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SUMMARY

In this paper, we present an on-line task modification method
(OTMM) to realize singularity avoidance for nonredundant
and redundant manipulators at the velocity level. The
method introduces a correction vector, constructed from
the task velocity and the singular vector corresponding to
the minimum singular value, into the task velocity. The
performance is simply affected by the choice of the lower
limit of the minimum singular value and a scalar adjusting
function, which is monotone with respect to the minimum
singular value. The method makes unnecessary avoiding the
singularity point by off-line path planning for nonredundant
or redundant manipulators, and the effort to check whether
the singularity is escapable for redundant manipulators. The
simulation results show the effectiveness of the OTMM
for on-line singularity avoidance in manipulator motion
control.

KEYWORDS: On-line task modification; Singularity
avoidance; Nonredundant; Redundant; Manipulator.

1. Introduction

One of the important problems in the research of a robot
manipulator’s control is the inverse kinematics problem. At
the same time, any methods of inverse kinematics resolution
must properly address the singularity problem associated
with nonredundant or redundant manipulators. At singular
configurations, the inverse kinematics algorithms that rely
on inverse Jacobian matrix (for nonredundant or redundant
manipulators) may break down because of the Jacobian is
rank deficiency. Understanding and treatment of singular
configurations of a robot manipulator is important in the
implementation of a controller for the manipulator.

The Jacobian matrix represents the linear mapping relation
between the task velocity and the joint velocity space. A
column vector of the Jacobian is the finite screw motion
that the end-effector can fulfill with unit velocity of the
corresponding joint while all other joints are fixed. When
rank deficiency of the Jacobian exists, the task velocity
vector may not be obtained from the linear combination of
the column vectors of the Jacobian matrix. Therefore, with
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resolved motion rate control algorithms we have only two
ways to avoid the singularities: One is to avoid the situation
of the Jacobian rank deficiency, and the other is to make
the task trajectory bypass the singularities to avoid singular
configurations.

Much effort in research community has been paid on
dealing with kinematic singularities in motion control of
robot manipulators. The classical Singularity Robust Inverse
(SRI)1−5 introduced a regularization term into the Jacobian
matrix to avoid the ill-conditioning of the Jacobian in the
neighbor of the singularities. The SRI method is simple
but sensitive in parameter selection. The works of Cheng
et al.,6 Aboaf et al.,7 and Chiaverini et al.8 differentiate
the achievable components and degenerate components of
the task velocity. The special control policy was utilized to
treat the unachievable components while the exact inverse
kinematic solution was used for the achievable motion
components. This method makes the design of control
algorithm complex.

Duleba et al.9 developed a modified Jacobian method
of transversally passing through singular configurations
of corank 1 for nonredundant and redundant robotic
manipulators. When the determinant of the Jacobian
(nonredundant case) or the submatrix of maximum
independent groups in the Jacobian (redundant case) was
lower than a given threshold, the ill-conditioned row of
the Jacobian was substituted with the differential of the
determinant of the Jacobian (nonredundant case) or with
the differential of one among the nonvanishing determinants
(redundant case), and the corresponding task component was
substituted with the negative determinant at that moment. The
modified Jacobian method revised the task and the mapping
relation between the joint velocity and the task velocity
space simultaneously at singularities. This method depends
strongly on the form of the forward kinematics relation to
assure that the updated Jacobian is not rank deficiency again.
A failed example for hyperbolic singularity is presented in
ref. [9].

Mayorga et al.10,11 presented a singularity avoidance
approach for redundant manipulators based on establishing
a local sufficient condition to insure the rank preservation
of the Jacobian. The condition is set up based on the
differential of the Jacobian. The normal form technique12,13

expresses original kinematics around singularity in the
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normal form. The part of the task path corresponding to
singular configurations is moved from the task to the joint
space, and trajectory planning is performed there. Far away
from singularities the basic Newton algorithm is used to
generate a trajectory. Finally, the trajectory parts are joined.
Based on the analysis of the differential of the Jacobian, the
types of singularity are differentiated. However, the normal
form approach is high computation load in deriving the
diffeomorphisms, and needs to switch on and off different
algorithms to traversing singularity within motion control
process.

