
        

The synthesis of 3-D form-closure grasps*
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SUMMARY
This paper presents a new formulation of computing three-
dimensional (3-D) frictional form-closure grasps of n
robotic fingers. As 3-D form-closure grasps involve 6-D
wrench space, we first propose a recursive reduction
technique to transform the complicated problem in the 6-D
space into a simpler 3-D one. Next, we rewrite the sufficient
and necessary condition for form-closure grasps into its
equivalent form of two sets of linear inequalities. Then,
according to the linear inequality theory, the problem is
transformed to searching for a set of points which ensure the
inconsistency of each of the two linear inequality systems.
To search for such points, we proposed two methods: The
first one is based on testing whether the convex region
formed by each linear inequality system is empty, while the
second one relies on the potential field method. We have
implemented the algorithm and confirmed their efficiency
for the synthesis of 3-D form-closure grasps.

KEYWORDS: Form-closure grasps; Multifingered robot hand;
Recursive reduction technique; Linear inequalities.

1. INTRODUCTION
Multifingered grasping has aroused remarkable interest over
the last two decades for its potential in performing dextrous
and fine manipulation tasks. Although its use is still
confined to laboratory research due to the overall complex-
ity, much work has been done in this area concerning
mechanical design,1,2 kinematics,1,3,4 grasp planning5,6 and
dextrous manipulation.7,8 In this paper, we address the
problem of computing stable grasps of polyhedral objects, a
fundamental issue of grasp planning.

Form-closure and force-closure are two essential proper-
ties concerning the stability of a grasp.1,9 Under a
form-closure grasp, any external wrench applied at the
grasped object can be balanced by grasp forces of the robot
hand. While in the analysis of force-closure property,
kinematics of the robot hand must be taken into account.9 So
far, most previous research on form-closure grasps have
been devoted to the following aspects:
• Tremendous efforts have been made to test whether a

given grasp is form-closure. Salisbury and Roth1 have
shown that a necessary and sufficient condition for form-
closure is that the primitive contact wrenches resulted by

contact forces positively span the entire wrench space.
This condition is equivalent to that the origin of the
wrench space lies strictly inside the convex hull of the
primitive contact wrenches.10,11 Nguyen12 proposed a
simple test algorithm for 2-finger form-closure grasps.
Trinkle13 formulated the test of form-closure as a linear
programming problem whose optimal objective value
measures how far a grasp is from losing the closure.
Recently, the author14 has shown that the qualitative
testing can be transformed to a ray-shooting problem of a
convex hull. The developed algorithm is applicable to 2-D
and 3-D frictional and frictionless grasps with any number
of contacts.

• Compared with qualitative test, algorithms of grasp
synthesis are more important. Much of the work about
grasp synthesis concerns two phases. First, to solve for
optimal contact force yielding a stable grasp given fixed
finger positions. Buss and Hashimoto15 made a key
observation that the non-linear friction cone constraint is
equivalent to positive definiteness of a certain matrix
subject to linear constraints and then formulated it as an
optimization problem on the smooth manifold of linearly
constrained positive definite matrices via gradient flows.
Second, to compute at least one (maybe optimal) finger
contact point location that ensures a form-closure grasp.
Nguyen12 extended his test algorithm to compute all
2-finger form-closure grasps on a polygonal object. Ponce
and Faverjon5 also presented an algorithm for computing
all grasps satisfying their sufficient conditions. Recently,
Liu16 showed that the non-form-closure region for n-
finger planar grasp of polygonal object consists of two
convex polytopes in the parameter space representing
grasping points. However, only little mention in literature
can be found on computing 3-D form-closure grasps due
to complicated geometry and high dimension of the grasp
space. Ponce et al.6 made the first work on computing 3-D
force-closure grasps of polyhedral objects. They showed
that the force-closure synthesis on a polyhedron can be
reduced to the problem of projecting a polytope onto
some linear subspace, which led to a linear programming
solution to compute maximum independent grasp regions.
However, it only gives the detailed algorithm for 3-D
concurrent grasps. Recently, the authors17 developed an
efficient algorithm for computing all grasping points of
one finger to achieve a 3-D form-closure grasp with other
n21 fingers given. The authors18 further extended this
algorithm to general cases, i.e. we calculated grasping
points of n2m, fingers, provided that grasping points of
m fingers are given. However, those two algorithms both
involve the calculation of a 6-D convex cone via Qhull
algorithm,19 which is not efficient.
In this paper, we proposed a novel formulation of 3-D

