
Interactive constraint-aided conceptual design

BARRY O’SULLIVAN
Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Cork, Ireland

(Received August 3, 2001;Accepted May 24, 2002!

Abstract

Engineering conceptual design can be defined as that phase of the product development process during which the
designer takes a specification for a product to be designed and generates many broad solutions to it. This paper presents
a constraint-based approach to supporting interactive conceptual design. The approach is based on an expressive and
general technique for modeling: the design knowledge that a designer can exploit during a design project; the life-cycle
environment that the final product faces; the design specification that defines the set of requirements the product must
satisfy; and the structure of the various schemes that are developed by the designer. A computational reasoning
environment based on constraint filtering is proposed as the basis of an interactive design support tool. Using such a
tool, human designers can be assisted in interactively developing and evaluating a set of schemes that satisfy the
various constraints imposed on the design.

Keywords: Conceptual Engineering Design; Constraint Processing; Interactive Design

1. INTRODUCTION

This paper is concerned with the development of a constraint-
based approach to supporting interactive engineering con-
ceptual design. Engineering conceptual design can be
regarded as that phase of the engineering design process
during which the designer takes a specification for a prod-
uct to be designed and generates many broad solutions to it.
Each of these broad solutions is generally referred to as a
scheme~French, 1971!. Each scheme should be sufficiently
detailed that the means of performing each function in the
design has been fixed, as have any critical spatial and struc-
tural properties of, and relationships between, the principal
components.

It is generally accepted that conceptual design is one of
the most critical phases of the product development pro-
cess. It has been reported that more than 75% of a product’s
total cost is dictated by decisions made during the concep-
tual phase of design~Hsu & Liu, 2000!. Furthermore, poor
conceptual design can never be compensated for by good
detailed design~Hsu & Woon, 1998!.

In supporting interactive conceptual design, a number of
issues must be considered:

• The conceptual design process is initiated with a state-
ment describing the desired properties of the required
product. This statement may not be complete, and it
may be modified during design.

• Conceptual design is a process during which synthesis
of a scheme is a fundamental activity.

• The human designer should have the freedom to ap-
proach the process in any way desired.

• Insofar as it is possible, human designers should be
alerted to any inconsistencies that exist in their designs.

• Designers may seek explanations for inconsistencies
in their schemes or justifications for why certain op-
tions are available to them.

• Designers may wish to have explained to them how a
particular scheme has come about.

• Automated evaluation and comparison of multiple
schemes throughout the design process is necessary to
focus the designer on promising alternatives.

It was these considerations that motivated and set the agenda
for the research reported here.

This paper presents an interactive constraint-based ap-
proach to supporting a human designer during engineering

Reprint requests to: Barry O’Sullivan, Cork Constraint Computation
Centre, Department of Computer Science, University College Cork, Cork,
Ireland. E-mail: b.osullivan@cs.ucc.ie

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2002!, 16, 303–328. Printed in the USA.
Copyright © 2002 Cambridge University Press 0890-0604002 $12.50
DOI: 10.10170S0890060402164043

303

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

conceptual design. The approach is based on an expressive
and general technique for modeling: the design knowledge
that a designer can exploit during a design project; the life-
cycle environment that the final product faces; the design
specification that defines the set of requirements the prod-
uct must satisfy; and the structure of the various schemes
that are developed by the designer. A computational reason-
ing environment based on constraint filtering~Bowen &
Bahler, 1992; Bowen, 1997! is proposed as the basis of an
interactive conceptual design support tool. Using such a
tool, the designer can be assisted in developing and evalu-
ating a set of schemes that satisfy the various constraints
imposed on the design. In particular, the designer can be
assisted in synthesizing a number of alternative schemes
for the required product. The consistency of each scheme is
constantly monitored, as is the consistency of each scheme
with respect to the design specification and the other schemes
that have been developed. Explanations and justifications
can be generated to aid the designer’s understanding of the
state of the design problem using a known approach from
the literature~Bowen, 1997!. Arbitrary constraints can be
asserted or retracted by the designer, which permits the
incorporation of new requirements into the design specifi-
cation and gives the designer freedom to approach the pro-
cess as he or she wishes.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of the literature on constraint
processing for design. Section 3 presents a brief overview
of the theory of conceptual design upon which the research
presented in this paper is based. Section 4 discusses how
this theory can be modeled in a constraint programming
language. Section 5 presents a detailed example of inter-
active conceptual design based on constraint filtering. Sec-
tion 6 compares the approach presented here with the most
relevant literature. In Section 7, a number of concluding
remarks are made.

2. A REVIEW OF CONSTRAINT PROCESSING
FOR DESIGN

Most decisions that are made in daily life involve consid-
ering some form of restriction on the choices that are avail-
able. For example, the destination to which someone travels
has a direct impact on the choice of transport and route:
some destinations may only be accessible by air, whereas
others can be reached using any mode of transport. Formu-
lating decision problems in terms of parameters and the
restrictions that exist between them is an intuitive approach
to modeling them. These general restrictions can be re-
ferred to as constraints.

The fact that constraints are ubiquitous in many decision
problems has given rise to the emergence of many popular
problem-solving paradigms based on this notion. These tech-
niques have been widely reported in the literature in such
research fields as operations research and artificial intelli-
gence~AI !.

Some of the most popular approaches to solving prob-
lems comprising a set of constraints defined on a set of
parameters stem from the constraint processing paradigm.
Constraint processing is concerned with the development
of techniques for solving the constraint satisfaction prob-
lem, often referred to as the CSP~Mackworth, 1977!. A
large number of problems in AI, computer science, engi-
neering, and business can be formulated as CSPs. For ex-
ample, many problems related to machine vision, scheduling,
temporal reasoning, graph theory, design, design of exper-
iments, and financial portfolio management can be natu-
rally modeled as CSPs.

In the engineering design literature, three phases of de-
sign are generally identified: conceptual design, embodi-
ment design, and detailed design~Pahl & Beitz, 1995!.
During conceptual design the designer searches for a set of
broad solutions to a design problem, each of which satisfies
the fundamental requirements for the desired product. The
embodiment phase of design is traditionally regarded as the
phase during which an initial physical design is developed.
This initial physical design requires the determination of
component arrangements, initial forms and other part char-
acteristics~Tichem, 1997!. The detailed phase of design is
traditionally regarded as the phase during which the final
physical design is developed.

Constraint-based applications for design have been more
commonly applied to the postconceptual phases of design.
These later phases of design are concerned with developing
a subset of the schemes generated during the conceptual
design phase into fully detailed designs. The CADET sys-
tem uses simulated annealing as the basis for its constraint
satisfaction algorithm for solving the constraint-based rep-
resentation of the geometric product model~Thornton, 1994;
Yao, 1996!. The IDIOM system uses constraint solving on
geometric parameters for floor-planning~Lottaz et al., 1998!,
andSpaceSolver uses the notion of solution spaces, defined
by sets of constraints on continuous domains, as a basis for
supporting interactive design~Lottaz et al., 2000!. A
constraint-based knowledge compiler for parametric design
in the mechanical engineering domain called MECHANI-
COT has been proposed~Nagai & Terasaki, 1993!. Many
constraint-based systems reported in the literature have been
developed for supporting reasoning about purely geometric
aspects of design for use with CAD systems~Bhansali et al.,
1996; Shimizu & Numao, 1997; Gao & Chou, 1998a;
1998b!. The use of constraint processing techniques for
supporting configuration design has also been widely re-
ported in the literature~Mittal & Falkenhainer, 1990; Sabin
& Freuder, 1996; Faltings & Freuder, 1998; Fleischanderl
et al., 1998; Sabin & Weigel, 1998!.

Modern approaches to product development, such as con-
current engineering~Birmingham & Ward, 1995!, integrated
product development~Andreasen & Hein, 1987!, and design
coordination~Duffy et al., 1993!, attempt to maximize the
degree to which design activities are performed in parallel.
A number of researchers in the constraint processing com-

304 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

munity have developed constraint-based technologies that
support integrated approaches to product development~Bo-
wen & Bahler, 1992; O’Sullivan et al., 1999!. One of the crit-
ical issues that must be addressed in supporting integrated
design is the issue of conflict resolution and negotiation.
Constraint-based approaches to managing conflict in collab-
orativedesignsystemshavebeen reported~Bahleretal., 1994;
Haroud et al., 1995; Lottaz et al., 2000!. Using constraints to
coordinate distributed agents in engineering design has also
been reported~Petrie et al., 1995, 1996!.

