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Electro-osmotic pumping of fluid through a nanopore that traverses an insulating
membrane is considered. The density of surface charge on the membrane is assumed
to be uniform and sufficiently low for the Poisson–Boltzmann equation to be
linearized. The reciprocal theorem gives the flow rate generated by an applied weak
electric field, expressed as an integral over the fluid volume. For a circular hole in
a membrane of zero thickness, an analytical result is possible up to quadrature. For
a membrane of arbitrary thickness, the full Poisson–Nernst–Planck–Stokes system of
equations is solved numerically using a finite volume method. The numerical solution
agrees with the standard analytical result for electro-osmotic flux through a long
cylindrical pore when the membrane thickness is large compared to the hole diameter.
When the membrane thickness is small, the flow rate agrees with that calculated
using the reciprocal theorem.
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1. Introduction
A nanopore is simply a hole of small size in an impermeable membrane that

separates two regions containing an electrolytic buffer. A size range of 1–100 nm
is fairly typical. Living cells and intracellular organelles are usually bounded by
lipid membranes containing nanopores constructed of membrane-bound proteins. The
transport of small molecules and polymers across such nanopores is a very common
feature of living cells and is essential to their normal function (Pfanner & Neupert
1990; Martin, Mahlke & Pfanner 1991; Alberts et al. 1994; Künkele, Heins &
Dembowski 1998; Matouschek, Pfanner & Voos 2000). Synthetic nanopores (Li et al.
2003; Storm et al. 2005a,b; Smeets et al. 2006; Garaj et al. 2010; Hall et al. 2010;
Schneider et al. 2010) have been the focus of much interest in recent years, following
the demonstration of their use as effective single-molecule sensors (Kasianowicz et al.
1996).

The main distinguishing feature of nanopore systems responsible for many of the
novel effects is that their geometric dimensions are small enough that electrokinetic
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effects are important. Such effects have been invoked to explain a range of
observations relating to experiments involving free as well as hindered translocation
of DNA across synthetic nanopores (Ghosal 2006; Keyser et al. 2006; Ghosal
2007a,b; van Dorp et al. 2009; Laohakunakorn et al. 2013b). Nanopores also exhibit
other unusual properties, some of which could potentially be exploited to build
novel microfluidic devices. For example, conical nanopores fabricated on plastic
films using the ion track-etching technique (Siwy 2006) have been shown to exhibit
ion current rectification similar to that of semiconductor diodes (Siwy & Fulinsski
2004; Vlassiouk & Siwy 2007; Vlassiouk, Smirnov & Siwy 2008a,b). A similar
effect has been reported recently for electro-osmotic flow out of nanocapillaries
(Laohakunakorn et al. 2013b). A nonlinear electrokinetic effect known as induced
charge electro-osmosis (ICEO) (Murtsovkin 1996; Squires & Bazant 2004) produces
vortices at the edges of nanopores which resemble recirculation vortices in separated
flows, even though the Reynolds number in such applications is essentially zero.
Mixing due to these flow structures (Yossifon & Chang 2008; Chang & Yossifon 2009;
Chang, Yossifon & Demekhin 2012) and electroconvective instabilities (Zaltzman &
Rubinstein 2007) are thought to be responsible for the ‘overlimiting’ behaviour of
the current–voltage characteristics of perm-selective pores and membranes described
by Rubinstein & Shtilman (1979). Similar vortical structures may be generated in
cylindrical channels that undergo a sudden constriction when the relevant length
scales are of the order of the Debye length (Park et al. 2006).

If an electric field E is applied across an uncharged membrane, ICEO leads to
velocities of O(E2) with no net flow through the membrane unless symmetry is
somehow broken. Molecular dynamics simulations of flow through nanopores in
uncharged membranes, such as graphene sheets (Hu, Mao & Ghosal 2012), show that
differences in mobility between cations and anions can result in asymmetric Debye
layers and consequent net flow through the membrane. Symmetry is also broken if
the membrane is charged, so that the intrinsic field due to the membrane competes
with the externally applied field in determining the distribution of ions in the Debye
layer (Mao, Ghosal & Hu 2013).

If a voltage is applied across a charged membrane containing a long narrow pore,
an electro-osmotic flow is generated by the electric field acting on the charge cloud of
counter-ions in the fluid adjacent to the fixed charges at the solid–fluid interface. The
strength of this flow is proportional to the applied electric field and, thus, inversely
proportional to the membrane thickness if the membrane is sufficiently thick. However,
the flow does not increase indefinitely as the membrane is progressively thinned. If the
membrane is much thinner than the diameter of the hole, the flow is driven mainly by
electro-osmosis at the membrane surface exterior to the pore, rather than by electric
forces within the pore itself.

