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Abstract

Engineering conceptual design can be defined as that phase of the product development process during which the
designer takes a specification for a product to be designed and generates many broad solutions to it. This paper presents
a constraint-based approach to supporting interactive conceptual design. The approach is based on an expressive and
general technique for modeling: the design knowledge that a designer can exploit during a design project; the life-cycle
environment that the final product faces; the design specification that defines the set of requirements the product must
satisfy; and the structure of the various schemes that are developed by the designer. A computational reasoning
environment based on constraint filtering is proposed as the basis of an interactive design support tool. Using such a
tool, human designers can be assisted in interactively developing and evaluating a set of schemes that satisfy the
various constraints imposed on the design.
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1. INTRODUCTION In supporting interactive conceptual design, a number of
issues must be considered:
This paper is concerned with the development of a constraint-
based approach to supporting interactive engineering con-
ceptual design. Engineering conceptual design can be
regarded as that phase of the engineering design process
during which the designer takes a specification for a prod-
uct to be designed and generates many broad solutions to it.
Each of these broad solutions is generally referred to as a
scheméFrench, 197 Each scheme should be sufficiently
detailed that the means of performing each function in the
design has been fixed, as have any critical spatial and struc- *
tural properties of, and relationships between, the principal
components.

It is generally accepted that conceptual design is one of
the most critical phases of the product development pro-
cess. It has been reported that more than 75% of a product’s *
total cost is dictated by decisions made during the concep- : ) ,
tual phase of desigfHsu & Liu, 2000. Furthermore, poor e Automated evaluation and comparison of multiple

conceptual design can never be compensated for by good schemes throyghout the de$i9” Process ?S necessary to
detailed desigriHsu & Woon, 1998. focus the designer on promising alternatives.

It was these considerations that motivated and set the agenda
_ _ _ _for the research reported here.
Reprint requests to: Barry O’Sullivan, Cork Constraint Computation Thi . . int-b d
Centre, Department of Computer Science, University College Cork, Cork, IS paper presents an interactive constraint-based ap-
Ireland. E-mail: b.osullivan@cs.ucc.ie proach to supporting a human designer during engineering
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e The conceptual design process is initiated with a state-
ment describing the desired properties of the required
product. This statement may not be complete, and it
may be modified during design.

Conceptual design is a process during which synthesis
of a scheme is a fundamental activity.

e The human designer should have the freedom to ap-
proach the process in any way desired.

Insofar as it is possible, human designers should be
alerted to any inconsistencies that exist in their designs.
¢ Designers may seek explanations for inconsistencies
in their schemes or justifications for why certain op-
tions are available to them.

Designers may wish to have explained to them how a
particular scheme has come about.
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conceptual design. The approach is based on an expressiveSome of the most popular approaches to solving prob-
and general technique for modeling: the design knowledgéems comprising a set of constraints defined on a set of
that a designer can exploit during a design project; the lifeparameters stem from the constraint processing paradigm.
cycle environment that the final product faces; the desigrConstraint processing is concerned with the development
specification that defines the set of requirements the prodef techniques for solving the constraint satisfaction prob-
uct must satisfy; and the structure of the various schemelem, often referred to as the C§Mackworth, 1977. A

that are developed by the designer. Acomputational reasottarge number of problems in Al, computer science, engi-
ing environment based on constraint filteri(Bowen &  neering, and business can be formulated as CSPs. For ex-
Bahler, 1992; Bowen, 1997s proposed as the basis of an ample, many problems related to machine vision, scheduling,
interactive conceptual design support tool. Using such @amporal reasoning, graph theory, design, design of exper-
tool, the designer can be assisted in developing and evaliments, and financial portfolio management can be natu-
ating a set of schemes that satisfy the various constraintsally modeled as CSPs.

imposed on the design. In particular, the designer can be In the engineering design literature, three phases of de-
assisted in synthesizing a number of alternative schemesign are generally identified: conceptual design, embodi-
for the required product. The consistency of each scheme iment design, and detailed desigRahl & Beitz, 1995.
constantly monitored, as is the consistency of each scheniguring conceptual design the designer searches for a set of
with respect to the design specification and the other schemésoad solutions to a design problem, each of which satisfies
that have been developed. Explanations and justificationthe fundamental requirements for the desired product. The
can be generated to aid the designer’s understanding of trembodiment phase of design is traditionally regarded as the
state of the design problem using a known approach fronphase during which an initial physical design is developed.
the literature(Bowen, 1997. Arbitrary constraints can be This initial physical design requires the determination of
asserted or retracted by the designer, which permits theomponent arrangements, initial forms and other part char-
incorporation of new requirements into the design specifi-acteristicy Tichem, 1997. The detailed phase of design is
cation and gives the designer freedom to approach the praraditionally regarded as the phase during which the final
cess as he or she wishes. physical design is developed.

The remainder of the paper is organized as follows. Sec- Constraint-based applications for design have been more
tion 2 presents an overview of the literature on constraintommonly applied to the postconceptual phases of design.
processing for design. Section 3 presents a brief overviewhese later phases of design are concerned with developing
of the theory of conceptual design upon which the research subset of the schemes generated during the conceptual
presented in this paper is based. Section 4 discusses halesign phase into fully detailed designs. The CADET sys-
this theory can be modeled in a constraint programmingem uses simulated annealing as the basis for its constraint
language. Section 5 presents a detailed example of intesatisfaction algorithm for solving the constraint-based rep-
active conceptual design based on constraint filtering. Seaesentation of the geometric product mogdgtornton, 1994;
tion 6 compares the approach presented here with the mo¥to, 1996. The IDIOM system uses constraint solving on
relevant literature. In Section 7, a number of concludinggeometric parameters for floor-plannifigottaz et al., 1998
remarks are made. andSpacé&olver uses the notion of solution spaces, defined
by sets of constraints on continuous domains, as a basis for
supporting interactive desigflLottaz et al., 200Q A
2. ?gf\élgg}gl)\r CONSTRAINT PROCESSING constraint-based knowledge compiler for parametric design

in the mechanical engineering domain called MECHANI-
Most decisions that are made in daily life involve consid-COT has been proposddlagai & Terasaki, 1993 Many
ering some form of restriction on the choices that are avail€onstraint-based systems reported in the literature have been
able. For example, the destination to which someone traveldeveloped for supporting reasoning about purely geometric
has a direct impact on the choice of transport and routeaspects of design for use with CAD systefBhansali et al.,
some destinations may only be accessible by air, whereas996; Shimizu & Numao, 1997; Gao & Chou, 1998
others can be reached using any mode of transport. Formd99&). The use of constraint processing techniques for
lating decision problems in terms of parameters and thesupporting configuration design has also been widely re-
restrictions that exist between them is an intuitive approaciported in the literaturéMittal & Falkenhainer, 1990; Sabin
to modeling them. These general restrictions can be re& Freuder, 1996; Faltings & Freuder, 1998; Fleischanderl
ferred to as constraints. et al., 1998; Sabin & Weigel, 1998

The fact that constraints are ubiquitous in many decision Modern approaches to product development, such as con-
problems has given rise to the emergence of many populamurrent engineerin@Birmingham & Ward, 1995 integrated
problem-solving paradigms based on this notion. These tectproduct developmeriAndreasen & Hein, 1987and design
niques have been widely reported in the literature in sucktoordination(Duffy et al., 1993, attempt to maximize the
research fields as operations research and artificial intellidegree to which design activities are performed in parallel.
gence(Al). A number of researchers in the constraint processing com-
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munity have developed constraint-based technologies thd995. The motivation for the work is the support of spatial
support integrated approaches to product developfBaat  layout generation. The constraint specification used in the
wen & Bahler, 1992; O’'Sullivan etal., 199%ne of the crit-  work facilitates a high-level representation and manipula-
ical issues that must be addressed in supporting integratain of qualitative geometric information. The search en-
design is the issue of conflict resolution and negotiationgine used in the proposed system is based on a genetic
Constraint-based approaches to managing conflict in collabalgorithm. The issue of constraint consistency is not ad-
orative design systems have beenrepaiBadhler etal., 1994; dressed in the work. In addition, important design issues
Haroud etal., 1995; Lottaz et al., 200Using constraintsto  such as synthesis are not considered. However, it is realized
coordinate distributed agents in engineering design has algbat the primary focus of this work is the use of autonomous
been reportedPetrie et al., 1995, 1996 agents to solve CSPs.