Constraint-based approaches to supporting conceptual de-
sign have been reported in the literature for quite a number
of years~Serrano, 1987; Gross et al., 1988!. However, most
of this research does not address the synthesis problem; the
vast majority has focused on constraint propagation and
consistency management relating to more numerical design
decisions. For example, Concept Modeler is based on a set
of graph-processing algorithms that use bipartite matching
and strong component identification for solving systems of
equations~Serrano, 1987!. The Concept Modeler system
allows the designer to construct models of a product using
iconic abstractions of machine elements. However, a num-
ber of issues are not addressed by this work, among which
is the dynamic nature of conceptual design. During concep-
tual design, constraints may be added or deleted at any
point. In addition, the system does not address the issue of
design synthesis nor the comparison of alternative solu-
tions to a design problem. However, Concept Modeler dem-
onstrated that constraint processing did offer a useful basis
for supporting designers in working through particular as-
pects of the conceptual design problem.

Based on the earlier work on Concept Modeler, a sys-
tem called Design Sheet was developed~Buckley et al.,
1992; Reddy et al., 1996!. This system is essentially an
environment for facilitating flexible trade-off studies dur-
ing conceptual design. It integrates constraint management
techniques, symbolic mathematics, and robust equation-
solving capabilities with a flexible environment for devel-
oping models and specifying trade-off studies. The Design
Sheet system permits a designer to build a model of a
design by entering a set of algebraic constraints. The de-
signer can then use Design Sheet to change the set of
independent variables in the algebraic model and perform
trade-off studies, optimization, and sensitivity analysis.

Some researchers have used the dynamic CSP as a basis
for managing conflict during the preliminary phases of en-
gineering design~Gelle & Smith, 1995; Haroud et al., 1995!.
Traditional conflict resolution techniques in constraint-
based models of the design process usebacktrackingand
constraint relaxation. Some researchers focus on differen-
tiating between types of assumptions that are made by de-
signers during design. Variations on this type of approach
have also been proposed for managing conflict in collabo-
rative design~Bahler et al., 1994!.

The use of autonomous agents to solve CSPs for concep-
tual design has been reported in the literature~Gorti et al.,

1995!. The motivation for the work is the support of spatial
layout generation. The constraint specification used in the
work facilitates a high-level representation and manipula-
tion of qualitative geometric information. The search en-
gine used in the proposed system is based on a genetic
algorithm. The issue of constraint consistency is not ad-
dressed in the work. In addition, important design issues
such as synthesis are not considered. However, it is realized
that the primary focus of this work is the use of autonomous
agents to solve CSPs.

The use of constraint logic programming for supporting
reasoning about dynamic physical systems has been re-
ported~Fattah, 1996!. This work combines a constraint logic
programming approach with bond graphs to assist in the
development of a simulation model of a system in the form
of a set of differential equations. The approach can be used
for identifying causal problems of a bond graph model of a
dynamic physical system.

In Section 1, a number of issues were highlighted as
being critical to effectively support interactive conceptual
design. Although all the systems reviewed here support some
of these issues, few have attempted to address them all. The
research presented here is an attempt to develop an ap-
proach that can support each of these issues in the context
of interactive conceptual design. In Section 3, the design
theory upon which our approach is built will be presented.

3. A THEORY OF CONCEPTUAL DESIGN

The model of conceptual design adopted in this research is
based on the hypothesis that during the design process, a
designer works from an informal statement of the require-
ments that the product must satisfy and generates alterna-
tive configurations of parts that satisfy these requirements.
Central to this exercise is an understanding of function and
how it can be provided. Figure 1 illustrates this model of
conceptual design. Although the model is based on a well-
known approach to conceptual design~Pahl & Beitz, 1995!,
its implementation is novel.

From Figure 1 it can be seen that the conceptual design
process can be regarded as a series of activities and achieve-
ments that relate to the development of the design specifi-
cation and an iterative process of scheme generation. The
process of scheme generation involves the development of
a function decomposition that provides the basis for a con-
figuration of parts that form a scheme. This scheme is then
evaluated and compared against any schemes that have al-
ready been developed. Based on this comparison, the de-
signer will choose to accept, improve, or reject particular
schemes. The process of scheme generation will be re-
peated many times in order to ensure that a sufficiently
large number of schemes have been considered. The role of
design knowledge and learning are also illustrated in Fig-
ure 1, using dotted lines. Design knowledge is used during
the process of scheme generation. During this process the
designer may develop a greater understanding of the design

Interactive constraint-aided conceptual design 305

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

problem being addressed; this learning may affect the de-
sign specification for the product or the design knowledge
used to generate schemes.

In the remainder of this section a brief overview of the
theory of conceptual design used in this research will be
presented. For a more complete discussion of the theory,
the reader is encouraged to refer to the more detailed liter-
ature available~O’Sullivan, 1999!.

3.1. The design specification

The conceptual design process is initiated by the recogni-
tion of a need~or customer requirement!. This need is an-
alyzed and translated into a statement that defines the

function that the product should provide~referred to as a
functional requirement! and the physical requirements that
the product must satisfy. This statement is known as ade-
sign specification.

Two categories of design requirement can be identified:
functional requirements andphysicalrequirements. A de-
sign specification will always contain a single functional
requirement, as this represents the highest level of abstrac-
tion of a product; it may also contain a set of physical
requirements that define the tangible characteristics of the
required product.

In addition, two classes of physical requirement can be
identified: product requirements and life-cycle require-
ments. A product requirement can be either a categorical

Fig. 1. The model of the conceptual design process adopted in this research.

306 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

requirement that defines a relationship between attributes
of the product or a preference related to some subset of
these attributes. A life-cycle requirement can be either a
categorical requirement that defines a relationship between
attributes of the product and its life cycle or a preference
related to some subset of these attributes.

3.2. Conceptual design knowledge

During conceptual design, the designer must synthesize a
configuration of parts that satisfies each of the functional
and physical requirements in the design specification. To
do so, the designer needs considerable knowledge of how
function can be provided by physical means. Often, this
knowledge exists in a variety of forms; a designer may not
only know of particular components and technologies that
can provide particular functionality but may also be aware
of abstract concepts that could be used. For example, a
designer may know that an electric light bulb can generate
heat or, alternatively, that heat can be generated by rubbing
two surfaces together. The latter concept is more abstract
than the former. In order to effectively support the human
designer during conceptual design, these alternative types
of design knowledge need to be defined and modeled in a
formal way.

3.2.1. The function–means map

The notion of thefunction–means treehas been proposed
by researchers from the design science community as an
approach to cataloging how function can be provided by
means~Andreasen, 1992!. The use of function–means trees
in supporting conceptual design has attracted considerable
attention from a number of researchers~Bracewell & Sharpe,
1996!. In general, the level of interest in the use of func-
tional representations in conceptual design has increased in
recent times~Chakrabarti & Blessing, 1996!, showing grow-
ing confidence in the potential of approaches incorporating
such techniques.

In the research described here a generalization of the
function–means tree called afunction–means mapis used
to model functional design knowledge~O’Sullivan, 1999!.
A function–means map can be used to reconcile functions
with means for providing them. In a function–means map,
two different types of means can be identified: a means can
either be adesign principleor adesign entity.

A design principle is a means that is defined in terms of
functions that must be embodied in a design in order to
provide some higher level functionality. The functions that
are required by a particular design principle collectively
replace the function being embodied by the principle. These
functions will, generally, have a number ofcontext rela-
tions defined between them. These context relations de-
scribe how the parts in the scheme that provide these
functions should be configured so that the design principle
is used in a valid way. An example design principle based
on the abstraction of a bicycle is shown in Figure 2. In this
figure, the functions required by the design principle are

illustrated using round-edged boxes and the context rela-
tions are illustrated using dashed boxes with dashed lines
between the functions to which they apply.

A design entity, on the other hand, is a physical, tangible
means for providing function. A design entity is defined by
a set of parameters and the relationships that exist between
them. For example, an electronic resistor would be mod-
eled as a design entity that is defined by three parameters
~resistance, voltage, and current! between which Ohm’s Law
would hold.

3.2.2. Embodiment of function

As the designer develops a scheme, every function in the
scheme is embodied by a means. Each means that is avail-
able to the designer has an associatedset of behaviors. Each
behavioris defined as a set of functions that the means can
be used to provide simultaneously. Each behavior associ-
ated with a design principle will contain only one function
to reflect the fact that it is used to decompose a single
function. However, a behavior associated with a design en-
tity may contain many functions to reflect the fact the there
are many combinations of functions that the entity can pro-
vide at the same time. For example, a design entity based
on an electric light bulb may be able to fulfill the functions
provide lightandgenerate heatsimultaneously. However,
when a design entity is incorporated into a scheme~for the
purpose of supporting functionality provided by one of its
behaviors!, it is not necessary that every function in this
behavior be used in the scheme.

Knowing the various possible behaviors of an entity is
useful when the designer is embodying functions. Knowl-
edge of behavior enables a designer to identify when a
particular design entity can be used to provide several
functions simultaneously. In this research, the mapping of
several functions onto a single design entity is known as
entity sharing. Entity sharing is a critical issue in design
because without the ability to reason about entity sharing,
a designer has no way of removing redundant parts from a
design.

