ (〈IdC, g〉 × IdD) (definition of �)

= D(ev◦〈f ◦π1, π2〉) ◦
〈〈0CA, h◦π1〉, Id(CA)D〉◦ (〈IdC, g〉 × IdD) (definition of Λ−)

= D(ev)◦〈〈D(f ◦π1), D(π2)〉, 〈f ◦π1,2, π2,2〉〉 ◦
〈〈0CA, h〉◦〈π1, g ◦π1〉, 〈IdC, g〉 × IdD〉 (D5+D4)

= D(ev)◦〈〈D(f)◦〈π1,1, π1,2〉, π2,1〉, 〈f ◦π1,2, π2,2〉〉 ◦
〈〈0CA, h◦〈π1, g ◦π1〉〉, 〈IdC, g〉 × IdD〉 (D5+D3)

= D(ev)◦〈〈D(f)◦〈0CA, 〈π1, g ◦π1〉〉, h◦〈π1, g ◦π1〉〉, 〈f ◦〈π1, g ◦π1〉, π2〉〉 (proj)

= D(ev)◦〈〈D(f)◦〈〈0C, D(g)◦〈0C, IdC〉〉, 〈IdC, g〉〉, h◦〈π1, g ◦π1〉〉,
〈f ◦〈IdC, g〉, IdD〉〉 (D2)
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Setting ϕ = 〈〈0C, h◦〈π1, g ◦π1〉〉, IdCD〉, this equals

D(ev)◦〈〈D(f)◦〈〈π1,1, D(g)◦〈π1,1, π1,2〉〉, 〈π1,2, g ◦π1,2〉〉, π2,1〉,
〈f ◦〈π1,2, g ◦π1,2〉, π2,2〉◦ϕ〉

= D(ev)◦〈〈D(f ◦〈π1, g ◦π1〉), D(π2)〉, 〈f ◦〈π1,2, g ◦π1,2〉, π2,2〉〉◦ϕ (D5)

= D(ev)◦〈D(〈f ◦〈π1, g ◦π1〉, π2〉), 〈f ◦〈π1,2, g ◦π1,2〉, π2,2〉〉◦ϕ (D4)

= D(ev◦〈f ◦〈π1, g ◦π1〉, π2〉)◦ϕ (D5)

= D(Λ−(f ◦〈IdC, g〉))◦ϕ (definition of Λ−)

= Λ−(f ◦〈IdC, g〉) � (h◦〈IdC, g〉). (definition of �)
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