Constraint-based approaches to supporting conceptual de-The use of constraint logic programming for supporting
sign have been reported in the literature for quite a numbereasoning about dynamic physical systems has been re-
of years(Serrano, 1987; Gross et al., 198Bowever, most  ported(Fattah, 1995 This work combines a constraint logic
of this research does not address the synthesis problem; tipepogramming approach with bond graphs to assist in the
vast majority has focused on constraint propagation andevelopment of a simulation model of a system in the form
consistency management relating to more numerical desigof a set of differential equations. The approach can be used
decisions. For example, Concept Modeler is based on a sé&r identifying causal problems of a bond graph model of a
of graph-processing algorithms that use bipartite matchinglynamic physical system.
and strong component identification for solving systems of In Section 1, a number of issues were highlighted as
equations(Serrano, 198)f The Concept Modeler system being critical to effectively support interactive conceptual
allows the designer to construct models of a product usinglesign. Although all the systems reviewed here support some
iconic abstractions of machine elements. However, a numef these issues, few have attempted to address them all. The
ber of issues are not addressed by this work, among whictesearch presented here is an attempt to develop an ap-
is the dynamic nature of conceptual design. During concepproach that can support each of these issues in the context
tual design, constraints may be added or deleted at angf interactive conceptual design. In Section 3, the design
point. In addition, the system does not address the issue ofieory upon which our approach is built will be presented.
design synthesis nor the comparison of alternative solu-
tions to a design problt_am. Howevgr, ancept Modeler demB. A THEORY OF CONCEPTUAL DESIGN
onstrated that constraint processing did offer a useful basis
for supporting designers in working through particular as-The model of conceptual design adopted in this research is
pects of the conceptual design problem. based on the hypothesis that during the design process, a

Based on the earlier work on Concept Modeler, a sysdesigner works from an informal statement of the require-
tem called Design Sheet was develop@&lickley et al., ments that the product must satisfy and generates alterna-
1992; Reddy et al., 1996 This system is essentially an tive configurations of parts that satisfy these requirements.
environment for facilitating flexible trade-off studies dur- Central to this exercise is an understanding of function and
ing conceptual design. It integrates constraint managemeihow it can be provided. Figure 1 illustrates this model of
techniques, symbolic mathematics, and robust equatiorconceptual design. Although the model is based on a well-
solving capabilities with a flexible environment for devel- known approach to conceptual desidtahl & Beitz, 1995,
oping models and specifying trade-off studies. The Desigrits implementation is novel.

Sheet system permits a designer to build a model of a From Figure 1 it can be seen that the conceptual design
design by entering a set of algebraic constraints. The deprocess can be regarded as a series of activities and achieve-
signer can then use Design Sheet to change the set afents that relate to the development of the design specifi-
independent variables in the algebraic model and perforncation and an iterative process of scheme generation. The
trade-off studies, optimization, and sensitivity analysis. process of scheme generation involves the development of

Some researchers have used the dynamic CSP as a basgifunction decomposition that provides the basis for a con-
for managing conflict during the preliminary phases of en-figuration of parts that form a scheme. This scheme is then
gineering desigiGelle & Smith, 1995; Haroud et al., 1995 evaluated and compared against any schemes that have al-
Traditional conflict resolution techniques in constraint- ready been developed. Based on this comparison, the de-
based models of the design process baektrackingand  signer will choose to accept, improve, or reject particular
constraint relaxationSome researchers focus on differen-schemes. The process of scheme generation will be re-
tiating between types of assumptions that are made by dgeated many times in order to ensure that a sufficiently
signers during design. Variations on this type of approacharge number of schemes have been considered. The role of
have also been proposed for managing conflict in collabodesign knowledge and learning are also illustrated in Fig-

rative designBahler et al., 1994 ure 1, using dotted lines. Design knowledge is used during
The use of autonomous agents to solve CSPs for concephe process of scheme generation. During this process the
tual design has been reported in the literat@@erti et al.,  designer may develop a greater understanding of the design
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Fig. 1. The model of the conceptual design process adopted in this research.

problem being addressed; this learning may affect the defunction that the product should provideeferred to as a
sign specification for the product or the design knowledgefunctional requirementand the physical requirements that
used to generate schemes. the product must satisfy. This statement is known ag-a

In the remainder of this section a brief overview of the sign specification
theory of conceptual design used in this research will be Two categories of design requirement can be identified:
presented. For a more complete discussion of the theoryunctional requirements anghysicalrequirements. A de-
the reader is encouraged to refer to the more detailed liteisign specification will always contain a single functional
ature availabléO’Sullivan, 1999. requirement, as this represents the highest level of abstrac-
tion of a product; it may also contain a set of physical
requirements that define the tangible characteristics of the
required product.
The conceptual design process is initiated by the recogni- In addition, two classes of physical requirement can be
tion of a needor customer requirementThis need is an- identified: product requirements and life-cycle require-
alyzed and translated into a statement that defines thments. A product requirement can be either a categorical

3.1. The design specification

https://doi.org/10.1017/50890060402164043 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060402164043

Interactive constraint-aided conceptual design 307

requirement that defines a relationship between attributelustrated using round-edged boxes and the context rela-
of the product or a preference related to some subset dfons are illustrated using dashed boxes with dashed lines
these attributes. A life-cycle requirement can be either detween the functions to which they apply.

categorical requirement that defines a relationship between A design entity, on the other hand, is a physical, tangible
attributes of the product and its life cycle or a preferencemeans for providing function. A design entity is defined by
related to some subset of these attributes. a set of parameters and the relationships that exist between
them. For example, an electronic resistor would be mod-
eled as a design entity that is defined by three parameters
(resistance, voltage, and currgbétween which Ohm’s Law
During conceptual design, the designer must synthesize would hold.

configuration of parts that satisfies each of the functional

and physical requirements in the design specification. Ta3-2.2. Embodiment of function

do so, the designer needs considerable knowledge of how As the designer develops a scheme, every function in the
function can be provided by physical means. Often, thisscheme is embodied by a means. Each means that is avail-
knowledge exists in a variety of forms; a designer may notable to the designer has an associatettbf behaviorsEach

only know of particular components and technologies thabehavioris defined as a set of functions that the means can
can provide particular functionality but may also be awarebe used to provide simultaneously. Each behavior associ-
of abstract concepts that could be used. For example, ated with a design principle will contain only one function
designer may know that an electric light bulb can generatéo reflect the fact that it is used to decompose a single
heat or, alternatively, that heat can be generated by rubbinfyinction. However, a behavior associated with a design en-
two surfaces together. The latter concept is more abstratity may contain many functions to reflect the fact the there
than the former. In order to effectively support the humanare many combinations of functions that the entity can pro-
designer during conceptual design, these alternative typedde at the same time. For example, a design entity based
of design knowledge need to be defined and modeled in an an electric light bulb may be able to fulfill the functions

3.2. Conceptual design knowledge

formal way. provide lightandgenerate heasimultaneously. However,
. when a design entity is incorporated into a schefoethe
3.2.1. The function—-means map purpose of supporting functionality provided by one of its

The notion of thdunction—means treleas been proposed behavior$, it is not necessary that every function in this
by researchers from the design science community as dmehavior be used in the scheme.
approach to cataloging how function can be provided by Knowing the various possible behaviors of an entity is
meangAndreasen, 1992The use of function—means trees useful when the designer is embodying functions. Knowl-
in supporting conceptual design has attracted considerabkxige of behavior enables a designer to identify when a
attention from a number of researché@sacewell & Sharpe, particular design entity can be used to provide several
1996. In general, the level of interest in the use of func-functions simultaneously. In this research, the mapping of
tional representations in conceptual design has increased geveral functions onto a single design entity is known as
recent timeg¢Chakrabarti & Blessing, 1996showing grow-  entity sharing Entity sharing is a critical issue in design
ing confidence in the potential of approaches incorporatindecause without the ability to reason about entity sharing,

such techniques. a designer has no way of removing redundant parts from a
In the research described here a generalization of thdesign.
function—-means tree calledfanction-means majs used From a design perspective, one of the novel aspects of

to model functional design knowledd@®'Sullivan, 1999.  the work presented here is the manner in which design prin-
A function—means map can be used to reconcile functionsiples and design entities are defined and used. Using de-
with means for providing them. In a function—means map sign principles to define abstract design concepts in terms
two different types of means can be identified: a means caof functions and relationships between them is novel. The
either be aesign principleor adesign entity ability to represent means at both an abstract functional
A design principle is a means that is defined in terms oflevel and a physical level provides a basis for a designer to
functions that must be embodied in a design in order tacombine and explore new approaches to providing the func-
provide some higher level functionality. The functions thattionality defined in the design specification.
are required by a particular design principle collectively
replace the function being embodied by the principle. Thes
functions will, generally, have a number obntext rela-
tions defined between them. These context relations deWhen a designer begins to develop a scheme for a product,
scribe how the parts in the scheme that provide theséhe process is initiated by the need to provide some func-
functions should be configured so that the design principldionality. The designer begins to develop a scheme to pro-
is used in a valid way. An example design principle basedside this functionality by considering the various means
on the abstraction of a bicycle is shown in Figure 2. In thisavailable in her design knowledge base. Generally, the first
figure, the functions required by the design principle aremeans that a designer will select will be a design principle.

3.3. Scheme configuration using interfaces
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Fig. 2. Abstracting an example design principle from a bicycle.

This design principle will substitute the requirépareny  from the design principles used in the scheme will be
functionality with a set of child functions. used as a basis for defining the interfaces between the

As the designer develops a scheme and produces a fundesign entities used in the scheme. However, the precise
tion decomposition tree she will ultimately embody all nature of these interfaces cannot be known with cer-
leaf-node functions in the scheme with design entitiestainty until the designer embodies functions with design
During this embodiment process, the context relationentities.
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The types of interfaces that may be used to configure 8.5. Evaluation and comparison of schemes

collection of design entities will be specific to the englneer—_l_he designer’s primary objective during conceptual design

ing domain within which the designer is working. For ex- is to develop a set of alternative schemes that satisfy both

ample, the set of interfaces that a designer working in th(?he functional and physical requirements defined in the de-

mechanical domain would typically use are different to thoseSign specification. This set of schemes will be further re-

gsed by a designer in the eilgctrlcal dom‘f’"”' Indeed, thesllTnned during subsequent stages of the product development
interfaces may also be specific to the particular company tg . o .