From a design perspective, one of the novel aspects of
the work presented here is the manner in which design prin-
ciples and design entities are defined and used. Using de-
sign principles to define abstract design concepts in terms
of functions and relationships between them is novel. The
ability to represent means at both an abstract functional
level and a physical level provides a basis for a designer to
combine and explore new approaches to providing the func-
tionality defined in the design specification.

3.3. Scheme configuration using interfaces

When a designer begins to develop a scheme for a product,
the process is initiated by the need to provide some func-
tionality. The designer begins to develop a scheme to pro-
vide this functionality by considering the various means
available in her design knowledge base. Generally, the first
means that a designer will select will be a design principle.

Interactive constraint-aided conceptual design 307

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

This design principle will substitute the required~parent!
functionality with a set of child functions.

As the designer develops a scheme and produces a func-
tion decomposition tree she will ultimately embody all
leaf-node functions in the scheme with design entities.
During this embodiment process, the context relations

from the design principles used in the scheme will be
used as a basis for defining the interfaces between the
design entities used in the scheme. However, the precise
nature of these interfaces cannot be known with cer-
tainty until the designer embodies functions with design
entities.

Fig. 2. Abstracting an example design principle from a bicycle.

308 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

The types of interfaces that may be used to configure a
collection of design entities will be specific to the engineer-
ing domain within which the designer is working. For ex-
ample, the set of interfaces that a designer working in the
mechanical domain would typically use are different to those
used by a designer in the electrical domain. Indeed, these
interfaces may also be specific to the particular company to
which the designer belongs.

3.4. Scheme generation

From Figure 1 it can be seen that scheme generation is an
iterative process comprising a number of activities. These
activities relate to the development of a function decompo-
sition for the scheme, the development of a configuration of
design entities based on this function decomposition, and
an evaluation and comparison of the newly developed
scheme with those schemes that have already been devel-
oped. As new schemes are developed, the designer will
constantly consider which schemes to accept, reject, or
improve.

Once the design specification has been formulated, the
designer must attempt to develop as many schemes as
possible that have the potential to satisfy the require-
ments in the design specification. There are generally
many function decompositions possible from the same
functional requirement. Generating alternative function
decompositions can be regarded as a way of systemati-
cally exploring the design space for a product. This search
is controlled by a designer who considers the functional
requirement for the product and explores alternative
ways of providing the functionality by using design prin-
ciples to decompose the functional requirement into less
abstract functions. In this way, the designer can translate
the functional requirement into one that allows the use of
standard technologies, represented as design entities, to
satisfy it.

Using a function decomposition, the designer can begin
to develop a configuration of design entities. Each leaf-
node function in a particular function decomposition must
be provided by a design entity. The context relations inher-
ited from the branch nodes in the function decomposition,
due to the use of particular design principles, are used to
define the manner in which the design entities used in the
scheme should be configured or interfaced. Some context
relations will define constraints on the spatial relation-
ships between design entities, whereas others may define
particular types of interfaces that may be required be-
tween the entities. As the designer incorporates design en-
tities into a scheme, the various physical requirements that
are described in the design specification can be brought to
bear on it. Thus, the process of scheme generation pre-
sented here bears some similarities to some systematic
approaches to configuration~Soininen et al., 1998!. How-
ever, the similarities with configuration are discussed else-
where~O’Sullivan, 1999, 2002!.

3.5. Evaluation and comparison of schemes

The designer’s primary objective during conceptual design
is to develop a set of alternative schemes that satisfy both
the functional and physical requirements defined in the de-
sign specification. This set of schemes will be further re-
fined during subsequent stages of the product development
process until a small number of fully specified designs~pos-
sibly just one! will be selected for commercialization.

Every scheme must satisfy the categorical product and
life-cycle requirements defined in the design specification.
If a scheme violates one of these, the designer must either
reject the scheme that has been developed or modify it in
order to satisfy them.

However, not every one of these schemes will be se-
lected for development in subsequent phases of design. This
is due to particular schemes not satisfying the preferences
that were defined in the design specification. In this re-
search the principle of Pareto optimality is used to deter-
mine which schemes are best of those developed by the
designer~O’Sullivan, 1999!. Each design preference can be
regarded as an objective function. Thus, the best schemes
that are developed are those that are not dominated, in the
Pareto optimal sense, by any other scheme. Obviously, in
order to compare two schemes, they must be based on the
same design specification.

For example, Table 1 presents a comparison of two
schemes based on two preferences: that the number of parts
in the design be minimal and that the mass of the artifact be
minimal. It can be seen that the first scheme comprised six
parts whereas the second scheme comprised five. Thus, on
the preference for a scheme comprising a minimal number
of parts, the second scheme is better than the first. At this
point it is not possible to determine if the first scheme is
dominated. However, if the first scheme is not to be domi-
nated by the second scheme, it will have to have a smaller
mass than the second scheme. In this way, each scheme
would be better than the other on one design preference.

Using the principle of Pareto optimality provides a use-
ful basis for comparing alternative schemes. It can be used
to identify schemes that are completely dominated by other
schemes that have already been developed; this should mo-
tivate a designer to modify a scheme so that it is no longer
dominated. Using the principle of Pareto optimality a de-
signer can compare schemes that have been developed in
order to select those that will be developed further and

Table 1. Using Pareto optimality principle to compare two
schemes

Property Preference
First

Scheme
Second
Scheme

No. parts Minimal 6 5
Mass Minimal ,x x

Interactive constraint-aided conceptual design 309

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

identify those schemes that should be either improved or
discarded. However, a designer should not beforcedto dis-
card dominated schemes. The objective is to motivate the
designer to consider ways of improving them.

4. A CONSTRAINT-BASED IMPLEMENTATION
FOR INTERACTIVE DESIGN

In this section an approach to developing the back-end of
an interactive design tool for supporting conceptual design
will be presented. By back-end we refer to the underlying
reasoning engine upon which a graphical user interface
~GUI! can be built. The reasoning system, whose imple-
mentation we will describe here, is capable of monitoring
the state of the design as it evolves through the sequence of
interactions between the human user and a front-end GUI.
Before describing the implementation details of this back-
end reasoning system, an overview of the implementation
language will be presented in Section 4.1.

4.1. An overview of Galileo

In this research the constraint programming language Gali-
leo ~Bowen & Bahler, 1992; Dongen et al., 1997! has been
used as the modeling language of choice, because it is one
of the most expressive constraint programming languages
and was developed specifically for exploitation in the engi-
neering design domain. Galileo is a frame-based constraint
programming language based on the first-order predicate
calculus. Galileo offers designers a rich language for de-
scribing the structure of a product, the environment in which
a product is being developed, and the responsibilities of the
various participants in an integrated product development
environment~Bowen & Bahler, 1992; Dongen et al., 1997;
O’Sullivan et al., 1999!. The inference capabilities of the
Galileo run-time environment are based on arc consistency
~Mackworth, 1977!, a limited form of path consistency,
and propagation of known states. The Galileo run-time en-
vironment is capable of offering justifications and explana-
tions for domain reductions and conflicts~Bowen, 1997!.

A frame-based constraint programming language pro-
vides a designer with the expressiveness required to de-
scribe the various aspects of the design problem effectively.
Frames can be used to represent the product being de-
signed, the components from which it is configured, or the
materials from which it is made. Frames can also be used to
describe the life-cycle environment in which the product
will be manufactured, tested, and deployed. Constraints be-
tween frames can be used to express the mutual restrictions
between the objects in the design and the product’s func-
tionality, the component or material properties, and the prod-
uct life cycle.

Among the many features of the Galileo language are the
availability of predefined domains such as the real and in-
teger numbers, arbitrary scalars, and framelike structured

domains. It is possible to define sets and sequences in Ga-
lileo and structured domains can be defined and organized
into inheritance hierarchies. The language comes with a
number of predefined predicates such as equality and nu-
meric inequality. There are a number of standard functions
available that includes the complete range of arithmetic and
trigonometric functions. There are also a number of set-
and sequence-based predicates and functions available as
standard. Compound constraints can be written using the
standard logic connectives as well as the negation operator.

In Galileo, constraints can be universally or existentially
quantified. Furthermore, quantifiers can be nested arbi-
trarily. In addition, the existence of certain parameters and
constraints can be expressed as being dependent on certain
conditions being met. This is due to the fact that Galileo is
based on a generalization of first-order logic known as first-
order free logic~Bowen & Bahler, 1991!. This is the means
by which dynamic CSPs~Mittal & Falkenhainer, 1990! can
be easily modeled in the language.

Using Galileo in conjunction with an interactive con-
straint filtering system~run-time environment!, a reasoning
technology for supporting interactive conceptual design can
be built. We will demonstrate the implementation details of
this system later in this section. However, a brief discussion
of the characteristics of constraint filtering will be pre-
sented first.