form-closure grasp based on a recursive reduction technique
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and the theory of linear inequality system. Using the
reduction technique, we recursively slice the convex hull of
the primitive contact wrench in the 6-D wrench space by
planes passing the point of origin and transforming the
problem in the 6-D wrench space into one in a 3-D space. To
ensure a form-closure grasp, all the 3-D points resulted from
the reduction procedure have to envelop the neighbourhood
of the origin. Then we rewrote this condition into its
equivalent form of two linear inequality systems. We further
showed that searching for form-closure grasping points is
equivalent to searching for some points to make each of the
two linear inequality systems inconsistent. Finally, two
methods were developed to solve the searching problem.
The first method involved an emptiness check of the convex
region formed by each linear inequality system. The second
method derived a non-form-closure condition and trans-
formed the problem into a path-finding one while avoiding
the intersection with either convex region and approaching
a goal defined by a performance index.

The paper is organized as follows: Form-closure property
and relevant issues are reviewed in Section 2. Section 3
describes the synthesis algorithm of 3-D form-closure
grasp. Section 3.1 discusses the representation of grasping
points. Section 3.2 gives the details of the recursive
reduction technique. Section 3.3 describes the equivalent
form of form-closure condition based on the theory of linear
inequality system. In section 3.4 we first define the
performance index and then describe the two methods.
Section 4 implements the synthesis algorithm and examines
its performance by numerical experiments. Section 5
concludes the paper.

2. FORM-CLOSURE GRASPS.
In order to discuss the 3-D form-closure grasps, we make
the following assumptions:

• The object to be grasped is a polyhedron.
• A point contact with friction model is adopted.
• Kinematics and dynamical forces of the grasp are

negligible.

Assume that the Coulomb friction with friction coefficient m
exists at the contact point. To ensure non-slipping at the
contact point of finger i, the grasping force fi must satisfy 

f 2
ix + f 2

iy ≤ m2f 2
iz (1)

where (fix, fiy, fiz) denotes x, y and z components of the grasp
force fi w.r.t. the object coordinate frame. The non-linear
constraints in (1) geometrically represent a cone called
friction cone (Figure 1).

To simplify the problem, we linearize the friction cone by
a polyhedral convex cone with m sides. Under this
approximation, the grasp force fi can be represented as

fi =Om

j=1

aijaijWsij, aij ≥ 0 (2)

where Wsij represents the j-th edge vector of the polyhedral
convex cone. Coefficients aij are non-negative constants.
The force and torque, corresponding to the grasping force fi

applied at the center of mass of the object is given by

wi =Sfi

ti
D=S fi

ri3 fi
D (3)

where ri denotes the position vector of the i-th grasping
point w.r.t. the object coordinate frame originated at the
center of mass. Here we refer to the force fi and moment ti

pair as a wrench wi Substituting eq. (2) into eq. (3) derives

wi =Om

j=1

aijwij (4)

where

wij =S Wsij

ri3 Wsij
D

wij is called primitive contact wrenches of the finger. The net
wrench applied at the object by the fingers is

wnet =On

i=1
Om

j=1

aijwij =Wa (5)

where W and a are given by

W = (w11, w12, . . . , w1m, . . . , wn1, wn2, . . . , wnm )

a = (a11, a12, . . . , a1m, . . . , an1, an2, . . . , anm )T

W is a 63 nm matrix called wrench matrix and its column
vectors are the primitive contact wrenches. For convenience,
in the following we use wi with a single subscript i, instead
of wij to denote the i-th column vector of grasp matrix W,
and use ai to represent the i-th component of vector a.