. ! process until a small number of fully specified desigoss-
which the designer belongs.

sibly just one will be selected for commercialization.
Every scheme must satisfy the categorical product and
3.4. Scheme generation life-cycle requirements defined in the design specification.
. . .. If a scheme violates one of these, the designer must either
From Figure 1 it can be seen that scheme generation is an. e
. : . o reject the scheme that has been developed or modify it in
iterative process comprising a number of activities. These

N . order to satisfy them.
activities relate to the development of a function decompo- .
However, not every one of these schemes will be se-

sition for the scheme, the development of a configuration oﬁ cted for development in subsequent phases of design. This

design entities based on this function decomposition, an . e
) . s due to particular schemes not satisfying the preferences
an evaluation and comparison of the newly develope . . . 22 :
hat were defined in the design specification. In this re-

scheme with those schemes that have already been devel- o A
i earch the principle of Pareto optimality is used to deter-
oped. As new schemes are developed, the designer will .
: : . mine which schemes are best of those developed by the
constantly consider which schemes to accept, reject, or_ . e .
improve designefO’Sullivan, 1999. Each design preference can be
P ' regarded as an objective function. Thus, the best schemes

Once the design specification has been formulated, th . :
: at are developed are those that are not dominated, in the
designer must attempt to develop as many schemes &

possible that have the potential to satisfy the require- areto optimal sense, by any other scheme. Obviously, in

. . e order to compare two schemes, they must be based on the
ments in the design specification. There are generall;game design specification

many function decompositions possible from the same For example, Table 1 presents a comparison of two

functional requirement. Generating alternative function .
. schemes based on two preferences: that the number of parts
decompositions can be regarded as a way of systemati- . - .
. . ; in the design be minimal and that the mass of the artifact be
cally exploring the design space for a product. This search

) . ) . inimal. It can be seen that the first scheme comprised six
is controlled by a designer who considers the functiona . .

. . “parts whereas the second scheme comprised five. Thus, on
requirement for the product and explores alternativ

ways of providing the functionality by using design prin- the preference for a scheme comprising a minimal number

. . . . of parts, the second scheme is better than the first. At this
ciples to decompose the functional requirement into less =" .~ . o ) .
oint it is not possible to determine if the first scheme is

abstract functions. In this way, the designer can transmgominated. However, if the first scheme is not to be domi-

the functional requirement into one that allows the use o L
: . i nated by the second scheme, it will have to have a smaller
standard technologies, represented as design entities, to

o mass than the second scheme. In this way, each scheme
satisfy it. .
. . . . .would be better than the other on one design preference.
Using a function decomposition, the designer can begin Using the princiole of Pareto optimality brovides a use-
to develop a configuration of design entities. Each leaf- 9 P b b yp

L : . " ful basis for comparing alternative schemes. It can be used
node function in a particular function decomposition must

be provided by a design entity. The context relations inherEO identify schemes that are completely dominated by other

ited from the branch nodes in the function decompositionSChemeS that have already been developed; this should mo-

. . L tivate a designer to modify a scheme so that it is no longer
due to the use of particular design principles, are used t . . 2 L
: . ! . i . ominated. Using the principle of Pareto optimality a de-
define the manner in which the design entities used in the. .
. . igner can compare schemes that have been developed in
scheme should be configured or interfaced. Some context ;
. . ) ) : . “‘order to select those that will be developed further and
relations will define constraints on the spatial relation-
ships between design entities, whereas others may define
particular types of interfaces that may be required be-
tween the entities. As the designer incorporates design effable 1. Using Pareto optimality principle to compare two
tities into a scheme, the various physical requirements thatchemes
are described in the design specification can be brought te

bear on it. Thus, the process of scheme generation pre- First Second
sented here bears some similarities to some systemati¢°P™ Preference Scheme Scheme
approaches to configuratidi$oininen et al., 1998 How-  No. parts Minimal 6 5
ever, the similarities with configuration are discussed elseMass Minimal <x x

where(O’Sullivan, 1999, 2002
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identify those schemes that should be either improved odomains. It is possible to define sets and sequences in Ga-

discarded. However, a designer should notdyeedto dis-  lileo and structured domains can be defined and organized
card dominated schemes. The objective is to motivate thato inheritance hierarchies. The language comes with a
designer to consider ways of improving them. number of predefined predicates such as equality and nu-

meric inequality. There are a number of standard functions
available that includes the complete range of arithmetic and
trigonometric functions. There are also a number of set-
and sequence-based predicates and functions available as
In this section an approach to developing the back-end oftandard. Compound constraints can be written using the
an interactive design tool for supporting conceptual desigrstandard logic connectives as well as the negation operator.
will be presented. By back-end we refer to the underlying In Galileo, constraints can be universally or existentially
reasoning engine upon which a graphical user interfacguantified. Furthermore, quantifiers can be nested arbi-
(GUI) can be built. The reasoning system, whose imple4rarily. In addition, the existence of certain parameters and
mentation we will describe here, is capable of monitoringconstraints can be expressed as being dependent on certain
the state of the design as it evolves through the sequence obnditions being met. This is due to the fact that Galileo is
interactions between the human user and a front-end GUbased on a generalization of first-order logic known as first-
Before describing the implementation details of this back-order free logiqdBowen & Bahler, 1991 This is the means

end reasoning system, an overview of the implementatioty which dynamic CSP&Mittal & Falkenhainer, 1990can
language will be presented in Section 4.1. be easily modeled in the language.

Using Galileo in conjunction with an interactive con-
straint filtering systentrun-time environment a reasoning
technology for supporting interactive conceptual design can
In this research the constraint programming language Galibe built. We will demonstrate the implementation details of
leo (Bowen & Bahler, 1992; Dongen et al., 1997as been this system later in this section. However, a brief discussion
used as the modeling language of choice, because it is ored the characteristics of constraint filtering will be pre-
of the most expressive constraint programming languagesented first.
and was developed specifically for exploitation in the engi- Constraint filtering is a form of constraint processing
neering design domain. Galileo is a frame-based constrairthat progressively restricts the ranges of possible values for
programming language based on the first-order predicatparameters by enforcing the restrictive effects of con-
calculus. Galileo offers designers a rich language for destraints. This means that a constraint network can capture
scribing the structure of a product, the environment in whichthe impact of a decision on the various parameters in the
a product is being developed, and the responsibilities of theetwork. Suppose, for example, that a network represents
various participants in an integrated product developmenthe mutually constraining influences that exist between the
environmeniBowen & Bahler, 1992; Dongen et al., 1997; functionality and production cost of a product. Such a net-
O’Sullivan et al., 1999 The inference capabilities of the work could, with equal ease, determine the impact of func-
Galileo run-time environment are based on arc consistenciionality decisions on production cost or, on the other hand,
(Mackworth, 1977, a limited form of path consistency, determine the impact of cost decisions on functionality. In
and propagation of known states. The Galileo run-time enether words, constraint filtering relies on the multi-directional
vironment is capable of offering justifications and explana-inference properties of constraints to propagate the conse-
tions for domain reductions and confligBowen, 1997. qguences of a decision throughout a constraint network.

A frame-based constraint programming language pro- In the following section, important aspects of the
vides a designer with the expressiveness required to desonstraint-based implementation of the design theory pre-
scribe the various aspects of the design problem effectivelysented in Section 3 will be presented. When implementing
Frames can be used to represent the product being dé&is theory, a distinction can be made between concepts
signed, the components from which it is configured, or thethat are common across all design applications and con-
materials from which it is made. Frames can also be used toepts that are company, application, or domain specific. In
describe the life-cycle environment in which the productSection 4.2 we will describe the generic aspects of the
will be manufactured, tested, and deployed. Constraints bamplementation. In Section 5 an example of the approach
tween frames can be used to express the mutual restrictiondgll be discussed in the context of an interactive design
between the objects in the design and the product’s funcscenario. As part of that discussion the implementation of
tionality, the component or material properties, and the prodmore application-specific concepts will be highlighted where
uct life cycle. relevant. For a full discussion of the work being reported

Among the many features of the Galileo language are théere, the reader is encouraged to refer to some of the
availability of predefined domains such as the real and inexisting literature that describes these concepts in far greater
teger numbers, arbitrary scalars, and framelike structuredetail (O’Sullivan, 1999.

4. A CONSTRAINT-BASED IMPLEMENTATION
FOR INTERACTIVE DESIGN

4.1. An overview of Galileo
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1 domain scheme 1 domain func

2 =::= ( scheme name : string, 2 =::= ( verb : string,

3 structure : embodiment ). 3 noun : string,
4

) . . id : func_id ).
Fig. 3. The representation of a generic scheme.

Fig. 5. Modeling a function instance in Galileo.