Constraint filtering is a form of constraint processing
that progressively restricts the ranges of possible values for
parameters by enforcing the restrictive effects of con-
straints. This means that a constraint network can capture
the impact of a decision on the various parameters in the
network. Suppose, for example, that a network represents
the mutually constraining influences that exist between the
functionality and production cost of a product. Such a net-
work could, with equal ease, determine the impact of func-
tionality decisions on production cost or, on the other hand,
determine the impact of cost decisions on functionality. In
other words, constraint filtering relies on the multi-directional
inference properties of constraints to propagate the conse-
quences of a decision throughout a constraint network.

In the following section, important aspects of the
constraint-based implementation of the design theory pre-
sented in Section 3 will be presented. When implementing
this theory, a distinction can be made between concepts
that are common across all design applications and con-
cepts that are company, application, or domain specific. In
Section 4.2 we will describe the generic aspects of the
implementation. In Section 5 an example of the approach
will be discussed in the context of an interactive design
scenario. As part of that discussion the implementation of
more application-specific concepts will be highlighted where
relevant. For a full discussion of the work being reported
here, the reader is encouraged to refer to some of the
existing literature that describes these concepts in far greater
detail ~O’Sullivan, 1999!.

310 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

4.2. Implementing generic concepts

In Figure 3 the Galileo model of a generic scheme is pre-
sented. This shows that the concept of a scheme is imple-
mented as a Galileo structured domain calledscheme which
has two fields, calledscheme_name and structure ,
respectively.

Because a scheme exists solely to provide the function-
ality required in the design specification, its structure should
be the embodiment of that functionality. This is reflected by
line 3 in Figure 3, where thestructure field of ascheme
is declared to be of typeembodiment . This model is based
on the fact that the designer is mostly concerned with pro-
ducing embodimentsfor intended functionsby choosing,
from among theknown means, those that will provide the
required functionality. This is reflected in Figure 4, which
presents the Galileo implementation of anembodiment
as a structured domain that has four fields:scheme_
name, intended_function , chosen_means , and
reasons .

The scheme_name field, of type string , cross-
references an embodiment to the scheme to which it be-
longs; this field is marked ashidden so that it does not
appear on the user interface used in Section 5. The field
intended_function represents the function that is to
be provided by the embodiment; in line 3 it is declared to
be of typefunc . We will now consider the definition of
type func in some detail because once we have done so,
it will be easier to explain the rest of theembodiment
definition.

First, it should be noted that the same type of function-
ality is frequently needed in different parts of a scheme;
that is, the function to be provided by one embodiment may
be the same type of function as that to be provided by a
different embodiment in the same scheme~or, indeed, by an
embodiment in a different scheme!. Thus, afunc must
represent, not a function, but aninstanceof a function.
Furthermore, of course, one function instance must be dis-
tinguishable from a different instance of the same function.

Having noted this, consider the definition of afunc pro-
vided in Figure 5.

The approach to representing functionality is a symbolic
one, consisting of representing a function by a verb–noun
pair. As can be seen in Figure 5, this approach is imple-
mented in the first two fields of the structured domain used
to represent afunc . Because afunc is a function in-
stance, it must contain some field that distinguishes it from
other instances of the same function. On line 4 in Figure 5,
it can be seen that the approach used was to give eachfunc
an id field, of type func_id , which is a synonym for a
unique positive integer.

Now let us return to the remaining part of the definition
of anembodiment , which was presented in Figure 4. The
third field in this structured domain ischosen_means .
This represents the approach chosen by the designer to pro-
vide the intended_function for the embodiment .
The repertoire of technologies known to, and approved by,
a company varies, of course, from one company to another.
Thus, the definition ofknown_means is not generic; it
depends on the design domain to which the conceptual de-
sign advice system is being applied.

Before proceeding to discuss the final field in anem-
bodiment , consider the constraint shown in Figure 6. This
specifies that theknown_means is chosen for an embodi-
ment must, in fact, be capable of providing the function
intended for the embodiment.

The definition of the relationcan_be_used_to_
provide states that aknown_means can provide a func-
tion if that function appears in some set of functions that
the means can simultaneously provide. The relationcan_
simultaneously_provide used in this definition is
application-specific knowledge.

The final field in the definition of anembodiment
~Fig. 4! is called reasons . An embodiment may be in-
troduced into a scheme because of different factors: it can
be introduced to provide the top level functionality re-
quired in the design specification; alternatively, it can be
introduced to provide some functionality whose necessity
was recognized when some design principle was used dur-
ing the development of the scheme. Thereasons field in
an embodiment records the motivation for introducing
the embodiment . It does so by recording the identity
numbers of the function instances whose provision re-
quired the introduction of the embodiment. This is re-
flected by the fact that, in line 5 in Figure 4, thereasons
field has the typeset of func_id . The reasons

Fig. 3. The representation of a generic scheme.

Fig. 4. Modeling the embodiment of a function.

Fig. 5. Modeling a function instance in Galileo.

Interactive constraint-aided conceptual design 311

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

field of an embodiment provides the basis for identify-
ing those design entities between which context relations
must be considered.

4.2.1. A generic model of means

Figure 7 illustrates how the generic notion of a means
can be modeled. As shown in lines 1–4, a means is imple-
mented as a Galileo-structured domain calledmeans. This
has three fields:scheme_name, type , andfuncs_pro-
vided . As was the case with the definition of an embodi-
ment, thescheme_name field is used to cross-reference a
means with the scheme in which themeans is being used.

Note that there are two kinds of means: principles and
entities. This is reflected by the fact that, as shown in Fig-
ure 7, the domain from which thetype field of a means
takes its value contains only two possible values,a_prin-
ciple andan_entity ~lines 7–8!.

The final field in the definition of the generic notion of a
means is called funcs_provided and is of typeset
of func_id . It is used to remember which function in-
stances within a scheme themeans is being used to pro-
vide. Of course, ameans should be used to provide only
those function instances that it is capable of providing; this
requirement is captured in the constraint in lines 5–6. The
definition of the relationis_a_possible_behav-
iour_of is an application-specific concept.

Based on the generic notion of a means, generic defini-
tions for design principles and design entities can be de-
fined. The generic notions of aprinciple and anentity
are defined in Figure 8 as specializations of the generic
notion of ameans.

4.2.2. Context relationships and entity interfaces

As seen earlier, a design principle introduces a set of
embodiments and a set of context relationships between

them. Eventually, of course, each embodiment is realized
by the introduction of design entity instances. This means
that context relationships between embodiments will have
to be realized by interfacing appropriately the entity in-
stances that realize the embodiments. The details of these
interfaces, which must be known in order to evaluate the
quality of the scheme being developed, are represented as
specializations of a generic concept called aninterface ,
whose definition is provided in Figure 9.

As can be seen in lines 1–4, aninterface is defined
between a pair of entities. The constraint defined in lines
5–10 ensures that, for everyinterface that is defined,
both of the entity instances to which it relates exist in the
same scheme as the interface.

We shall see later how this generic definition of an inter-
face can be used to define application-specific interfaces
for embodying context relations.

4.2.3. Generic concepts for comparing schemes

A design specification may include several preferences.
The basic notion in the approach for comparing schemes is
the preference. It is defined in Figure 10 as a structured
domain containing two fields: thevalue field, which con-
tains the value of whatever scheme property is the subject
of the preference, and theintent field, which indicates
whether it is preferred that this scheme property be mini-
mized or maximized.

When two schemes are being compared, this will involve
comparing how well they perform with respect to each pref-
erence given in the design specification. A relation called
better_than is used for comparing the instantiation of a
preference in one scheme with the instantiation of the same
preference in the other scheme. The definition of this rela-
tion is given in Figure 11. It can be seen that, if a preference
involves minimizing some property, the better instantiation
of the preference is the one with the smaller value; simi-
larly, if a preference involves maximizing some property,

Fig. 6. The means chosen for an embodiment must be valid.

Fig. 7. Modeling a design means in Galileo. Fig. 8. Generic design principle and design entity models.

312 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

the better instantiation of the preference is the one with the
larger value.

As discussed in Section 3, no scheme for a product should
dominate~in the sense of Pareto optimality! another scheme.
This requirement is implemented as the constraint in Fig-
ure 12. If a designer develops a scheme that is dominated
by a scheme that was previously developed, this constraint
will be violated and a message will be issued to that effect.
Similarly, if a scheme is developed that dominates a previ-
ously developed scheme, the constraint will be violated. In
either case, it is intended that, as a result of the violation
message, the designer will be motivated to improve the
inferior scheme or else discard it.

The constraint in Figure 12 is defined in terms of a rela-
tion calleddominates , which is also defined in that fig-
ure. We can see that one scheme dominates another scheme
if the first schemeimproves_on the latter~in respect of
some preference! while at the same time it is not true that
the latter schemeimproves_on the first in respect of any
preference.

The relationimproves_on , between two schemes, is
defined in terms of the relationbetter_than , between
instantiations of preferences. However, this definition is
not generic; it will vary from one design specification to
another. Therefore, it is an application-specific concept.