Bedrossian14 presented a general methodology for the
singularity analysis of redundant manipulators. The singular
configurations are classified based on whether the robot
can be reconfigured into a nonsingular posture by its self-
motion. For the escapability that the redundant manipulator
can reconfigure itself from a singular posture to a nonsingular
posture via self-motion, Seng et al.15 established the
criteria for the classifications of escapable and inescapable
singularities. Donelan16 presented a deeper analysis about
classifying singularities of robot manipulators with language
of differential topology and singularity theory. Nakamura
et al.17 and Cheng et al.18 presented the methods to avoid the
escapable singularities utilizing the self-motion capacity of
the redundant manipulators.

For redundant manipulators, self-motion capacity offers
the manipulators the ability to avoid the escapable
singularities. However, to judge the escapability of the
singularities needs high computation load to analyze the
differential of the Jacobian matrix. On the other hand,
the methods to avoid rank deficiency of the Jacobian,
in singularity avoidance methods1–13 for nonredundant
manipulators or for inescapable singularities of redundant
manipulators, are indirectly or directly making a modification
to the task path. Therefore, we can conclude that a unified
task modification method can realize singularity avoidance
for the singularities of the nonredundant manipulators
or the escapable and inescapable singularities of the
redundant manipulators. Marani et al.19 proposed an on-
line trajectory control scheme that used the manipulability
measure as a distance criterion to avoid singularities for
generic manipulators. The proposed approach introduced a
correction vector constructed for the task velocity with the
gradient of the manipulability surface. This method provides
a general approach to treat the requirement of avoiding
singularity.

Tan et al.20 designed a hybrid motion controller to realize
singularity-free tracking algorithms for robot manipulators.
The robot workspace is partitioned into subspaces based on
the singular configurations of the robot. Switching between
continuous controllers is involved when the robot travels
across the subspaces. In some works (Muszyński et al.,12 K.
Tchoń et al.,13 Duleba et al.,9 Cheng et al.,6 Aboaf et al.,7 and
Chiaverini et al.8), a switching mechanism is also needed in
motion control algorithm design for robot manipulator with
singularity traversing consideration. The switching design
makes the design of motion control algorithm complex.

In this paper, we propose an on-line task modification
method (OTMM) to realize singularity avoidance for
nonredundant and redundant manipulators by introducing

a correction vector into the task velocity. The method
is developed based on the observation of the geometry
relation between the task velocity and the singular vector at
singular configurations. The OTMM provides a general and
intuitive geometry approach to realize singularity avoidance
and does not differentiate between the type of manipulator
(nonredundant or redundant) and the escapability of the
singularities for redundant manipulators. The task velocity is
filtered by modifying the manipulator’s task directly in the
vicinity of singularity, and then the design of resolved motion
rate control algorithm need not consider the special treatment
for singularity, such as a switching mechanism in the design
of control algorithm. The escapable/inescapable singularities
are dealt with the same way for redundant manipulator just
like the one for nonredundant manipulator. Therefore, the
resolved motion rate control system can be designed as a
general one accompanied with a filter layer for its input.

The paper is organized as follows. Section 2 briefly
analyzes the attributes of the singular configuration of the
manipulator. Section 3 constructs the OTMM and analyzes
its geometric principle. Section 4 shows the effectiveness
of our method with simulation examples for the trajectory
following task with a 2-link planar manipulator and a 4-
link planar manipulator. The effects for different choices of
the scalar adjusting function for the correction vector are
presented. Finally, Section 5 presents the conclusions.

2. Singularity Analysis

For the linear attribute of the first-order kinematics mapping,
the majority of efforts have been focused on finding the
solution of the inverse kinematics at the velocity level. The
kinematics of manipulators is frequently represented as

x = f (q), (1)

ẋ = J (q) × q̇, (2)

where x ∈ Rn represents the task in Cartesian space,
f (q) ∈ Rn is a vector function expressing the forward
kinematics relation, q ∈ Rm(m ≥ n) represents the joint
variables in configuration space, and J (q) = ¶f/¶q =
[J1 L Jm]ÎRn×m is the end-effector Jacobian matrix
which is consisted of column vectors for joint twists with
respect to Cartesian space. If rank (J (q)) = n, the joint
velocity can be resolved as

q̇ = J #(q)ẋ (3)

where J #(q) = J−1(q)ÎRn×n for m = n and J #(q) =
J T (q)(J (q)J T (q))−1ÎRm×n for m > n. When rank(J (q)) <

n, there is no definition for the inverse or pseudoinverse of
the Jacobian at such configurations. These configurations are
named singular configurations. At singular configurations,
the joint velocity may break or chatter with resolved
motion rate control algorithms based on Jacobian inverse
or pseudoinverse, which is not practically feasible in
manipulators’ control system and is also dangerous for the
robot’s structure. Therefore, singularity avoidance measures
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must be considered in designing motion control algorithm of
manipulators.