Definition 1. Suppose that an n-finger frictional grasp is
given. For any external wrench wext applied at the object, if
it is always possible to find an a with all ai ≥ 0 such that

Fig. 1. The friction cone at a grasping point.
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Wa + wext = 0,

the grasp is said to be form-closure.

It is well-known that a form-closure grasp is equivalent to
a situation when the point of origin of the wrench space R6

lies exactly inside the convex hull of the primitive contact
wrenches wi.

In order to properly balance any external disturbance
(force and moment) applied on the object, it is of great
significance to develop an efficient algorithm to calculate
form-closure grasps. We address the following problem:

Problem 1. Suppose that n-finger robot hand grasped a
polyhedral object. Find the grasping points of the n fingers
on the surface of the object such that the n-finger  grasp {g1,
g2, . . . , gn} is form-closure.

Since two surface coordinates are essential to represent
fingertip positions on the surface of an object, the problem
of computing a form-closure grasp, in general, is to find a
solution in R2n; n is the number of faces where the fingertip
positions are to be located. However, during the process of
grasp planning, it is often the case that some of the
fingertips are guaranteed to slide along the object boundary
towards locations admitting form-closure grasps while some
others are fixed in position. Such a case would be the simple
version of our problem.

3. SYNTHESIS OF FORM-CLOSURE GRASPS

3.1. Representing a grasping point.
The surface of a polyhedral object is not smooth at its edges
and vertices, hence different coordinates must be introduced
to represent the grasping point on different faces. To
represent the grasping point of the finger i on a face, a local
coordinate frame {li

1, l
i
2, l

i
3} is attached to the face (Figure

2). The origin of the coordinate frame is located at one
vertex and the li

3 axis is parallel to the normal of the face.
The other axes are defined according to the right-hand rule.
The grasping point is represented by a local coordinate (li

1,
li

2). The coordinates of the grasping point gi w.r.t. the object
frame are calculated by

gi = oi
l + Ri

l

li
1

li
1

0

where oi
l and Ri

l denote the origin and the rotation matrix of
the local frame {li

1, li
2, li

3} w.r.t. the object frame,
respectively. The components of the vector gi are all affine
in li

1 and li
2

At the grasping point, another frame {xi, yi, zi} is
introduced to represent the grasping force. Slice the friction
cone by zi =1. The grasping force fi w.r.t. the object frame is
given by

fij = bij Ri

xij

yij

1

j = 1, 2, . . . , m

where Ri is the rotation matrix of the local frame, m is the
number of sides of i-th polyhedral convex cone.

The resultant wrench on the object by the grasping force
fi is

wij = bij

Ri

xij

yij

1

g(li
1,l

i
2)2 (Ri

xij

yij

1
)

j = 1, 2, . . . , m (6)

where vector qii is called qii the primitive grasping wrench
of the finger i. It should be noted that the force vector in qii

is constant while the moment vector is affine in li
1, and li

2

3.2. Recursive reduction technique
Theorem 1. A convex hull H(N) of N points in Rd(x1,
x2, . . . , xd) contains the origin point if and only if there is
such an i that,
(1) in the given N points there are points with strictly

positive xi-coordinates and points with strictly negative
xi-coordinates as well;

(2) the intersection of the convex hull H(N) with the
hyperplane xi =0 contains the origin of the Rd21 defined
by xi =0;

The proof of this theorem is referred to in reference 15. The
recursive reduction technique needs to calculate the slice of
a convex hull by a hyperplane. Denote intersection points of
the hyperplane with edges of the convex hull by set V. The
slice is the convex hull H(V) of points in set V. The
following fact is well-known in Computational Geometry.