5. AN EXAMPLE OF INTERACTIVE
CONCEPTUAL DESIGN

In this section, an example conceptual design problem is
presented. The design problem considered is based on ve-

hicle design. The presentation of this design problem com-
prises three phases. First, in Section 5.1, the design
specification will be discussed. Second, in Section 5.2, an
appropriate constraint-based design knowledge base will
be presented. Finally, in Section 5.3, the development of
two schemes based on the design specification will be
presented. The use of constraint filtering in the process of
developing these schemes will be described using a num-
ber of screen shots from a constraint filtering system that
is capable of reasoning about the extended version of the
Galileo language that was proposed during this research.

5.1. The design specification

Each requirement in the design specification can be re-
garded as a constraint on the schemes that the designer will
develop. The requirements defined in the design specifica-
tion can be modeled as constraints that are universally quan-
tified over all instances of the scheme representation. For
example, consider the design specification to design a prod-
uct that exhibits the following properties:

• provides the functionprovide transport,

• is recyclable,

• has awidth not greater than 2 m,

• hasminimal mass, and

• comprises aminimal number of parts.

This specification contains one functional requirement and
four physical requirements. The functional requirement states
that the product must provide the functionprovide trans-
port. The physical requirements state that the product must
berecyclable, have awidth not greater than 2 m, havemin-
imal mass, and comprise aminimal number of parts. A
constraint-based model of this design specification is pre-
sented in Figure 13.

Briefly, this model extends the generic concept of a scheme
to include constraints reflecting the requirements of the de-
sign specification. Lines 3–4 state that the product being
designed should be able to provide the functionprovide
transport . Line 5 states that the product should bere-
cyclable . This requirement is stated using a relation whose
implementation could ensure that the materials used in each
of the design entities in the scheme are themselves recycla-
ble. The categorical physical requirement that thewidth
be less than 2 m isdefined on lines 6–8. The value of the
width of the scheme is computed using the function
width_of , which is part of the application-specific knowl-
edge of the organization. There are two design preferences,
one related to mass~lines 9–11!, the other, to the number of
parts in the scheme~lines 12–14!. The intent of these
preferences is that theirvalue beminimal . Their values
being computed with the functionsmass_of and num-
ber_of_parts_in , respectively. Both of these func-
tions are part of the application-specific knowledge of the
organization concerned.

Fig. 9. Modeling generic interfaces between design entities.

Fig. 10. Modeling a design preference.

Interactive constraint-aided conceptual design 313

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

In order to compare the schemes that are generated by
the designer, the application-specific relationimprove-
s_on , referred to in Figure 12, must be defined. The defi-
nition of this relation is presented in Figure 14. It can be
seen that the relation is defined in terms of the design pref-
erences on themass and number_of_parts in the
scheme. The relationshas_better_mass_than and
has_better_number_of_parts_than is defined in
terms of thebetter_than relation that was presented
earlier.

5.2. An example design knowledge base

In Figure 15, an illustration of the means contained in an
example design knowledge base is presented. This knowl-
edge base comprises one design principle, calledbicycle,
and a number of design entities, such as awheel assembly
and asaddle. The set of behaviors for each means in the
knowledge base is presented under the icon representing
the means. Recall that behavior is asetof functions that the
means can provide simultaneously~Section 3.2.2!. Thus
the behaviors for a means comprise a set of sets. Most of
the means in this example knowledge-base have only one
behavior; that is, the set of behaviors for each means con-
tains only one set of functions. Furthermore, most of the
behaviors of the means in this knowledge base can provide
only one function at a time. However, themolded frameand
axle design entities have more complex behaviors. The
molded frameentity can provide two functions simulta-
neously:provide supportandsupport passenger. Theaxle
entity has two behaviors: it can provide the two functions,
support wheelandfacilitate rotation, simultaneously, and it
can also be used to provide the single functionpunch holes.

5.3. Scheme generation

Once a constraint-based model of the design specifica-
tion has been developed, the designer~or team of design-

ers! must develop a set of alternative schemes for the
required product. The constraint-based model of the de-
sign specification contains constraints relating to the fol-
lowing issues:

• constraints based on the functional requirements of the
product as stated in the design specification;

• constraints based on the categorical physical require-
ments of the product, or its life cycle, as stated in the
design specification; and

• constraints based on the preferences regarding the val-
ues of particular design properties.

The designer’s task is to develop a number of alternative
schemes that satisfy the design specification. However, from
a constraint processing point of view, their task is to search
for a set of schemes that satisfy the constraint-based design
specification representation, each scheme resulting from
making different choices among the various means for pro-
viding the required functionality. This process was dis-
cussed in Section 3.

The selection of means for providing the required func-
tionality is subject to the various constraints in the design
specification. For example, if a designer selects a means to
embody a particular function that is not capable of provid-
ing the required functionality, this violates the constraint
shown in Figure 6.

As the designer selects a means for providing a particular
function, further constraints are introduced into the scheme
being developed, because each means has an associated set
of constraints defining its properties. In this way, the
constraint-based model of the design comprises constraints
representing the requirements stated in the design specifi-
cation as well as constraints on functionality, scheme struc-
ture, and life-cycle issues. The only restriction on the order
in which the designer makes decisions is that design enti-
ties can only be introduced to embody functions that exist
in the scheme. The degree to which the designer wishes to
specify values for the parameters of design entities and in-
terfaces before completing the function decomposition is
essentially a matter of personal preference.

In the following discussion of how the approach pre-
sented here supports interactive conceptual design, a num-
ber of illustrative devices will be used. First, the decisions
that the designer makes will be illustrated through the use
of diagrams. Second, at various critical points in the evolu-
tion of a scheme a text-based screen shot will be presented
to illustrate a number of critical aspects of the evolution of
its constraint-based model.

Fig. 11. Comparing two design preference values to
determine which is better.

Fig. 12. Comparing two schemes.

314 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

The functional requirement for our scheme is illustrated
in Figure 16. The functional requirement isprovide trans-
port. The initial constraint-based model of the scheme be-
ing developed here is illustrated in Figure 17.

It can be seen from Figure 17 that theintended_func-
tion of the structure of scheme_1 is to provide
transport . This function was specified in the definition
of thevehicle_scheme . This function has an identifier
~id ! of 0 and the empty set as its set ofreasons . This
reflects the fact that this function was introduced into the
scheme because it was required by the design specification;
in other words, no other function was responsible for this
function being introduced into the scheme. The assignment
of the 0 identifier and the empty set of reasons is done by a
constraint, quantified over all schemes~O’Sullivan, 1999!.
It can also be seen from this figure that themass and
number_of_parts associated withscheme_1 are pref-
erences. It can be seen that, in both cases, theintent is
that these should haveminimal values.

In Figure 18 an instance of the design principlebicycle,
calledbicycle 1, has been used to embody the functionpro-
vide transport. This design principle introduces the need
for five more functions to be embodied. The designer must
now select means for embodying each of these functions.

The presence of these additional embodiments is due to the
constraint-based description of the bicycle design principle.

Figure 19 depicts the state of the constraint model of
the scheme after the designer has selecteda_bicycle
as thechosen_means for providing the intended_
function of thestructure of scheme_1 . The effect
of this is that a new parameter, calledbicycle_1 , is
automatically introduced.1 The parameterbicycle_1 is
an instance of an application-specific design principle.
Application-specific design principles can be defined as
specializations of the generic design principle~Fig. 8!.
The principle of a bicycle is defined in Figure 20.

This application-specific principle is defined to be a spe-
cialization of the generic notion of a principle~line 2!; the
specialization is specified by the extra properties that are
defined in lines 3–22.

Figure 2 shows that abicycle principle involves five
embodiments . These are specified in lines 3–7 of Fig-
ure 20. The functions that Figure 2 states are to be provided

1Structured fields are indicated on the screen by the presence of ax,
which is intended to “invite” the user to examine the field further by
expanding it; the value of a scalar field whose value is known is shown;
for a scalar field whose value is not yet known, a _ isshown.

Fig. 13. A constraint-based model of the design
specification.

Fig. 14. Determining if one scheme im-
proves on another.

Interactive constraint-aided conceptual design 315

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

by these embodiments~facilitate movement , pro-
vide energy , support passenger , change di-
rection , andprovide support ! are specified in lines
8–17 of Figure 20.

The context relationships between the embodiments
that are shown in Figure 2 are stated in lines 18–22 of
Figure 20. For example, in line 18 it is stated that a
drives relationship must exist between theembodi-
ment e2 and embodiment e1 . Ultimately, as was dis-
cussed in Section 3, each embodiment introduced by a

Fig. 15. The means contained in an example design knowledge base and their possible functionalities.

Fig. 16. The functional requirement for a product.

316 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

principle is realized by the introduction of a set of one or
more design entity instances. We will see how these con-
text relations affect interactive conceptual design later in
this discussion.