4.2. Implementing generic concepts
Having noted this, consider the definition offenc pro-

In Figure 3 the Galileo model of a generic scheme is previded in Figure 5.
sented. This shows that the concept of a scheme is imple- The approach to representing functionality is a symbolic
mented as a Galileo structured domain cafleldeme which ~ one, consisting of representing a function by a verb—noun
has two fields, calledscheme_name and structure pair. As can be seen in Figure 5, this approach is imple-
respectively. mented in the first two fields of the structured domain used
Because a scheme exists solely to provide the functionto represent dunc . Because dunc is a functionin-
ality required in the design specification, its structure shouldstance it must contain some field that distinguishes it from
be the embodiment of that functionality. This is reflected byother instances of the same function. On line 4 in Figure 5,
line 3 in Figure 3, where th&tructure  field of ascheme it can be seen that the approach used was to givefeach
is declared to be of typembodiment . This model is based anid field, of typefunc_id , which is a synonym for a
on the fact that the designer is mostly concerned with prounique positive integer.
ducing embodimentdgor intended functiondy choosing Now let us return to the remaining part of the definition
from among th&known meansthose that will provide the of anembodiment , which was presented in Figure 4. The
required functionality. This is reflected in Figure 4, which third field in this structured domain ishosen_means .
presents the Galileo implementation of ambodiment This represents the approach chosen by the designer to pro-

as a structured domain that has four fieldsheme_ vide theintended_function for the embodiment .
name, intended_function , chosen_means , and  The repertoire of technologies known to, and approved by,
reasons . a company varies, of course, from one company to another.

The scheme_name field, of type string , cross- Thus, the definition oknown_means is not generic; it
references an embodiment to the scheme to which it bedepends on the design domain to which the conceptual de-
longs; this field is marked alkidden so that it does not sign advice system is being applied.
appear on the user interface used in Section 5. The field Before proceeding to discuss the final field in am-
intended_function represents the function that is to bodiment , consider the constraint shown in Figure 6. This
be provided by the embodiment; in line 3 it is declared tospecifies that th&nown_means is chosen for an embodi-
be of typefunc . We will now consider the definition of ment must, in fact, be capable of providing the function
typefunc in some detail because once we have done santended for the embodiment.
it will be easier to explain the rest of thembodiment The definition of the relationrcan_be_ used to_
definition. provide states that &anown_means can provide a func-

First, it should be noted that the same type of function-tion if that function appears in some set of functions that
ality is frequently needed in different parts of a schemeithe means can simultaneously provide. The relatiam
that is, the function to be provided by one embodiment maysimultaneously_provide used in this definition is
be the same type of function as that to be provided by application-specific knowledge.
different embodiment in the same schefog indeed, by an The final field in the definition of anembodiment
embodiment in a different schemeThus, afunc must  (Fig. 4) is calledreasons . An embodiment may be in-
represent, not a function, but anstanceof a function. troduced into a scheme because of different factors: it can
Furthermore, of course, one function instance must be dishe introduced to provide the top level functionality re-
tinguishable from a different instance of the same functionquired in the design specification; alternatively, it can be

introduced to provide some functionality whose necessity
was recognized when some design principle was used dur-
ing the development of the scheme. Treasons field in

1 domain embodiment an embodiment records the motivation for introducing

2 =::= ( hidden scheme name : string, the embodiment . It does so by recording the identity
3 intended function : func, numbers of the function instances whose provision re-
4 chosen means : knovn means, quired the introduction of the embodiment. This is re-
5 reasons : set of func.id ).

flected by the fact that, in line 5 in Figure 4, theasons
Fig. 4. Modeling the embodiment of a function. field has the typeset of func_id . The reasons
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1 all embodiment (E) :
2 can_be_used_to_provide(E.chosenmeans, E.intended function).

3 relation can_be_used_to_provide( known means, func)
4 =::= { (K,F): can_simultaneously provide(XK,Fs) and F in Fs}. Fig. 6. The means chosen for an embodiment mustbe valid.

field of anembodiment provides the basis for identify- them. Eventually, of course, each embodiment is realized
ing those design entities between which context relationdy the introduction of design entity instances. This means

must be considered. that context relationships between embodiments will have
_ to be realized by interfacing appropriately the entity in-
4.2.1. A generic model of means stances that realize the embodiments. The details of these

Figure 7 illustrates how the generic notion of a meandnterfaces, which must be known in order to evaluate the
can be modeled. As shown in lines 1-4, a means is impleguality of the scheme being developed, are represented as
mented as a Galileo-structured domain caheshns. This  specializations of a generic concept calledraarface
has three fieldsscheme_name, type , andfuncs_pro- whose definition is provided in Figure 9.
vided . As was the case with the definition of an embodi- As can be seen in lines 1-4, arerface is defined
ment, thescheme_name field is used to cross-reference a between a pair of entities. The constraint defined in lines
means with the scheme in which thmeans is being used. 5-10 ensures that, for eveiyterface that is defined,

Note that there are two kinds of means: principles andoth of the entity instances to which it relates exist in the
entities. This is reflected by the fact that, as shown in Fig-same scheme as the interface.

ure 7, the domain from which thgpe field of ameans We shall see later how this generic definition of an inter-
takes its value contains only two possible valiegqrin- face can be used to define application-specific interfaces
ciple andan_entity (lines 7-8. for embodying context relations.

The final field in the definition of the generic notion of a
means is calledfuncs_provided  and is of typeset 4.2.3. Generic concepts for comparing schemes
of func_id . It is used to remember which function in- A design specification may include several preferences.
stances within a scheme tieeans is being used to pro- The basic notion in the approach for comparing schemes is
vide. Of course, aneans should be used to provide only the preference It is defined in Figure 10 as a structured
those function instances that it is capable of providing; thisdomain containing two fields: thealue field, which con-
requirement is captured in the constraint in lines 5-6. Theains the value of whatever scheme property is the subject
definition of the relationis_a_possible_behav- of the preference, and thatent  field, which indicates
iour_of is an application-specific concept. whether it is preferred that this scheme property be mini-
Based on the generic notion of a means, generic definimized or maximized.
tions for design principles and design entities can be de- When two schemes are being compared, this will involve

fined. The generic notions ofm@inciple  and arentity comparing how well they perform with respect to each pref-
are defined in Figure 8 as specializations of the generierence given in the design specification. A relation called
notion of ameans. better_than  is used for comparing the instantiation of a
preference in one scheme with the instantiation of the same
4.2.2. Context relationships and entity interfaces preference in the other scheme. The definition of this rela-

As seen earlier, a design principle introduces a set ofion is given in Figure 11. It can be seen that, if a preference
embodiments and a set of context relationships betweeimvolves minimizing some property, the better instantiation
of the preference is the one with the smaller value; simi-

larly, if a preference involves maximizing some property,

1 domain means
2 =::= ( hidden scheme name : string,
3 type : means_type, . L.
4 funcs_provided : set of func.id ). | domain principle
2 =::= { P: means(P) and
5 all means(M): 3 P.type = a_principle }.
6 is_a_possible behaviour of ( M.funcs provided, M ).
4 domain entity
7 domain means_type 5 =::= { E: means(E) and
8 =::= { aprinciple, an entity }. 6 E.type = an_entity }.
Fig. 7. Modeling a design means in Galileo. Fig. 8. Generic design principle and design entity models.
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1 domain interface

2 =::= ( hidden scheme name : string,
3 entity 1 : entity.id,

4 entity 2 : entity_id ).

5 all interface(I):

6 exists entity(E1l), entity(E2):
7 I.entity 1 = El1.id and

8 I.entity 2 = E2.id and
9
0

is_in_the_same_scheme_as( I, E1 ) and

1 is_in_the_same_scheme_as( I, E2 ).

Fig. 9. Modeling generic interfaces between design entities.
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hicle design. The presentation of this design problem com-
prises three phases. First, in Section 5.1, the design
specification will be discussed. Second, in Section 5.2, an
appropriate constraint-based design knowledge base will
be presented. Finally, in Section 5.3, the development of
two schemes based on the design specification will be
presented. The use of constraint filtering in the process of
developing these schemes will be described using a num-
ber of screen shots from a constraint filtering system that
is capable of reasoning about the extended version of the
Galileo language that was proposed during this research.

5.1. The design specification

the better instantiation of the preference is the one with th&ach requirement in the design specification can be re-

larger value.

garded as a constraint on the schemes that the designer will

As discussed in Section 3, no scheme for a productshoulaevebp- The requirements defined in the design specifica-

dominate(in the sense of Pareto optimalignother scheme.

tion can be modeled as constraints that are universally quan-

This requirement is implemented as the constraint in Figlified over all instances of the scheme representation. For
ure 12. If a designer develops a scheme that is dominate@x@mple, consider the design specification to design a prod-
by a scheme that was previously developed, this constraiftCt that exhibits the following properties:

will be violated and a message will be issued to that effect.
Similarly, if a scheme is developed that dominates a previ-
ously developed scheme, the constraint will be violated. In
either case, it is intended that, as a result of the violation
message, the designer will be motivated to improve the

inferior scheme or else discard it.

provides the functiomprovide transport
is recyclable

has awidth not greater than 2 m
hasminimal massand

comprises aninimal number of parts

The constraint in Figure 12 is defined in terms of a rela- I Nis specification contains one functional requirement and

tion calleddominates , which is also defined in that fig-

four physical requirements. The functional requirement states

ure. We can see that one scheme dominates another schetfigt the product must provide the functiprovide trans-

if the first schemémproves_on the latter(in respect of

port. The physical requirements state that the product must

some preferengavhile at the same time it is not true that Perecyclable have avidth not greater than 2 rthavemin-

the latter schemimproves_on the first in respect of any

preference.

imal mass and comprise aninimal number of partsA
constraint-based model of this design specification is pre-

The relationimproves_on , between two schemes, is Sented in Figure 13.

defined in terms of the relatiobetter_than , between

Briefly, this model extends the generic concept of a scheme

instantiations of preferences. However, this definition ist include constraints reflecting the requirements of the de-

another. Therefore, it is an application-specific concept.