Proposition 1. For any N points in Rd, the vertices of their
convex hull belong to the N points and the edges belong to
segments connecting them.

From Proposition 1, we clearly obtain

Proposition 2. For N points in Rd, denote intersection
points of the segments connecting them with the hyperplane
xi =0 by set E. The convex hull of points in set E is the
intersection of the convex hull H(N) with the hyperplane.Fig. 2. The representation of a grasping point on an object face.
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From Proposition 2, instead of explicitly calculating
intersection of the convex hull with a hyperplane, we
calculate the intersections of a hyperplane with segments
connecting the points. Since the force vector (the first three
coordinates) in qij is constant, we can reduce the dimension
by successively calculating intersections between segments
connecting the primitive contact wrenches and plane x1 =0
then plane x2 =0 and then plane x3 =0.

Algorithm 1.
• Step 1: Compute all the primitive contact wrenches wij in

the representation of the parametric variable (li
1, l

i
2), and

denote them by set E.
• Step 2: According to signs of their x1 coordinates, divide

the primitive contact wrenches into groups E+ , Eo, E2 ,
which contain points with positive, zero, negative x1

coordinates, respectively. If either E+ or E2 is null, the
form-closure grasp cannot be found and then the algo-
rithm ends.

• Step 3: Calculate the intersections enew of the plane x1 =0
with segments connecting points in set E+ to those in E2 .
Update the set E by all the intersection points and points
in set E0

• Step 4: According to signs of their x2 coordinates, follow
the same procedure as steps 2 and 3.

• Step 5: According to signs of their x3 coordinates, follow
the same procedure as steps 2 and 3.

• Step 6: The algorithm ends.

In this way, we finally obtain some new points in R3 space
whose coordinates are affine in li

1, and li
2. Thus the original

problem in R6 space is effectively simplified. However, the
negative effect of the recursive reduction technique is the
increase of the number of points to be processed.

3.3. Equivalent form of form-closure condition
Through the recursive reduction technique, we obtain some
3-D points resulting from 6-D primitive contact wrenches.
As mentioned previously, to ensure a form-closure grasp,
the convex hull of these 3-D points must contain the origin.
In other words, a given system of wrenches achieves form-
closure when the equation

ON

i=1

aiwi(l
j
1, lj

2)=0 ai >0 (7)

admits a non-trivial, strictly positive solution. N is the
number of newly generated 3-D points.

We note that the equation above is equivalent to the
following form:

'zi >0, ON

i=1

ziwik(l
j
1, lj

2)=0 k=1, 2 (8)

ON

i=1

ziwi3(l
j
1, lj

2)≤0 (9)

and

'gi >0, ON

i=1

giwik(l
j
1, lj

2)=0 k=1, 2 (10)

ON

i=1

giwi3(l
j
1, lj

2)≤0 (11)

Theorem 2. The system of inequalities

A(lj
1, lj

2)z < d(lj
1, lj

2)

is inconsistent if and only if there exists a > 0 such that

aTA(lj
1, lj

2) = 0T (12)

aTd(lj
1, lj

2) ≤ 0 (13)

where a is an n3 1 vector, A is an n3 2 matrix, d is a 13 n
vector.

The proof of this theorem can be seen in reference [15].
Here

A(l j
1, l j

2)=def

w11

w21

…

wn1

w12

w22

…

wn2

For the inequality system formed by (8) and (9)

d(lj
1, lj

2) =def (w13, w23, . . . , wn3)
T

For the inequality system formed by (10) and (11)

d(lj
1, lj

2) =def (2w13, 2w23, . . . , 2wn3)
T

From the sufficient condition of Theorem 2, the problem
can be transformed into the inconsistency of each of the two
linear inequality systems.