Here we present results for the flow rate through a pore in a charged membrane in
the limit of a weak applied field. In § 2 we use the reciprocal theorem to calculate
the flow rate through a circular hole in a charged membrane of zero thickness.
The result is obtained in terms of an integral which in general has to be evaluated
numerically but can be calculated analytically when the pore size is much smaller
than the Debye length. In § 3 we present computer simulations of the full problem
based on numerical solutions of the Poisson–Nernst–Planck–Stokes (PNP–Stokes)
system of equations using a finite volume method. Both thick and thin membranes
are considered, and the results are compared with analytical results for membranes
of zero thickness and of large thickness relative to the pore radius. Conclusions are
provided in § 4.
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FIGURE 1. Flow through a charged membrane under an applied potential difference 1φ.

2. Flow through a hole in a membrane of zero thickness
We consider a hole (of arbitrary shape) in an infinite plane membrane immersed in

an incompressible homogeneous electrolyte containing N ionic species (figure 1). The
number density of the ith ionic species is ni, with ni = ni

∞ in the bulk electrolyte far
from any charged surfaces. The electrolyte has viscosity µ and electrical permittivity ε.
A surface charge of fixed density σ exists at the membrane–electrolyte interface, and
in the electrolyte adjacent to the membrane there is charge cloud of counter-ions, with
thickness characterized by the Debye length

κ−1 =

 εkT
N∑

i=1

e2z2
i ni
∞


1/2

, (2.1)

where k is the Boltzmann constant, T the absolute temperature, e the proton charge
and zi the valence of the ith species of ion. We assume that the surface charge density
σ is sufficiently small so that the Poisson–Boltzmann equation describing the potential
φ0 in the equilibrium charge cloud may be linearized. Far from any hole in the
membrane, the zeta potential at the surface of the membrane is ζ = σ/(εκ), with
ζ � kT/e. An electric potential difference 1φ is applied across the membrane with a
resulting current I. The hole within the membrane has characteristic size a, and we
make no assumption concerning aκ , the ratio of the hole size to the Debye length
κ−1. When aκ� 1, the charge clouds from opposite sides of the perimeter of the hole
overlap, but this has little effect on the electrical conductivity of the hole when (as
here) the surface charge density σ and the resulting perturbations to the ionic number
densities ni = ni

∞ exp(−eziφ/kT) are small. Similarly, any ion exclusion effects of
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the overlapping charge cloud are negligible. We also note that the ion exclusion
properties of a thin membrane are in general smaller than those of a long cylindrical
pore. When aκ � 1, the potential in the unperturbed electrical double layer within
the pore, on the plane of the membrane, is ζ ≈ σ/(εκ). Inside a uniform cylindrical
pore with surface charge density σ , the potential when aκ� 1 is ζ ≈ 2σ/(εaκ2), and
the condition eζ/kT � 1 required for the perturbation of the ionic number densities
to be small within the pore implies a smaller charge density σ for the pore than for
the membrane. Only when aκ = O(1) will the long cylindrical pore and the hole in
a membrane exhibit similar ion exclusion properties.

When aκ � 1, the charge cloud is thin compared to the lateral dimension of
the hole, but it remains thick compared to the membrane of zero thickness, h = 0,
considered in § 2.3. Thus, we are unable to appeal to Smoluchowski’s analysis for
thin charge clouds in § 2.3. Ion exclusion effects are negligible in this limit.

In § 2.1 we discuss how the charge cloud is deformed by the applied electric
field and by fluid motion. We then (in § 2.2) describe a theoretical framework for
calculating the flow rate Q through the hole, exploiting the reciprocal theorem; the
analysis is similar to that of Sherwood & Stone (1995). In § 2.3 we consider the
special case of a circular hole in a thin membrane, for which the integral for the
flow rate Q can be computed numerically.

2.1. The perturbed charge cloud
When the electrical potential difference 1φ is applied across the membrane, the
charge cloud adjacent to the surface of the membrane is perturbed, both by the direct
electrical field ∇φ acting on the ions and by motion of the fluid. Ions are convected
with the fluid velocity u, and move relative to the fluid under the influence of electric
fields and thermal diffusion. The conservation equation for the number density ni of
the ith ionic species, in steady state, is therefore