The most powerful tool to investigate the singularity of the
robot manipulators (nonredundant or redundant) is Singular
Value Decomposition (SVD).21 The SVD has a reputation for
being numerically expensive to compute. The determinant of
the manipulator’s Jacobian matrix gives illegible information
about the absolute proximity to singularities, since the
minimum singular value is the only reliable measure of the
absolute proximity to singularities.21,22 Decomposition of
the Jacobian matrix has the form

J = U �aV T (4)

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices,∑ ∈ Rn×m contains singular values on its main diagonal
and has the form [diag(σ1, σ2, . . . , σn)|0n×(m−n)], σ1 ≥ σ2 ≥
· · · ≥ σn ≥ 0. The column vectors of U and V are respectively
the left and right singular vectors of the matrix J. When
the manipulator reached a singularity configuration, there
are rank(J (q)) = z < n, corank(J (q)) = n − z, and σj = 0,
j = {n − z + 1, . . . , n}. Then, we can partition the matrix
U as U = [Uz, Un−z] and get equation rang(J ) = rang(Uz).
The subspace rang(Uz) and rang(Un−z) can be named
respectively as achievable and unachievable subspace for
the task velocity space. At singular configurations, we
cannot find a group of feasible joint velocities for the task
velocity with nonzero projective components in the subspace
rang(Un−z).

We have pointed out in Section 1 that there are only
two ways to avoid singularity: One is to avoid the
situation of the Jacobian rank deficiency, and the other
is to make the task trajectory bypass the singularities
to avoid singular configurations. For the singularity of
nonredundant manipulator or inescapable singularity of
redundant manipulator, avoiding rank deficiency of the
Jacobian means changing the linear mapping relation
between the joint velocity and the task velocity space. Taking
the SRI1–5 method as example, the physics meaning of the
SRI can be expressed as

min(ẋ − J (q)q̇)T (ẋ − J (q)q̇) + α2 × q̇T q̇, (5)

where α ≥ 0 is a damping factor for the joint velocity. The
analytical resolution of (5) can be expressed as

q̇ = J T (JJ T + α × I )−1ẋ. (6)

When the algorithm (5) or (6) is applied in the vicinity of
singularity, there will be a trade-off between the tracking
accuracy and the joint velocity norm. In fact, the SRI
method avoids singularity by modifying indirectly the task
velocity with (5) or (6). According to the matrix formula
(C + D)−1 = C−1(I − (C−1 + D−1)−1C−1)±, where C ∈
Rn×n and D ∈ Rn×n, we can represent (6) as

q̇ = J T (JJ T )−1 (ẋ − ẋα) , (7)

where ẋα = ((JJ T )−1 + 1
α
I )−1(JJ T )−1ẋ 1

2 is a corrected
vector for the task velocity. The damping parameter α plays a

key role in the SRI method. It needs a bigger α to get a feasible
solution but a smaller one to decrease the tracking error. In
order to smooth the damping action within the bounding area
of singularity point, Liu et al.5 adopted an adaptive method to
define the damping parameter α as a function of the minimum
singular value. However, their method is still sensitive to
the choice of α and the bounding limit of singularity for
that the damping parameter α is acting directly in the joint
space and the velocity direction variety of end-effector is
not considered. Kirćanski et al.23 and O’Neil et al.24 had
proved that the controller based on pseudoinverse method
will cause instability in the vicinity of singularity. Therefore,
direct modification of the mapping relation from joint space
to task space is not preferred.