A(lj
1, lj

2)z<d(lj
1, lj

2) (14)

A(lj
1, lj

2)z<2d(lj
1, lj

2) (15)

Proposition 3. On the face of the object, the grasping
points {g1, g2, . . . , gn} that result in an n-finger form-
closure grasp are a set of parameters (l1

1, l
1
2, . . . , ln

1, l
n
2)

that guarantee the inconsistency of both linear inequality
systems (14) and (15). That is,

{(l1
1, l1

2, . . . , ln
1, ln

2)u

A(l1
1, l1

2, . . . , ln
1, ln

2)z<d(l1
1, l1

2, . . . , ln
1, ln

2) inconsistent and

A(l1
1, l1

2, . . . , ln
1, ln

2)z<2d(l1
1, l1

2, . . . , ln
1, ln

2) inconsistent}
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Note that a geometric interpretation of Proposition 3 is that
the convex regions bounded by inequality systems (14) and
(15) are empty respectively.

Proposition 4. An n-finger grasp (l1
1,l

1
2,…,ln

1,l
n
2) is non-

form-closure if and only if either inequality system (14) or
(15) is consistent. That is, the non-form-closure grasps are
the following set of points:

{(l1
1, l1

2, . . . , ln
1, ln

2)u

A(l1
1, l1

2, . . . , ln
1, ln

2)z ≤ d(l1
1, l1

2, . . . , ln
1, ln

2) consistent or

A(l1
1, l1

2, . . . , ln
1, ln

2)z ≤ 2d(l1
1, l1

2, . . . , ln
1, ln

2) consistent}

Here z is a 23 1 vector. Note that since matrix A and vector
d contain the unknown variable (l1

1, l
1
2, . . . , ln

1, l
n
2), hence

the convex regions in the 2-D space formed by the two
inequality systems are not fixed. Therefore, we perform the
following transformation:

y =def (lT, z1, z2, lTz1, lTz2)
T

where l=(l1
1, l1

2, . . . , ln
1, ln

2)
T Then for each inequality

system, we obtain a new form

Cy ≤ k

Here matrix C and vector k are constant and y is a
(6n + 2)3 1 vector which defines a new state space. Thus in
the new state space we obtain two fixed convex polytopes.
Thus the geometrical meaning of Proposition 4 is that once
a set of new state variables is inside either fixed convex
polytope, the grasp (l1

1,l
1
2,…,ln

1,l
n
2) is non-form-closure.

Based on Proposition 3 and Proposition 4, we proposed
two methods to solve the problem of searching for a set of
parameter (l1

1,l
1
2,…,ln

1,l
n
2) such that a form-closure grasp

can be obtained.

3.4. Determination of fingertip positions
3.4.1. Definition of performance index. We have found
empirically that there is not, in general, a unique solution to
the form-closure problem. Thus it is an efficient and
practical way to define a criterion to uniquely determine the
fingertip position yielding a form-closure grasp. We note
that many grasp metrics concerning the contact forces have
been presented in published papers; however, few quality
index relate to fingertip positions. In this section, a criterion
similar to the one proposed by Ponce is adopted. We try to
locate the fingertips in such a position that we can center as
well as possible the center of mass of the object. This
enables us to decrease the effect of gravitational and inertial
forces during the motion of the robot.

In detail, the criterion introduced measures the L2

distance between the center of mass Op =(xp, yp, zp) of the
grasped object and the center Od =(xd, yd, zd) of the contacts
corresponding to the grasping parameters lj

1, and lj
2

u=(xd 2xp)
2 +(yd 2yp)

2 +(zd 2zp)
2

3.4.2. Method 1: Emptyness check of convex regions.
Suppose we have a set of constraints as follows:

Hi ={AT
i x<bi} i = 1, 2, . . . , n.

Given a fixed vector v, we discuss the relation between the
vector and the hyperplanes formed by the linear constraints.
We define P+ , P0, P2 to be the set of the subscripts of linear
constraints that the scalar product of v, and the norm vector
of the hyperplane of the corresponding linear constraint is
greater than, equal to, or less that 0, respectively. Then three
conditions are given to reduce the number of constraints to
be processed. M denotes the convex space formed by all the
linear constraints.