∇ ·
[
niu−ωi(kT∇ni + ezini

∇φ)
]= 0, (2.2)

where ωi is the mobility of the ith species of ion.
We follow Saville (1977) and non-dimensionalize potentials by kT/e, lengths by the

typical hole dimension a, velocities by ε(kT/e)2/µa and mobilities by a characteristic
mobility value ω0. We assume that the potential 1φ which characterizes the applied
field is small compared to the equilibrium zeta potential ζ , so that β = e1φ/kT �
eζ/kT , where eζ/kT has already been assumed small in order that we may describe
the charge cloud by means of the linearized Poisson–Boltzmann equation. We use the
dimensionless field strength β as the basis for a perturbation expansion

û = βû1 + · · · , (2.3a)

φ̂ = φ̂0 + βφ̂1 + · · · , (2.3b)
ni = ni

0 + βni
1 + · · · , (2.3c)

where the subscript 0 refers to the equilibrium cloud and the caret ˆ denotes a
non-dimensional quantity. The steady-state ion conservation equation, correct to O(β),
becomes

Pe û1 · ∇ni
0 = ω̂i

∇ ·

[
zini

0∇φ̂1 + zini
1∇φ̂0 +∇ni

1

]
, (2.4)
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Electro-osmotic flow through a nanopore 171

where the Péclet number Pe= εkT/e2µω0 characterizes the ratio of ionic convection
to diffusion. Since the non-dimensional equilibrium potential φ̂0 has been assumed to
be small, (2.4) reduces to

0= zini
∞∇2φ̂1 +∇2ni

1. (2.5)

The boundary conditions at infinity are

ni
1→ 0, (2.6a)

βφ1 ∼±1φ/2 in z ≷ 0. (2.6b)

We assume that no ions enter or leave the surface of the membrane. Hence

n · (kT∇ni + ezini
∇φ)= 0, (2.7)

where n is the normal to the membrane. At O(β), and assuming φ̂0� 1, this zero-flux
boundary condition becomes

n · ∇
(

ni
1 + zini

∞φ̂1

)
= 0. (2.8)

Multiplying (2.5) by e2zi and summing over i, we obtain, at O(β),

∇2χ̂1 = 0, (2.9)

where
χ̂1 = φ̂1 + ρ̂1(aκ)−2 (2.10)

and

ρ̂1 = ea2ρ1

εkT
= ea2

εkT

N∑
i=1

ezini
1 (2.11)

is the (non-dimensional) perturbation to the charge density ρ =∑i ezini.
The boundary conditions for (2.9) are similarly obtained from (2.6) and (2.8):

χ̂1 ∼ ±1/2 as r→∞ in z ≷ 0, (2.12a)
n · ∇χ̂1 = 0 on the membrane, (2.12b)

and we note that the boundary condition (2.12b) represents zero flux of ions into the
membrane, rather than a zero normal electric field. The potential

χ = φ1 + ρ1/εκ
2 (2.13)

is thus obtained by solving the Laplace equation for the potential created by applying
the potential difference 1φ across the insulating membrane containing the pore.
The potential χ is related to the linearized change µi

1 = eziφ1 + kTni
1/n

i
∞ in the

electrochemical potential of the ith species of ion, with χ =∑i ezini
∞µ

i
1/(εkTκ2). As

discussed by Saville (1977), when φ̂0 � 1 the perturbation ρ1 to the charge density
is negligibly small, so that φ1 = χ , and our analysis is equivalent to that of Henry
(1931).
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2.2. A formalism for calculating the flow rate using the reciprocal theorem
The Stokes equations governing fluid motion are modified by the presence of an
electric force −ρ∇φ acting on the fluid. Expanding in powers of β, we find that

ρ∇φ = (ρ0 + βρ1)∇(φ0 + βφ1)+O(β2)

= −∇( 1
2εκ

2φ2
0 − βρ1φ0

)+ βρ0∇(φ1 + ρ1/εκ
2)+O(β2), (2.14)

where we have used the relation ρ0=−εκ2φ0 between the equilibrium charge density
ρ0 and the equilibrium potential φ0 given by the linearized Poisson–Boltzmann
equation. Hence the Stokes equations become

µ∇2u−∇p− ρ0∇χ = 0, (2.15)

where the term ∇(εκ2φ2
0/2 − βρ1φ0) in (2.14) has been incorporated into the

pressure p.
Note that the fluid motion caused by direct electrical forces acting on the fluid

creates additional deformation of the charge cloud, but, as seen from (2.4), this
deformation is O(û1Pe φ̂0) and may be neglected when φ̂0 is small.