3. On-Line Task Modification Method

For nonredundant manipulators, singularity-free motion
can be achieved with off-line path planning. However, it
requires a priori knowledge of the singular configurations
of the manipulator and applies severe restrictions to the
manipulator’s workspace. For a redundant manipulator, self-
motion can realize avoidance of the escapable singularities
but this cannot be achieved for inescapable singularities.14,15

Therefore, an on-line general singularity avoidance method
for nonredundant and redundant manipulators will be a better
method. On the other hand, we must remove the drawback
of the singularity avoidance methods that revised directly
the Jacobian mapping relation between the joint velocity
and task velocity space. Finally, we hope that the designed
singularity avoidance method can remove the burden of
checking whether the singular configurations for redundant
manipulators can be avoided by self-motion.

At a singularity configuration, to avoid Jacobian deficiency
means changing the mapping relation between the task
velocity and the joint velocity space. It will inevitably
cause some perturbation to the task trajectory. Analysis
about the SRI in the former section can prove this point.
Therefore, a basic idea is to circumscribe singularities by
directly modifying the task trajectory and make the input
for the resolved motion rate control kernel be out of the
singularity problem. The singular direction vectors us, {s =
1, . . . , n − z}, which are the column vectors of the submatrix
Un−z, span the instantaneous unachievable task velocity
space at singularity configurations. Assuming m = 2, n = 2,
and z = 1, Fig. 1 shows the geometry relation between

Fig. 1. The geometry relation between the viable end-effector
velocity, the arbitrary end-effector velocity, and the left singular
vector corresponding to the singular value σmin = 0.
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the viable end-effector velocity, the arbitrary end-effector
velocity, and the left singular vector corresponding to the
singular value σmin = 0 for a 2-link planar manipulator.
In Fig. 1, we can find only ±ẋe which can be realized
by the manipulator instantaneously. For a nonredundant or
redundant manipulator, the achievable components of task
velocity can be represented as ẋa = ẋ − (ẋT us) × us when
corank(J (q)) = 1.

From Fig. 1, we can find that the left singular vector
corresponding to the singular value σmin = 0 provides
important information to construct the achievable task
velocity. The column vector of U corresponding to
the minimum singular vector represents the degenerated
direction of the task velocity when the manipulator moves
near to the singularity. In order to make the end-effector to
bypass the singularities and avoid the failure of the inverse
or pseudoinverse of the Jacobian matrix, the column vector
of U corresponding to the minimum singular vector can be
used to revise the task velocity and hold back the movement
of the end-effector to the singularity point. A general
on-line singularity avoidance method for nonredundant or
redundant manipulators with corank(J (q)) = 1 is formulated
as

ẋm = ẋ − k × p(σmin) × (uT
S ẋ) × uS, k =

{
0 σmin > σS

1 σmin ≤ σS
,

(8)

where ẋmÎRn is the modified task velocity, σmin ∈ R is
the minimum singular value of the matrix J, σS ∈ R is
the low limit of the minimum singular value of the matrix
J, p(σmin)Î [0, 1] is a monotone function, where p(σmin) =
1 when σmin = 0 and p(σmin) = 0 when σmin = σS. The
p(σmin) is designed to adjust the extent of suppressing
the components of the task velocity along the column
vector corresponding to the minimum singular value, which
represents the degenerated direction of the range space of the
Jacobian. The choices of the function p(σmin) can be chosen
by trial-and-error. We will give some simulation results in
Section 4 for the effect of different choices of the function
p(σmin).

Method (8) can be utilized to realize on-line singularity
avoidance and was named OTMM. The OTMM realizes
singularity avoidance by directly modifying the task velocity
and avoids the instability drawback caused by modifying
the Jacobian mapping relation in joint space. There is no
need to design switching mechanism between the normal
resolved motion rate control algorithm, which is based
on the Jacobian inverse or pseudoinverse, and the special
singularity avoidance control algorithm in the vicinity of
singularities.

The OTMM avoids the singularity of the task trajectory
by directly modifying the task velocity vector, so it is
effective not only for nonredundant manipulators but also
for redundant manipulators. The choice of p(σmin) and the
low limit of the minimum singular value σS are the exclusive
factors for the performance of singularity avoidance control
algorithm and the trajectory tracking accuracy. Simulation
results in Section 4 will validate the effectiveness of the
OTMM.