Although the designer could continue to develop the func-
tion decomposition of the scheme by employing more de-
sign principles, we will assume that he or she will proceed
by embodying each function with a design entity. In Fig-

Fig. 17. Examining the initial state of the scheme.

Fig. 18. Using a design principle to embody the functional requirement.

Interactive constraint-aided conceptual design 317

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

ure 21 the designer selects thewheel assemblydesign entity
to embody the functionfacilitate movement. This intro-
duces an instance of this means, calledwheel assembly 1,
into the scheme. As the designer introduces design entities
into the scheme, the context relations that exist between the
function embodiments must be considered. However, as there
is only one design entity in the scheme presented in Fig-
ure 21, no context relations are considered at this point in
the scheme’s development.

In Figure 22 the state of the constraint model of the de-
signer’s scheme is presented. In this figure the designer
begins to explore the parameterbicycle_1 . It can be
seen thatbicycle_1 is a design principle and that the
funcs_provided by this principle is a singleton set con-
taining the value 0; this means thatbicycle_1 provides
one function, namely, the function whoseid is 0: this was
seen in Figure 17 to be the function required in the design
specification. It can also be seen from Figure 22 that

Fig. 19. Using the principle of a bicycle inscheme_1 to provide the functionprovide transport .

Fig. 20. Definition of a company-specific design principle.

318 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

Fig. 21. Using a design entity to embody a function in the scheme.

Fig. 22. Incorporating awheel_assembly entity to provide the functionfacilitate movement .

Interactive constraint-aided conceptual design 319

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

bicycle_1 contains a number of other structured fields,
namely,e1 , e2 , e3 , e4 , and e5 . These fields represent
further embodiments that the designer must make in order
to properly incorporate thebicycle_1 design principle
into scheme_1 .

In Figure 22 the designer explores the parameter
bicycle_1.e1 by expanding it. It can be seen that the
function to be embodied isfacilitate movement .
This function has anid of 1 because this is the next
unique function identifier for this scheme. Thereasons
for the embodimentbicycle_1.e1 is the singleton set
containing the function identifier 0; this represents the fact

that the function whose identifier is 0 is a reason for this
embodiment. The designer choosesa_wheel_assem-
bly as thechosen_means for this embodiment. This
causes the automatic introduction of another new param-
eter,wheel_assembly_1 , into the scheme.

In Figure 23 the designer has chosen to embody the func-
tion provide energywith thepedal assemblydesign entity.
This introduces an instance of this means, calledpedal
assembly 1, into the scheme. Because thedrives context
relation must exist between the embodiments of the func-
tions facilitate movementandprovide energy, this caused,
in addition to the existence of the design entitieswheel

Fig. 23. The effect of a context relation on the configuration of design entities.

320 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

assembly 1and pedal assembly 1, the introduction of an
instance of thechaindesign entity, calledchain 1. Both of
these interfaces are used, along withchain 1, to embody the
drivesrelation that should exist betweenwheel assembly 1
andpedal assembly 1.

In Figure 24 the effects on the constraint model of the
scheme of the designer’s decision to usea_pedal_as-
sembly as thechosen_means to embody the function
provide energy are illustrated. The first effect is that a
new parameter,pedal_assembly_1 , is introduced into
the constraint model. Although it is not apparent in Fig-
ure 24, the parameterpedal_assembly_1 is a design
entity. If the designer were to expandpedal_assem-
bly_1 , we would see that itsid field contains the value 2,
reflecting the fact that it is the second design entity to be
incorporated into the scheme.

Also shown in this figure are the new parameters
chain_1 , mechanical_interface_1 , and mech-
anical_interface_2 . As already stated, these param-
eters exist in order to fulfill the context relationdrives
that must exist between the embodiments for the functions
provide power and facilitate movement , as
specified in the principle of a bicycle. The need for this
context relation is due to thebicycle design principle
used earlier in the interaction.

The meaning of thedrives context relation is an
application-specific concept. One possible definition for it
is defined in Figure 25. It can be seen that adrives rela-
tionship holds between a pair of embodiments if there ex-

ists adrives relationship between the design entities that
are used to provide the functionality associated with them.

The precise realization of the context relationship speci-
fied in a principle depends on which design entities are
used to realize the embodiments that must satisfy the con-
text relationship. Suppose that apedal_assembly is the
design entity used toprovide energy and awheel_as-
sembly is the design entity used tofacilitate move-
ment . We can see in Figure 25 the relationship that would
have to be satisfied between these two entity instances in
order to properly embody the drives context relation. Ac-
cording to the definition of this relationship, if aped-
al_assembly is to drive a wheel_assembly , they
must bein_the_same_scheme and there must be a fur-
ther design entity instance, achain , in the same scheme.
These entity instances must be interfaced in the following
way: there must be amechanical_interface be-
tween thepedal_assembly and thechain and another
one between thewheel_assembly and thechain .

As we shall now see, amechanical_interface is
simply a specialization of the generic notion of aninter-
face that we encountered in Section 4.2.2. The definition
of a mechanical_interface is given in Figure 26. It
can be seen to be a specialization of a application-specific
notion of interface, called araleigh_interface , which,
from its definition in Figure 27, can be seen to be a special-
ization of the generic notion ofinterface .

It can be seen from Figure 26 that amechanical_
interface is a raleigh_interface whose type

Fig. 24. Using a pedal assembly to provide the functionprovide energy .

Interactive constraint-aided conceptual design 321

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

field contains the valuemechanical and that also has an
additional field calledrelationship that specifies the
nature of the mechanical relationship involved in the inter-
face. It can also be seen that three kinds of relationship are
supported:controls , drives , andsupports .

It can be seen from Figure 27 that araleigh_inter-
face is simply aninterface with an additional field
called type , which specifies the class of relationship in-
volved in the interface; it can be seen that two classes of
relationship are supported:spatial andmechanical .

Therefore, the parameterchain_1 exists in order to sat-
isfy the context relation that the embodiment for the func-
tion provide power drives the embodiment for the
function facilitate movement . According to the
application-specific definition of thedrives relation there
must be amechanical_interface betweenped-
al_assembly_1 and chain_1 and another between
wheel_assembly_1 and chain_1 . This will be ex-
plored in further detail in Figure 28.~The parameter
chain_1 is the third design entity to be incorporated into
this scheme; thus, if we were to expand it, we would see
that its id field contains the value 3!.

Figure 29 shows the state of the scheme after the de-
signer has chosen to embody the functionsupport passen-
ger with the design entitysaddle, the functionchange

directionwith the design entityhandlebar assemblyand the
functionprovide supportwith the design entityframe. Due
to the bicycle design principle, a context relation called
supportsmust exist between the embodiment of the func-
tion provide supportand the embodiments of each of the
functionsfacilitate movement, provide energy, support pas-
senger, andchange direction.

Each of these context relations is embodied by amechan-
ical interfacethat defines asupportsrelationship. The de-
tails of these mechanical interfaces that define asupports
relationship will be specified during detailed design. Be-
cause all the functions have been embodied in the scheme
presented in Figure 29, the designer can focus on selecting
values for the attributes associated with each design entity
in the scheme. In making these decisions the designer must
ensure that the various constraints that are imposed on her
due to the design specification or the design knowledge
base must be satisfied. In addition, this scheme must be
compared with any other alternative scheme for this prod-
uct that is developed.

In Figure 30, the state ofscheme_1 is shown after sev-
eral more decisions have been made by the designer, namely,
after materials have been selected for all the entities from
which it is configured. In this figure, themass andnum-
ber_of_parts fields of scheme_1 have been ex-

Fig. 25. The meaning of thedrives context
relation.

Fig. 26. Modeling amechanical interface.

322 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

panded. It can be seen that the total mass of this scheme is
estimated to be 12 units and that it comprises six parts.
These values are computed using a number of application-
specific functions defined over sets of entities used in a
particular scheme. Their definition is trivial, so it will not
be considered further here.

In Figure 31 a second scheme is presented, which,
for simplicity, is based on the same embodiments used
to develop scheme_1 . In this figure, the state of
scheme_2 after materials have been selected for
wheel_assembly_2 and pedal_assembly_2 is il-
lustrated. It can be seen that the mass ofscheme_2 is
currently estimated to be 20 units and that it comprises
six parts. Therefore, this scheme is certainly dominated
by scheme_1 as, although both schemes have the same
number of parts as each other,scheme_1 has the smaller
mass. This means that, asscheme_2 does not improve
on scheme_1 on any design preference,scheme_2 is
dominated byscheme_1 . The designer’s attention is
drawn to this fact by the message stating that a constraint
violation has been detected. In particular, in this case, the
constraint that compares schemes to ensure that none are
dominated is violated. This illustrates how, during an in-
teractive design session, inconsistencies arising from de-

signer decisions can be instantly reported for corrective
action.