We now determine the O(β) total volumetric flow rate Q through the pore, created
by the electrical force acting on the charge cloud within the fluid. Consider two Stokes
flows u and ū in a volume V with boundary conditions given on the bounding surface
S with outward normal n. A body force F acts on the fluid, in which the pressure is
p, the viscosity is µ, the strain rate tensor is eij= (∂iuj+ ∂jui)/2 and the stress tensor
is τij = −pδij + 2µeij. Barred variables represent the corresponding quantities for the
second flow ū. The reciprocal theorem (Happel & Brenner 1983) gives the identity∫

V
uiF̄i dV +

∫
S

uiτ̄ijnj dS=
∫

V
ūiFi dV +

∫
S

ūiτijnj dS. (2.16)

We suppose that flow 1 (i.e. u) is the flow of interest, namely the electrokinetic
flow through a hole in a charged membrane. The body force F, by (2.15), is

F=−ρ0∇χ, (2.17)

where, by (2.9), ∇2χ = 0 with boundary conditions (2.12): n̂ · ∇χ = 0 on the
membrane surface S0, and χ ∼±1φ/2 on surfaces S± far from the pore (figure 1).

We take flow 2 (i.e. ū) to be that due to a pressure difference 1p imposed across
a pore in an uncharged membrane; thus, the body force F̄ is zero. Since the Stokes
flow equations are linear, we may write

ū=1p G, (2.18)

where G is a function that depends solely on the pore geometry.
We now substitute the two flows into the reciprocal relation (2.16). The bounding

surface S is as shown in figure 1; it consists of two hemispheres S+ and S− of very
large radius R, together with the membrane surface S0. On S0 the velocities ui and ūi
equal zero, whereas on S± we have τij ∼−p±δij +O(R−3) and τ̄ij ∼−p̄±δij +O(R−3),
where p± are the pressures at a great distance R from the pore on either side of the
membrane. For flow 1, p+=p−=p∞, and for flow 2, p̄+− p̄−=1p. Substituting (2.17)
and (2.18) into (2.16) and cancelling the pressure difference 1p from both sides of
the equation, we obtain

Q=
∫

S−
u · n dS=−

∫
S+

u · n dS=−
∫

V
ρ0G · ∇χ dV, (2.19)

where Q is the volumetric flux of flow 1 from the side S+ to the side S− of the
membrane.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.214


Electro-osmotic flow through a nanopore 173

2.3. Flow rate from a round hole in elliptic cylindrical coordinates
We now consider a circular pore of radius a. We adopt cylindrical coordinates (r, z)
with origin at the centre of the pore and z along the axis of symmetry, together with
oblate spherical coordinates (ξ , η) where ∞> ξ >−∞ and π/2>η> 0 such that

z= a sinh ξ cos η, r= a cosh ξ sin η. (2.20a,b)

The scale factors are

hξ = hη = a(cosh2 ξ − sin2 η)1/2. (2.21)

The imposed electric field is given by Morse & Feshbach (1953, p. 1292), with
potential

χ = 1φ
2

[
1− 2

π
tan−1

(
1

sinh ξ

)]
. (2.22)

Happel & Brenner (1983, p. 153) give the stream function ψ = −a31p(1 −
cos2 η)/(6πµ) for flow 2. Comparing the resulting velocity, ū, with (2.18), we
have

Gξ =− a cos2 η

2πµ cosh ξ(cosh2 ξ − sin2 η)1/2
, Gη = 0. (2.23a,b)

Substituting (2.22) and (2.23) into (2.19) yields the electro-osmotic flow rate

Q= 2a31φ

πµ

∫ π/2

0
dη
∫ ∞

0
ρ0

cos2 η sin η
cosh ξ

dξ . (2.24)

The equilibrium charge density ρ0 in the linearized, Debye–Hückel limit may be
obtained by excising the solution for a uniformly charged disk (Sherwood & Stone
1995) from that for a charged infinite plate. Hence

ρ0 = σκ2a
[∫ ∞

0

J1(as)J0(rs)
(κ2 + s2)1/2

e−(κ
2+s2)1/2z ds− e−κz

κa

]
. (2.25)

The integral in (2.24) cannot be evaluated in closed form when ρ0 is given by (2.25).
However, in the long-Debye-length limit κa� 1, the rate of decay of G and ∇χ is
such that the major contribution to the integral in equation (2.24) comes from a region
(near the hole) of volume O(a3), within which ρ0 ≈−σκ . Thus,

Q∼−2a31φ

πµ
(σκ)

∫ π/2

0
cos2 η sin η dη

∫ ∞
0

dξ
cosh ξ

=−a3κσ1φ

3µ
= κaQ0, (2.26)

where Q0 =−a2σ1φ/(3µ) is a convenient characteristic flow rate.
In other cases, the integral must be evaluated numerically. It is convenient to

introduce new variables x = κa, t = sa, r̄ = r/a, z̄ = z/a and q = cos η in terms of
which (2.24) becomes