5. AN EXAMPLE OF INTERACTIVE
CONCEPTUAL DESIGN

In this section, an example conceptual design problem i
presented. The design problem considered is based on

1 domain intention
2 =::= { minimal, maximal }.

3 domain preference
4 =::= ( value : real,
5 intent : intention ).

Fig. 10. Modeling a design preference.
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designed should be able to provide the functiwavide
transport . Line 5 states that the product shouldriee
cyclable . Thisrequirementis stated using a relation whose
implementation could ensure that the materials used in each
of the design entities in the scheme are themselves recycla-

e less tha 2 m isdefined on lines 6—8. The value of the

gle. The categorical physical requirement that width

width of the scheme is computed using the function
width_of , whichis part of the application-specific knowl-
edge of the organization. There are two design preferences,
one related to magéines 9-11, the other, to the number of
parts in the schem@ines 12-14. Theintent of these
preferences is that theialue beminimal . Their values
being computed with the functionsass_of and num-
ber_of parts_in , respectively. Both of these func-
tions are part of the application-specific knowledge of the
organization concerned.
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1 relation better_than( preference, preference )

2 =::={ (P1,P2): Pl.intent = minimal and

3 P2.intent = minimal and P1.value < P2.value,

4 (P1,P2): Pl.intent = maximal and Fig. 11. Comparing two design preference values to
) P2.intent = maximal and Pl.value > P2.value }. determine which is better.

In order to compare the schemes that are generated lr9 must develop a set of alternative schemes for the
the designer, the application-specific relatiomprove- required product. The constraint-based model of the de-
s_on, referred to in Figure 12, must be defined. The defi-sign specification contains constraints relating to the fol-
nition of this relation is presented in Figure 14. It can belowing issues:

seen that the relation is defined in terms of the design pref- | ~,nhstraints based on the functional requirements of the

erences on thenass and number_of_parts in the product as stated in the design specification;

scheme. The relationsas_better_mass_than  and e constraints based on the categorical physical require-
has_better_number_of_parts_than is defined in ments of the product, or its life cycle, as stated in the
terms of thebetter_than relation that was presented design specification; and

earlier. :

e constraints based on the preferences regarding the val-
ues of particular design properties.

5.2. An example design knowledge base The designer’s task is to develop a number of alternative

In Figure 15, an illustration of the means contained in arSchemes that satisfy the design specification. However, from

example design knowledge base is presented. This knowf constraint processing pom_t of view, their tgsk is to searqh

edge base comprises one design principle, caieyicle for a set of schemes that satisfy the constraint-based design

and a number of design entities, such asheel assembly specification representation, each scheme resulting from
and asaddle The set of behaviors for each means in themMaking different choices among the various means for pro-
knowledge base is presented under the icon representingding the required functionality. This process was dis-
the means. Recall that behavior isetof functions that the ~ cussed in Section 3. o _

means can provide simultaneoug§ection 3.2.2 Thus _ 1ne selection of means for providing the required func-
the behaviors for a means comprise a set of sets. Most dtonality is subject to the various constraints in the design
the means in this example knowledge-base have only onsPecification. Fpr examplg, if a de§|gner selects a means to
behavior: that is, the set of behaviors for each means corfMmP0ody a particular function that is not capable of provid-
tains only one set of functions. Furthermore, most of thdnd the.req'uired functionality, this violates the constraint
behaviors of the means in this knowledge base can proviggown in Figure 6. . ,

only one function at a time. However, thelded framand As.the designer select's ameans for prov@ng a particular
axle design entities have more complex behaviors. Thé‘ur_lcnon,further constraints are introduced into the sc_heme
molded frameentity can provide two functions simulta- being deve_loped, b_e(_:aus_e each means has an associated set
neously:provide supporandsupport passengefhe axle of cons_tramts defining its prope_rtles. In t_hls way, th_e
entity has two behaviors: it can provide the two functions,conStr";“m,'bas‘Ed modgl of the design comprises constraints
support wheeandfacilitate rotation simultaneously, and it representing the requirements stated in the design specifi-

can also be used to provide the single funcpamch holes cation as well as constraints on functionality, scheme struc-
ture, and life-cycle issues. The only restriction on the order

. in which the designer makes decisions is that design enti-
5.3. Scheme generation ties can only be introduced to embody functions that exist

Once a constraint-based model of the design specificdl the scheme. The degree to which the designer wishes to

tion has been developed, the desigfmrteam of design- specify values for the parameters of design entities and in-
’ terfaces before completing the function decomposition is

essentially a matter of personal preference.

In the following discussion of how the approach pre-
1 alldif scheme(S1), scheme(S2): sented here supports interactive conceptual design, a num-
2 not dominates( S1, 52 ). ber of illustrative devices will be used. First, the decisions
that the designer makes will be illustrated through the use
of diagrams. Second, at various critical points in the evolu-
tion of a scheme a text-based screen shot will be presented
to illustrate a number of critical aspects of the evolution of
Fig. 12. Comparing two schemes. its constraint-based model.

3 relation dominates( scheme, scheme)
4 =::={ (51,82): improves_on( S1, S2) and
5 not improves.on( S2, S1 ) }.
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1 domain vehicle_scheme

2 =::= { S: scheme( S ) and

3 provides_the function( S.structure.intended function,

4 ’provide’, ’transport’ ) and

5 recyclable(S) and

6 exists( S.width : real ) and

7 1S.width = widthof( S ) and

8 S.width =< 2.0 and

9 exists( S.mass : preference ) and

10 S.mass.intent = minimal and

11 !S.mass.value = massof( S ) and

12 exists( S.number of parts : preference ) and

13 S.number of parts.intent = minimal and Fig. 13. A constraint-based model of the design
14 !S.number_of parts.value = number_of parts_in( S ) }. specification.

The functional requirement for our scheme is illustratedThe presence of these additional embodiments is due to the
in Figure 16. The functional requirementpsovide trans-  constraint-based description of the bicycle design principle.
port. The initial constraint-based model of the scheme be- Figure 19 depicts the state of the constraint model of

ing developed here is illustrated in Figure 17. the scheme after the designer has seleetebicycle

It can be seen from Figure 17 that fhéended_func- as thechosen_means for providing theintended
tion of the structure of scheme_1 is to provide function  of thestructure of scheme_1. The effect
transport . This function was specified in the definition of this is that a new parameter, callddicycle 1 , is

of thevehicle_scheme . This function has an identifier automatically introduced.The parametebicycle 1 s

(id ) of 0 and the empty set as its setmefasons . This  an instance of an application-specific design principle.
reflects the fact that this function was introduced into theApplication-specific design principles can be defined as
scheme because it was required by the design specificatiospecializations of the generic design princigleig. 8).

in other words, no other function was responsible for thisThe principle of a bicycle is defined in Figure 20.

function being introduced into the scheme. The assignment This application-specific principle is defined to be a spe-
of the 0 identifier and the empty set of reasons is done by aialization of the generic notion of a princip(éne 2); the
constraint, quantified over all schem@¥'Sullivan, 1999.  specialization is specified by the extra properties that are
It can also be seen from this figure that theass and  defined in lines 3-22.

number_of _parts  associated witscheme_1 are pref- Figure 2 shows that bicycle principle involves five
erences. It can be seen that, in both casesinteat is embodiments . These are specified in lines 3—7 of Fig-
that these should havainimal values. ure 20. The functions that Figure 2 states are to be provided

In Figure 18 an instance of the design principleycle
calledbicycle 1 has been used to embody the functio-
vide transport This design principle introduces the need Structured fields are indicated on the screen by the presencéof a

. . . . hich is intended to “invite” the user to examine the field further by
for five more functions to be embodied. The designer musﬁlxpanding it; the value of a scalar field whose value is known is shown;
now select means for embodying each of these functionSor a scalar field whose value is not yet knoven_ isshown.

1 relation has_better mass_than( vehicle_scheme, vehicle_scheme )
2 =::= { (81,82): better_than( Sl.mass, S2.mass ) }.

3 relation has_better number of parts_than( vehicle_scheme, vehicle_scheme )
4 =::= { (81,S2): better_than( S1.number of parts, S2.number of parts ) }.

5 relation improves_on( vehicle_scheme, vehicle_scheme )
6 =::= { (81,52): has better mass_than( S1, S2 ) or Fig. 14. Determining if one scheme im-
7 has_better number of parts_than( S1, S2 ) }. proves on another.
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bicycle

T

behaviours = { { provide transport } }

r

wheel assembly

molded frame

behaviours = { { faciliate movement } }

r

behaviours = { { provide support,
support passenger } }

T

handlebar assembly

air cushion

behaviours = { { change direction } }

T

behaviours = { { faciliate movement } }

T

engine

skateboard

behaviours = { { provide energy } }

T

behaviours = { { provide transport } }

steering assembly

behaviours = { { change direction } }

T

pedal assembly

B. O’Sullivan

T

behaviours = { { provide energy } }

saddle

frame

behaviours = { { support passenger } }

T

chain

behaviours = { { provide support } }

chassis

behaviours = { { transmit energy } }

T

behaviours = { { provide support } }

harness

axle

behaviours = { { support wheel, faciliate rotation },

behaviours = { { support passenger } }

{ punch holes } }

Fig. 15. The means contained in an example design knowledge base and their possible functionalities.

by these embodiment$acilitate movement , pro-
vide energy , support passenger , change di-
rection , andprovide support ) are specified in lines
8-17 of Figure 20.