4. Simulation Results

In order to demonstrate the effectiveness of the OTMM
in resolved motion rate control of manipulators, several
simulation tests have been performed. For nonredundant
manipulators, a 2-link planar manipulator is considered.
The kinematic model of the 2-link planar manipu-
lator is [x, y]T = [l1 cos(q1) + l2 cos(q1 + q2); l1 sin(q1) +
l2 sin(q1 + q2)]T . As an example of a redundant
manipulator, a 4-link planar manipulator is selected and
its kinematic model is [x, y]T = [

∑4
i=1 li cos(

∑i
j=1 qj );∑4

i=1 li sin(
∑i

j=1 qj )]T . We use Matlab to implement the
control algorithm and perform the numerical simulations of
the robot motion.

In order to compare the performance of different methods,
we implement respectively the resolved motion rate control
algorithm without singularity avoidance consideration, the
SRI algorithm proposed by Liu et al.,5 and the OTMM
for a 2-link manipulator with the same mission, which
tracks a circle with radius 0.6 m and center (1.2, 0) in
clockwise direction. The end-effector moves with even
velocity to finish the mission in 10 s. The parameters of the
manipulator and its initial states are [l1, l2] = [1, 0.8] m and
[q1, q2] = [0.927, −2.5] rad. The initial joint velocity of the
manipulator is [q̇1, q̇2] = [0, 0] rad/s and the sample time
interval is 20 ms. The simulation results are showen in Figs.
2–6 respectively for that mission. Figures 4–6 present the
simulation results with OTMM for different choices of the
function p(σmin).

Figure 2 shows the simulation results of the resolved mo-
tion rate control algorithm without singularity avoidance con-
sideration. In this simulation test, the basic Newton algorithm
is used to compute the joint velocity. The configuration with
joint angle [0, 0] is a singular configuration for the 2-link
planar manipulator. In Fig. 2(c), we can find that there is joint
velocity chattering and break when the manipulator passes
a singularity. The initial jump of the joint velocity shown in
Fig. 2(c) does not impact the inspection of the effectiveness
of the algorithm. The end-effector tracking error history
showen in Fig. 2(d) reveales the same phenomena caused by
singularity with the basic Newton algorithm. This situation
must be avoided for safety consideration of robot structure
and stability of control system.

Figure 3 shows the simulation results for the SRI algorithm
proposed by Liu et al.5 Because there are no distinct
differences in robot motion and joint history, the figures about
the motion process and joint history are omitted. We choose
the same low limit of singular value with σS = 0.05 for the
SRI method and the OTMM in this and the next simulation
tests. The other parameters are w0 = det(J )|σmin=0.05 and
α = 0.003 for the SRI algorithm.5 Though, we have obeyed
the SRI algorithm5 to implement the manipulator control,
there is joint velocity break and chattering phenomena shown
in Fig. 3. The results in Fig. 3 indicate that the SRI method
is sensitive to the parameters chosen and the robot structure.

Figures 4–6 show the simulation results with the proposed
OTMM in tracking a circular path which is same to the former
simulation tests. The scalar adjusting funtionsp(σmin) are
chosen as p(σmin) = 1 − σmin/σS , p(σmin) = 1 − √

σmin/σS ,
and p(σmin) = 1 − 3

√
σmin/σS respectively. The initial
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Fig. 2. A 2-link planar manipulator follows a circular trajectory without singularity avoidance consideration.
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Fig. 3. The results for a 2-link planar manipulator following a circular trajectory using SRI method with adaptive damp ratio adjustment.

Fig. 4. The results for a 2-link planar manipulator following a circular trajectory using the OTMM with p(σmin) = 1 − σmin/σS.
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Fig. 5. The results for a 2-link planar manipulator following a circular trajectory using the OTMM with p(σmin) = 1 − √
σmin/σS.
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Fig. 6. The results for a 2-link planar manipulator following a circular trajectory using the OTMM with p(σmin) = 1 − 3
√

σmin/σS.

conditions of joint angle and joint velocity are same to the
former simulation tests also. For length consideration, the
robot motion and joint angle history is omitted. The results in
Figs. 4(a), 5(a), and 6(a) indicate that the OTMM is effective
and robust to avoid singularity with different function p(σmin)
and the OTMM is successful in avoiding the joint velocity
chattering or break in the vicinity of singular configuration.
Contrasting the tracking error shown in Figs. 4(b), 5(b), and
6(b), the tracking error caused by task modification can be
decreased by properly choosing the scalar adjusting function
p(σmin). The function p(σmin) is the only factor to impact the
performance of the algorithm.