Q= 2a2σ1φ

µπ

[
−xI2 + x2

∫ π/2

0
dη
∫ ∞

0
I1

cos2 η sin η
cosh ξ

dξ
]
, (2.27)
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FIGURE 2. (Colour online) The normalized flow rate Q/Q0 through a circular pore of
radius a in a membrane of thickness h = 0 as a function of κa determined from (2.27)
(solid line), with asymptote Q/Q0∼ κa (dashed line) as described by (2.26). The symbols
are from the full finite volume simulations of § 3 with h/a= 0 (triangles), 0.06 (circles)
and 0.1 (squares).

with I1 and I2 defined as

I1 =
∫ ∞

0

J1(t)J0(r̄t)√
x2 + t2

exp
[
−z̄
√

x2 + t2
]

dt, (2.28)

I2 =
∫ 1

0
q2
[
ci(xq) sin(xq)− si(xq) cos(xq)

]
dq, (2.29)

where si(α), ci(α) are the sine and cosine integrals

si(α)=−
∫ ∞
α

sin t
t

dt, ci(α)=−
∫ ∞
α

cos t
t

dt. (2.30a,b)

The integrals I1 in (2.28) and I2 in (2.29) were evaluated using the MATLAB routine
quadgk (MathWorks 2010). Here I1 represents the potential due to a thin charged disk,
and decays exponentially at large distances, as does 1/ cosh(ξ). The ξ integration in
(2.27) could therefore be truncated at a large value, taken to be ξ = 8 (corresponding
to a distance of approximately 1490a from the pore). To evaluate the second term in
the brackets in (2.27), the (ξ , η) space was divided into subregions, with typically 500
intervals for ξ and 200 for η. Smaller intervals were used near the pore (ξ � 1) and
near the membrane (π/2 − η � 1). For every pair (ξ , η), the integral I1(ξ , η) was
numerically evaluated and Q was obtained via trapezoidal summation within MATLAB.
Results are shown in figure 2, with the asymptotic regime κa� 1, described by (2.26),
depicted by the dashed straight line of unit slope.

3. Flow through a hole in a membrane of finite thickness
In order to examine the validity of (2.27), the full PNP–Stokes system of equations

was solved numerically using a finite volume method based on the open-source
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computational fluid dynamics (CFD) library OpenFOAM (OpenCFD 2012). Our
model has been described by Mao et al. (2013), and details of the implementation
for the current problem are presented in the Appendix. The cases studied include
membranes of thickness h = 0 and h > 0 in the regime of weak applied fields
and low membrane charge. These conditions, stated in § 2.2, may be restated more
conveniently as φ̂−1 � κa � σ̂ where σ̂ = ae|σ |/(εkT) and φ̂ = |ε1φ/(σa)| are
dimensionless parameters characterizing the degree of membrane charge and the
strength of the applied field, respectively. In the simulations presented here, the
values of these parameters were σ̂ = 0.273 and φ̂ = 0.071, so that (2.27) can be
expected to be a reasonable approximation in the range 14� κa� 0.3.

The computed flow rate Q normalized by Q0 = −a2σ1φ/(3µ) is shown by the
symbols in figure 2. Good agreement with (2.27) is obtained, but thicker membranes
result in somewhat increased flow rates. The discrepancy increases at shorter Debye
lengths.

The analysis of § 2 assumed that effects due to ICEO are negligible. However,
Thamida & Chang (2002) have shown that ICEO generates vortices at sharp corners,
and such vortices will inevitably be generated in the membrane geometry considered
here. In the vicinity of the edge of the nanopore, where r/a= 1+ s, the potential χ ,
given by (2.22), on the membrane surface z= 0 may be expanded as

χ =±1φ
π

√
2s on z=±0. (3.1)

If we assume that this potential is little modified when the membrane has a finite
thickness h> 0, the potential gradient within the solid membrane due to the external
potential χ is

∂φs

∂z
= 21φ

π

√
2s
h
, (3.2)

and if εs� ε the induced potential gradient normal to the surface within the liquid
is (εs/ε)∂φs/∂z. This corresponds to an induced surface charge (with accompanying
charge cloud of counter-ions)

σi =∓2εs1φ

π

√
2s
h

on z=±0. (3.3)

The analysis breaks down when s . h/a, in which case the detailed geometry near
the edge of the pore becomes important. If the membrane has rounded edges, the
curvature is approximately h−1 and the induced charge is at most σi ∼ εs1φ/(ah)1/2;
this may be neglected as long as it is small compared to σ or, equivalently, if
(εs/ε)

√
(a/h) φ̂ � 1. For common membrane materials (e.g. lipids and silica),

εs/ε∼ 0.1; thus, as long as the applied field remains weak, ICEO effects are restricted
to the neighbourhood of sharp corners.