The context relationships between the embodiments
that are shown in Figure 2 are stated in lines 18-22 of
Figure 20. For example, in line 18 it is stated that a
drives relationship must exist between tlenbodi-
ment e2 and embodiment el . Ultimately, as was dis-
cussed in Section 3, each embodiment introduced by a

provide
transport

Fig. 16. The functional requirement for a product.
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Conceptual Design Adviser System — designer_1

. scheme name

.structure.intended function.verb
.structure.intended function.noun
.structure.intended function.id
.structure.chosen_means
.structure.reasons

.width

.mass.value

.mass.intent

.number_of parts.value

.number_of parts.intent

‘my vehicle’
provide
transport
0

{}
minimal

minimal

317

> expand scheme_l.structure

> expand scheme_l.structure.intended_function
> expand scheme_1.mass

> expand scheme_l.number_of_parts

Fig. 17. Examining the initial state of the scheme.

principle is realized by the introduction of a set of one or Although the designer could continue to develop the func-
more design entity instances. We will see how these contion decomposition of the scheme by employing more de-
text relations affect interactive conceptual design later irsign principles, we will assume that he or she will proceed
this discussion. by embodying each function with a design entity. In Fig-

provide

transport

bicycle 1

facilitate provide support change provide
movement energy passenger direction support
O O O

Fig. 18. Using a design principle to embody the functional requirement.
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Conceptual Design Adviser System — designer_1

[ ] scheme_1.scheme name ‘my vehicle’
[] scheme_1.structure.intended function.verb provide

[] scheme_1.structure.intended function.noun transport
[] scheme_1.structure.intended function.id 0

[] scheme_1.structure.chosen means a bicycle
[] scheme_1.structure.reasons {}

[] scheme_1.width -

[ ] scheme_1.mass >

[ ] scheme_1.number _of parts >

[] bicycle-1 >

> scheme_l.structure.chosen_means = a_bicycle
Info: Parameter bicycle_1 has been created...

Fig. 19. Using the principle of a bicycle ischeme_1 to provide the functiorprovide transport

ure 21 the designer selects tlikeel assemblgesign entity In Figure 22 the state of the constraint model of the de-
to embody the functiorfacilitate movementThis intro-  signer’s scheme is presented. In this figure the designer
duces an instance of this means, calldtkel assembly,1 begins to explore the parametbicycle_1 . It can be
into the scheme. As the designer introduces design entitieseen thatbicycle 1  is a design principle and that the
into the scheme, the context relations that exist between thieincs_provided by this principle is a singleton set con-
function embodiments must be considered. However, as thetaining the value 0; this means thaitycle 1  provides

is only one design entity in the scheme presented in Figene function, namely, the function whogk is O: this was

ure 21, no context relations are considered at this point irseen in Figure 17 to be the function required in the design
the scheme’s development. specification. It can also be seen from Figure 22 that

domain bicycle
=::= { B: principle(B) and

exists( B.el : embodiment ) and
exists( B.e2 : embodiment ) and

) and
exists( B.e4 : embodiment ) and

exists( B.e5 : embodiment ) and

1

2

3

4

5 exists( B.e3 : embodiment
6

7 :

8 provides_the function( B.el.intended function,

9 ’facilitate’, ’movement’ ) and
10 provides_the_function( B.e2.intended function,
11 ’provide’, ’energy’ ) and
12 provides_the function( B.e3.intended function,
13 ’support’, ’passenger’ ) and
14 provides_the function( B.e4.intended function,
15 ’change’, ’direction’ ) and
16 provides_the function( B.e5.intended function,
17 ’provide’, ’support’ ) and
18 drives( B.e2, B.el ) and
19 supports( B.e5, B.el) and
20 supports( B.e5, B.e2) and
21 supports( B.e5, B.e3) and
22 supports( B.e5, B.e4) }.

Fig. 20. Definition of a company-specific design principle.
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provide

transport

bicycle 1

facilitate
movement

provide
energy

support

passenger

change
direction

provide

support

wheel assembly 1

Fig. 21. Using a design entity to embody a function in the scheme.

Conceptual Design Adviser System

designer_1

[] bicycle 1.
[] bicycle 1.
[] bicycle 1
[] bicycle 1
[] bicycle 1
[] bicycle-1
[] bicycle-1
[] bicycle-1
[] bicycle-1
[] bicycle-1
[] bicycle-1
[]

type
funcs_provided

.el.intended function.verb
.el.intended function.noun
.el.intended function.id
.el.chosen means
.el.reasons

.e2

.e3

.ed

.eb

wheel assembly_1

a_principle

{0}

facilitate
movement

1
a_wheel_assembly
10

>

v vV vV Vv

> bicycle_l.el.
Info: Parameter wheel_assembly_1 has been created...

chosen_means = a_wheel_assembly

Fig. 22. Incorporating avheel_assembly

https://doi.org/10.1017/50890060402164043 Published online by Cambridge University Press

entity to provide the functioffiacilitate movement

319


https://doi.org/10.1017/S0890060402164043

320 B. O’Sullivan

bicycle_ 1  contains a number of other structured fields, that the function whose identifier is O is a reason for this
namely,el, e2, e3, e4, ande5. These fields represent embodiment. The designer choosaswheel assem-
further embodiments that the designer must make in ordeoly as thechosen_means for this embodiment. This
to properly incorporate thbicycle 1  design principle causes the automatic introduction of another new param-
into scheme_1. eter,wheel_assembly 1 , into the scheme.

In Figure 22 the designer explores the parameter InFigure 23 the designer has chosen to embody the func-
bicycle_1.el by expanding it. It can be seen that the tion provide energywith the pedal assemblgesign entity.

function to be embodied ifacilitate movement . This introduces an instance of this means, calpedial
This function has arid of 1 because this is the next assembly linto the scheme. Because thdves context
unique function identifier for this scheme. Theasons relation must exist between the embodiments of the func-

for the embodimenbicycle_1.el is the singleton set tionsfacilitate movemenand provide energythis caused,
containing the function identifier 0; this represents the factin addition to the existence of the design entitigbeel

provide

transport

bicycle 1

facilitate provide support change provide
movement energy passenger direction

wheel assembly 1 pedal assembly 1
| T
| chain 1 :
! I
| 1= 77 T |
| | | |
| | | |
| | | |
| | | |
| | |
N DR D ,,,,\,,,,‘,,,\
! mechanical interface 1 | | mechanical interface 2 “
| drives [ drives |

Fig. 23. The effect of a context relation on the configuration of design entities.
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assembly land pedal assembly,lthe introduction of an ists adrives relationship between the design entities that
instance of thehaindesign entity, calle¢hain 1 Both of  are used to provide the functionality associated with them.
these interfaces are used, along valttain 1, to embody the The precise realization of the context relationship speci-
drivesrelation that should exist betweerheel assembly 1 fied in a principle depends on which design entities are

andpedal assembly.1 used to realize the embodiments that must satisfy the con-
In Figure 24 the effects on the constraint model of thetext relationship. Suppose thapadal _assembly isthe
scheme of the designer’s decision to wseedal_as- design entity used tprovide energy ~ and awheel_as-

sembly as thechosen_means to embody the function sembly is the design entity used facilitate move-

provide energy  are illustrated. The first effect is that a ment. We can see in Figure 25 the relationship that would
new parametepedal_assembly_1 , is introduced into have to be satisfied between these two entity instances in
the constraint model. Although it is not apparent in Fig-order to properly embody the drives context relation. Ac-
ure 24, the parametgredal_assembly 1 is a design cording to the definition of this relationship, if ped-
entity. If the designer were to expambdal_assem- al_assembly is todrive awheel assembly , they
bly 1 ,we would see thatitiel field contains the value 2, must bein_the same_scheme and there must be a fur-
reflecting the fact that it is the second design entity to bether design entity instance,chain , in the same scheme.

incorporated into the scheme. These entity instances must be interfaced in the following
Also shown in this figure are the new parametersway: there must be anechanical_interface be-

chain_1 , mechanical_interface 1 , and mech- tween thepedal_assembly  and thechain and another

anical_interface_2 . As already stated, these param- one between thetheel_assembly and thechain .

eters exist in order to fulfill the context relatiairives As we shall now see, mechanical_interface is

that must exist between the embodiments for the functionsimply a specialization of the generic notion ofiater-

provide power and facilitate movement , as face thatwe encountered in Section 4.2.2. The definition

specified in the principle of a bicycle. The need for this of a mechanical_interface is given in Figure 26. It

context relation is due to thkicycle  design principle can be seen to be a specialization of a application-specific

used earlier in the interaction. notion of interface, calledialeigh_interface , Which,

The meaning of thedrives context relation is an from its definition in Figure 27, can be seen to be a special-
application-specific concept. One possible definition for itization of the generic notion dhterface
is defined in Figure 25. It can be seen thairares rela- It can be seen from Figure 26 thatmaechanical
tionship holds between a pair of embodiments if there exinterface is araleigh_interface whosetype

Conceptual Design Adviser System — designer_1

bicycle_1.type a_principle
bicycle_1.funcs_provided {0}

bicycle_1l.el

bicycle_1.e2.intended function.verb provide
bicycle_1.e2.intended function.noun energy
bicycle_1.e2.intended function.id 2
bicycle_1.e2.chosenmeans a_pedal_assembly

bicycle_1.e3
bicycle_1.e4
bicycle_1.eb
wheel_assembly_1
pedal_assembly_1
chain_1
mechanical_interface_1
mechanical_interface_2

[]
[]
[]
[]
[]
[]
[]
H bicycle_1.e2.reasons {0}
[]
[]
[]
[]
[]
[]
[]

vV VvV VvV VvV VvV VvV YV

> bicycle_1.e2.chosen_means = a_pedal_assembly

Info: Parameter pedal_assembly_1 has been created...