5.4. Review of the example

Section 5 presented a detailed discussion of how the ap-
proach described in this paper can be used to provide the
underlying reasoning capability of an interactive concep-
tual design system. The interaction between the front-end
GUI, presented using diagrams, and the back-end constraint-
based model, presented using text-based screen shots, illus-
trates how the work presented here can be used as a basis
for building interactive CAD systems to support conceptual
design.

The research presented here has been validated in a num-
ber of industrial settings on a number of different design
domains. For example, it has been used to develop concep-
tual designs for products in mechatronics, optical systems,
and electronic component design.

6. COMPARISON WITH RELATED RESEARCH

The approach to supporting conceptual design presented
here is based on a combination of design theory, constraint

Fig. 27. Modeling company-specific interfaces.

Fig. 28. Embodying thedrives context relation.

Interactive constraint-aided conceptual design 323

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

processing techniques and Pareto optimality. In this sec-
tion, this approach will be compared with a number of state
of the art approaches that have been reported in the litera-
ture. The approaches are categorized as being either design
theory driven~Section 6.1!, constraint processing driven
~Section 6.2!, or Pareto optimality driven~Section 6.3!.

6.1. Design theory approaches

The design theory on which the approach presented here is
based assumes that products exist to provide some required
functionality. There are a number of theories of design,
such as the theory of domains~Andreasen, 1992! and the

Fig. 29. An example scheme configuration.

324 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

general procedural model of engineering design~Hubka &
Eder, 1992!, that describe the parallelism between the de-
composition of a functional requirement and the composi-
tion of a set of parts that fulfill that requirement.

The function–means tree approach to design synthesis
is one approach that assists the designer is decomposing a
functional requirement into an equivalent set of functions
that can be provided by a set of known parts~Buur, 1990!.
A function–means tree describes alternative ways of pro-
viding a top-level~root! function through the use of means.
A means is a known approach to providing functionality.
Two types of means can be identified in a function–means
tree: principles and entities. A principle is defined by a
collection of functions that, collectively, provide a par-
ticular functionality; it carries no other information than
the lower level functions to be used in order to provide a
higher level function. An entity represents a part or
subassembly.

In the approach adopted here, the function–means tree
concept was extended by adding context relations between
the functions that define a design principle. This enables a
computer to assist a designer to reason about the configu-
ration of a set of design entities that obey the relationships
that should exist between the functions in a design. It also
helps to ensure that there is a valid mapping between the

functional decomposition of a product and its physical com-
position in terms of parts.

The Scheme-Builder system~Bracewell & Sharpe, 1996;
Porter et al., 1998! uses function–means trees as a basis
for structuring a design knowledge base and generating
schemes. The system interprets a function as an input-
output transformation. The advantage of the system is that
it is very systematic in terms of how functions are decom-
posed into sets of equivalent functions. However, its appli-
cations are limited to very highly parameterized design
domains, such as mechatronics and control systems. The
symbolic approach to representing function adopted in the
research presented here, coupled with the use of context
relations in design principles, makes our approach far more
flexible.

6.2. Constraint-based approaches

A number of systems have been developed for support-
ing aspects of conceptual design based on constraints.
The Concept Modeler system was one of the earliest
of such systems reported in the literature~Serrano, 1987!.
Aspects of the approach adopted in Concept Modeler
were extended in a system called Design Sheet~Buckley

Fig. 30. The state ofscheme_1 once materials have been selected for all the entities from which it is configured.

Interactive constraint-aided conceptual design 325

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

et al., 1992!. These systems focused on using constraint
processing techniques to manage consistency within a
constraint-based model of a design. In these systems con-
ceptual designs are represented as systems of algebraic
equations.

The approach presented in this paper addresses a wider
variety of issues that are crucial to successful conceptual
design. The most important of these issues is design syn-
thesis. In the approach presented here a designer is assisted
in interactively synthesizing a scheme for a design specifi-
cation. In addition, a designer can develop multiple schemes
for a design specification and be offered advice based on a
comparison of these schemes. These are critical issues to
supporting conceptual design that are not addressed in ei-
ther Concept Modeler or Design Sheet.

The work presented here builds on earlier work on inter-
active constraint processing for engineering design~Bowen
& Bahler, 1992!. The earlier work focused on using con-
straint processing as a basis for interacting with a human
designer who was working on a detailed model of design.
The work presented here builds on this work by demonstrat-
ing that using constraint processing as the basis for inter-

acting with a human designer can be extended to support
the development of a number of alternative schemes for a
design specification from an initial statement of functional
and physical requirements.

6.3. Pareto optimality approaches

The principle of Pareto optimality has been applied to a
wide variety of problems in design. Most of these applica-
tions have used the principle of Pareto optimality in con-
junction with evolutionary algorithms to generate a set of
“good” design concepts~Parmee, 1994; Gero & Louis, 1995;
Campbell et al., 1998!. These approaches focus on the au-
tomatic generation of design alternatives, an issue not of
interest in the research presented here.

The use of the principle of Pareto optimality to monitor
progress in design has been reported~Petrie et al., 1995!.
The approach focuses on the “tracking” of Pareto optimal-
ity to coordinate distributed engineering agents. Tracking
Pareto optimality, in this case, means that the problem solver
being used can automatically recognize Pareto optimality

Fig. 31. The state ofscheme_2 after materials have been selected forwheel_assembly_2 andpedal_assembly_2 .

326 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

loss and the particular opportunity to improve the design.
That approach inspired aspects of the approach to using
Pareto optimality in the research presented here. However,
in this research, Pareto optimality is used to compare two
different schemes for a design specification rather than rec-
ognizing when Pareto optimality is lost within an individ-
ual scheme. In this research, it is believed that the natural
competition between designers can be harnessed to moti-
vate improvements in the quality of schemes.

7. CONCLUSION

This paper presents an interactive constraint-based ap-
proach to supporting a human designer during engineering
conceptual design. The approach is based upon an expres-
sive and general technique for modeling: the design knowl-
edge that a designer can exploit during a design project; the
life-cycle environment that the final product faces; the de-
sign specification that defines the set of requirements that
the product must satisfy; and the structure of the various
schemes that are developed by the designer. A computa-
tional reasoning environment based on constraint filtering
is proposed as the basis of an interactive conceptual design
support tool. Using such a tool, the designer can be assisted
in developing and evaluating a set of schemes that satisfy
the various constraints imposed on the design.

The primary contribution of this research is that it
provides a novel approach to supporting the interaction
between the human designer and a constraint-based envi-
ronment for conceptual design. The approach presented
here not only addresses the issue of modeling and reason-
ing about the design of products from an abstract set of
requirements, but it also demonstrates how life-cycle knowl-
edge can be incorporated into the conceptual design of a
product and how alternative schemes can be compared.

ACKNOWLEDGMENTS

The author would like to acknowledge the feedback and advice
contributed by Professor James Bowen~University College Cork,
Ireland! during the research reported here. The author is funded
by Enterprise Ireland through their Research Innovation Fund
~RIF020010317!.

REFERENCES

Andreasen, M.M.~1992!. The theory of domains.Proc. Workshop on Un-
derstanding Function and Function-to-Form Evolution, Cambridge Uni-
versity, Cambridge, UK.

Andreasen, M.M., & Hein, L.~1987!. Integrated Product Development.
Bedford, UK: IFS Publications Ltd.0Springer–Verlag.

Bahler, D., Dupont, C., & Bowen, J.~1994!. An axiomatic approach that
supports negotiated resolution of design conflicts in concurrent engi-
neering. InArtificial Intelligence in Design~Gero, J.S., & Sudweeks,
F., Eds.!, pp. 363–379. Dordrecht: Kluwer Academic.

Bhansali, S., Kramer, G.A., & Hoar, T.J.~1996!. A principled approach
towards symbolic geometric constraint satisfaction.Journal of Artifi-
cial Intelligence Research 4, 419–443.

Birmingham, W.P., & Ward, A.~1995!. What is concurrent engineering?
Artificial Intelligence for Engineering Design, Analysis and Manufac-
turing 9, 67–68.

Bowen, J.~1997!. Using dependency records to generate design coordina-
tion advice in a constraint-based approach to concurrent engineering.
Computers in Industry 33, 191–199.

Bowen, J., & Bahler, D.~1992!. Frames, quantification, perspectives
and negotiation in constraint networks in life-cycle engineering.In-
ternational Journal for Artificial Intelligence in Engineering 7,
199–226.

Bowen, J., & Bahler, D.~1991!. Conditional existence of variables in
generalised constraint networks. InProc. Ninth National Conf. Artifi-
cial Intelligence (AAAI), pp. 215–220.

Bracewell, R.H., & Sharpe, J.E.E.~1996!. Functional descriptions used in
computer support for qualitative scheme generation5 “Scheme-
builder.” Artificial Intelligence for Engineering Design and Manufac-
turing 10, 333–345.

Buckley, M.J., Fertig, K.W., & Smith, D.E.~1992!. Design sheet: An en-
vironment for facilitating flexible trade studies during conceptual de-
sign. InAIAA 92-1191 Aerospace Design Conf., Irvine, CA, February
1992.