(i) if P+ = 0/ or P2 = 0/, and P0 = 0/, then M ≠ 0/.
(ii) if one and only one set of P+ and P2 are empty, and

P0 ≠ 0/, then M ≠ 0/ if and only if {xuAT
i x<bi, iPP0} ≠ 0/,

(iii) if M ≠ 0/, P2 ≠ 0/, then there is a subscript i0PP+ , such
that Ai01x1 + Ai02x2 + . . . + Ai0nxn <bi0

is not redundant,
that is irremovable in the decision whether M is
empty. And if M ≠ 0/, P+ ≠ 0/, then there is a subscript
i1 P P2 , such that Ai11x1 + Ai12x2 + . . . + Ai1n xn <bi1

is
not redundant.

Algorithm 2.

• Step 1: Set the initial value of (lj
1, l

j
2) so that the objective

function achieves minimum 0.
• Step 2: Using Algorithm 2 to determine whether the two

linear inequality systems are both inconsistent. If the
condition is met, the algorithm ends.

• Step 3: Recursively modify the values of (lj
1, lj

2)
according to a heuristic search strategy until both convex
regions are proved to be empty.

To update the value of (lj
1, l

j
2), we extend in 2r

3 8 directions
with different radius on a face. Here r = 0, 1, . . . p and p is
the number of layers we need to search. Suppose each face
Fj where the fingertip positions are to be determined is
bounded by ni edges, the parameters lj

1 and lj
2 resulting

from the searching procedure must also satisfy ni linear
constraints fji(l

j
1, l

j
2) ≤ 0 with i=1, 2, . . . , ni.

3.4.3. Method 2: Potential field method. From Proposi-
tion 4, when a set of parameters (l1

1, l
1
2, … , ln

1, l
n
2) enables

either the inequality system (14) or (15) to be consistent, the
grasp obtained will be a non-form-closure. Through the
transformation described in Section 3.3, we obtain two fixed
convex polytopes in the new state space, which represent the
non-form-closure region. Our aim is to find form-closure
grasps, that is, we need to find a set of parameters (l1

1, l
1
2,

… , ln
1, ln

2) which corresponds to a point outside the two
convex polytopes.

Here we employ the potential field method by consider-
ing the two convex polytopes as obstacles. We can set the
desired direction according to the performance index. In
order to make the point to be attracted towards that direction
while being repulsed from the obstacles, the field of
artificial forces F(y) is introduced to denote the most
promising direction in every iteration.

F(y) = 2,U(y) =

­U/­y1

­U/­y2

. . .

­U/­yn
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Here U(y) is the potential function composed of the
attractive potential Uatt and repulsive potential Urep asso-
ciated with the obstacle regions.

U(y)=Uatt(y)+Urep (y)

Here we define Uatt(y) using our performance index
described in Section 3.4.1, and the repulsive function is
defined as follows:

Urep ( y) = H 1/2h(1/r (y)21/r0)
2

0
if r (y) ≤ r0 ,
if r (y) > r0 ,

where h is positive scaling factors and r(0) is a positive
constant denoting the allowable distance to the obstacle.
r(y) denotes the distance from q to the obstacle polytopes,
i.e.:

r(q) = miniy 2 yii

The potential field method is an iterative one and in each
step 2,U(q), i.e. the gradient vector denotes the most
promising direction along which we can update the previous
parameter.

Note that the initial point we set lies inside the obstacle
polytopes. In this case, we take a two-step measure. First,
we find the shortest distance from the initial point to the
boundary edges of the convex polytopes and along that
direction we can move the point out of the obstacle regions
quickly. Second, once we obtain a new point outside the
obstacle region, we can turn to the potential field method
described above.

4. IMPLEMENTATION
We have implemented the proposed algorithm on a Sun
Ultra 5 workstation using the C++ programing language
and verified its computation efficiency by two examples.
Here we used method 1.