Info: Parameter chain_1 has been created...

Info: Parameter mechanical_interface_1 has been created...
Info: Parameter mechanical _interface_2 has been created...

Fig. 24. Using a pedal assembly to provide the functimovide energy
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1 relation drives( embodiment, embodiment )

2 =::= { (E1,E2): drives( { X | exists entity( X ):

3 derives from( X, E1 ) },

4 { Y | exists entity( Y ):

5 derives from( Y, E2 ) } ) }.

(=)

relation drives( set of entity, set of entity )
=::= { (E1s,E2s): exists El in Els, E2 in E2s: drives( E1, E2 ) }.

-~

8 relation drives( entity, entity )

9 =::= { (P,W): pedal_assembly(P) and wheel_assembly(W) and

10 is_in_the_same_scheme_as( P, W ) and

11 lexists chain(C):

12 is_in_the_same_scheme_as( P, C ) and

13 lexists mechanical _interface(M1):

14 Mi.entityl = P.id and

15 Mil.entity2 = C.id and

16 Ml.relationship = drives and

17 lexists mechanical_interface(M2):

18 M2.entityl = W.id and

19 M2.entity2 = C.id and Fig. 25. The meaning of thelrives context
20 M2.relationship = drives }. relation.

field contains the valuenechanical and that also has an directionwith the design entithandlebar assemblgnd the
additional field calledrelationship that specifies the functionprovide supportvith the design entitframe Due
nature of the mechanical relationship involved in the inter-to the bicycle design principle, a context relation called
face. It can also be seen that three kinds of relationship arsupportsmust exist between the embodiment of the func-
supportedcontrols , drives , andsupports . tion provide supportand the embodiments of each of the

It can be seen from Figure 27 thataeigh_inter- functionsfacilitate movemenprovide energysupport pas-
face is simply aninterface with an additional field sengerandchange direction
calledtype , which specifies the class of relationship in- Each of these context relations is embodied byexhan-
volved in the interface; it can be seen that two classes oical interfacethat defines asupportsrelationship. The de-
relationship are supportedpatial andmechanical . tails of these mechanical interfaces that defireupports

Therefore, the parametehain_1 existsin orderto sat- relationship will be specified during detailed design. Be-
isfy the context relation that the embodiment for the func-cause all the functions have been embodied in the scheme
tion provide power drives the embodiment for the presented in Figure 29, the designer can focus on selecting

function facilitate movement . According to the values for the attributes associated with each design entity
application-specific definition of the@rives  relation there in the scheme. In making these decisions the designer must
must be amechanical_interface betweenped- ensure that the various constraints that are imposed on her

al_assembly 1 andchain_1 and another between due to the design specification or the design knowledge

wheel_assembly 1 andchain_1 . This will be ex- base must be satisfied. In addition, this scheme must be

plored in further detail in Figure 28(The parameter compared with any other alternative scheme for this prod-

chain_1 is the third design entity to be incorporated into uct that is developed.

this scheme; thus, if we were to expand it, we would see In Figure 30, the state aicheme_1 is shown after sev-

that itsid field contains the value)3 eral more decisions have been made by the designer, namely,
Figure 29 shows the state of the scheme after the deafter materials have been selected for all the entities from

signer has chosen to embody the functsupport passen- which it is configured. In this figure, thenass andnum-

ger with the design entitysaddle the functionchange ber_of_parts fields of scheme_1 have been ex-

1 domain mechanical_interface
2 =::= { S: raleigh interface(S) and S.type = mechanical and
3 exists( S.relationship : mechanical relationship ) }.

4 domain mechanical_relationship
5 =::= { controls, drives, supports }. Fig. 26. Modeling amechanical interface.

https://doi.org/10.1017/50890060402164043 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060402164043

Interactive constraint-aided conceptual design 323

1 domain raleigh interface
2 =::= { I: interface(I) and
3 exists( I.type : raleigh interface type ) }.

4 domain raleigh interface_type
5 =::= { spatial, mechanical }.

Fig. 27. Modeling company-specific interfaces.

panded. It can be seen that the total mass of this schemesggner decisions can be instantly reported for corrective

estimated to be 12 units and that it comprises six partsaction.

These values are computed using a number of application-

specific functions defined over sets of entities used in

particular scheme. Their definition is trivial, so it will not

be considered further here. Section 5 presented a detailed discussion of how the ap-
In Figure 31 a second scheme is presented, whichproach described in this paper can be used to provide the

for simplicity, is based on the same embodiments usedinderlying reasoning capability of an interactive concep-

to developscheme_1. In this figure, the state of tual design system. The interaction between the front-end

scheme_2 after materials have been selected forGUI, presented using diagrams, and the back-end constraint-

wheel_assembly 2  and pedal_assembly_2 s il- based model, presented using text-based screen shots, illus-

lustrated. It can be seen that the massscieme 2 is  trates how the work presented here can be used as a basis

currently estimated to be 20 units and that it comprisedor building interactive CAD systems to support conceptual

six parts. Therefore, this scheme is certainly dominatedalesign.

by scheme_1 as, although both schemes have the same The research presented here has been validated in a num-

number of parts as each othecheme_1 has the smaller ber of industrial settings on a number of different design

mass. This means that, asheme_2 does not improve domains. For example, it has been used to develop concep-

on scheme_1 on any design preferencecheme_2 is  tual designs for products in mechatronics, optical systems,

dominated byscheme 1. The designer’s attention is and electronic component design.

drawn to this fact by the message stating that a constraint

wola’uop has been detected. In particular, in this case, th%. COMPARISON WITH RELATED RESEARCH

constraint that compares schemes to ensure that none are

dominated is violated. This illustrates how, during an in-The approach to supporting conceptual design presented

teractive design session, inconsistencies arising from deiere is based on a combination of design theory, constraint

a5.4. Review of the example

Conceptual Design Adviser System — designer_1

[] bicycle 1 >

[ ] wheel_assembly_1 >

[ ] pedal_assembly 1 >

[] chain_1 >

[ ] mechanical_interface_1.entity_1 1

[ ] mechanical interface_1.entity 2 3

[ ] mechanical interface_1.type mechanical
[ ] mechanical_interface_1.relationship drives

[ ] mechanical_interface_2 >

> contract bicycle_1
> expand mechanical_interface_1

Fig. 28. Embodying thedrives context relation.
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provide

transport

bicycle 1

facilitate provide support change provide
movement energy passenger direction

wheel assembly 1 pedal assembly 1 saddle 1 handlebar assembly 1 frame 1

chain 1

I 7: mechanical interface 6 ‘r
| supports |

hanical interface 1! ' |mechanical interface 5 |
mechanical interface ical i e - -
|, mechanical interface 2 | ‘ supporis J

|

|

|

|

1

|

|

|

|

|

|

|

drives | drives T :
|
|
1
|
|
I
I
I
1

|
|
I e ___ : mechanical interface 4 ‘r
|
| | supports I
|
|
|
|

:mechanical interface 3 ‘r
| supports |

Fig. 29. An example scheme configuration.

processing techniques and Pareto optimality. In this sec6.1. Design theory approaches

tion, this approach will be compared with a number of state

of the art approaches that have been reported in the literdhe design theory on which the approach presented here is
ture. The approaches are categorized as being either desipased assumes that products exist to provide some required
theory driven(Section 6.}, constraint processing driven functionality. There are a number of theories of design,
(Section 6.2, or Pareto optimality drivefSection 6.3. such as the theory of domaifdndreasen, 1992and the
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Conceptual Design Adviser System — designer_1
scheme_1.scheme name 'my vehicle’

[]

[ ] scheme_1.structure >

[] scheme_1.width -

[ ] scheme_1.mass.value 12

[] scheme_1.mass.intent minimal
[ ] scheme_1.number_of parts.value 6

[ ] scheme_1.number of parts.intent minimal
[] bicycle-l

[ ] wheel_assembly._1

[ ] pedal_assembly._1

[] chain_1

[ ] mechanical_interface_1
[ ] mechanical interface 2
[] frame_1

[ ] mechanical interface_3
[ ] mechanical interface 4
[] saddle_1

[ | mechanical interface 5
[ ] handlebar_assembly_1

[ ] mechanical interface 6

vV VvV VvV VvV VVVVV VYV

> expand scheme_1
> expand scheme_l.mass
> expand scheme_l.number_of_parts

Fig. 30. The state ocheme_1 once materials have been selected for all the entities from which it is configured.