These simulation tests show the effectiveness of the
OTMM in avoiding singularity when robot manipulators
transverse singularity. However, the initial configuration
of the robot manipulator being at a singular configuration
is not considered. This situation is not treated in existed
literature. We design a simulation experiment to check if
the OTMM is effective when the initial configuration of
the robot manipulator is at singularity. Figure 7 shows the
simulation results with the OTMM for a 2-link manipulator
with the end-effector following a straight line trajectory
within 5.2 s, which is from point (1.8, 0) to point
(0.6, −1). The trajectory is defined with bell-shape
acceleration law as x(t) = −1.2(10(t/T )3 − 15(t/T )4 +
6(t/T )5) + 1.8, y(t) = −10(t/T )3 + 15(t/T )4 − 6(t/T )5).
The parameters of the manipulator and its initial states are
[l1, l2] = [1, 0.8] m and [q1, q2] = [0, 0] rad. The initial joint

velocity of the manipulator is [q̇1, q̇2] = [0, 0] rad/s and the
sample time interval is 20 ms. The initial configuration of the
manipulator in this simulation test is a singular configuration.
With traditional Jacobian inverse based resolve motion
ration control algorithm, the inverse kinematics cannot find
a feasible solution at the beginning of the control loop.
The velocity constraints for the mission were modified as
(0, ẏ(t))T with the OTMM formulated in (8). Therefore,
only the second row of the Jacobian was considered in the
control algorithm. When the manipulator escapes the singular
configuration, the whole Jacobian matrix is applied again.
Observing the joint velocity history, we can find that the
OTMM is effective.

Figure 8 shows the simulation results with the OTMM for a
4-link planar manipulator tracking a circle with radius 0.6 m
and center (2.6, 0) in clockwise direction and even velocity
movement within 6 s. The parameters of the manipulator
and its initial states are [l1, l2, l3, l4] = [1, 0.8, 0.8, 0.6]
m,[q1, q2, q3, q4] = [−1.2763, 1.1927, 0.7517, 0.4086] rad,
and [q̇1, q̇2, q̇3, q̇4] = [0, 0, 0, 0] rad/s. The sample time
interval is 20 ms and the low limit of singular value is σS =
0.05. The scalar adjusting function is chosen as p(σmin) =
1 − 3

√
σmin/σS. Observing Fig. 8(c), the joint velocity

chattering or break phenomenon is avoided with the OTMM
successfully.

In the above simulation experiments, we realize the sin-
gularity avoidance by directly modifying the task trajectory
with the task velocity and the singular vector. The OTMM
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Fig. 7. The results for a 2-link planar manipulator following a line trajectory using the OTMM with p(σmin) = 1 − 3
√

σmin/σS.
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supervises the change of the minimum singular value of the
matrix JJT and is a general task modification method for
nonredundant and redundant manipulators. By applying the
OTMM, the resolved motion rate control algorithm or system
can be designed without consideration of the singularity.

We validated the usefulness of the OTMM for singularity
avoidance of nonredundant and redundant manipulators with
the above simulation tests. The tracking error of the end-
effector can be decreased further by choosing a smaller
low limit of the singular value σS and more refined scalar
adjusting function p(σmin).

5. Conclusions

This paper proposes an on-line singularity avoidance method,
OTMM, to realize singularity avoidance for nonredundant
and redundant manipulators by introducing a corrected vector
into the object task velocity. The method is developed based
on the observation of the geometry relation between the task
velocity and the singular vector at singular configurations.
With this intuitive geometry approach, there is no need
to differentiate the manipulator types (nonredundant or
redundant) and the escapability of the singularities for
redundant manipulator. With the OTMM, the switching
mechanism of control algorithm design can be eliminated.

The OTMM is a general method to avoid singularity
for nonredundant or redundant robot manipulators. On-
line modification of the task velocity to avoid singularity
alleviates the effort in path planning and the design of
resolved motion rate control system. It makes unnecessary
singularity avoidance in path planning. Several simulation
experiments for nonredundant and redundant manipulators
validate the effectiveness of the proposed method.
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