The results of full numerical solutions of the PNP–Stokes equations reported in
figure 2 were computed with membrane permittivity εs = 0. However, it is shown
in the Appendix that numerical solutions for appropriate non-zero solid permittivities
εs > 0 predict flow rates Q that differ little from those with εs = 0 in the parameter
regime under consideration. The contribution of such effects to the net fluid flux, Q, is
at best very weak. This is perhaps not surprising, since even when (as here) there are
sharp corners, if the membrane is uncharged and the electrolyte is symmetric (with
identical ionic mobilities), symmetry dictates that ICEO cannot generate a net flow Q
through the pore. So although nonlinear effects such as ICEO can generate a net fluid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.214


176 M. Mao, J. D. Sherwood and S. Ghosal

flow through a charged membrane, the applied field 1φ must be larger than the fields
considered here. An ICEO contribution to the fluid flux is in principle possible, but
only for a charged membrane at high applied fields, as, for example, in the numerical
results presented by Mao et al. (2013).

The reciprocal theorem used in § 2.2 enabled us to determine the volumetric flow
rate Q through the pore without a full computation of the velocity field. This has the
advantage of leading quickly to a value for Q. However, this approach hides other
interesting features of the flow, such as eddies, whether generated by ICEO (Thamida
& Chang 2002) or by the pore throat restricting the flow (Park et al. 2006). These
features are only revealed by full numerical computations, such as those discussed in
the Appendix.

3.1. The limits of thick and thin membranes
Since the fluid flux through the pore is generated by the applied potential 1φ, we
can define an ‘electro-osmotic conductance’ H = Q/1φ in analogy to the electric
conductance. If the membrane thickness is such that h� a, we have a long cylindrical
pore with surface charge density σ at the wall. The electro-osmotic flow velocity is
then (Levine et al. 1975)

u= εE0

µ
[φ0 − ζ ], (3.4)

where φ0 = −εκ2ρ0 is the equilibrium potential in the double layer, ζ is the
equilibrium potential at the wall and E0 = 1φ/h. The equilibrium potential of a
cylindrical pore in the Debye–Hückel limit is

φ0 = ζ I0(κr)
I0(κa)

= σ

εκ

I0(κr)
I1(κa)

. (3.5)

Integrating the fluid velocity u in (3.4) over the cross-section, we obtain the volumetric
flow rate Q and hence the electro-osmotic conductance (Rice & Whitehead 1965)

Hc = Q
1φ
= 2πσa3

µh

[
1

(κa)2
− 1

2(κa)
I0(κa)
I1(κa)

]
. (3.6)

On the other hand, when the thickness is such that h/a� 1, we expect the system
to be identical to a hole in a zero-thickness membrane, and the electro-osmotic
conductance may be obtained, using (2.27), as

Hp = Q
1φ
= 2σa2

µπ

[
−(κa)I2 + (κa)2

∫ π/2

0
dη
∫ ∞

0
I1

cos2 η sin η
cosh ξ

dξ
]
. (3.7)

3.2. The electro-osmotic access resistance of a nanopore
If a membrane of thickness h containing a circular hole of radius a separates two
uniformly conducting regions, then the electrical resistance of the cylindrical hole
increases proportional to h. This might suggest a vanishing resistance for an infinitely
thin membrane. However, in reality, as h→ 0 the electrical resistance is dominated
by entrance and exit effects, and can be determined from the electrical potential
(2.22). This is called the ‘access resistance’ of the pore, and for a circular pore in an
infinitely thin membrane it is described by a simple analytical formula (Hall 1975).

An analogous situation applies to the problem of electro-osmotic flow through a
pore in a membrane. When the pore length h is large compared to the pore radius a,
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FIGURE 3. (Colour online) The normalized ‘electro-osmotic conductance’ H/Hp
determined from the full numerical simulation (circles) as a function of the normalized
membrane thickness h/a, in the cases where (a) κa= 0.4 and (b) κa= 2.0. The dashed
lines correspond to the thin (H=Hp) and thick (H=Hc) membrane limits obtained from
(3.6) and (3.7).

the flow conductance is such that H∼Hc∼ h−1 from (3.6), a consequence of the fact
that the electric field in the pore satisfies E ∼1φ/h. However, H does not increase
indefinitely as h→ 0 but instead approaches a finite value Hp given by (3.7). The
surface charge 2πahσ within the cylindrical pore goes to zero as h→ 0. Electro-
osmotic motion is therefore determined by flow in the fluid on either side of the
membrane, as described in § 2, and not by the cylindrical pore. Thus, in analogy to
the corresponding electrical problem, H−1

p may be regarded as an ‘access resistance’
of the pore to electro-osmotic flow.