general procedural model of engineering dedignbka &  functional decomposition of a product and its physical com-
Eder, 1992, that describe the parallelism between the de-position in terms of parts.
composition of a functional requirement and the composi- The Scheme-Builder syste(Bracewell & Sharpe, 1996;
tion of a set of parts that fulfill that requirement. Porter et al., 1998uses function—means trees as a basis

The function—means tree approach to design synthesi®r structuring a design knowledge base and generating
is one approach that assists the designer is decomposingsahemes. The system interprets a function as an input-
functional requirement into an equivalent set of functionsoutput transformation. The advantage of the system is that
that can be provided by a set of known paisiur, 1990. it is very systematic in terms of how functions are decom-
A function—means tree describes alternative ways of proposed into sets of equivalent functions. However, its appli-
viding a top-levelroot) function through the use of means. cations are limited to very highly parameterized design
A means is a known approach to providing functionality. domains, such as mechatronics and control systems. The
Two types of means can be identified in a function—-meansymbolic approach to representing function adopted in the
tree: principles and entities. A principle is defined by aresearch presented here, coupled with the use of context
collection of functions that, collectively, provide a par- relations in design principles, makes our approach far more
ticular functionality; it carries no other information than flexible.
the lower level functions to be used in order to provide a
higher level function. An entity represents a part or
subassembly. 6.2. Constraint-based approaches

In the approach adopted here, the function—-means tree
concept was extended by adding context relations betweeft number of systems have been developed for support-
the functions that define a design principle. This enables &g aspects of conceptual design based on constraints.
computer to assist a designer to reason about the configi-he Concept Modeler system was one of the earliest
ration of a set of design entities that obey the relationship®f such systems reported in the literaty8errano, 198y
that should exist between the functions in a design. It als?spects of the approach adopted in Concept Modeler
helps to ensure that there is a valid mapping between theere extended in a system called Design StiBeickley
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Conceptual Design Adviser System — designer_2
scheme_2.scheme name ‘another vehicle’
scheme_2.structure >
scheme_2.width _
scheme_2.mass.value 20
scheme_2.mass.intent minimal
scheme_2.number_of parts.value 6
scheme_2.number_of _parts.intent minimal
bicycle_ 2
wheel _assembly_2
pedal _assembly_2
chain 2
mechanical_interface 7
mechanical _interface_8
frame 2
mechanical_interface_9
mechanical_interface_10
saddle_2
mechanical interface_11
handlebar_assembly 2
mechanical interface_12

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

vV VvV vVvVvVvVvVvVvVVVV VvV VYV

> wheel_assembly_2.material = steel

> pedal_assembly_2.material = steel

ATTENTION: the following constraint was violated:

alldif scheme(S1), scheme(S2): not dominates(S1,S2)
> expand scheme_2

> expand scheme_2.mass

> expand scheme_2.number_of_parts

Fig. 31. The state oscheme_2 after materials have been selectedvidreel_assembly_2 andpedal_assembly_2

et al.,, 1992. These systems focused on using constrainficting with a human designer can be extended to support
processing technigues to manage consistency within the development of a number of alternative schemes for a
constraint-based model of a design. In these systems codesign specification from an initial statement of functional
ceptual designs are represented as systems of algebraind physical requirements.
equations.

The approach presented in this paper addresses a wider
variety of issues that are crucial to successful conceptud.3. Pareto optimality approaches
design. The most important of these issues is design syn-
thesis. In the approach presented here a designer is assistBide principle of Pareto optimality has been applied to a
in interactively synthesizing a scheme for a design specifiwide variety of problems in design. Most of these applica-
cation. In addition, a designer can develop multiple schemesons have used the principle of Pareto optimality in con-
for a design specification and be offered advice based on mnction with evolutionary algorithms to generate a set of
comparison of these schemes. These are critical issues tgood” design conceptdarmee, 1994; Gero & Louis, 1995;
supporting conceptual design that are not addressed in eGampbell et al., 1998 These approaches focus on the au-

ther Concept Modeler or Design Sheet. tomatic generation of design alternatives, an issue not of
The work presented here builds on earlier work on inter-nterest in the research presented here.
active constraint processing for engineering desi@mpwen The use of the principle of Pareto optimality to monitor

& Bahler, 1992. The earlier work focused on using con- progress in design has been reportPetrie et al., 1996

straint processing as a basis for interacting with a humaihe approach focuses on the “tracking” of Pareto optimal-
designer who was working on a detailed model of designity to coordinate distributed engineering agents. Tracking
The work presented here builds on this work by demonstratPareto optimality, in this case, means that the problem solver
ing that using constraint processing as the basis for intebeing used can automatically recognize Pareto optimality
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loss and the particular opportunity to improve the designBirmingham, W.P., & Ward, A(1995. What is concurrent engineering?
That approach inspired aspects of the approach to using Artificial Intelligence for Engineering Design, Analysis and Manufac-

. L turing 9, 67—68.
Pareto optimality in the research presented here. Howevegowen, 1(1997). Using dependency records to generate design coordina-
in this research, Pareto optimality is used to compare two tion advice in a constraint-based approach to concurrent engineering.

; i P At _ Computers in Industry 33191-199.
different schemes for a design specification rather than reCBowen, J., & Bahler, D.(1992. Frames, quantification, perspectives

ognizing when Pareto optimality is lost within an individ-  and negotiation in constraint networks in life-cycle engineering.
ual scheme. In this research, it is believed that the natural ternational Journal for Artificial Intelligence in Engineering, 7

it ; i 199-226.
competition between deSIQnerS can be harmnessed to mogowen, J., & Bahler, D(199]). Conditional existence of variables in

vate improvements in the quality of schemes. generalised constraint networks. fnoc. Ninth National Conf. Artifi-
cial Intelligence (AAAI) pp. 215-220.
Bracewell, R.H., & Sharpe, J.E.EL996. Functional descriptions used in
computer support for qualitative scheme generatioriScheme-
7. CONCLUSION builder.” Artificial Intelligence for Engineering Desigh and Manufac-
i ; ; [ _ turing 10, 333-345.
This paper prese_nts an |nteractlye ConStramt ba_sed _a%uckley, M.J., Fertig, K.W., & Smith, D.E1992. Design sheet: An en-
proach to supporting a human designer during engineering vironment for facilitating flexible trade studies during conceptual de-
conceptual design. The approach is based upon an expres- sign. INAIAA 92-1191 Aerospace Design Corifvine, CA, February

. ; - : _1992.
sive and general technlque for mOdeImg' the deSIgn knoWIBuur, J.(1990. A theoretical approach to mechatronics desigmD The-

edge that a designer can exploit during a design project; the sis. yngby, Denmark: Technical University of Denmark.
life-cycle environment that the final product faces; the de-Campbell, M.I., Cagan, J., & Kotovsky, K1998. A-design: Theory and

; i ; ; ; implementation of an adaptive agent-based method of conceptual de-
sign specification that defines the set of requirements that sign. InAtrtificial Intelligence in Design '98Gero, J., & Sudweeks, F.,

the product must satisfy; and the structure of the various ggs), pp. 579-598. Dordrecht: Kluwer Academic.
schemes that are developed by the designer. A comput&hakrabarti, A., & Blessing, L(1996. Guest editorial: Representing func-

tional reasoning environment based on constraint filtering Rﬂogﬁd?gc'gjfeeigggﬁr_tg'g';' Intelligence for Engineering Design and

is proposed as the basis of an interactive conceptual desi@hngen, M.v., O'Sullivan, B., Bowen, J., Ferguson, A., & Baggaley, M.
support tool. Using such a tool, the designer can be assisted (1997. Using constraint programming to simplify the task of specify-

; ; ; ; ing DFX guidelines. InProc. 4th Int. Conf. Concurrent Enterprising
in developing and evaluating a set of schemes that satisfy (Pawar, K.S., Ed, pp. 129-138, University of Nottingham, UK. Oc-

the various constraints imposed on the design. tober 1997.

The primary contribution of this research is that it Duffy,A.H.B.,Andreasen, M.M., MacCallum, K.J., & Reijers, L.{4993.
provides a novel approach to supporting the interaction a;sggsic;r;oég'gﬂggsfor concurrent engineeridgurnal of Engineer-
between the human designer and a constraint-based eniiings, B., & Freuder, E.C., Ed&998. IEEE Intelligent Systems and

ronment for conceptual design. The approach presented Their Applications 13(4) Special Issue on configuratipn

here not only addresses the issue of modeling and reasoﬁl_ Fattah, Y.(1996. Constraint logic programming for structure-based
reasoning about dynamic physical systersgificial Intelligence in

ing about the design of products from an abstract set of gnpgineering 1 253-264.
requirements, but it also demonstrates how life-cycle knowl|Fleischanderl, G., Friedrich, G., Haselbdck, A., Schreiner, H., & Stumpt-

; ; ; ner, M.(1998. Configuring large systems using generative constraint
edge can be Incorporated into the conceptual deS|gn of a satisfaction|EEE Intelligent Systems and Their Applications 13(4)

product and how alternative schemes can be compared. 5g9_gg.
French, M.J(1971). Engineering Design: The Conceptual Stagendon:
Heinemann Educational Books.
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