The first example concerns a four-finger grasp of a
polyhedral object shown in Figure 3. Three fingertip
positions are already fixed and the normal vectors nrmi of
the object at the grasp points are known.

In this example, parameters (l1, l2) concerning finger 4
on the left face of the polyhedron are calculated. The face is

a 43 4 area. According to the center of mass of the object,
that is, the center of the polyhedron in this example, we set
the object function as follows:

u = (l1 2 2)2 + (l2 2 2)2

It’s easy to find that the initial candidate for (l1, l2) should
both be 2 to ensure that the object function achieves a
minimum. In other words, we choose (2, 2) as the start point
for searching the pair yielding form-closure grasps.

Here each friction cone is linearized by 8 segments and
the friction coefficient m=0.3. The normal vectors nrmi of
the object are given as follows:

nrm1 =
0.0
0.0
1.0

,
nrm2 =

0.0
1.0
0.0

nrm3 =
0.0
0.0
1.0

,
nrm4 =

0.0
21.0

0.0

Two groups of fixed positions are given to show the
efficency of our algorithm.

Case I:

r1 =
2.0
0.0
0.0

, r2 =
0.0
1.5
0.0

, r3 =
0.0
0.0
2.0

In this case, since the initial candidate of (l1, l2) is just the
point we are searching, the algorithm ends quickly using
only 0.362 sec. (Figure 4).

Case II:

r1 =
2.0
1.5
1.5

, r2 =
0.2
2.0

21.5
, r3 =

20.5
20.5

2.0

In this case, the initial candidate of (l1, l2) cannot meet the
form-closure condition, so the algorithm finds the right
point l1 =2.0 and l2 =1.5 after 3 loops using 2.663 sec.
(Figure 5).

Fig. 3. Example 1. Fig. 4. Form-closure grasp found in Case I.
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In the second example, we consider a four finger grasp of
a tetrahedron which is not such a  regular geometry as the
cube in the first example (Figure 6).

Here each friction cone is linearized by 8 segments and
the friction coefficient m=0.6. The normal vectors nrmi of
the object are given as follows:

nrm1 =
0.0
0.0
1.0

, nrm2 =
1.0
0.0
0.0

nrm3 =
1.0
1.0
1.0

, nrm4 =
0.0

21.0
0.0

In this example, we set the gravity center of the tetrahedron
as the origin point and the object function correspondingly
becomes u=(l1 23)2 +(l2 24)2. So the initial candidate for
l1 and l2 is (3, 4).

Case I:

r1 =
0.5
2.6

21.0
, r2 =

0.0
0.6
3.0

, r3 =
1.2
1.2
0.6

In this case, the algorithm ends with l1 =2.6 and l2 =3.6
after two tries using 1.102 sec. The corrosponding position
for finger 4 is (0.4,0.0,0.4). (Figure 7)

Case II:

r1 =
1.1
2.0

21.0
, r3 =

1.4
1.6
0.2

, r4 =
2.0
0.0
0.0

In this case, we made r4 fixed and calculate the fingertip
position in Face 2. At last we got l1 =1.0 and l2 =1.5 after
1 loop using 0.923 sec. The corresponding position for
finger 2 is (0.0, 1.0, 0.5). (Figure 8)

5. CONCLUSION
This paper presents a new formulation of 3-D form-closure
grasp. Through the recursive reduction technique and based

Fig. 5. Form-closure grasp found in Case II.

Fig. 6. Example 2.

Fig. 7. Form-closure grasp found in Case I.

Fig. 8. Form-closure grasp found in Case II.
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on the theory of linear inequality system, we successfully
transformed the complicated problem in the 6-D wrench
space to the inconsistency of each of the two 2-D linear
inequality systems. Furthermore, we proposed two methods
to solve the problem of searching proper grasping parame-
ters based on the two propositions derived. Finally we have
confirmed the efficiency of the proposed algorithm by two
numerical experiments. 
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