Figure 3 shows the electro-osmotic conductance H obtained from the finite volume
numerical computations as a function of h/a. The computed value of H is normalized
by Hp obtained from (3.7). It is seen that H/Hp approaches unity as h/a → 0
and approaches Hc/Hp ∼ h−1 for large h/a. The dashed line representing Hc/Hp
was obtained from (3.6) and (3.7). The results of the full computations indicate
that although H does exhibit the expected limiting behaviours, it does not vary
monotonically with h at short Debye lengths. The origin of the peak at intermediate
values of h/a will be investigated further in future work.

4. Concluding remarks
We have assumed that the surface charge density σ is sufficiently low that the zeta

potential is small, ζ � kT/e ≈ 25 mV at T = 298 K. Thus, the Poisson–Boltzmann
equation can be linearized. Non-dimensional zeta potentials eζ/kT in colloidal
systems, though not always small, are typically at most 5, and it is found that theories
based on small potentials usually give useful qualitative insight into electrokinetic
behaviour over this range of potentials (e.g. Levine et al. 1975).

We have also assumed that the applied potential difference satisfies 1φ � ζ .
Potential differences applied in experiments are typically of the same order as
typical zeta potentials, which in silica substrates vary in magnitude between 0
and 100 mV, depending mainly on counter-ion concentration (Kirby & Hasselbrink
2004a,b). For example, Keyser et al. (2006) described experiments in which 1φ
was in the range 30–100 mV. Nanopores (with radius approximately 5–10 nm)
in graphene sheets have recently been used in DNA translocation experiments
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(Garaj et al. 2010; Merchant et al. 2010; Schneider et al. 2010). The applied voltage
1φ was in the range 0–200 mV in these experiments. The computations of Mao et al.
(2013) predict that the electro-osmotic flow rate through a pore in a membrane varies
nonlinearly with 1φ only at voltages greater than 100 mV. Thus, we again expect the
results presented here to give at least a qualitative understanding of electro-osmotic
flow in such experiments.

Electro-osmotic flow through nanopores has been shown to control the translocation
velocity of charged polymers in resistive pulse experiments (Ghosal 2006, 2007a).
When the free translocation of the polymer is hindered by tethering it to a colloid held
in an optical trap, the tethering force has been shown to be determined by the electro-
osmotic flow within the pore (Keyser et al. 2006; Ghosal 2007b; Laohakunakorn et al.
2013a). Furthermore, it has been argued that the flow outside and in the vicinity of the
nanopore controls the capture rate of polymers into the pore (Wong & Muthukumar
2007), though the experimental evidence for this appears tentative at present.

In addition to the single-molecule experiments mentioned above, our results should
also be helpful in understanding the properties of nanoporous membranes that are used
in batteries, water desalination and numerous other industrial applications. Gadaleta
et al. (2014) have recently studied the electrical conductivity of a model membrane
consisting of an array of nanopores. However, the applied voltage should also result
in an electro-osmotic flux, the calculation of which may be undertaken as a suitable
generalization of the approach presented here. Since membrane-bound organelles in
cells contain nanopores that control the traffic of biological molecules across the
membrane, our results may also be of interest in the biological context (see e.g. Gu,
Cheley & Bayley 2003).
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Appendix. Numerical solution of the PNP–Stokes equations
A.1. Numerical scheme

An electrohydrodynamic solver was developed to solve the PNP–Stokes system of
equations using the finite volume method. The solver was based on the OpenFOAM
CFD library (OpenCFD 2012), a C++ library designed for computational mechanics,
containing a collection of object-oriented classes developed to represent mesh, fields,
matrices and the necessary operations on fields and tensors. It also provides functions
to handle finite volume discretization and matrix equation solving.

The time-independent PNP–Stokes equations are

ε∇2φ +
N∑

i=1

zieni = 0, (A 1)

∇ ·
[
niu−ωi(kT∇ni + ezini∇φ)

]= 0, (A 2)

−∇p+µ∇2u−∇φ
N∑

i=1

zieni = 0, (A 3)

∇ · u= 0. (A 4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.214


Electro-osmotic flow through a nanopore 179

G

LR

LR

LR

H

E

D

z

r

C

A B

F

h

2a

FIGURE 4. (Colour online) A sketch of the axisymmetric geometry used in the simulation.