Buur, J.~1990!. A theoretical approach to mechatronics design. PhD The-
sis. Lyngby, Denmark: Technical University of Denmark.

Campbell, M.I., Cagan, J., & Kotovsky, K.~1998!. A-design: Theory and
implementation of an adaptive agent-based method of conceptual de-
sign. InArtificial Intelligence in Design ’98~Gero, J., & Sudweeks, F.,
Eds.!, pp. 579–598. Dordrecht: Kluwer Academic.

Chakrabarti, A., & Blessing, L.~1996!. Guest editorial: Representing func-
tionality in design.Artificial Intelligence for Engineering Design and
Manufacture 10, 251–253.

Dongen, M.V., O’Sullivan, B., Bowen, J., Ferguson, A., & Baggaley, M.
~1997!. Using constraint programming to simplify the task of specify-
ing DFX guidelines. InProc. 4th Int. Conf. Concurrent Enterprising
~Pawar, K.S., Ed.!, pp. 129–138, University of Nottingham, UK. Oc-
tober 1997.

Duffy, A.H.B., Andreasen, M.M., MacCallum, K.J., & Reijers, L.N.~1993!.
Design co-ordination for concurrent engineering.Journal of Engineer-
ing Design 4, 251–265.

Faltings, B., & Freuder, E.C., Eds.~1998!. IEEE Intelligent Systems and
Their Applications 13(4). @Special Issue on configuration# .

El Fattah, Y.~1996!. Constraint logic programming for structure-based
reasoning about dynamic physical systems.Artificial Intelligence in
Engineering 1, 253–264.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., & Stumpt-
ner, M. ~1998!. Configuring large systems using generative constraint
satisfaction.IEEE Intelligent Systems and Their Applications 13(4),
59–68.

French, M.J.~1971!. Engineering Design: The Conceptual Stage. London:
Heinemann Educational Books.

Gao, X.-S., & Chou, S.-C.~1998a!. Solving geometric constraint systems
I: A global propagation approach.Computer-Aided Design 30, 47–54.

Gao, X.-S., & Chou, S.-C.~1998b!. Solving geometric constraint systems
II: A symbolic approach and decision of re-constructibility.Computer-
Aided Design 30, 115–122.

Gelle, E., & Smith, I.~1995!. Dynamic constraint satisfaction with con-
flict management in design. InOCS’95: Workshop on Over-Constrained
Systems at CP ’95~Jampel, M., Fredver, E., & Maher, M., Eds.!, pp.
33–40, Cassis, Marseilles, September 1995.

Gero, J.S., & Louis, S.~1995!. Improving pareto optimal designs using
genetic algorithms.Microcomputers in Civil Engineering 10, 241–249.

Gorti, S.R., Humair, S., Sriram, R.D., Talukdar, S., & Murthy, S.~1995!.
Solving constraint satisfaction problems using ATeams.Artificial In-
telligence for Engineering Design, Analysis and Manufacturing 10,
1–19.

Gross, M.D., Ervin, S.M., Anderson, J.A., & Fleisher, A.~1998!. Con-
straints: Knowledge representation in design.Design Studies 9, 133–143.

Haroud, D., Boulanger, S., Gelle, E., & Smith, I.~1995!. Management of
conflict for preliminary engineering design tasks.Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 9, 313–323.

Hsu, W., & Liu, B. ~2000!. Conceptual design: Issues and challenges.
Computer-Aided Design 32, 849–850.

Hsu, W., & Woon, I.M.Y.~1998!. Current research in the conceptual de-
sign of mechanical products.Computer-Aided Design 30, 377–389.

Hubka, V., & Eder, W.E.~1992!. Engineering design: General procedural

Interactive constraint-aided conceptual design 327

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

model of engineering design. ~Series WDK: Workshop Design–
Konstruktion!. Zurich: Heurista.

Lottaz, C., Smith, I.F.C., Robert-Nicoud, Y., & Faltings, B.V.~2000!.
Constraint-based support for negotiation in collaborative design.Arti-
ficial Intelligence in Engineering 14, 261–280.

Lottaz, C., Stalker, R., & Smith, I.~1998!. Constraint solving and prefer-
ence activation for interactive design.Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing 12, 13–27.

Mackworth, A.K.~1977!. Consistency in networks of relations.Artificial
Intelligence 8, 99–118.

Mittal, S., & Falkenhainer, B.~1990!. Dynamic constraint satisfaction
problems. InAAAI 90, Eighth National Conf. Artificial Intelligence,
Vol. 1, pp. 25–32, Boston, July–August 1990. Menlo Park, CA: AAAI
Press.

Nagai, Y., & Terasaki, S.~1993, June!. A Constraint-Based Knowledge
Compiler for Parametric Design Problem in Mechanical Engineering.
Technical Report TM-1270. Tokyo: ICOT.

O’Sullivan, B.~1999!. Constraint-Aided Conceptual Design. PhD Thesis,
Department of Computer Science, University College Cork, Ireland.
Professional Engineering Publishing.

O’Sullivan, B. ~2002!. Constraint-based product structuring for configu-
ration. InECAI-2002 Workshop on Configuration, July 2002.

O’Sullivan, B., Bowen, J., & Ferguson, A.B.~1999!. A new technology for
enabling computer-aided EMC analysis. InWorkshop on CAD Tools
for EMC (EMC-York 99), July 1999.

Pahl, G., & Beitz, W.~1995!. Engineering Design: A Systematic Ap-
proach, 2nd ed. London: Springer.

Parmee, I.C.~1994!. Adaptive search techniques for decision support dur-
ing preliminary engineering design. InProc. Informing Technologies
to Support Engineering Decision Making, EPSRC0DRAL Seminar,
Institution of Civil Engineers, London.

Petrie, C., Heecheol, J., & Cutkosky, M.R.~1996!. Combining constraint
propagation and backtracking for distributed engineering. InWork-
shop on Non-Standard Constraint Processing, ECAI 96~Hower, W., &
Ruttkay, Z., Eds.!, pp. 84–94, Budapest, Hungary. August 1996.

Petrie, C.J., Webster, T.A., & Cutkosky, M.R.~1995!. Using Pareto opti-
mality to coordinate distributed agents.Artificial Intelligence in Engi-
neering Analysis, Design, and Manufacturing 9, 269–281.

Porter, I., Counsell, J.M., & Shao, J.~1988!. Knowledge representation for
mechatronic systems. InComputer-Aided Conceptual Design ’98, Proc.
1998 Lancaster International Workshop on Engineering Design~Brad-
shaw, A., & Counsell, J., Eds.!, pp. 181–195, Lancaster University,
May 1998.

Reddy, S.Y., Fertig, K.W., & Smith, D.E.~1996!. Constraint management
methodology for conceptual design tradeoff studies. InProc. 1996
ASME Design Engineering Technical Conf. Computers in Engineering
Conf., Irvine, CA, August 1996.

Sabin, D., & Freuder, E.C.~1996!. Configuration as composite con-
straint satisfaction. InAAAI-96 Fall Symposium on Configuration,
pp. 28–36.

Sabin, D., & Weigel, R.~1998!. Product configuration frameworks—A
survey.IEEE Intelligent Systems and Their Applications 13(4), 42–49.

Serrano, D.~1987!. Constraint management in conceptual design. PhD
Thesis. Cambridge, MA: Massachusetts Institute of Technology.

Shimizu, S., & Numao, M.~1997!. Constraint-based design for 3D shapes.
Artificial Intelligence 91, 51–69.

Soininen, T., Tiihonen, J., Männistö, T., & Sulonen, R.~1998!. Towards a
general ontology of configuration.Artificial Intelligence in Engineer-
ing Design, Analysis and Manufacturing 12, 357–372.

Thorton, A.C.~1994!. A support tool for constraint processes in embodi-
ment design. InASME Design Theory and Methodology Conf.~Hight,
T.K., & Mistree, F., Eds.!, pp. 231–239, Minneapolis, MN, September
1994.

Tichem, M.~1997!. A design coordination approach to design for X. PhD
Thesis. Delft: Technische Universiteit Delft.

Yao, Z ~1996!. Constraint management for engineering design. PhD The-
sis. Cambridge, UK: Cambridge University Engineering Department.

Barry O’Sullivan is a Lecturer in the Department of Com-
puter Science at the University College Cork~UCC! in
Ireland, where he received a PhD in Computer Science in
1999. He is also a member of the Cork Constraint Compu-
tation Centre. His main area of research interest is in con-
straint processing. In particular, he is interested in automating
both the process of acquiring constraints and the develop-
ment of ad hoc constraint solvers. Dr. O’Sullivan is also
interested in applications of constraints in domains such as
design, configuration, product development, and inter-
active decision making.

328 B. O’Sullivan

https://doi.org/10.1017/S0890060402164043 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402164043