In our simulation we consider a 1–1 symmetric electrolyte solution containing ions
with equal mobilities. The boundary conditions to be satisfied by the solution are
discussed in appendix A.2.

We apply the following scheme to solve the PNP–Stokes equations. We start from
a zero flow field. Equations (A 1) and (A 2) are solved sequentially in a loop with
under-relaxation until the absolute residual is smaller than 10−6. Under-relaxation
is necessary because the PNP system is nonlinear. The electric volume force
−∇φ ∑i zieni is obtained from this solution and used explicitly in the next step,
i.e. the solution of the incompressible Stokes flow, (A 3) and (A 4). The SIMPLE
algorithm is used with a fixed volume force density. The flow field is then substituted
into (A 2). The PNP equations are then solved again using the updated flow field. An
outer loop is constructed to iterate over the PNP loop and the Stokes flow module.

For the finite volume discretization of the governing equations, central differences
are used for all diffusive terms in (A 2) and viscous terms in (A 3). A second-order
upwind scheme is used for the convective terms in (A 2). The discretized linear system
is solved using a preconditioned conjugate gradient solver if the matrix is symmetric
or a preconditioned biconjugate gradient solver if the matrix is asymmetric. The details
of the numerical algorithm are given by Ferziger & Perić (2002).

A.2. Mathematical model of the nanopore
A schematic view of the axisymmetric geometry used for the full numerical
simulations is provided in figure 4. It consists of a circular hole of radius a in a
solid dielectric membrane CDEF of arbitrary thickness h> 0. The membrane surfaces
CD, DE and EF have a uniform surface charge density σ . Two large cylindrical
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FIGURE 5. (Colour online) The normalized flow rate through a circular pore of radius a
in a thin membrane as a function of κa. The solid line shows results for a membrane of
zero thickness, obtained via the reciprocal theorem and (2.24). The symbols are from the
full numerical simulation with a membrane of thickness h= 0.1a: squares show results for
a non-polarizable membrane with εs= 0, and crosses show results for a membrane with a
dielectric constant of 3.9; the dielectric constant of the electrolyte is 80. The effect on the
flow rate due to membrane polarizability and consequent ICEO is seen to be negligible.

reservoirs are connected to the pore, one at each end. The length and radius of both
the reservoirs are identical, and are LR =max(10a, 10κ−1), chosen to be much larger
than either the hole radius a or the Debye length κ−1 in order to approximate an
infinite reservoir.

We adopt the following boundary conditions (Mao et al. 2013). The ion number
densities on AB and GH are constant and equal to the number density n∞ in the bulk
solution far from any charged surfaces. The electrical potentials are uniform on AB
and on GH, with a potential difference of 1φ between the top (AB) and the bottom
(GH). The pressure p∞ on AB is uniform and equal to that on GH. On the side walls
BC and FG, the radial electric field, radial ionic fluxes and radial velocity, which
decay away from the pore, are set to zero. A zero tangential shear stress is imposed on
flow parallel to the side walls. At the membrane surfaces CD, DE and EF, a no-flux
condition is used for (A 2), and a no-slip condition for the flow; the electric field E
undergoes a jump across the solid–fluid interface such that εE · n̂− εs Es · n̂=σ , where
ε is the electrical permittivity of the fluid, εs is the permittivity of the membrane, Es
is the electric field at the interface within the membrane and n̂ is the unit normal at
the surface directed into the fluid. The potential is continuous across the interface.

The strength of the applied field and the amount of surface charge can be
characterized by the dimensionless parameters φ̂ = |ε1φ/(σa)| and σ̂ = ae|σ |/(εkT),
respectively. In the simulations presented here, the values of these parameters were
kept fixed at φ̂ = 0.071 and σ̂ = 0.273. The flow rate Q was obtained by numerically
integrating the z-component of the velocity over the plane z= 0.
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A.3. Effect of membrane polarizability
If the membrane polarizability is sufficiently small so that |εs Es · n̂|� |εE · n̂|, then the
jump condition of the normal component of the field may be replaced by εE · n̂= σ .
In this case, the computational domain may be restricted to include only the fluid
phase. This approximation was adopted for the results presented in figures 2 and 3.
Thus, effects due to ICEO were neglected. The results of a calculation to test the
validity of this assumption in the parameter range of interest are shown in figure 5.
The data from figure 2 for a non-polarizable membrane of thickness h = 0.1a are
reproduced in figure 5. For comparison, the result of a second calculation in which the
dielectric constant of the membrane material was set to 3.9 (corresponding to silica)
is also shown. The electrolyte is considered polarizable with a dielectric constant of
80. It is seen that the effect of membrane polarizability on the flow rate is negligible.
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